
ergy

tes of
wing

0%.
n pro-

umeri-

cribes

this

ions of

s

ch the

its
pres-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 12 DECEMBER 2001

Downloaded 26 Apr 2
Spherically symmetric solutions of the sixth order SU „N…

Skyrme models
I. Floratosa) and B. M. A. G. Pietteb)
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Following the construction described by Ioannidouet al. @J. Math. Phys.40, 6353
~1999!#, we use the rational map ansatz to construct analytically some topologically
nontrivial solutions of the generalized SU~3! Skyrme model defined by adding a
sixth order term to the usual Lagrangian. These solutions are radially symmetric
and some of them can be interpreted as bound states of Skyrmions. The same
ansatz is used to construct low-energy configuration of the SU(N) Skyrme model.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1415742#

I. INTRODUCTION

The Skyrme model1 is widely accepted as an effective theory to describe the low-en
properties of nucleons. It was indeed shown2–4 that in the largeNc limit, the Skyrme model is the
low-energy limit of QCD. The classical static solutions of the model describe the bound sta
nucleons and every configuration is characterized by a topological charge which, follo
Skyrme’s idea, is interpreted as the baryon charge.

The Skyrme model can be used to predict the properties of the nucleons within 10% to 23,4

To improve these phenomenological predictions various extensions of the model have bee
posed mostly by adding higher order terms5–8 or extra fields9 to the Lagrangian.

The study of the classical solutions of the Skyrme model has been done mostly using n
cal methods, but recently Houghtonet al.10 showed that the classical solutions of the SU~2! model
can be well approximated by using an ansatz that involves the harmonic maps fromS2 to S2. The
harmonic map describes the angular distribution of the solution while a profile function des
its radial distribution. This construction was later generalized11 for the SU(N) model using har-
monic maps fromS2 to CPN21. Moreover, it was shown that using a further generalization of
ansatz one can construct exact spherically symmetric solutions of the SU(N) Skyrme model.

The same method was also used in Ref. 12 to construct solutions of another SU(N) fourth
order Skyrme model. In this article, we use the same generalized ansatz to construct solut
the sixth order SU~3! Skyrme model and low-energy configurations of the SU(N) models defined
in Ref. 13.

II. THE SIXTH ORDER SKYRME MODEL

The Skyrme model is described by an SU(N) valued fieldU(xW ,t) which, to ensure finitenes
of the energy, is required to satisfy the boundary conditionU→I as uxW u→`, whereI is the unit
matrix. This boundary condition implies that the three dimensional Euclidean space on whi
model is defined can be compactified intoS3 and, as a result, the Skyrme fieldU corresponds to
mappings fromS3 into SU(N). As p3(SU(N))5Z each configuration is characterized by
winding number, or topological charge, which can be obtained explicitly by evaluating the ex
sion

a!Electronic mail: ioannis.floratos@durham.ac.uk
b!Electronic mail: b.m.a.g.piette@durham.ac.uk
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B5
1

24p2 E
R3

dxW3« i jk Tr~Ri Rj Rk!, ~1!

where Rm5(]mU)U21 is the right chiral current. Skyrme’s idea was to interpret the wind
number associated with these topologically nontrivial mappings as the baryon charge.

The generalized sixth order Skyrme model is defined by the Lagrangian

E52
1

12p2 E dxW3S 1

2
TrRi

21
12l

16
Tr@Ri ,Rj #

21
1

96
lTr@Ri ,Rj #@Rj ,Rk#@Rk ,Ri # D , ~2!

where this parametrization of the model is chosen such thatlP@0,1# is a mixing parameter
between the Skyrme term and the sixth order term: whenl50 the model reduces to the usual pu
Skyrme model while forl51 the Skyrme term vanishes and the model reduces to what we
to in what follows as the pure Sk6 model.

The Euler–Lagrange equations derived from~2! for the static solutions are given by

] i~Ri2
1
4 ~12l!@Rj ,@Rj ,Ri ##2 1

16 l@Rj ,@Rj ,Rk#@Rk ,Ri ## !50, ~3!

and the following inequality holds for every configuration:

E>A12lB. ~4!

The multi-Skyrmion solutions of the SU~2! Skyrme model have been studied in Ref. 13 whe
it was shown that they have the same symmetry as the pure Skyrme model. It was also sho
the harmonic map ansatz gives a good approximation to the solutions.

In the next section we describe the harmonic map ansatz. In the third section we prov
due to a constraint coming from the sixth order term, the multi-projector harmonic map a
provides exact solutions only for the SU~3! generalized model. We then show that one can n
ertheless use the ansatz to construct low-energy configurations of the SU(N) models. In the fourth
section we look at these configurations for the SU~4! model, while in the last section we look a
some special ansatz for the SU(N) model.

III. HARMONIC MAP ANSATZ

The rational map ansatz, introduced by Houghtonet al.,10 is a generalization of the hedgeho
ansatz found by Skyrme,1 to approximate multi-Skyrmion solution of the SU~2! model. The ansatz
was later generalized by Ioannidouet al.14 to approximate solutions of the SU(N) Skyrme model
using harmonic maps fromS2 into CPN21. This generalized ansatz is given by

U~r ,u,w!5e2i f (r )(P(u,w)2I /N)5e22i f (r )/N~ I 1~e2i f (r )21!P~u,w!!, ~5!

where r ,u and w are the usual polar coordinates. The profile functionf (r ) must satisfy the
boundary conditionsf (0)5p and limr→` f (r )50 andP(u,w) is a projector inCN which must be
a harmonic map fromS2 into CPN21 or equivalently a classical solution of the two dimension
CPN21 s model. These solutions are well known15,16 and to construct them it is convenient
introduce the complex coordinatej5tan(u/2)eiw which corresponds to the stereographic proje
tion of the unit sphere onto the complex plane.

In these coordinates,P must satisfy the equation

P
]P

]j
50, ~6!

and the solutions of that equation are given by any projector of the form
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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P~ f !5
h^ h†

uhu2 , ~7!

wherehPCN is holomorphic

]h

]j̄
50. ~8!

The topological charge for the ansatz~5!, with the prescribed boundary conditions forf (r ), is
given by the winding number of theS2→CPN21. This winding number is itself given by the
degree of the harmonic functionh15,16 which must then be a rational function ofj.

To approximate a solution, one plugs the ansatz~5! into the energy~2! and notices that ifP
satisfies~6!, the integration over the polar angles and the radius decouple. One then h
minimize the integral over the polar angles of an expression which depends only onP. Taking for
P the most general harmonic map of the desired degree, one then has to find the paramete
general map which minimize that integral. Having done this, the profile functionf is obtained by
solving the Euler Lagrange equation derived from the effective energy.

A special case of this construction is the so-called hedgehog ansatz for the SU~2! model
corresponding to one Skyrmion. In this case, we haveh5(1,j) t and after inserting~7! into ~2! the
energy reduces to

E5
1

3p E drS f r
2 r 212 sin2 f ~11~12l! f r

2!1~12l!
sin4 f

r 2 1l
sin4 f

r 2 f r
2D , ~9!

and the equation forf is given by

f rr S 112 ~12l!
sin2 f

r 2 1l
sin4 f

r 4 D1
2

r
f r S 12l

sin4 f

r 4 D
1

sin 2g

r 2 S ~12l! f r
2211

sin2 f

r 2 ~l f r
2211l! D50. ~10!

This actually corresponds to an exact solution of the model and it is radially symmetric. In F
we present thel dependence of the energy and in Fig. 2 we show the profile functionf and the
energy density for the pure Skyrme model,l50, and the pure Sk6 model,l51.

FIG. 1. Total energy of the 1 Skyrmion solution.
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IV. SPHERICALLY SYMMETRIC SOLUTIONS FOR THE SU „N… MODEL

In this section we will follow the construction described in Ref. 14, to attempt to cons
solutions of the extended SU(N) Skyrme model using a generalization of the harmonic map an
~5!.

To build the new ansatz we need to introduce an operatorP1 which acts on any complex
vectoruPCN and is defined as

P1u5]ju2u
u† ]ju

uuu2 . ~11!

Taking a holomorphic vectorh(j) we then defineP0
1h5h and by induction Vk5P1

k h
5P1(P1

k21h). TheseN vectors are mutually orthogonal16 and so the corresponding projectors

Pk5P~P1
k h!5

P1
k h~P1

k h!†

uP1
k hu2

k50, . . . ,N21, ~12!

satisfy the orthogonality relations

PkPj5d i j Pk ,
~13!

(
k50

N21

Pk51,

as well as other properties discussed in detail in Ref. 14.
The generalized harmonic map ansatz is then defined as

U5expH ig0S P02
I

ND1 ig1S P12
I

ND2 . . .1 igN22S PN222
I

ND J
5e2 ig0 /N~ I 1A0P0! e2 ig1 /N~ I 1A1P1! ¯e2 igN22 /N~ I 1AN22PN22!, ~14!

where gk(r ) are N21 profile functions andAk5eigk21. Moreover, for the ansatz to be we
defined, the profile functionsgk(r ) must be a multiple of 2p at the origin and at infinity.

To proceed with our construction, it is convenient to rewrite the Euler–Lagrange equatio
the model~3! using the usual spherical coordinates

FIG. 2. Function profilef and energy density for the 1 Skyrmion solution of the pure Skyrme model,l50, and the pure
Sk6 model,l51.
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] r H r 2Rr1
12l

4 S Auru1
1

sin2 u
AwrwD1

1

16
l F 1

sin2 u
~Buuwrw1Bwwuru!G J

1
1

sinu
]uH sinuFRu1

12l

4 S Arur1
1

r 2 sin2 u
AwuwD G1

l

16r 2 sin2 u
~Brr wuw1Bwwrur !J

1
1

sin2 u
]wH Rw1

12l

4 S Arwr1
1

r 2 AuwuD1
l

16r 2 ~Brr uwu1Buurwr !J 50, ~15!

whereAji j [@Rj , @Ri , Rj ## andBj jkik[@Rj , @Rj ,Rk# @Ri ,Rk##. It is fairly easy to show that

Rr5 i (
j 50

N22

ġ j S Pj2
I

ND , ~16!

where ġ j is the derivative ofgj (r ) with respect tor . Using the complex coordinatesj and j̄
introduced before we have

Rj5 (
i 51

N21

@ei (gi2gi 21)21#
Vi Vi 21

†

uVi 21u2
, ~17!

and the derivatives with respect tou andw are given by

]u5
11uju2

2Auju2
~j ]j1 j̄ ] j̄!, ]w5 i ~j ]j2 j̄ ] j̄!. ~18!

Substituting the above into Eqs.~15! we get

] rF r 2Rr1~12l!
~11uju2!2

8
~Aj̄ r j1Aj r j̄ !G1

~11uju2!2

2
~~Rj̄ !j1~Rj!j̄!

1~12l!
~11uju2!3

8r 2 ~j Aj j j̄2 j̄ Aj̄ j j̄ !1~12l!
~11uju2!4

16r 2 ~@Aj j j̄# j̄
2@Aj̄ j j̄#j

!

1~12l!
~11uju2!2

8
~@Ar j̄ r #j

1@Ar j r # j̄
!1

l

16H ] rF ~11uju2!4

4
~Bj̄ j j̄ r j̄2Bj j j̄ r j̄ !G

1
~11uju2!2

4r 2 ~]j̄@~11uju2!2 Br r j j j̄#2]j@~11uju2!2 Br r j̄ j j̄# !

1
~11uju2!2

2uju2 r 2 S j]jF ~11uju2!2

4uju2 ~2jjjBj j r j r !G1 j̄] j̄F ~11uju2!2

4uju2 ~2 j̄ j̄ j̄Bj̄ j̄ r j̄ r !G D
1

~11uju2!2

8r 2 ~]j@~11uju2!2~Bj j̄ r j̄ r1Bj̄ j r j̄ r2Bj̄ j̄ r j r !#1]j̄@~11uju2!2

3~2Bj j r j̄ r1Bj j̄ r j r1Bj̄ j r j r !# !J 50. ~19!

In Ref. 14 it is shown that if one takes the special holomorphic vector

V05h5~h0 ,h1 , . . . ,hN21! t, ~20!

where
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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hk5jkACk
N21 ~21!

andCk
N21 denotes the binomial coefficients, then the terms in~19! coming from the usual Skyrme

model, i.e., all the terms except the ones proportional tol/16, are all proportional toPi2Pi 21 and
Pi2 I /N. Using ~13! one can get rid of the projectorPN21 and ~19! will then be the sum of the
N21 termsPi2 I /N for i 50, . . .,N22, with coefficients that depend only onr . This implies that
the equations for the Skyrme model reduce toN21 ordinary differential equations for the profil
functionsgi and their solutions, if they exist, will provide us with exact solutions of the SU(N)
Skyrme model.

In what follows we will show that the angular dependence of the terms proportional tol in
~19!, i.e., the terms coming from the sixth order term, is also coming exclusively from
projectorsPi2 I /N or Pi2Pi 21 , but that we have to impose an extra constraint on the pro
functionsgi .

We start by noting that

@Rj ,Rj̄#52 (
i 51

N21

ai
2 uVi u2

uVi 21u2 S ViVi
†

uVi u2
2

Vi 21Vi 21
†

uVi 21u2 D , ~22!

@Rr ,Rj#5 i (
i 51

N21

~ ġiai2ġi 21ai !
ViVi 21

†

uVi 21u2
5 (

i 51

N21

Ki

ViVi 21
†

uVi 21u2
, ~23!

@Rr ,Rj̄#5 i (
i 51

N21

~ ġiai2ġi 21ai !
Vi 21Vi

†

uVi 21u2 5 (
i 51

N21

Ki

Vi 21Vi
†

uVi 21u2 , ~24!

whereai5ei (gi2gi 21)21. It is then straightforward to check that

Bj̄jj̄r j2Bjjj̄r j̄5 (
i 51

N21 S bi

uVi 21u2

uVi 22u2
uVi u2

uVi 21u2
1ci

uVi u4

uVi 21u4
1di

uVi 11u2

uVi u2
uVi u2

uVi 21u2D ~Pi2Pi 21!,

~25!

wherebi ,ci anddi are functions ofgk only. However, as shown in Ref. 14, ifV0 is given by~20!
and ~21!, thenuVi u2/uVi 21u2 }(11uju2)22 and thus

~11uju2!4

4
~Bj̄ j j̄ r j2Bj j j̄ r j̄ !}~Pi2Pi 21!. ~26!

Furthermore, we have

Br r j j j̄5 i (
i 51

N21 S ei

uVi u2

uVi 21u2
1si

uVi 21u2

uVi 22u2D ViVi 21
†

uVi 21u2
~27!

with ei5e(gi) andsi5s(gi). But in Eq. ~19! this term appears as

]j̄@~11uju2!2Br r j j j̄#52j ~11uju2!Br r j j j̄1~11uju2!2 ]j̄ ~Br r j j j̄!. ~28!

Since]j̄uVi u2/uVi 21u2 }22j (11uju2)23 the only parts of~28! that are nonzero are the ones th
involve the derivatives ofViVi 21

† /uVi 21u2 with respect toj̄. Since it can be shown that the latte
are proportional to( i 21

N21Ci(11uju2)22(Pi2Pi 21) whereCi5C(gi), then one sees that the ter
that involvesBr r j j j̄ in ~19! is proportional to (Pi2Pi 21).

Using similar arguments, it is easy to check that the terms involvingBr r j̄ j j̄ , Bj j̄ r j̄ r ,
Bj̄ j r j̄ r , Bj̄ j̄ r j r , Bj j r j̄ r , Bj j̄ r j r andBj̄ j r j r factorize in the same way.

There are a few terms in~19! which we still have to consider. They involve the expressio
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Bj j r j r5 (
i 53

N21

~aiKi 21Ki 222ai 22KiKi 21!
ViVi 23

†

uVi 23u2
, ~29!

Bj̄ j̄ r j̄ r5 (
i 53

N21

~aiKi 21Ki 222ai 22KiKi 21!.
Vi 23Vi

†

uVi 23u2
, ~30!

whereKi5 i (ġiai2ġi 21ai). It is clear that these terms will always give aj,j̄ dependence beside
the projectorsPi and, hence, if we want~19! to reduce toN21 equations that involve only the
profile functionsgi , then we have to make sure that~29! and~30! vanish i.e., we must impose th
conditions

aiKi 21Ki 222ai 22KiKi 2150 ⇔ ġi 222ġi 235ġi2ġi 22 . ~31!

This last constraint, which is a result of the addition of the sixth order term, implies that we
only consider two profile functionsg0 andg1 and that we should thus have only two equatio
Unfortunately we haveN21 equations which are not compatible with each other. From this
see that the ansatz~5! will provide exact solutions of the generalized Skyrme model for the SU~2!
and the SU~3! model only. For larger values ofN, the ansatz will nevertheless give some lo
energy radially symmetric configurations. The SU~2! case is nothing but the usual hedgeh
ansatz and we will focus on the solutions of the SU~3! model in the next section.

In order to derive the equations for the profile functions, it is convenient to write the en
density of the model in terms of (j,j̄):

E52
i

12p2 E r 2dr djdj̄ Tr S 1

~11uju2!2 Rr
21

1

r 2 uRju21
12l

4r 2 @Rr ,Rj#@Rr ,Rj̄#

2~12l!
~11uju2!2

16r 4 @Rj̄ ,Rj#
21l

~11uju2!2

64r 4 @@Rr ,Rj̄#,@Rr ,Rj##@Rj ,Rj̄# D . ~32!

Defining

Fi5gi2gi 11 for i 50, . . . ,N23,
~33!

FN225gN22 ,

as well asWi5(uVi u2/uVi 21u2) (12cos(F)) andWN215(uVN21u2/uVN22u2) (12cos(g)), the terms
in the above expression can be rewritten as

Tr Rr
25

1

N S (
i 50

N22

ġi D 2

2 (
i 50

N22

ġi
2 , ~34!

TruRju2522 (
i 51

N21

Wi , ~35!

Tr@Rr ,Rj#@Rr ,Rj̄#522 (
k51

N21

WkḞk21
2 , ~36!

Tr@Rj̄ ,Rj#
254S W1

21 (
i 51

N22

~Wi2Wi 11!21WN21
2 D , ~37!
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Tr@@Rr ,Rj̄#,@Rr ,Rj#@Rj ,Rj̄# #54S Ḟ0
2W1

21 (
i 51

N22

~ Ḟ i 21Wi2Ḟ iWi 11!21ḞN22
2 WN21

2 D . ~38!

In Ref. 14 it was shown that
uVku2

uVk21u2
5k~N2k!~11uju2!22, ~39!

and from this we see that all the terms in~32! are proportional to (11uju2)22 and that after
integrating out the angular dependence the energy reduces to

E5
1

6p E r 2drH 2
1

N S (
i 50

N22

ġi D 2

1 (
i 50

N22

ġi
21

2

r 2 (
k51

N21

Zk1
~12l!

2r 2 (
k51

N21

~ ġk2ġk21!2Zk

1
~12l!

4r 4 S Z1
21 (

k51

N22

~Zk2Zk11!21ZN21
2 D

1
l

16r 4 S Ḟ0
2 Z1

21 (
k51

N22

~ Ḟk21 Zk2Ḟk Zk11!21ḞN22
2 ZN21

2 D J , ~40!

whereZk5k(N2k)(12cos(Fk21)).
In Ref. 14 the fieldsFi defined by~33! were used, and very special solutions were obtained

taking F05F15 ¯ 5FN22 . It was observed that whenFi(0)52p andFi(`)50 this solution
of the SU(N) pure Skyrme model has a topological chargeB5 (N/6) (N221) and has an energ
equal exactly to (N/6) (N221) times the energy of the single Skyrmion solutions. It is easy
show that, if one uses the same ansatz for the sixth order Skyrme model, the profilef 5F0/2
satisfies the hedgehog profile equation~10! and the energy of the configuration is given b
E(l)54E0(l) whereE0(l) is the energy of the hedgehog solution for the generalized mo
These configurations are not exact solutions, except for the SU~3! model.

To consider the most general ansatz, one can derive from~40! the following equations for the
profile functionsFl , l 50,...,(N22):

2
2~ l 11!

N (
i 50

N22

~ i 11!F̈ i12(
k50

l

(
i 5k

N22

F̈ i1
~12l!

r 2 F̈ l~ l 11!~N2 l 21!~12cosFl !

1
2

r S 2
2~ l 11!

N (
i 50

N22

~ i 11!Ḟ i12(
k50

l S (
i 5k

N22

Ḟ i D D 1
~12l!

2r 2 Ḟ l
2~ l 11!~N2 l 21!sinFl

2
2

r 2 ~ l 11!~N2 l 21! sinFl2
~12l!

r 4 ~ l 11!2~N2 l 21!2~12cosFl !sinFl

1
~12l!

2r 4 ~ l 11!~N2 l 21!sinFl@ l ~N2 l !~12cosFl 21!1~ l 12!~N2 l 22!~12cosFl 11!#

1
l

8r 4 $2 F̈ l~ l 11!2~N2 l 21!2~12cosFl !
22F̈ l 21l ~ l 11!~N2 l !~N2 l 21!~12cosFl 21!

3~12cosFl !2F̈ l 11~ l 11!~ l 12!~N2 l 21!~N2 l 22!~12cosFl !~12cosFl 11!%

1
2l

4r 5 $2 Ḟ l~ l 11!2~N2 l 21!2~12cosFl !
22Ḟ l 21l ~ l 11!~N2 l !~N2 l 21!~12cosFl 21!

3~12cosFl !2Ḟ l 11~ l 11!~ l 12!~N2 l 21!~N2 l 22!~12cosFl !~12cosFl 11!%

1
l

8r 4 $2 Ḟ l
2~ l 11!2~N2 l 21!2~12cosFl !sinFl2Ḟ l 21

2 l ~ l 11!~N2 l !~N2 l 21!sinFl 21

3~12cosFl !2Ḟ l 11
2 ~ l 11!~ l 12!~N2 l 21!~N2 l 22!~12cosFl !sinFl 11%50. ~41!
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WhenN53, the solution of the two equations lead to exact solutions of the model, whil
larger values ofN, the ansatz~14! corresponds to low-energy configurations.

We would like to point out at this stage that as proved in Ref. 14, the topological charg
the configuration~14! is given by

B5 (
i 50

N22

Dk~Fi2sinFi !r 50
r 5` , ~42!

where

Dk52 i
1

4p2 E uP1
k11hu2

uP1
k hu2 djdj̄ ~43!

takes integer values given by the degree inj of the wedge product16 of h and its derivatives

Dk5
1

2p
deg~h(k)!, h(k)5h`]1h` ¯`]1

k h, k50,...,N21. ~44!

Each configuration is thus characterized by the boundary conditions for the profile functiFi

and we can without loss of generality impose the condition limr→`Fi(r )50. For the configuration
to be well-defined at the origin we must also impose a condition of the type

Fi~0!5ni 2p, ~45!

whereniPN.

V. RADIALLY SYMMETRIC SU „3… SOLUTIONS

To describe the solution of the SU~3! model, we use the profileF5F0 and g5F1 and the
energy~40! simplifies to

E5
1

6p E r 2drH 2

3
~ ġ21Ḟ21ġ Ḟ !1

1

r 2 ~~12cosF !~~12l!Ḟ214!1~12cosg!

3~~12l!ġ214!!1~12l!
2

r 4 ~~12cosF !22~12cosF !~12cosg!1~12cosg!2!

1
l

2r 4 ~ Ḟ2 ~12cosF !21ġ2~12cosg!22~12cosF !~12cosg!ġḞ !J . ~46!

The equations for the profile functionF andg are then given by

grr 1
1

2
Frr 1

Fr

r
12

gr

r
1

3

2r 2 S ~12l!~12cosg!grr 1
1

2
sing~~12l!gr

224! D
1

1

2
sing~~12l!gr

224!1~12l!
3

2r 4 ~~12cosF !22~12cosg!!sin~g!1
3l

8r 4 ~12cosg!

3S 2S singgr
21~12cosg!S grr 22

gr

r D D2sinFFr
22~12cosF !S Frr 22

Fr

r D D50, ~47!
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



t

the
or the
elative
e total
s and
s and
e

f

5589J. Math. Phys., Vol. 42, No. 12, December 2001 Spherically symmetric solutions

Downloaded 26 Apr 2
Frr 1
1

2
grr 12

Fr

r
1

gr

r
1

3

4r 2 ~sinF~~12l!Fr
224!12~12l!~12cosF !Frr !

2~12l!
3

2r 4 ~2~12cosF !2~12cosg!!sinF1
3l

8r 4 ~12cosF !

3S 12S sinF Fr
21~12cosF !S Frr 22

Fr

r D D2sing gr
22~12cosg!S grr 22

gr

r D D50.

~48!

The topological charge of the solution now reads

B5
1

p
~~F2sinF !ur 50

r 5`1~g2sin~g!!ur 50
r 5`! ~49!

and, if we take the boundary conditions

F~0!5nF2p,
~50!

g~0!5ng2p,

wherenF andng are integers, we haveB52(nf1ng). WhennF andng are of opposite signs, we
can interpret the solutions as a mixture of Skyrmions and anti-Skyrmions.

In Table I, we give the energy of the hedgehog solution (B51) for the SU~2! model. This
solution is an embedded solution of any SU(N) model and it is the solution with the lowes
energy. We thus use it as the reference energy for all the other solutions.

In Table II we present the properties of the different solutions for the SU~3! models. The first
two columns specify the boundary condition of the solution, and the third column gives
topological charge of that solution. In columns 4 and 5 we give the energy of the solutions f
pure Skyrme model and the pure Sk6 model while columns 6 and 7 give the corresponding r
energy per Skyrmion, that is, the energy divided by the energy of the single Skyrmion and th
number of Skyrmions. For the solutions corresponding to the superposition of Skyrmion
anti-Skyrmion, we define the total number of Skyrmions as the total number of Skyrmion
anti-Skyrmions. Notice that the casesng50,nF51 and ng51,nF50 correspond to the sam
solution modulo an internal rotation.

In Fig. 3, we present the energy of the three different types of solution as a function ol.

TABLE I. Topological charge and energy of the hedgehog SU~2! solution.

SU~2! Energy

ng B E(0) E(1)

1 1 1.2315 0.9395

TABLE II. Topological charge and energy of some SU~3! solutions.

SU~3! Total energy Relative energy

nF ng B E(0) E(1) EB(0)/(uBuE1(0)) EB(1)/(uBuE1(1))

1 1 4 4.928 3.758 1 1
1 0 2 2.377 1.819 0.965 0.968
0 1 2 2.377 1.819 0.965 0.968
1 21 2-2 3.862 3.191 0.784 0.849
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VI. LOW-ENERGY SU„4… CONFIGURATIONS

As was shown in the last two sections, the ansatz~14! provides an exact solution of the sixt
order model only for the SU~3! model, or whenl50, that is for the usual Skyrme model. For th
SU(N) model withN>4, the ansatz still produces low-energy configurations. In particular, w
l is small, we can expect the ansatz to be very close to an exact solution. In this section w
at some configurations of the SU~4! model. For this model, we have three profile functionsF0 , F1

andF2 and the energy for the general ansatz~14! is explicitly given by

E5
1

6p E r 2drH 1

4
~3Ḟ0

214Ḟ1
213Ḟ2

214Ḟ0Ḟ114Ḟ1Ḟ212Ḟ0Ḟ2!1
2

r 2 @3~12cosF0!

14~12cosF1!13~12cosF2!#1~12l!H 1

2r 2 @3Ḟ0
2~12cosF0!14Ḟ1

2~12cosF1!

13Ḟ2
2~12cosF2!#1

1

2r 4 $9 ~12cosF0!2116~12cosF1!219 ~12cosF2!2

212~12cosF0!~12cosF1!212~12cosF1!~12cosF2!%J 1
l

8r 4 $9Ḟ0
2~12cosF0!2

116Ḟ1
2~12cosF1!219Ḟ2

2~12cosF2!2212F0F1~12cosF0!~12cosF1!

212F1F2~12cosF1!~12cosF2!%J ~51!

from which we can derive the following equations:

S 3l~12cosF0!2

2r 4 1
2~12l!~12cosF0!

r 2 11D F̈01S 2

3
2

l~12cosF0!~12cosF1!

r 4 D F̈11
1

3
F̈2

2
4 sinF0

r 2 1
6 Ḟ014Ḟ112Ḟ2

3r
1

~12l!Ḟ0
2 sinF0

r 2 1~12l!
sinF0

r 4 ~4~12cosF1!

26~12cosF0!!1l
~12cosF0!

r 4 S 3

2
Ḟ0

2 sinF02Ḟ1
2 sinF1D2l

~12cosF0!

r 5 ~3Ḟ0~12cosF0!

22 Ḟ1~12cosF1!!50, ~52!

FIG. 3. Energy of the SU~3! solution for the boundary conditions~a! nF50,ng51, ~b! nF51,ng50, ~c! nF51,ng521, ~d!
nF51,ng51.
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S 1

2
2

3l~12cosF0!~12cosF1!

4r 4 D F̈01S 11
2l~12cosF1!2

r 4 1
2~12l!~12cosF1!

r 2 D F̈1

1S 1

2
2

3l~12cosF1!~12cosF2!

4r 4 D F̈21
~12l!Ḟ1

2 sinF1

r 2 1
Ḟ012 Ḟ11Ḟ2

r
24

sinF1

r 2

1~12l!
sinF1

r 4 ~3~12cosF0!13~12cosF2!28~12cosF1!!2
l

r 5 ~12cosF1!

3S 4 Ḟ1~12cosF1!2
3

2
Ḟ0~12cosF0!2

3

2
Ḟ2~12cosF2! D1

l

r 4 ~12 cosF1!

3S 2 Ḟ1
2 sinF12

3

4
Ḟ0

2 sinF02
3

4
Ḟ2

2 sinF2D50, ~53!

and

S 2

3
2

l~12 cosF1!~12 cosF2!

r 4 D F̈11S 3l~12 cosF2!2

2r 4 1
2~12l!~12 cosF2!

r 2 11D F̈2

1
1

3
F̈01

2Ḟ014Ḟ116 Ḟ2

3r
24

sinF2

r 2 1
~12l!Ḟ2

2 sinF2

r 2 1~12l!
sinF2

r 4 ~4~12F1!

26~12F2!!2l
~12 cosF2!

r 5 ~3 Ḟ2~12 cosF2!22 Ḟ1~12 cosF1!!

1l
~12 cosF2!

r 4 S 3

2
Ḟ2

2 sinF22Ḟ1
2 sinF1D50. ~54!

Describing the boundary condition for the profile functions as before,Fi(0)5ni2p, the topologi-
cal charge is given by

B53n014n113n2 . ~55!

FIG. 4. Energy density of the Su~4! multi-projector ansatz~a! n050, n150, n251; ~b! n051, n150, n250; ~c! n0

50, n151, n250; ~d! n051, n150, n251; ~e! n051, n151, n250; and~f! n050, n151, n251.
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In Table III we present the energy values of various types of configurations whenl50 and
l51. We notice that whenl50, the solutions are symmetric under the exchangef 0↔ f 2 , but that
the sixth order term breaks the symmetry. This results in a difference of energy betwee
configuration withn050,n150,n251 andn051,n150,n250 as well as between the configu
rations withn051,n151,n250 andn050,n151,n251. In Fig. 4, we present the curve for th
energy of the configurations as a function ofl.

VII. SU„N… LOW-ENERGY CONFIGURATION

After inserting the ansatz~5! in the full equation for the SU(N) model, we found that we had
only two independent profile functionsg0 andg1 and that the ansatz would only provide solutio
for the SU~3! model. One can nevertheless use the SU(N) ansatz to compute low-energy config
rations. For example, if we consider the reduced ansatz defined by~5! together with the constrain
ġi 222ġi 235ġi2ġi 22 and define the profilesF5g02g1 and g5gN22 we can minimize the
energy~40! and solve the equations forF andg for various boundary conditions. We found th
to get configurations corresponding to a bound state, i.e., a configuration with an energ
Skyrmion smaller than the energy of the hedgehog solution, we must takenF50 andng51. The
energies that we found are given in Table IV.

In Figs. 5 and 6 we present the profile and the energy density for different values ofN and for
l50.5. It shows that the energy density has the shape of a hollow sphere of radiusr 50.7AN. The
profile g has the same shape for all values ofN but is shifted to the right asN increases. The
profile F, on the other hand, is also shifted as the shell radius increases, but its amp
decreases like 1/N2. Note that in Fig. 6, the profiles forN5100 andN5200 have been multiplied
by 100 to make them visible. For other values ofl the graphics look very much the same exce
that the shell radius and width are slightly different, but the conclusions remain the same.

Figure 6~b! suggests to simplify the ansatz further for largeN by takingF(r )50. This implies
that gi5g ; i and the multi-projector ansatz~5! becomes

U5exp~2 ig~PN212I /N!!, ~56!

wherePN21 can also be written as

TABLE III. Topological charge and energy of some SU~4! configurations.

SU~4! Total energy Relative energy

n0 n1 n2 B E(0) E(1) EB(0)/(uBuE1(0)) EB(1)/(uBuE1(1))

0 0 1 3 3.517 39 2.666 53 0.952 10 0.945 98
1 0 0 3 3.517 39 2.729 15 0.952 10 0.968 19
0 1 0 4 4.788 07 6.333 22 0.972 04 1.685 07
1 0 1 6 7.224 64 6.046 04 0.977 80 1.072 44
1 1 0 7 8.452 19 6.629 98 0.980 52 1.008 02
0 1 1 7 8.452 19 7.280 58 0.980 52 1.106 94
1 1 1 10 12.311 9.396 05 1 1

TABLE IV. Topological charge and energy for the reduced ansatz withnF50 andng51.

Model B

Total energy Relative energy

E(0) E(1) EB(0)/(uBuE1(0)) EB(1)/(uBuE1(1))

SU~3! 2 2.377 1.819 0.965 0.968
SU~4! 3 3.624 2.759 0.981 0.979
SU~5! 4 4.811 3.632 0.977 0.966
SU~6! 5 6.015 4.518 0.977 0.962
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PN215
h̃h̃†

uh̃u2
, ~57!

whereh̃ is equal, up to a unitary rotation, to the complex conjugate of the holomorphic vectoV0

defined in~20! and~21!: h̃5AV̄0 for someA PSU(N) with ]jA5]j̄A50. This is shown by using
the fact thatPN21 is an antiholomorphic projector16 and that solving~39! recursively we have

uVku25
k! ~N21!!

~N212k!!
u11uju2uN2122k ~58!

and souVN21u25(N21)!2u11uju2u12N. Knowing that up to an overall coefficientuVN21u2 is a
polynomial in j̄ of degreeN21, we can conclude that up to a unitary iso-rotation,VN21 is equal
to the complex conjugate ofV0 .

FIG. 5. Energy density of the multi-projector solution withnF50, ng51, l50.5. ~a! N510, ~b! N520, ~c! N550, ~d!
N5100, and~e! n5200.

FIG. 6. Profile~a! g and ~b! F of the multi-projector solution withnF50, ng51, l50.5. ~a! F for N510, ~b! F for N
520, ~c! F for N550, ~d! 1003F for N5100, and~e! 1003F for N5200.
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The topological charge of the antiholomorphic projectorPN21 is equal to 12N and as the
profile function is2g, the baryon number for this configuration isN21. The ansatz~56! is not a
solution, but its energy

E5
1

6pE r 2drH N21

N
ġ21

1

2r 2 1~N21!~12cosg!~~12l!ġ214!

1
1

2r 4 ~N21!2~12cosg!2S ~12l!1
l

4r 4ġ2D J , ~59!

can easily be computed by solving the equation

2grr 14
gr

r
1

N

r 2 S ~12l!~12cosg!grr 1
1

2
sing~~12l!gr

224! D1
l

4r 4 N~N21!~12cosg!

3S singgr
21~12cosg!S grr 22

gr

r D D50. ~60!

In Fig. 7, we present the relative energy,E(l)/(EB51(l)(N21)), of this configuration as a
function ofN for different values ofl. We see that this configuration corresponds to a bound s
of Skyrmions and that the energy per Skyrmion decreases withN. The energy of this configuration
corresponds to an upper bound for the energy of theB5N21 radially symmetric solution of the
SU(N) model and these configurations correspond to bound states of Skyrmions for all val
N and all values ofl. As every SU(p) solution can be trivially embedded in an SU(q) solution
whenp <q we can claim that for everyB,N the SU(N) model has a radially symmetric solutio
of chargeB corresponding to a bound state. With the exception of the hedgehog solutions,
solutions are expected to be unstable when the radial symmetry is broken as their energ
larger than the known SU~2! solutions.13

VIII. CONCLUSIONS

In this article we have shown how to construct some radially symmetric solutions of the S~3!
sixth order Skyrme model. The construction is similar to the one used for the pure Skyrme
in Ref. 14 except that, because of an extra constraint, the construction only works for the~3!

FIG. 7. EnergyE/(EB51(N21)) for the SU(N), configuration~56! for ~a! l50, ~b! l50.25,~c! l50.5,~d! l50.75, and
~e! l51.
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model. The same ansatz can nevertheless be used to compute low-energy configuration
SU(N) model. In particular we showed that for everyN there is a radially symmetric solution o
chargeB,N which corresponds to a bound state of Skyrmions.
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