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RULED MINIMAL LAGRANGIAN SUBMANIFOLDS OF

COMPLEX PROJECTIVE 3-SPACE∗

J. BOLTON† AND L. VRANCKEN‡

Abstract. We show how a ruled minimal Lagrangian submanifold of complex projective 3-space
may be used to construct two related minimal surfaces in the 5-sphere.
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1. Introduction. In previous papers [1], [2] we showed how a Lagrangian sub-
manifold M of complex projective 3-space CP 3(4) satisfying Chen’s equality [7] but
having no totally geodesic points may be used to construct a minimal surface in the
unit 5-sphere S5(1) with ellipse of curvature a circle.

In this paper, we replace the assumption concerning Chen’s equality with the
assumption that M is minimal and admits a foliation by asymptotic curves, that is
to say curves with vanishing normal curvature. In fact, these curves turn out to be
geodesics of CP 3(4) (hence our description of M as a ruled submanifold of CP 3(4)),
and we show that the local construction referred to above may be applied to M to
give two minimal surfaces in S5(1) whose ellipses of curvature are not circles. We also
show that these minimal surfaces are related by a transform which generalises that
of the polar (see [3], [9]) for linearly full minimal surfaces in S5(1) whose ellipses of
curvature are circles. In a forthcoming paper [4], we will show that this transform
may be defined for all non totally geodesic minimal surfaces in S5(1).

2. Ruled minimal Lagrangian submanifolds. Let M be a Lagrangian sub-
manifold of CP 3(4). That is to say, if J is the complex structure of CP 3(4), then
J maps the tangent bundle of M onto the normal bundle. Let ∇̃ denote the Rie-
mannian connection on CP 3(4), and ∇, ∇⊥ the induced connections on M and the
normal bundle of M . Let h(X, Y ) = ∇̃XY − ∇XY denote the second fundamental
form of M , and, if N is a normal vector field, let AN (X) = −∇̃XN +∇⊥XN denote the
corresponding shape operator. If 〈 , 〉 denotes the Fubini-Study metric on CP 3(4),
then [5, 8], the cubic form

C(X, Y, Z) = 〈h(X, Y ), JZ〉 = 〈AJZ(X), Y 〉 (1)

is symmetric in X , Y and Z. In particular,

AJX(Y ) = AJY (X) = −Jh(X, Y ). (2)

We now assume that M admits a smooth unit length vector field e1 whose integral
curves are asymptotic curves in M , that is to say they have zero normal curvature,
so that

h(e1, e1) = 0. (3)
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If AJe1
vanishes identically at some point p ∈ M , then M satisfies Chen’s equality

at p (see [7]), and the situation in which this holds on an open subset of M has been
discussed in [1] and [2]. Since we are dealing with a local theory here, we will from
now on assume that M does not satisfy Chen’s equality at any point.

It follows from (2) and (3) that AJe1
e1 = 0, so we may choose eigenvectors e2

and e3 of AJe1
such that {e1, e2, e3} is an orthonormal basis of the tangent space of

M . Let λ2, λ3 be the eigenvalues corresponding to e2, e3 respectively.
We now assume that M is minimal, so that

0 = 〈h(e2, e2) + h(e3, e3), Je1〉 = 〈AJe1
e2, e2〉+ 〈AJe1

e3, e3〉 = λ2 + λ3. (4)

Thus λ2 = −λ3 = λ, where we may assume that λ is a strictly positive function on
M and e2, e3 are smooth unit vector fields.

If we put a = 〈AJe2
e2, e2〉, b = 〈AJe2

e2, e3〉 then it is easy to check using (2), (3)
and (4) that, with respect to the orthonormal basis {e1, e2, e3}, we have the following
matrix expressions.

AJe1
=

⎛
⎝0 0 0

0 λ 0
0 0 −λ

⎞
⎠ , (5)

AJe2
=

⎛
⎝0 λ 0

λ a b
0 b −a

⎞
⎠ , (6)

AJe3
=

⎛
⎝ 0 0 −λ

0 b −a
−λ −a −b

⎞
⎠ . (7)

Let zi
j be the connection 1-forms on M defined by

∇ej = zi
jei, (8)

and define the connection coefficients zi
kj by

zi
j(ek) = zi

kj , (9)

so that

zi
kj = 〈∇ek

ej , ei〉 = −zj
ki. (10)

We use the fundamental equations of submanifold theory, namely the Gauss,
Codazzi and Ricci equations, to find relations between zi

jk, a, b and λ. However, for
Lagrangian submanifolds, the Gauss and Ricci equations are equivalent.

First consider the Codazzi equations, namely,

∇⊥X (h(Y, Z))−h(∇XY, Z)−h(Y,∇XZ) = ∇⊥Y (h(X, Z))−h(∇Y X, Z)−h(X,∇Y Z).

If we apply J to this expression and take (2) into account, we see that that the Codazzi
equations are equivalent to

∇X(AJY Z)−AJ(∇X Y )Z −AJY (∇XZ) = ∇Y (AJXZ)−AJ(∇Y X)Z −AJX(∇Y Z).
(11)
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Equations (5), (6) and (7) may be used to show that (11) is equivalent to the
following system (12)-(19).

z2
11 = z3

11 = 0, z3
12 = z3

21 = −z2
31, z2

21 = z3
31, (12)

e1(λ) = −2z2
21λ, (13)

e2(λ) = −2z3
32λ, (14)

e3(λ) = 2z3
22λ, (15)

e1(a) = 2bz3
12 − az2

21 − 2z3
32λ, (16)

e1(b) = −2az3
12 − bz2

21 + 2z3
22λ, (17)

e3(a)− e2(b) = 3az3
22 + 3bz3

32 + 4z3
12λ, (18)

e3(b) + e2(a) = 3bz3
22 − 3az3

32 − 2z2
21λ. (19)

In particular, we note from (12) that ∇e1
e1 = 0, so that, by (3), the integral

curves of e1 are geodesics in CP 3(4). We have thus proved the following lemma.

Lemma 1. Let M be a minimal Lagrangian submanifold of CP 3(4). If M admits
a foliation by asymptotic curves then these curves are geodesics of CP 3(4), so that M
is a ruled submanifold.

We next investigate the Gauss curvature equation, which states that the curvature
tensor R of ∇ is given by

R(X, Y )Z = 〈Y, Z〉X − 〈X, Z〉Y + (Ah(Y,Z)X −Ah(X,Z)Y ).

Taking (2) into account, the above equation is equivalent to

R(X, Y )Z = 〈Y, Z〉X − 〈X, Z〉Y + [AJX , AJY ]Z. (20)

Using (5), (6), (7) and (12), we find that (20) is equivalent to the following system
(21)-(24).

e1(z
3
12) = −2z3

12z
2
21, e1(z

2
21) = −1 + (z3

12)
2 − (z2

21)
2 + λ2, (21)

e1(z
3
22) = −e3(z

2
21)− z2

21z
3
22, e1(z

3
32) = e2(z

2
21)− z2

21z
3
32, (22)

e2(z
3
12) = −e3(z

2
21) + 2bλ, e3(z

3
12) = e2(z

2
21)− 2aλ, (23)

e2(z
3
32) = e3(z

3
22) + 2a2 + 2b2 − 1− 3(z3

12)
2 − (z2

21)
2 − (z3

22)
2 − (z3

32)
2 + λ2. (24)
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The Gauss, Codazzi and Ricci equations provide a full set of integrability condi-
tions, so we have the following theorem.

Theorem 1. Let {e1, e2, e3} be an orthonormal moving frame on a simply-
connected Riemannian manifold M , and let {zi

kj} be the connection coefficients of
the corresponding Riemannian connection. If there exist functions λ > 0, a, b on M
satisfying (12)-(19) and (21)-(24) then M may be isometrically immersed as a ruled
minimal Lagrangian submanifold of CP 3(4) with shape operator A given by (5), (6)
and (7). Moreover the immersion is unique up to holomorphic isometries of CP 3(4).

We now show the existence of such submanifolds M of CP 3(4). In fact, we will
show in a forthcoming paper [4] that a solution f(x, y) to the sinh-Gordon equation

fxx + fyy + 4 sinh f = 0

determines a ruled minimal Lagrangian submanifold of CP 3(4) with the property that
the distribution orthogonal to the rulings is integrable. Indeed, let f be such a function
and let μ(t, x, y) = cos t sinh f+cosh f . Then define a Riemannian metric on a suitable
open subset of R3 by taking e1 = −2(∂/∂t), e2 = μ−1/2(∂/∂x), e3 = μ−1/2(∂/∂y)
to be an orthonormal moving frame. It follows easily from the Koszul formula that
the non-zero connection coefficients of the corresponding Riemannian connection are
given by

z2
21 = −z1

22 = z3
31 = −z1

33 = −μt

μ
, z3

32 = −z2
33 =

μx

2μ3/2
, z3

22 = −z2
23 = − μy

2μ3/2
,

and, in particular, {e2, e3} span an integrable distribution. Then taking

λ = 1/μ, a =
fx sin t

2μ3/2
, b =

fy sin t

2μ3/2
,

it may be checked that (12)-(19) and (21)-(24) are all satisfied, so we may apply Theo-
rem 1 to prove the existence of a corresponding ruled minimal Lagrangian submanifold
of CP 3(4).

Returning now to the general situation, let E0 be a local horizontal lift of a ruled
minimal Lagrangian submanifold M of CP 3(4) to the total space of the Hopf fibration
π : S7(1) → CP 3(4), where S7(1) is the unit sphere in R8 = C4. The existence of
such a lift follows from a result of Reckziegel [10], and any two such lifts E0 Ẽ0 are
related by Ẽ0 = eiθE0, where θ is a constant.

For j = 1, 2, 3, let Ej be the image under the derivative dE0 of ej , and let
E = (E0,E1,E2,E3) be the map from M to the unitary group U(4) so constructed.

We now write down the moving frame equations of E . In fact, if ω1, ω2, ω3 is the
dual frame to e1, e2, e3, a routine calculation using (5)-(9) and (12) shows that

dE = E(α + iβ) (25)

where

α =

⎛
⎜⎜⎝

0 −ω1 −ω2 −ω3

ω1 0 −z2
21ω2 + z3

12ω3 −z3
12ω2 − z2

21ω3

ω2 z2
21ω2 − z3

12ω3 0 −z3
12ω1 − z3

22ω2 − z3
32ω3

ω3 z3
12ω2 + z2

21ω3 z3
12ω1 + z3

22ω2 + z3
32ω3 0

⎞
⎟⎟⎠ (26)
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and

β =

⎛
⎜⎜⎝

0 0 0 0
0 0 λω2 −λω3

0 λω2 λω1 + aω2 + bω3 bω2 − aω3

0 −λω3 bω2 − aω3 −λω1 − aω2 − bω3

⎞
⎟⎟⎠ . (27)

Note that taking a different horizontal lift E0 would imply that we multiply E0

(and thus also E1, E2 and E3) by a factor eiθ, where θ is a constant. Thus we may
choose a lift for which E lies in SU(4) at some point. It then follows from (26) and
(27) that E always lies in SU(4) so, by choosing a suitable horizontal lift E0, we may
assume that

E : M → SU(4). (28)

We now compose E with a suitably chosen standard double-cover of SO(6) by
SU(4) to obtain a map U : M → SO(6). In fact, if we let V be the 6-dimensional
real subspace of the second exterior power ∧2C4 of C4 spanned by

U1 =
1√
2
(E0 ∧E3 + E1 ∧E2), U2 =

1√
2
(E0 ∧E1 + E2 ∧E3), (29)

U3 =
1√
2
(E0 ∧E2 + E3 ∧E1), U4 =

1

i
√

2
(E0 ∧E1 −E2 ∧E3), (30)

U5 =
1

i
√

2
(E0 ∧E2 −E3 ∧E1), U6 =

1

i
√

2
(E0 ∧E3 −E1 ∧E2), (31)

then V is a constant subspace. If we extend the standard inner product on C4 to
∧2C4 and identify V with E6 by choosing an orthonormal basis of V , then we obtain
our required map U = (U1, . . . , U6) : M → SO(6).

We now write down the moving frame equations of U . In fact, if

dU = UΩ (32)

for a 6 × 6 matrix Ω of 1-forms on M , then a calculation using (26) and (27) shows
that

Ω =

�
�������

0 (z3
12 − 1)ω2 + z

2
21ω3 (z3

12 + 1)ω1 + z
3
22ω2 + z

3
32ω3

(1− z
3
12)ω2 − z

2
21ω3 0 −z

2
21ω2 + (z3

12 − 1)ω3

−(z3
12 + 1)ω1 − z

3
22ω2 − z

3
32ω3 z

2
21ω2 + (1− z

3
12)ω3 0

λω3 0 −λω2

−bω2 + aω3 −λω2 −λω1 − aω2 − bω3

λω1 + aω2 + bω3 λω3 −bω2 + aω3

(33)

−λω3 bω2 − aω3 −λω1 − aω2 − bω3

0 λω2 −λω3

λω2 λω1 + aω2 + bω3 bω2 − aω3

0 −z
2
21ω2 + (z3

12 + 1)ω3 −(z3
12 + 1)ω2 − z

2
21ω3

z
2
21ω2 − (z3

12 + 1)ω3 0 (1− z
3
12)ω1 − z

3
22ω2 − z

3
32ω3

(z3
12 + 1)ω2 + z

2
21ω3 (z3

12 − 1)ω1 + z
3
22ω2 + z

3
32ω3 0

�
�������

.
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It is clear from the above that dU2(e1) = 0, while

dU2(e2) = (−1 + z3
12)U1 + z2

21U3 − λU5, (34)

dU2(e3) = z2
21U1 + (1 − z3

12)U3 + λU6. (35)

It follows that the image of U2 is a surface S in S5(1), and we now show that
this is a minimal surface.

Lemma 2. The vectors X = dU2(e2) and Y = dU2(e3) are perpendicular and
have the same (non-zero) length.

Theorem 2. The image S of U2 is a minimal surface in S5(1).

Proof. Let II denote the second fundamental form of S in S5(1). It follows from
Lemma 2 that we need only check that II(X, X)+II(Y, Y ) = 0, or, equivalently, that
dX(e2)+dY (e3) is a linear combination of U2, X and Y . In fact, a calculation using
(14), (15), (23) and (33) shows that the component of dX(e2)+dY (e3) perpendicular
to U2 is equal to −z3

32X + z3
22Y , from which the result follows.

We now investigate the ellipse of curvature E of S. Recall that the ellipse of
curvature at a point p of a minimal surface is that (possibly degenerate) ellipse in the
first normal space given by

E = {II(Z, Z) | Z is a unit tangent vector to S at p}.

Lemma 3. The ellipse of curvature at any point of S is not a circle. The direction
of the minor axis is given by II(X, X) and that of the major axis by II(X, Y ).

Proof. We first note that 2II(X, X) (resp. 2II(X, Y )) is equal to the component
of dX(e2)−dY (e3) (resp. dX(e3))+dY (e2)) perpendicular to S. In order to facilitate
the calculations, which we carried out using Mathematica, we let

K1 = dX(e2)− dY (e3) + 3(z3
22Y + z3

32X),

and

K2 = dX(e3) + dY (e2) + 3(z3
32Y − z3

22X),

so that 2II(X, X) and 2II(X, Y ) are the components of K1 and K2 perpendicular to
S. A calculation shows that

K1 = μ2U1 + μ1U3 + μ3U5 + μ4U6, (36)

K2 = μ1U1 − μ2U3 − 4λU4 + μ4U5 − μ3U6, (37)

where

μ1 = 4(z3
22 − z3

12z
3
22 + z2

21z
3
32) + e3(z

3
12) + e2(z

2
21), (38)

μ2 = 4(z2
21z

3
22 − z3

32 + z3
12z

3
32) + e2(z

3
12)− e3(z

2
21), (39)

μ3 = 2(b(1− z3
12)− az2

21), (40)

μ4 = 2(a(z3
12 − 1)− bz2

21). (41)
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It is clear from (36) and (37) that K1 and K2 are orthogonal vectors, and from
(34) and (35) that

(K1, X) = (K2, Y ) and (K1, Y ) = −(K2, X),

where ( , ) denotes the standard inner product on R6. Hence the components of K1

and K2 tangential to S are orthogonal and have the same length. It now follows
that II(X, X) and II(X, Y ) are also orthogonal, so that II(X, X) and II(X, Y ) lie
along the axes of the ellipse of curvature. Also, it is clear from (36) and (37) that
|K2|2 − |K1|2 = 16λ2, implying that

|II(X, Y )|2 − |II(X, X)|2 = 4λ2. (42)

Hence the ellipse of curvature is not a circle since λ 	= 0.

We note from (42) that there is a positive function φ such that

|II(X, Y )| = 2λ coshφ and |II(X, X)| = 2λ sinh φ. (43)

We may express the eccentricity e of the ellipse of curvature in terms of φ. In fact,

e =

√
1− |II(X,X)|2

|II(X,Y )|2

= sech φ.

We have seen that X and Y determine geometrically significant directions on S,
so we would therefore expect that dX(e1) and dY (e1) are scalar multiples of X and
Y respectively. In fact, it follows from (21), (13) and (33) that dX(e1) = −z2

21X and
dY (e1) = −z2

21Y .
We now determine conditions on M in order that S lies in a totally geodesic S3(1)

in S5(1).

Theorem 3. Let S be the minimal surface in S5(1) determined by U2. Then the
following conditions are equivalent.

• (i) The surface S is contained in a totally geodesic S3(1) in S5(1).
• (ii) The ellipse of curvature of S is degenerate at each point of S.
• (iii) The vector field e1 on M is a Killing vector field.
• (iv) 〈∇e2

e1, e2〉 = 0.
• (v) 〈∇e3

e1, e3〉 = 0.

Remark. Minimal Lagrangian submanifolds M admitting a unit length Killing
vector field whose integral curves are geodesics in CP 3(4) are investigated in [6]. In
particular, explicit examples of minimal Lagrangian tori admitting such a vector field
are constructed.

Proof. The equivalence of (iv) and (v) is immediate from (12).
Minimality of S, together with the Codazzi equations for S show that (i) holds

if and only if II(X, X) ≡ 0 on an open subset of S or, equivalently, (ii) holds.
On the other hand, (iii) holds if and only if e1 satisfies the Killing equations,

namely 〈∇Ue1, V 〉 + 〈∇V e1, U〉 = 0 for all vectors U , V tangential to M . It follows
from (12) that this holds if and only if (iv) holds.

Hence, we may prove the theorem by showing that the vector K1 given by (36)
is a linear combination of X and Y if and only if z2

21 = 0.
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We first assume that z2
21 = 0. In this case, using (23) we see that

K1 = 2(2z3
32(z

3
12−1)+bλ)U1−2(2z3

22(z
3
12−1)+aλ)U3+2b(1−z3

12)U5+2a(z3
12−1)U6.

This is a linear combination of X and Y if and only if both the following equations
hold.

a(z3
12 − 1)2 = 2z3

22λ(z3
12 − 1) + aλ2, (44)

and

b(z3
12 − 1)2 = 2z3

32λ(z3
12 − 1) + bλ2. (45)

Using (21), these equations simplify to

az3
12 = λz3

22, (46)

and

bz3
12 = λz3

32. (47)

However, it follows from (12) that [e1, e2] = 0, and, applying this to z3
12 using

(13), (17), (21) and (23), we obtain (46). Similarly, [e1, e3] = 0, and, applying this to
z3
12 , we obtain (47). Thus K1 is a linear combination of X and Y as required.

Conversely, assume that K1 is a linear combination of X and Y . It then follows
from (34), (35) and (36) that

λμ1 = −μ3z
2
21 + μ4(1− z3

12), (48)

and

λμ2 = μ3(1− z3
12) + μ4z

2
21. (49)

We may use the above two equations, together with (23) to obtain the following
algebraic expressions for e2(z

2
21), e3(z

2
21), e2(z

3
12) and e3(z

3
12).

λe2(z
2
21) = −(z3

12 − 1)2a + 2(z3
12 − 1)(bz2

21 + λz3
22) + a((z2

21)
2 + λ2)− 2λz2

21z
3
32, (50)

λe3(z
2
21) = −(z3

12 − 1)2b + 2(z3
12 − 1)(−az2

21 + λz3
32) + b((z2

21)
2 + λ2) + 2λz2

21z
3
22,

(51)

λe2(z
3
12) = (z3

12 − 1)2b + 2(z3
12 − 1)(az2

21 − λz3
32) + b(−(z2

21)
2 + λ2)− 2λz2

21z
3
22, (52)

λe3(z
3
12) = −(z3

12 − 1)2a + 2(z3
12 − 1)(bz2

21 + λz3
22) + a((z2

21)
2 − λ2)− 2λz2

21z
3
32. (53)

We now consider the integrability conditions for λ. In fact, the only one we will
need is obtained by applying ∇e2

e3 −∇e3
e2 − [e2, e3] to λ and equating the answer

to zero. Carrying out this process using (12)-(15), we obtain

e2(z
3
22) + e3(z

3
32) = 2z3

12z
2
21. (54)

Using the above equations and (12)-(19), (21)-(24), a calculation (for which
we used Mathematica) shows that the integrability condition obtained by applying
∇e2

e3 − ∇e3
e2 − [e2, e3] to z3

12 and equating the answer to zero reduces to z2
21 = 0.

This completes the proof of the theorem.
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We now return to the general situation governed by the ruled minimal Lagrangian
submanifold M of CP 3(4). We note that the arguments applied to U2 may be used to
show that the image Ŝ of U4 is also a minimal surface in S5(1). We now investigate
the relation between the two minimal surfaces S and Ŝ.

Lemma 4. If S is contained in a totally geodesic S3(1) then Ŝ is the polar of S
in the sense of Lawson [9].

Proof. In this situation, II(X, X) = 0, so that K1 is a linear combination of X
and Y . We also have from Theorem 3 that z2

21 = 0, so it follows from (34), (35), (36)
and (37) that 2II(X, Y ), the component of K2 perpendicular to X and Y , is equal
to −4λU4. In particular, Ŝ is in the totally geodesic S3(1) containing S and at each
point is orthogonal to S and the tangent space to S. Thus Ŝ is the polar of S.

We now assume that S is not contained in a totally geodesic S3(1). Theorem
3, together with real analyticity of minimal surfaces imply that, by restricting to an
open dense subset of M , we may assume that z2

21 is a nowhere vanishing function.
Therefore, by replacing e1 with −e1 (and interchanging e2 and e3 in order to keep λ
positive) if necessary, we may also assume that z2

21 is a strictly positive function. We
now let N be the unit vector in R6 such that

{U2, X, Y, II(X, X), II(X, Y ),N} is a positively oriented orthogonal frame of R6.
(55)

It follows from (34), (35) and (36) that U4 is orthogonal to U2, X , Y , and
II(X, X), and so is a linear combination of II(X, Y ) and N. Also, it follows from
(37) that (U4, II(X, Y )) = −2λ so that, using the positive function φ introduced in
(43), we see that

U4 = − sechφ II(X,Y )
|II(X,Y )| + ε tanhφ N,

where ε = ±1.
In order to determine the sign of ε, we compute the determinant of

(U2, X, Y, II(X, X), II(X, Y ),U4). In fact,

4 det(U2, X, Y, II(X, X), II(X, Y ),U4) = det(U2, X, Y,K1,K2,U4)

= −(μ1
2 + μ2

2)λ2 + 2
(
(z3

12 − 1)(μ1μ4 + μ2μ3) + z2
21(μ1μ3 − μ2μ4)

)
λ

− (μ3
2 + μ4

2)((z3
12 − 1)2 + (z2

21)
2).

Regarding this as a quadratic equation in λ, we see that its discriminant is given
by

− (
(μ4μ2 + μ3μ1)(z

3
12 − 1) + z2

21(μ2μ3 − μ1μ4)
)2

.

This is always non-positive, implying that

det(U2, X, Y, II(X, X), II(X, Y ),U4) ≤ 0,

from which it follows that ε = −1.
We remark that the minimal surface Ŝ determined by U4 may be determined

directly from S together with a choice of direction along the major axis of the ellipse
of curvature E of S. In fact, the unit vector N determined by (55) does not depend
on the choice of basis {X, Y } of the tangent space of S, so if V is the unit vector in
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the direction determined by II(X, Y ) along the major axis of E then we may define
ˆ: S → Ŝ, where

p̂ = (− sechφ V − tanhφ N)(p), p ∈ S.

We will call this the (−)transform of S. This, together with a related construction
called the (+)transform, may be described geometrically as follows. Let E be the
ellipse of curvature of S at a point p ∈ S and let P be the 3-plane orthogonal to U2

and its tangent space. Let Rθ be the rotation of P about the minor axis of E through
an angle θ, 0 ≤ θ ≤ π/2, such that Rθ(V ) makes an acute angle with N and having
the property that the orthogonal projection of Rθ(E) onto the plane containing E is
a circle. Then the inverse rotation R−θ has a similar geometric effect on E, and we
define the (+)transform and (−)transform of S by setting

p+ = Rθ(N) = (− sechφ V + tanhφ N)(p), p ∈ S, (56)

and

p− = R−θ(−N) = (− sechφ V − tanhφ N)(p), p ∈ S. (57)

Thus U4 is obtained by applying the (−)transform to the minimal surface deter-
mined by U2, and we now show that U2 is obtained by applying the (+)transform
to the minimal surface determined by U4. We begin by noting that if, in our
construction, we replace e3 by −e3 then a suitable lift to SU(4) gives the map
Ũ = (Ũ1, . . . , Ũ6) : M → SO(6) where

Ũ1 = U6, Ũ2 = −U4, Ũ3 = −U5, Ũ4 = U2, Ũ5 = U3, Ũ6 = −U1. (58)

Thus, from Theorem 3, Ŝ is not contained in a totally geodesic S3(1). Also,

Ũ4 = − sech φ̃ ĨI(X̃,Ỹ )

|ĨI(X̃,Ỹ )|
− tanh φ̃ Ñ, (59)

where φ̃ > 0 is such that sech φ̃ is the eccentricity of the ellipse of curvature of the sur-
face S̃ determined by Ũ2, X̃ = dŨ2(e2), Ỹ = dŨ2(−e3), ĨI is the second fundamental
form of S̃, and Ñ is the unit vector in R6 such that {Ũ2, X̃, Ỹ , ĨI(X̃, X̃), ĨI(X̃, Ỹ ), Ñ}
is a positively oriented orthogonal frame of R6.

Now let X̂ = dU4(e2), Ŷ = dU4(e3), and let ÎI be the second fundamental form
of Ŝ. Then ÎI(X̂, X̂) = −ĨI(X̃, X̃) is along the minor axis of the ellipse of curvature

of Ŝ, while ÎI(X̂, Ŷ ) = ĨI(X̃, Ỹ ) is along the major axis. Now let N̂ be the unit vector

in R
6 such that {U4, X̂, Ŷ , ÎI(X̂, X̂), ÎI(X̂, Ŷ ), N̂} is a positively oriented orthogonal

basis of R
6. It then follows from (58) that Ñ = −N̂, and from (58) and (59) that if

φ̂ > 0 is such that sech φ̂ is the eccentricity of the ellipse of curvature of Ŝ, then

U2 = − sech φ̂ ÎI(X̂,Ŷ )

|ÎI(X̂,Ŷ )|
+ tanh φ̂ N̂.

Thus, taking the direction along the major axis of the ellipse of curvature of Ŝ to be
that determined by ÎI(X̂, Ŷ ), then applying the (+)transform to Ŝ gives us S.

The following theorem summarises the results of the paper.

Theorem 4. A ruled minimal Lagrangian submanifold M of CP 3(4) defines two
minimal surfaces S and Ŝ in S5(1). These surfaces are related geometrically in that Ŝ
is obtained from S by the (−)transform and S is obtained from Ŝ by the (+)transform.
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Thus, ruled minimal Lagrangian submanifolds of CP 3(4) induce two constructions
on what could be a special class of minimal surfaces in S5(1), namely a (−)transform,
given by (57), producing Ŝ from S and a (+)transform, given by (56), producing S
from Ŝ.

In a forthcoming paper [4] we shall show that if we apply either of these con-
structions to an arbitrary minimal surface with non-circular non-degenerate ellipse of
curvature in S5(1) then we obtain another minimal surface in S5(1). As a consequence
of this we will show that every such minimal surface in S5(1) may be constructed lo-
cally in the manner described in the present paper from a ruled minimal Lagrangian
submanifold of CP 3(4).
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