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Abstract. We consider computational complexity questions related to
parallel knock-out schemes for graphs. In such schemes, in each round,
each remaining vertex of a given graph eliminates exactly one of its
neighbours. We show that the problem of whether, for a given graph,
such a scheme can be found that eliminates every vertex is NP-complete.
Moreover, we show that, for all fixed positive integers k > 2, the prob-
lem of whether a given graph admits a scheme in which all vertices are
eliminated in at most k rounds is NP-complete. For graphs with bounded
tree-width, however, both of these problems are shown to be solvable in
polynomial time.
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1 Introduction

In this paper, we consider parallel knock-out schemes for finite undirected sim-
ple graphs. These were introduced by Lampert and Slater [5]. Such a scheme
proceeds in rounds: in the first round each vertex in the graph selects exactly
one of its neighbours, and then all the selected vertices are eliminated simultane-
ously. In subsequent rounds this procedure is repeated in the subgraph induced
by those vertices not yet eliminated. The scheme continues until there are no
vertices left, or until an isolated vertex is obtained (since an isolated vertex will
never be eliminated).

A graph is reducible if there exists a parallel knock-out scheme that eliminates
the whole graph. The parallel knock-out number of a graph G, denoted by pko(G),
is the minimum number of rounds in a parallel knock-out scheme that eliminates
every vertex of G. If G is not reducible, then pko(G) = co. Consider the following
decision problem.

PARALLEL KNOCK-OuT (PKO)
Instance: A graph G.
Question: Is G reducible?

In [5], it was claimed that PKO is NP-complete even when restricted to the
class of bipartite graphs. No proof was given; the reader was referred to a paper
that was in preparation. Our attempts to obtain and verify this proof have been



unsuccessful. We shall obtain the result as a corollary to a stronger theorem
(Theorem 1 below) by considering a related problem, which is defined for each
positive integer k.

PARALLEL KNOCK-OuT (k) (PKO(k))
Instance: A graph G.
Question: Is pko(G) < k?

That there is a polynomial algorithm to decide PKO(1) follows easily from a
piece of graph theory folklore (see [1] for details). Our first result classifies the
complexity of PKO(k), k > 2.

Theorem 1. Fork > 2, PKO (k) is NP-complete even if instances are restricted
to the class of bipartite graphs.

In [1], it was shown, using a dynamic programming approach, that the parallel
knock-out number for trees can be computed in polynomial time. It was asked
whether this result could be extended to graphs with bounded tree-width. In
our second result, we give an affirmative answer.

Theorem 2. The problem PKO (k) can be solved in linear time on graphs with
bounded tree-width.

We will also show that PKO can be solved in polynomial time on graphs with
bounded tree-width.

The paper is organised as follows. In the next two sections we introduce a
number of definitions and simple results. In Section 4 and Section 5 are the
proofs and corollaries of Theorems 1 and 2 respectively.

2 Preliminaries

An edge joining vertices u

Graphs in this paper are denoted by G = (V, E).
= ). For graph terminology not

and v is denoted wv. In the null graph, V = FE
defined below, refer to [2].

For a vertex u € V' we denote its neighbourhood, that is, the set of adjacent
vertices, by N(u) = {v|uv € E}. The degree of a vertex is the number of edges
incident with it, or, equivalently, the size of its neighbourhood.

For a graph G, a KO-selection is a function f : V — V with f(v) € N(v) for
allv € V. If f(v) = u, we say that vertex v fires at vertex u, or that vertex u is
knocked out by vertex v.

For a KO-selection f, we define the corresponding KO-successor of G as the
subgraph of G that is induced by the vertices in V' \ f(V); if H is the KO-
successor of G we write G ~» H. Note that every graph without isolated vertices
has at least one KO-successor. A graph G is called KO-reducible, if there exists
a finite sequence

G~ Gr ~ Gy ~» -~ Gy,



where G, is the null graph. If no such sequence exists, then pko(G) = co. Oth-
erwise, the parallel knock-out number pko(G) of G is the smallest number r for
which such a sequence exists. A sequence of KO-selections that transform G into
the null graph is called a KO-reduction scheme. A single step in this sequence
is called a round of the KO-reduction scheme. A subset of V' is knocked out in a
certain round if every vertex in the subset is knocked out in that round.

We make some simple observations that we will use later on.

Observation 1 Let G be a graph on at least three vertices. If G contains two
vertices of degree 1 that share the same neighbour, then G is not KO-reducible.

Observation 2 Let ui,u2,us,us be four vertices of a KO-reducible graph G
such that N(uz) = {ui,us}, N(ug) = {u2,us} and N(ug) = {us}. If uy is
knocked out in the first round of a KO-reduction scheme, then uy fires at us in
the first round.

An odd path wiuz...usy1 is called a centred path of G with centrevertex
w1 if G — {ug41} contains as components the path ujus...ur and the path
Uk42Uk43 - - - U2F+1-

Observation 3 Let P = ujus .. - uy be a centred path of a KO-reducible graph G.
In the first round of any KO-reduction scheme uy and us fire at each other, us
fires at uz, ug and uy fire at each other, us fires at ug, uyq fires at us or us, and uy
will not be knocked out. In the second round of any KO-reduction scheme uy and
its remaining neighbour in P fire at each other.

3 NP-complete problems

In this section, we consider two NP-complete problems that we will use in the
proof of Theorem 1. We refer to [4] and [6] for further details.

DowmiNnaTING SET (DS)

Instance: A graph G = (V, E) and a positive integer p.

Question: Does G have a dominating set of size at most p, that is, is there a
subset V' C V such that |V'| < p and every vertex of G is in V' or adjacent to
a vertex in V'?

A hypergraph J = (Q,S) is a pair of sets where Q = {qi1,...,¢m} is the vertex
set and § = {S1,...,Sp} is the set of hyperedges. Each member S; of S is a
subset of ().

HYPERGRAPH 2-COLOURABILITY (H2C)

Instance: A hypergraph J = (Q, S).

Question: Is there a 2-colouring of J = (Q,S), that is, a partition of @ into
sets B and W such that, for each S € S, BNS # @ and W NS # 0.

The incidence graph I of a hypergraph J = (Q,S) is a bipartite graph with
vertex set Q US where (g, S) forms an edge if and only if ¢ € S.



With a hypergraph J = (Q,S) we can associate another hypergraph J' =
(X, 2) called the triple of J; triples of hypergraphs will play a crucial role in our
NP-completeness proofs in the next section. It requires a little effort to define
the vertices X and hyperedges Z of the triple of J.

Recall that Q = {q1,...,qm} and S = {S1,...,S,}. For 1 < i < m, let £(3)

be the number of hyperedges in S that contain ¢;, let Q; = {q},.. .,qf(i)} and

let U; = {u},... ,uf(i)}. The union of all such sets is the vertex set of J’, that is
m
X = J@iuw.
i=1

Now the hyperedges:

o for 1 <i <m,for 1 <k <L(i),let PF={qF, uk},

o for 1 <i<m,for1<k<L(i)—1,let RF =TF={uf,¢""}, and

o for 1 <i<m,let B'D =T/ = (/@ g1y,
Let P; = {P},...,P'P} R, = {R!,...,R“D} and T; = {T},..., T/}, and
let

r=UP, R=UR» T=UT-
i=1 i=1 i=1

For 1 < j <, there is also a hyperedge S;. If in J, S; contains g;, then in J', S;
contains a vertex of ();. In particular, if S; is the kth hyperedge that contains g;
in J, then S} contains g. For example, if ¢, is in S1, Sy and S7 in J, then £(1) = 3
and in J' there are vertices ¢}, ¢?, ¢ with ¢f € S}, ¢? € S}, and ¢} € 5.

Let 8" = {S],...,S}}- The set of hyperedges for J' is

Z=S'UPURUT.

We denote the incidence graph of the triple J' by I'. See Figure 1 for an example
that illustrates the case where ¢; belongs to Si, Ss and S7.

Proposition 1. J = (Q,S) has a 2-colouring BUW if and only if J' = (X, Z)
has a 2-colouring B' UW' such that for each 1 < i < m either Q; C B' and
Ui CW', orQ; CW' and U; C B'.

Proof. Suppose BUW is a 2-colouring of J. Define a partition B’ UW' of X as
follows. If ¢; is in B, then each ¢¥ is in B’ and each u* is in W'. If ¢; is in W,
then each ¢F is in W' and each uf is in B’. Obviously, B' U W' is a 2-colouring
of J' with the desired property.

Suppose we have a 2-colouring B’ U W' of J' such that for each 1 < i <
m either Q; C B" and U; C W', or Q; C W' and U; C B'. Then let ¢; €
B if and only if Q; C B', and let W = @ \ B. Clearly, if S; contains only
elements from B (respectively W), then S} would contain only elements from B’
(respectively W'). Hence BU W is a 2-colouring of J. |



Fig. 1. Part of the incidence graph of the triple of a hypergraph.

4 Complexity classification

Theorem 1 For k > 2, PKO (k) is NP-complete even if instances are restricted
to the class of bipartite graphs.

Proof. The proof is in three cases.

Case 1. k = 2. We use reduction from DS. Given G = (V, E) and a positive
integer p < |V, we shall construct a bipartite graph B such that pko(B) = 2 if
and only if G has a dominating set D where |D| < p.

Let the vertex set of B be the disjoint union of V. = {vy,...,v,}, V' =
{vi,...,v,} and W = {wy,...,w,_p}. Let the edge set of B contain

) .
e vy, 1 <9< n,
. and vjv;, for each edge v;v; € E, and

® V;V]
o viwp,1<i<n,1<h<n-—np.

Suppose that G has a dominating set D = {v1,...,vq} where d < p. Note that
every vertex in V' is adjacent to a vertex of D in B. We shall describe a 2-round
KO-reduction scheme for B. In round 1

for 1 <i < n, v; fires at v},

for 1 <j < p, v} fires at v;,

for p+1 < j <n, vj fires at a vertex in D, and
for 1 < h <n — p, wy fires at a vertex in D.

Thus each vertex in {vi,...,vp} and V' is eliminated, and each vertex in V'\
{v1,...,vp} and W survives to round 2. As the surviving vertices induce the
balanced complete bipartite graph K, »—p in B, it is clear that every surviving
vertex can be eliminated in one further round.

Now suppose that B has a 2-round KO-reduction scheme. Let D be the subset
of V' containing vertices that are fired at in round 1. As every vertex in V' fires



at — and so is adjacent to — a vertex in D, D is a dominating set in G (since
each vertex in V' is joined only to copies of itself and its neighbours). We must
show that |D| < p. Let Vg = V' \ D and V§ C V' UW be the sets of vertices that
survive round 1. As round 2 is the final round,

Vs| = [Vsl- (1)

As |[V'UW| = 2n — p and at most n vertices in V' UW are fired at in round 1,
[V4| > n — p. Thus, by (1), |[Vs| > n — p. Therefore

|D[ = V|- |Vs|
<n-—(n-p)

Case 2. k = 3. Let J = (Q,S) be an instance of H2C. Let I' be the incidence
graph of its triple J' = (X, Z). Recall that Z = S'UPURUT. From I', we
obtain a further bipartite graph G by connecting each vertex with a path as
follows:

For each vertex z in X, w add a path H* = yJyJy% and join z to yf.

For each vertex R in R, add a path H = yF . y}f‘ and join R to yf.

For each vertex T in 7, add a path HT = yT ...yT and join T to y{.

For each vertex P in P, add a path HY = yF .. .yF and join P to the
centrevertex yl .

e For each vertex S’ in &', add a path HS = y5' ...45" and join S’ to the
centrevertex y5 .

Fig. 2. The graph G in Case 2.

Figure 2 illustrates G. We shall prove that J is 2-colourable if and only if
pko(G) < 3. Throughout the proof, G; and G2 denote the graphs induced by the
surviving vertices after, respectively, 1 and 2 rounds of a KO-reduction scheme.



Suppose B U W is a 2-colouring of J. By Proposition 1, J' has a 2-colouring
B'UW'. We define a three-round KO-reduction scheme for G.

Round 1. Vertices of degree 1 and their neighbours fire at each other. Each HY
with P € P and each HS with S’ € 8’ is a centred path of G, and the vertices
fire as in Observation 3. For each z € R U T, vertex yf fires at y5 and y3 fires
at y%. Each vertex in Z fires at one of its neighbours in B’. Each vertex z in X
fires at its neighbour y¥ in H*. Each y¥ with x € B’ fires at z. Each y{ with
x € W' fires at y3.

Thus every vertex in W’ and no vertex in B’ survives. Also every vertex in Z
survives. Each vertex z € RUT is adjacent to a vertex yj of degree 1, and each
vertex z € §' U P is adjacent to a vertex yj whose only other neighbour is a
vertex y5 of degree 1.

Round 2. Because B'UW' is a 2-colouring of J = (X, Z), every vertex in Z has
a neighbour in W' in G;. For each S; € S' we choose one neighbour in W' and
let W' be the set of selected vertices. Since no two vertices in &’ have a common
neighbour in X, [W"| = n. The vertices in G fire as follows. Vertices of degree 1
and their neighbours fire at each other. Each vertex P € P with a neighbour in
W'\W" fires at this neighbour. Otherwise P fires at yf'. Each z € X fires at its
neighbour in P. Each ' € &' fires at y5 .

Thus the vertex set of Gy is W" U S'.

Round 3. Each S’ € &' and its unique neighbour in W fire at each other,
which leaves us with the null graph.

Now we suppose that pko(G) < 3. We assume that a particular KO-reduction
scheme for GG is given and prove that J has a 2-colouring.

Claim 1. If a vertex in a set ); is knocked out in the first round, then all vertices
in @); are knocked out in the first round.

Suppose that vertex g¥ € Q; is knocked out in the first round. We show that qf“
(with qf(’)Jrl = g}) is also knocked out in the first round.

If ¢* € Q; is knocked out in the first round, then, by Observation 2, ¢F fires
k

at y;* . Suppose qf“ is not knocked out in the first round. Observation 3 implies

that PP must fire at u¥*! and P} must fire at either ¢F or uk. If PF fires

k
at uf, then by Observation 2 uf fires at y% . Since vertices in HP' must fire
as in Observation 3, this means that G contains a component isomorphic to
a path on three vertices. By Observation 1 G; is not KO-reducible. Hence, PF

fires at gf.
For the same reason Rf“ or Tz.kJrl cannot fire at uf, and consequently, fire
RFT! Th+! . . . . RFF!
at y; ¢ and y;¢ respectively. Due to Observation 2 this implies that y;*
Rit1 Tr+! Tk+1
fires at y,* , and y;* fires at y,°
k1

In G; both T} and R} have exactly the same neighbours, namely u¥ and ¢;
If TF and RF fire at a different neighbour in the second round, then due to
Observation 2 both will be isolated vertices in G2. Suppose T} and R¥ fire at

k3



the same neighbour. Then in all possible schemes G2 will contain two vertices
of degree 1 having the same neighbour. Observation 1 implies that G is not
KO-reducible. We conclude that ¢"*' must be knocked out in the first round as
well, and this proves the claim.

Claim 2. If a vertex in a set U; is knocked out in the first round, then all vertices

in U; are knocked out in the first round.
This claim is proven by using the same arguments as in Claim 1.

By Claim 1 and Claim 2 we may define a set B' C X as follows. All vertices of
a set Q; or U; are in B' if and only if the set is knocked out in the first round.
Let W' = X\B'.

Claim 3. For all 1 < i < m, either Q; C B' and U; C W', or Q; C W'

Let 1 <4 < m. By Observation 3, each vertex P¥ € P; must fire at either gF
or u}¥ in the first round. The previous two claims imply that @; or U; is knocked
out in the first round. Suppose both sets are knocked out in the first round. Then,

1 1
by Observation 2, u} fires at y," and ¢} fires at y{* . Then, by Observation 3, P}
will not be knocked out in any round. The claim is proved.

By Claim 3, all vertices in Z\&’ have one neighbour in B’ and one neighbour
in W'. Let S} be a vertex in S. By Observation 3, S fires at a neighbour in
U, Q;- By definition, this neighbour is in B’. By both Observation 2 and
Observation 3, S’ is knocked out by a neighbour in Uit Q; that is not knocked
out in the first round. By definition, this neighbour is in W’. It is now clear that
B UW' is a 2-colouring of J' such that for each 1 < ¢ < m either @Q; C B’
and U; C W', or Q; C W' and U; C B'. Hence, by Proposition 1, J also has a
2-colouring.

Case 3. k > 4. We use reduction from H2C. From an instance J = (Q,S) we
construct the graph G as in the previous case. We claim that J is 2-colourable
if and only if pko(G) < k.

Suppose that J is 2-colourable. As we have seen in the previous case this
implies that pko(G) < 3 < k.

Suppose that pko(G) < k. Then G is KO-reducible. Note that in the proof
of the previous case we only assume that G is KO-reducible. Hence we can copy
the proof of the previous case. This completes the proof of Theorem 1. O

Corollary 1. The PKO problem is NP-complete, even if instances are restricted
to the class of bipartite graphs.

Proof. We use reduction from H2C. From an instance J = (Q,S) we construct
the graph G as in the proof of Theorem 1. We claim that J is 2-colourable if
and only if G is KO-reducible.
Suppose that J is 2-colourable. As we have seen in the proof of Theorem 1
this implies that pko(G) < 3. Hence G is KO-reducible.
Suppose that G is KO-reducible. We copy the proof of Case 2 of Theorem 1.
O



ExacT PARALLEL KNOCK-OuT (k) (EPKO(k))
Instance: A graph G.
Question: Is pko(GQ) = k?

Corollary 2. The EPKO(k) problem is polynomially solvable for k = 1 and is
NP-complete for k > 2, even if instances are restricted to the class of bipartite
graphs.

Proof. For the case k = 1 we only have to exclude the null graph. Let £ > 2. In
[1] a family of trees Y; is constructed with pko(Y;) = £ for £ > 1. For the case
k = 2 we only have to add a disjoint copy of the tree Y> (a path on 7 vertices)
to the graph B in the proof of Case 1 in Theorem 1. For k£ > 3 it suffices to add
a disjoint copy of the tree Yy to the graph G constructed in the proof of Case 2
in Theorem 1. Note that the size of a tree Yj only depends on k and not on
the size of our input graph G (so we do not need the exact description of this
family). O

5 Bounded tree-width

In this section we use monadic second-order logic; that is, that fragment of
second-order logic where quantified relation symbols must have arity 1. For ex-
ample, the following sentence, which expresses that a graph (whose edges are
given by the binary relation E) can be 3-coloured, is a sentence of monadic
second-order logic:

JR3IW3B {Vz ((R(w) VW(z)V B(z)) A—(R(z) A W(x))
A-(R(z) A B(z)) A ~(W (z) A B(z)) ) AVzVy ( E(z,y) =

(~(R(x) A R(y)) A (W () AW (5)) A ~(B(z) A B))) )}

(the quantified unary relation symbols are R, W and B, and should be read as
sets of ‘red’, ‘white’ and ‘blue’ vertices, respectively). Thus, in particular, there
exist NP-complete problems that can be defined in monadic second-order logic.

A seminal result of Courcelle [3] is that on any class of graphs of bounded
tree-width, every problem definable in monadic second-order logic can be solved
in time linear in the number of vertices of the graph. Moreover, Courcelle’s result
holds not just when graphs are given in terms of their edge relation, as in the
example above, but also when the domain of a structure encoding a graph G
consists of the disjoint union of the set of vertices and the set of edges, as well as
unary relations V' and E to distinguish the vertices and the edges, respectively,
and also a binary incidence relation I which denotes when a particular vertex is
incident with a particular edge (thus, I C V x E). The reader is referred to [3]
for more details and also for the definition of tree-width which is not required
here. To prove Theorem 2, we need only prove the following proposition.



Proposition 2. For k > 1, PKO(k) can be defined in monadic second order
logic.

Proof. Recall that a parallel knock-out scheme for a graph G = (V,E) is a
sequence of graphs

G ~ G ~ Gy ~ - ~ G,

where G, is the null graph. Let Wy = V and, for 1 <i < r, let W; be the vertex
set of G;. If we can write a formula #(W;, W;;1) of monadic second-order logic
that says
there exists a KO-selection f; on W; such that the vertex set of the KO-
successor is W1,

then we could prove the proposition with the following sentence (2; which is
satisfied if and only if G is in PKO(k):

AW IWy - - - AW (Vo (Wo (v) & V (v))
ANP(Wo, W1) AWy, Wa) A --- N D(W_1, W)
AV (=W(v) & V(v))).
(Here and elsewhere we have presupposed that each W; is a set of vertices; we
could easily include additional clauses to check this explicitly.)
The following claim will help us write $(W;, Wi y1).
Claim 4. There is a KO-selection f; on W; such that W;;1 is the vertex set of
the KO-successor if and only if there is a partition V1, V5, V3 of W; and subsets
Ey, Ey, E3 of E such that
(a) for j =1,2,3, each vertex in V} is incident with exactly one edge of Ej;, this
edge joins it to a vertex in W; \ Vj, and this accounts for every edge in E;
(so |[Vj| = |Ej]).
(b) Wit1 € W; and, for j = 1,2,3, W11 N'V; is the set of vertices in V; not
incident with edges in Ej: for any j' # j.

We will prove the claim later. First we use it to write #(W;, W;11).

The following formula ¢(V;, E1, Va, Es, V3, E3, W;) checks that the sets Vi, V5
and V3 partition W;, that the sets E1, Es, E3 are edges in the graph, and that
(a) is satisfied.

Vo((Vi(v) v Va(v) V V3(v)) & Wi(v)) AVu(=(Vi(v) A Va(v))
A=(Vi(v) A Vs (v)) A= (Vs ()/\Vs(v))
(Er(2) V Ex(x) V Es(z)



(The semantics of 3! is ‘there exists exactly one’; clearly, this abbreviates a more
complex though routine first-order formula.) The following formula checks that
(b) is satisfied and is denoted x(V1, E1, Va, Ea, Vs, E3, Wi, Wit1).

Vo(Wit1(v) & (Wi(v) A (Vi(v) A ~32((Ez(2) V Es(z)) A (v, 7)))
V(Va(v) A =3((Bi () V E3(x)) A (v, 7))
V(Vs(v) A =3 ((Er () V Bz (x)) A (v,2))))-

And now we can write &(W;, W;y1):

IVAAE VLAEAV3AE3 (w(Vi, By, Va, Ea, Vs, E3, W;)
/\X(‘/I;Ela ‘/Z;E% ‘/37E37 WiJWi+1))‘

It only remains to prove Claim 4. Suppose that we have sets V1, V5, V3, E1, FEs
and F3 that satisfy the conditions of the claim. Then to define the KO-selection f;,
for j =1,2,3, for each vertex v € V}, let v fire at the unique neighbour joined
to v by an edge in Ej. It is easy to check that W;;, is the vertex set of the
KO-successor.

Now suppose that we have a KO-selection f;. Let H; be the spanning sub-
graph of G; with edge set {vf;(v) | v € W;}. The firing can be represented as an
orientation of H: orient each edge from v to f;(v) (some edges may be oriented
in both directions). As each vertex has exactly one edge oriented away from it,
each component of the oriented graph contains one directed cycle, of length at
least 2, with a pendant in-tree attached to each vertex of the cycle; see Figure 3.
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Fig. 3. A representation of vertices firing
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We find the sets V1, Vo, Vs, Ey, Ea, E3; the edge sets contain only edges of H;.
We may assume that H; is connected (else we can find the sets componentwise).



Let the vertices of the unique cycle in the orientation be vy, ...,v. where the
edges are vjui41, 1 <1 <c¢—1, and v.v1. So H; contains vertices vy, ...,v. with
a pendant tree (possibly trivial) attached to each.

For 1 <1 < ¢, let U! be the set of vertices in the pendant tree attached to v;
whose distance from v; is even (but not zero), and let U! be the vertices in the
tree at odd distance from v;. Let

Vi = UUé U U Ul U{v :1iseven,l # ¢},

1 odd 1 even

Vo= (JUl u (U U{u:lisodd,l#c}, and
1 odd 1 even

Vs = {vc},

and, for i = 1,2,3, let E; contain vf;(v) for each v € V;. It is clear that the sets
we have chosen satisfy the conditions of the claim.
This completes the proof of the claim and of the proposition. O

Theorem 2 follows from the proposition. And, noting that EPKO(k) is defined
by the monadic second-order sentence 25 A —(2;_1, we have the following result.

Corollary 3. For k > 1, EPKO (k) is solvable in linear time on any class of
graphs with bounded tree-width.

Finally, we note that to check whether a graph G is reducible it is sufficient to
check whether pko(G) = k, for 1 < k < A, where A is the maximum degree
of G. Thus G is reducible if and only if the sentence 2o V 241 V ---V {2 is
satisfied. This gives us our last result.

Corollary 4. On any class of graphs with bounded tree-width, PKO can be
solved in polynomial time.
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