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Time evolution in string field theory and

T-Duality

Anton Ilderton∗ and Paul Mansfield†

Centre for Particle Theory, University of Durham,

Durham, DH1 3LE, UK

Introduction

In the mechanics of particles and fields it is natural to consider the evolution
in time of arbitrary configurations. In second quantised string theory this is
not so straightforward, for example in Witten’s theory [1] the natural time vari-
able is that at the mid-point of the string rather than a global time for the
whole string. In this letter we will construct the time evolution operator for
second quantised strings by analogy with that for field theory. We begin by
showing that when the field theory Schrödinger functional is written in terms
of propagators expressed in first quantised form then these describe particles
moving on a timelike orbifold S

1/Z2. The first quantised propagators have an
immediate generalisation to string theory, suggesting that the Schrödinger func-
tional for second quantised strings can be expressed in terms of first quantised
strings moving on this orbifold. To strengthen the analogy we give a graphical
construction of the field theory Schrödinger functional which extends to both
open and closed string theory. This avoids using a Lagrangian formulation of
string field theory. Finally we study the effect of T-duality on time evolution
and describe the nature of BRST invariance in our approach.

1 Time Evolution in QFT

Consider a bosonic scalar field φ in D + 1 dimensions. It will be convenient to
work in a basis in which π̂(x) = φ̇(x), the momentum canonically conjugate to
the field (the problem of defining a momentum in string field theory goes hand
in hand with the definition of a global time), is diagonal

〈π |π̂(x) = π(x)〈π |, i
δ

δπ(x)
〈π | = 〈π |φ̂(x).
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Symanzik has shown how to express the Schrödinger functional in the represen-
tation in which the field is diagonal as a functional integral [2] using sources.
Generalising this to the momentum representation gives the Schrödinger func-
tional as

S[π2, t2; π1, t1] = 〈π2 |e−iĤ(t2−t1)|π1 〉 =

∫
DϕeiS[ϕ]+i

∫
π2ϕ(t2)−i

∫
π1ϕ(t1)

∣∣∣∣
ϕ̇(t2)=0

ϕ̇(t1)=0

.

This has a Feynman diagram expansion in propagators which obey Neumann
boundary conditions on the boundaries at times t1 and t2, where all external legs
must end, and vertices integrated over the interval. The free field contribution
is
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where the broken line represents the propagator, which we call Gorb, and the
heavy lines are the spacelike boundaries. We discuss the normalisation coming
from the Gaussian integral below. Without loss of generality, we will take t1 = 0
and t2 = t from here on. The required boundary conditions on the propagator
can be achieved using the method of images,

Gorb(x, tf ;y, ti) =
∑

n∈Z

G0(x, tf + 2nt;y, ti) +
∑

n∈Z

G0(x,−tf + 2nt;y, ti), (2)

for 0 ≤ ti, tf ≤ t and G0 is the free space propagator. To interpret this in terms
of first quantisation recall that G0 is given by a sum over paths x(ξ) with an
action involving an intrinsic metric g, [3]. Integrating out g gives a Boltzmann
weight equal to the exponential of the length of the path,

G0(xf ; xi) =

∫
D(x, g) ei

∫
1

0
dξ (ẋ·ẋ/(2g)+m2g/2)

∣∣∣∣
x(1)=xf

x(0)=xi

=

∫
Dx eim

∫
1

0
dξ

√
ẋ·ẋ

∣∣∣∣
x(1)=xf

x(0)=xi

.

(3)

To obtain Gorb, we identify free space points with their images under an S
1/Z2

(orbifold) compactification of the time direction, with radius t/π. The sum over
paths to each image gives a free propagator in the sum (2).

The first form of the functional integral in (3) is immediately generalised to
string theory suggesting that the Schrödinger functional for second quantised
string theory can be obtained by letting the propagators in (1) represent the
string propagator on the orbifold. It is not obvious how to derive this from a
Lagrangian given the remarks in the introduction about the rôle of a global time
in Witten’s open string field theory, and given the difficulties of closed string
field theory (for a review see [4] and references therein). Rather than attempt
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a Lagrangian derivation we will give a graphical derivation of the field theory
result which can be taken over into string theory.

We appeal to a fundamental property of field theory, which follows from
the observation that paths from t3 to t1 must cross the plane at time t2 for
t3 > t2 > t1, so that formally the sum over paths in (3) can be factorised,

∑

paths AB

e−length(AB) =
∑

C

( ∑

paths AC

e−length(AC)

)( ∑

paths CB

e−length(CB)

)
.

The explicit result, which we refer to as the gluing property, is

∫
dDy G0(x3, t3;y2, t2)

(
− i

←→
∂

∂t2

)
G0(y, t2;x1, t1) = G0(x3, t3;x1, t1), (4)

for t3 > t2 > t1. More generally, if the endpoints x3 and x1 are on opposite sides
of the plane at time t2, the propagators are glued to form the usual propagator.
If they are on the same side gluing produces the image propagator GI equal to
the free space propagator for the points x3 and the reflection of x1 in the plane
at t2. The cases are summarised below,

∫
dDy G0(x2, t2;y, t)

∂

∂t
G0(y, t;x1, t1) =

{
∓ i

2G0(x2, t2;x1, t1) t2 ≷ t ≷ t1

∓ i
2GI(x2, t2;x1, t1) t ≷ t1, t2

(5)
Applying (5) twice we obtain

∫
dD(x3,x2) G0(x4, t4,x3, t3)

(
4

∂2

∂t3 ∂t2
G0(x3, t3,x2, t2)

)
G0(x2, t2,x1, t1)

= G0(x4, t4,x1, t1) for t4 > t3 > t2 > t1.

Taking all the ti to zero gives a useful relation which may be expressed as

=

x x

y y

0 0

where the heavy line is the plane at time t = 0, the unbroken line is the free
space propagator and a black dot is −2 times a time derivative. Thus

= Æ

D

(x� y)

x

y

0

(6)

From this we deduce that the inverse of the free space propagator at equal time
is

y

0

x

. (7)
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We can now show that time evolution is captured by the gluing rules and the
Feynman diagram expansion. Consider calculating the free theory two-point
function at unequal times,

〈π(x, t)π(y, 0) 〉 =

∫
D(π2, π1)Ψ0[π2]π2(x)S[π2, t; π1, 0]π1(y)Ψ0[π1]. (8)

The vacuum wave functional Ψ0[π] can be constructed by requiring that it yield
G0 at equal times as a vacuum expectation value,

G0(x, 0;y, 0) = 〈φ(x, 0)φ(y, 0) 〉 = −
∫

Dπ Ψ0[π]
δ

δπ(x)

δ

δπ(y)
Ψ0[π]

=) 	

0

[�℄ = exp

�

�

� �

0

�

. (9)

The π1 integration in (8) is Gaussian in the free theory,
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which leaves us with another Gaussian integral in π2,
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We arrive at the Feynman diagram of the free propagator with the correct
coefficient of unity; the grey dot denotes a time derivative (with no factor)
which appears since we are computing correlation functions of π = φ̇.

So using the gluing property alone we have shown that the expression (1) for
the Schrödinger functional leads to the correct result for the two point function
at unequal times. This argument is invertible; If we know the two point func-
tion we can construct the Schrödinger functional as in (1) provided the gluing
property holds. If we can generalise the gluing property to string theory we can
repeat the diagrammatic arguments and construct the second quantised string
Schrödinger functional.

2 The String Field Propagator

The string field propagator can be constructed in much the same way as in
QFT [3], [5] as the transition amplitude G(Xf ; Xi) between arbitrary spacetime
curves Xi(σ) and Xf(σ). We denote the propagator with boundary conditions
X0(σ) = constant, between arbitrary spacelike curves X(σ) as

Gtf−ti
(Xf ;Xi) =

∫
D(X, g) e−

1

4πα′

∫
d2σ

√
g gab∂aXµ∂bXµ

∣∣∣∣
X=Xf (σ), X0=tf

X=Xi(σ), X0=ti.

(10)

At tree level the worldsheet is a finite strip (cylinder) for open (closed) strings.
An arbitrary metric can be written as a diff×Weyl transformation (orthogonal
to the CKV for the closed string) of a reference metric ĝab(T ) for some value of
the Teichmüller parameter T . We take ĝab(T ) = diag(1, T 2) so that T represents
the intrinsic length of the worldsheet. The propagator is [6]

Gt(Xf ;Xi) =

∞∫

0

dT Jac(T )(Det ′P̂ †P̂ )
1
2 (Det ∆̂)−13

∫
Dξ e−Scl[Xcl,ĝ(T )]. (11)

The measure on Teichmüller space is Jac(T ) given by

Jac(T )open =
(hab|χab)

(hab|hab)1/2
, Jac(T )closed =

(hab|χab)

(V a|V a)1/2(hab|hab)1/2

5



where hab is the zero mode of P̂ †, χab is the symmetric traceless part of ĝab,T

and V a is the CKV on the cylinder. Xcl satisfies the wave equation in metric
ĝ with boundary conditions Xξ

cl|τ=0 = Xi(σ), Xξ
cl|τ=1 = Xf (σ). The remain-

ing ξ integral is over reparametrisations of the boundary data. If we attach
reparametrisation invariant functionals Πi[Xi], Πf [Xf ] to the boundaries of the
worldsheet then this integral can be done trivially to give an (infinite) constant
factor, for then

∫
D(Xf , Xi)

∫
Dξ e−Scl[Xcl,ĝ] Πi[Xf ]Πf [Xi]

=

∫
D

(
Xcl|τ=1, Xcl|τ=0

)
e−Scl[Xcl,ĝ] Πf [Xcl|τ=1]Πi[Xcl|τ=0]

∫
Dξ.

(12)

The same applies when we sew two worldsheets together, since G itself is
reparametrisation invariant. Carlip’s sewing method [7], required for correctly
combining moduli spaces, involves integrating over all boundary values of X0

which in our problem is not appropriate. We wish to generalise (4), the key to
which is the correct identification of the degrees of freedom on the boundary.
The Alvarez conditions [8] on the reparametrisations, naξa = natbP (ξ)ab = 0,
split into orthogonal pieces on the strip (cylinder), the τ - components of which
do not couple to reparametrisations of the boundary. When we sew two world-
sheets only half of the determinant of P †P is sewn together, the remainder
cancelling the effects of not integrating over X0.

We can make this precise using ghosts. The rôle of the ghosts in string
theory is to cancel the undesirable effects of including the X0 oscillators. Our
ghosts will do the same thing, although to a different end. Take the usual
representation of the metric integral

(
Det ′P †P

)1/2
=

∫
D(b, c)e−

1
2

∫
babP (c)ab

(13)

and change variable b = Pγ for Grassmann vector γ, which turns the ghost
sector of the path integral into

(
Det ′P †P

)1/2
=

∫
D(γ, c)

(
Det ′P †P

)−1/2
e−

1
2

∫
P (γ)abP (c)ab

. (14)

Now represent the determinant on the RHS of the above by a bosonic vector
integral,

(
Det ′P †P

)−1/2
=

∫
Df e−

1
2

∫
P (f)abP (f)ab

. (15)

For the closed string this change of variable is defined only up to shifts Ja →
Ja + λV a for Ja ∈ {ca, γa, fa}, so we choose (J |V ) = 0 removing the c.o.m.
from the classical pieces. This is our new ghost system. In accord with the
Alvarez conditions we integrate out the fields Jτ and fix the values of Jσ on
the boundaries so the propagator in the extended Hilbert space interpolates
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between arbitrary values of X(σ), {Jσ(σ)} at particular times. Letting B denote
boundary values of Xi, the set Jσ and the X0 oscillators (zero) it can be shown
[10] that the Euclidean generalisation of (4) holds in string theory as

∫
DB Gt2−t(B2;B)

←→
∂

∂t
Gt−t1(B;B1) = Gt2−t1(B2;B1), t2 > t > t1. (16)

We can check our method using the cancellation of the Weyl anomaly. Even
in the critical dimension (10) has a dependence on the Liouville field at the
corners of the open string worldsheet [9]. The sewing prescription we have
described cancels the anomaly on the boundaries being sewn, ensuring that the
sewn worldsheet carries no anomaly in the bulk.

Our factorisation of the ghosts may seem ad-hoc but in fact follows from the
gauge choice

∫
d2σ
√

g gabĥab ≡ (ĥab|gab) = 0, P̂ †
(√

ggrs

√
ĝ

)a

= 0, (17)

where a hat denotes use of the fiducial metric (this is equivalent to the usual
choice

√
ggab =

√
ĝĝab(T )). The corresponding gauge fixed action is

SBRST =
1

2

∫
d2σ

√
ĝĝab∂aX∂bX +

1

2

∫
d2σ

√
ĝ P̂ (γ)abP̂ (c)ab. (18)

The BRST transformations are

δQX = ca∂a X, δQca = cb∂b ca, δQP̂ (γ)ab = −2T̂ab, (19)

where T̂ab is the usual string energy momentum tensor with bab = P̂ (γ)ab.
This set of transformations are non-local but have the natural interpretation of
generating local reparametrisations of the boundary. Consider the string field
propagator written as

G(Xf ;Xi) =

∫
D(X, γ, c)(Det P̂ †P̂ )−1/2e−SBRST−SJ

∣∣∣∣
X=Xf

X=Xi

(20)

where SBRST is as in (18) and SJ is a source term which generates boundary
values of the ghosts,

SJ =
1

2

∫
d2σ

√
ĝ (P̂ †P̂ γ)aca

cl + γa
cl(P̂

†P̂ c)a =

∫

bhd

dΣs (P̂ γ)rsc
s
b + γs

b(P̂ c)rs.

(21)
In the above, ca

cl obeys P̂ †P̂ = 0 and equals the boundary values of the ghosts
on the Dirichlet sections of the worldsheet. The bulk action SBRST is BRST
invariant for arbitrary boundary values of X, c, γ. The source term SJ does not
respect this symmetry, so we are led to expect a Ward identity resulting from a
shift in integration variables corresponding to (19), 〈 δQSJ 〉 = 0. In addition to
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the usual short distance divergences in the quantum pieces, the corner anomaly
leads to finite, non-zero contributions from the image charges. We find the Ward
identity can be written as an operator acting on the propagator,

[ π∫

0

dσ cσ
bX

′
b

δ

δXb
+

(
cσ
bγσ

b

)′ δ

δγσ
b

+
1

2
cσ
bcσ ′

b

δ

δcσ
b

+
26

8

(
cσ ′(0)+cσ′(π)

)]
G = 0, (22)

where a subscript b indicates boundary data. This operator describes the trans-
formation of 25 scalars X and the tangential component of a vector γσ under
a reparametrisation of the boundary generated by the ghost cσ, with quantum
corrections. Demanding BRST invariance here does not put the string field on
shell, as the reparametrisations are only a subset of those described by BRST
in the usual formalism.

3 T-Duality in the Schrödinger Functional

The sewing rule (16) confirms that despite the extended nature of the string a
Schrödinger representation makes sense for string field theory, and we can carry
over our diagrammatic arguments so that
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for momentum string fields Π[X, Jσ], and the double line represents the orb-
ifolded propagator for either the open or closed string. The normalisation con-
stant is discussed below. The orbifold leads naturally to the question of what
rôle T-duality plays. We now show that T-duality exchanges the states attached
to the propagators with backgrounds in the dual picture, and vice versa.

The closed string Schrödinger functional is T-dual to the loop diagrams
appearing in the normalisation of the open string Schrödinger functional. We
set t = πR, making the orbifold radius explicit, and use Poisson resummation
and a change in modular parameter to convert the closed propagators into open
loops so that, in an obvious notation, the Schrödinger functional becomes

log Sclosed = −1

2

∑

n even

ΠfGπRnΠf +
∑

n odd

ΠfGπRnΠi −
1

2

∑

n even

ΠiGπRnΠi

= −1

2

∑

n even

ΠfGπR̃nΠf +
∑

n even

ΠiGπR̃neinπ/2Πf −
1

2

∑

n even

ΠiGπR̃nΠi

(24)

where R̃ = α′/R and G in the second line is an open string contribution. The
new exponent comes from the resummation and the fields glued onto the Dirich-
let sections of the closed string propagator become an averaging over back-
grounds characterised by Πi, Πf coupling to the ends of the open string. These
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backgrounds, as they must be, are the same at each end of the string, for we
can write the above as

log Sclosed = −1

2

∑

n even

(
Πi − eiA

∫
dX0

Πf

)
GπR̃n

(
Πi − eiA

∫
dX0

Πf

)
(25)

with Wilson line value A = (2R̃)−1. Let us give an explicit example. We take
reparametrisation invariant boundary states Π i,f [X] = δp(X(σ)−q i,f ) for q i,f

constant p-vectors. These are pointlike states in p directions and Neumann
states in 25−p directions, 0 ≤ p ≤ 25. The closed string Schrödinger functional
is

log Sclosed =−Vol25−p

∞∫

0

dT

T
p+1

2

e2T
∏

m=1

(
1− e−2mT

)−24 ∑

n even

e−
π2R2

2α′T
n2

+ Vol25−p

∞∫

0

dT

T
p+1

2

e−
δq2

2α′T
+2T

∏

m=1

(
1− e−2mT

)−24 ∑

n odd

e−
π2R2

2α′T
n2

(26)

with δq = qf − qi. Since the open string runs from σ = 0 . . . π and the closed
string from σ = 0 . . . 2π we must scale the closed string worldsheet to interpret
(26) as an open loop. We include this in a change of modular parameter S :=
2π2/T . After this and a Poisson resummation we find

log Sclosed = −Vol25−p

∞∫

0

dS

S

1

S
26−p

2

eS
∏

m=1

(1 − e−mS)−24

×
∑

n even

e−
π2R̃2

4α′S
n2

(
1− e

inπ
2 e−

δq2S

4πα′

)
.

(27)

Now consider an open string loop. The measure on Teichmüller space is dS/S
(this gives the logarithm of the worldsheet propagator). If the string has Neu-
mann conditions in 26− p directions (including X0) and Dirichlet conditions in
p directions, as for a string on a D(25−p)-brane then the trace over X gives the
eta function and the factor (S−1/2Vol)(25−p) from the 25 − p zero modes. The
sum and remaining factor of S−1/2 come the trace over X0 in the co-ordinate
representation. We arrive at (27), if the term in large brackets represents an
averaging over backgrounds of Wilson lines and D(25− p)-branes of separation
δq.

We interpret the open string duality as taking us from one Schrödinger
functional to another with an exchange of boundary states and backgrounds.
Explicit examples are difficult to construct since the corner anomaly, not an
issue for the closed string, forces us to find conformally invariant states and
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backgrounds, but we can give an outline. Poisson resummation implies

(
πR2

α′T

)1/2 ∑

n even

e−
π2R2

4α′T
n2

=
∑

n even

e−
R2T
4α′

n2

+
∑

n odd

e−
R2T
4α′

n2

(28)

(for the odd sum the plus on the R.H.S. becomes minus) where R = 2α′/R.
Following a modular transformation S := π2/T these are the sums in the open
string Schrödinger functional. Again the states now represent an averaging over
backgrounds. The open string Schrödinger functional becomes

log Sopen = −1

2

∑

n even

(Πi−Πf )GnπR(Πi−Πf )− 1

2

∑

n odd

(Πi +Πf )GnπR(Πi +Πf )

(29)
and the new momentum states are characterised by the original Neumann con-
dition on the open string ends. To interpret this as strings moving in a sin-
gle background we can introduce a Wilson line, Πi − eiA

∫
dX0

Πf , with value
A = (R)−1.

In summary we have shown that the Schrödinger functional describing evo-
lution through time t of second quantised strings can be written in terms of
first quantised strings moving on the orbifold S

1/Z2 and that the consequent
T-duality interchanges t with 1/t and momentum fields with Dp-brane back-
grounds. BRST transformations describe reparametrisations of boundary data
and for the open sting are sensitive to the Weyl anomaly even in the critical
dimension. We have worked only in the free theory but interactions will be
discussed in [10].
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