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Spherically symmetric solutions of the sixth order SU (N)
Skyrme models
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Following the construction described by loannidetual. [J. Math. Phys40, 6353
(1999], we use the rational map ansatz to construct analytically some topologically
nontrivial solutions of the generalized 8) Skyrme model defined by adding a
sixth order term to the usual Lagrangian. These solutions are radially symmetric
and some of them can be interpreted as bound states of Skyrmions. The same
ansatz is used to construct low-energy configuration of theNg8kyrme model.

© 2001 American Institute of Physic§DOI: 10.1063/1.1415742

[. INTRODUCTION

The Skyrme modélis widely accepted as an effective theory to describe the low-energy
properties of nucleons. It was indeed shéwhthat in the largeN,, limit, the Skyrme model is the
low-energy limit of QCD. The classical static solutions of the model describe the bound states of
nucleons and every configuration is characterized by a topological charge which, following
Skyrme’s idea, is interpreted as the baryon charge.

The Skyrme model can be used to predict the properties of the nucleons within 10% fd' 20%.
To improve these phenomenological predictions various extensions of the model have been pro-
posed mostly by adding higher order tePifsor extra fieldS to the Lagrangian.

The study of the classical solutions of the Skyrme model has been done mostly using numeri-
cal methods, but recently Houghtenal1° showed that the classical solutions of the(unodel
can be well approximated by using an ansatz that involves the harmonic mapS4tors?. The
harmonic map describes the angular distribution of the solution while a profile function describes
its radial distribution. This construction was later generafizéor the SUN) model using har-
monic maps frons? to CPN~1. Moreover, it was shown that using a further generalization of this
ansatz one can construct exact spherically symmetric solutions of thid)SEKyrme model.

The same method was also used in Ref. 12 to construct solutions of anothid) &lufth
order Skyrme model. In this article, we use the same generalized ansatz to construct solutions of
the sixth order S(B) Skyrme model and low-energy configurations of the Byodels defined
in Ref. 13.

II. THE SIXTH ORDER SKYRME MODEL

The Skyrme model is described by an $l)(valued fieldU(X,t) which, to ensure finiteness
of the energy, is required to satisfy the boundary conditior| as|X|—, wherel is the unit
matrix. This boundary condition implies that the three dimensional Euclidean space on which the
model is defined can be compactified irBdand, as a result, the Skyrme fieltl corresponds to
mappings fromS® into SUN). As 73(SU(N))=Z each configuration is characterized by its
winding number, or topological charge, which can be obtained explicitly by evaluating the expres-
sion

aE|ectronic mail: ioannis.floratos@durham.ac.uk
BElectronic mail: b.m.a.g.piette@durham.ac.uk

0022-2488/2001/42(12)/5580/16/$18.00 5580 © 2001 American Institute of Physics

Downloaded 26 Apr 2011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 42, No. 12, December 2001 Spherically symmetric solutions 5581

1 )
_ g3 aijk R.
B=, JR3dx8 Tr(R R Ry, (1)

where RM=((9MU)U‘l is the right chiral current. Skyrme’s idea was to interpret the winding
number associated with these topologically nontrivial mappings as the baryon charge.
The generalized sixth order Skyrme model is defined by the Lagrangian

1 o1 , 1=\ , 1
E=- Wf ax ETrRi + WTr[Rl ’Rl] + %)\Tr[R, ,R]][RJ rRk][Rk!Ri] , (2)
where this parametrization of the model is chosen such Xhaf0,1] is a mixing parameter
between the Skyrme term and the sixth order term: whe® the model reduces to the usual pure
Skyrme model while foh =1 the Skyrme term vanishes and the model reduces to what we refer
to in what follows as the pure Sk6 model.
The Euler—Lagrange equations derived fr@h for the static solutions are given by

and the following inequality holds for every configuration:

E=\1-\B. (4)

The multi-Skyrmion solutions of the SB) Skyrme model have been studied in Ref. 13 where
it was shown that they have the same symmetry as the pure Skyrme model. It was also shown that
the harmonic map ansatz gives a good approximation to the solutions.

In the next section we describe the harmonic map ansatz. In the third section we prove that
due to a constraint coming from the sixth order term, the multi-projector harmonic map ansatz
provides exact solutions only for the 8) generalized model. We then show that one can nev-
ertheless use the ansatz to construct low-energy configurations of ti) $tgdels. In the fourth
section we look at these configurations for the(&unodel, while in the last section we look at
some special ansatz for the SU( model.

. HARMONIC MAP ANSATZ

The rational map ansatz, introduced by Hougheoml, '’ is a generalization of the hedgehog
ansatz found by Skyrmkto approximate multi-Skyrmion solution of the &) model. The ansatz
was later generalized by loannidetial1* to approximate solutions of the SN} Skyrme model
using harmonic maps fror8? into CPN~1. This generalized ansatz is given by

U(r,0'<P):e2if(r)(P(t9,<p)7|/N):e*Zif(r)/N(I +(eZif(r)_1) P( 0,¢)), (5)

wherer,# and ¢ are the usual polar coordinates. The profile functfgn) must satisfy the
boundary condition§(0)= 7 and lim_,..f(r)=0 andP(#,¢) is a projector inCN which must be
a harmonic map frons? into CPN"1 or equivalently a classical solution of the two dimensional
CPN™! & model. These solutions are well knot®ri® and to construct them it is convenient to
introduce the complex coordinate=tan(6/2)e'® which corresponds to the stereographic projec-
tion of the unit sphere onto the complex plane.

In these coordinate$} must satisfy the equation

JP

a—§=0, (6)

and the solutions of that equation are given by any projector of the form
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FIG. 1. Total energy of the 1 Skyrmion solution.

heh'
P(f)= |h|2 ) (7)
whereh e CN is holomorphic
dh
—=0. 8
23

The topological charge for the ans&, with the prescribed boundary conditions fdr), is
given by the winding number of th8°—CPN~. This winding number is itself given by the
degree of the harmonic functidnt>'® which must then be a rational function &f

To approximate a solution, one plugs the ang&jzinto the energy2) and notices that iP
satisfies(6), the integration over the polar angles and the radius decouple. One then has to
minimize the integral over the polar angles of an expression which depends oRlyTaking for
P the most general harmonic map of the desired degree, one then has to find the parameters of the
general map which minimize that integral. Having done this, the profile funétisrobtained by
solving the Euler Lagrange equation derived from the effective energy.

A special case of this construction is the so-called hedgehog ansatz for {2 @bdel
corresponding to one Skyrmion. In this case, we Hawd1,£)! and after inserting7) into (2) the
energy reduces to

1 ) . 5 sintf sintf
Ezgfdr frr2+25|r12f(l+(1—)\)fr)+(l—)\)r—2+)\r—2fr , 9

and the equation fof is given by

frr 1+2(1—)\)r—2+)\—4 P

sir? f sinftf| 2 sin* f
: -

sin2g 5 siff
F g (A= 14 T (V21

=0. (10)

This actually corresponds to an exact solution of the model and it is radially symmetric. In Fig. 1
we present the. dependence of the energy and in Fig. 2 we show the profile funétemd the
energy density for the pure Skyrme modek: 0, and the pure Sk6 model,=1.
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FIG. 2. Function profilé and energy density for the 1 Skyrmion solution of the pure Skyrme madeQ, and the pure
Sk6 modelA=1.

IV. SPHERICALLY SYMMETRIC SOLUTIONS FOR THE SU (N) MODEL

In this section we will follow the construction described in Ref. 14, to attempt to construct
solutions of the extended SNj Skyrme model using a generalization of the harmonic map ansatz
(5).

To build the new ansatz we need to introduce an opefatomwhich acts on any complex
vectorue CN and is defined as

u'g.u
P+U:0”§U_Uw. (11)

Taking a holomorphic vectoh(¢) we then definePgh=h and by inductionV,= P'_ih
= P+(P‘f[1h). TheseN vectors are mutually orthogortiland so the corresponding projectors

) PXh(PXh)*
Pk:P(P+h):W k:O,...,N—l, (12)
+
satisfy the orthogonality relations
Pkpj = 5” Pk y
(13
N—1
> Pe=1,
k=0
as well as other properties discussed in detail in Ref. 14.
The generalized harmonic map ansatz is then defined as
: A l . |
U=ex IgO PO_N +|g1 Pl_ﬁ _...+|gN,2 PN,Z_N
=e 190N+ AgPg) e 191N+ AjPy) -7 1IN-2N(1 + Ay Py ), (14

whereg,(r) are N—1 profile functions andA,=e'%— 1. Moreover, for the ansatz to be well
defined, the profile functiong,(r) must be a multiple of 2 at the origin and at infinity.

To proceed with our construction, it is convenient to rewrite the Euler—Lagrange equations of
the model(3) using the usual spherical coordinates
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1—\ 1 1
(7r[ r2R, + T(A0r0+ m%w R W(Bomnﬁ B<p<p0r0)”

1-X\
tSing?* [Sln@ Ryt —— ( Aror WA‘P"‘P +W(Brrqp0qp+8¢¢r0r)]
1 1—\ 1 A
+ma¢: R<p+ 4 Ar<pr+ 2A0<p0 +W(Brr0¢0+800r<pr) =0, (15)

whereA;;; =[R;, [R;, Rj]] andB;;i«=[R;, [R; ,R] [Ri,R]]. It is fairly easy to show that
N-2 |
R =i il Pi— =1, 16
' JZO g,( : N) (18
where g; is the derivative ofg;(r) with respect tor. Using the complex coordinatesand &

introduced before we have

N—1 ! ) VT—l
Re= 2, [el70 1—1]|—z 17)

and the derivatives with respect toand ¢ are given by

+1¢? . —
dp= 2\/—(§5g+§«ﬂ 9,=1(£ 0= & de). (18)
Substituting the above into EgEl5) we get
1+ 1£]2)2 2y2

rer"‘(l_)\)%(A@g‘FAgrg) |§| ) — (R4 (Rop)

+]¢%)° (1+[¢3* _ o
+(1—- )\)—(nggg ngg_)"‘(l )\)T([Aggg]g—[p\ggg]g)

+1€%)? A +1€2)*
+(1—)\)—([Argr]+[Ar§r])+16 —(nggrg Beeere)

(1+]€%)?

+—arz L (LF[E%)?Brr ¢ ¢ 1= 0L (1[€%)?Brr ¢ )
(1+]¢%? (1+]£?)2
2/¢*r? ( é[ g7z (T 8EBeerer)

2\2
+§a{( 4||§||2)( 5558@@})
(1+]¢>?

8—(05[ (1+[€5H% (BegrertBegrer— ngrgr)]+(7—[(1+|§|2)2

X(_Bférgr+B§Er§r+BE§r§r)])]:0- (19

In Ref. 14 it is shown that if one takes the special holomorphic vector
Vozh:(ho,hl,...,thl)t, (20)

where
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he=&Cyp * (21

andCE_1 denotes the binomial coefficients, then the term&B) coming from the usual Skyrme
model, i.e., all the terms except the ones proportionali®, are all proportional t&;—P;_, and
P;— I/N. Using(13) one can get rid of the projectdty_, and(19) will then be the sum of the
N—1 termsP;— I/N fori=0,...,N—2, with coefficients that depend only onThis implies that
the equations for the Skyrme model reducéNte 1 ordinary differential equations for the profile
functionsg; and their solutions, if they exist, will provide us with exact solutions of the NU(
Skyrme model.

In what follows we will show that the angular dependence of the terms proportionairto
(19), i.e., the terms coming from the sixth order term, is also coming exclusively from the
projectorsP;— I/N or P;—P;_4, but that we have to impose an extra constraint on the profile
functionsg; .

We start by noting that

== 3, syl e 22
[Rr,Rg]=iiN§11<gia. 0i- 1a>|\<,\i'T|i—lN§1 K'|\</.V'T1|3’ (23
[Rr,Fr]—lNEl (2= - 1a>K,I j’l NEjK% (24
wherea;=¢€'(9~9-J—1. |t is then straightforward to check that
Bzgzrg—ngz@aNle i:x:‘ji|\|,\i/‘|12|2+ci|\|,\i/‘|j4+ il\({,ffz'zl\',\i/"jz (Pi—Pi 1),
(25)

whereb; ,c; andd; are functions ofy, only. However, as shown in Ref. 14\, is given by(20)
and(21), then|V;|%/|V;_1|?=(1+]&|?) 2 and thus

(1+]g>*
T2 Beerr e Besgr ) (PimPioy). (26)
Furthermore, we have
N—-1 t
Vi Vi—a?\ ViViZy
+ .
Boreee! 2 | OV TS VR Vg @

with e;=e(g;) ands;=s(g;). But in Eq.(19) this term appears as

TL(L+|E?)?Bry ¢ =26 (L+[E%)By 1 ¢+ (L+]E2)? T (Bry £ 0)- (28

Sincedy| V| ?/|V;_ 1|2 o« — 2¢ (1+ |€]?) 2 the only parts 0f28) that are nonzero are the ones that
involve the derivatives oY/ VI J/|Vi_1|? with respect te. Since it can be shown that the latter
are proportional t& " *C; (1+|§|2) 2(P;—P;_,) whereC;=C(g;), then one sees that the term
that involvesB, , ;. ¢ |n (19 is proportional to P;—P;_1).

Using similar arguments, it is easy to check that the terms involBpg; ; ¢, Be¢r¢r,
Beerers Begrers Begrgrs Begrgr andBg, ¢, factorize in the same way.

There are a few terms i19) which we still have to consider. They involve the expressions
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N-1 1
Brerer= 2 (aiKi_1Ki_o—ai_oKiK; )% (29)
EErér “4 i™Ni=1MNji -2 i—20NiIN =1 |Vi—3|2,
N-1 +
V, 5V
Becrer= E (aKi—1Ki—o—a_KiKj_1). I—Iz \ (30
=3 |V|—3|

whereK;=i(g;a;— §;_18;)- It is clear that these terms will always give& g dependence besides
the projectors?; and, hence, if we wantl9) to reduce toN—1 equations that involve only the
profile functionsg; , then we have to make sure th{a®) and(30) vanish i.e., we must impose the
conditions

aiKi_1Ki_2—aj oKiKi_1=0 & §;_»—0i_3=0;— . (31)

This last constraint, which is a result of the addition of the sixth order term, implies that we can
only consider two profile functiongg andg, and that we should thus have only two equations.
Unfortunately we havéN—1 equations which are not compatible with each other. From this we
see that the ansa(3) will provide exact solutions of the generalized Skyrme model for th€2sU
and the SW3) model only. For larger values df, the ansatz will nevertheless give some low-
energy radially symmetric configurations. The @)Jcase is nothing but the usual hedgehog
ansatz and we will focus on the solutions of the($Umodel in the next section.

In order to derive the equations for the profile functions, it is convenient to write the energy

density of the model in terms ofg(?):

i — 1 1 1-)
— — 2 2 5
E 12777fr drdgdgTr (1+]€?)? Rr+r_2|R§| + 7 [RORAR R ]

(1+]¢%? (1+¢%?

~(1-N) g [Re RPN gz —[[RORELIR RANR: R | (32

Defining

Fi=gi—gi;, for i=0,...N-3,
(33
Fn-2=0On-2,

as well asW, = (|V;|%/|V;_1]?) (1—cosF)) andWy_1=(|Vn_1|%|Vn_2|?) (1— cos@)), the terms
in the above expression can be rewritten as

1 N—-2 2 N-2
TrR?=—< > gi) - 92 (34)
N1\ i=o =
N—-1
TrR[?>=-2> W, (35)
i=1
N—-1
TI[R, ,Rg][Rr,Rg]z—Zgl W F2_,, (36)
N—-2
Tr[Rg, R 2=4{ Wi+ X (W= Wi )2+ W2 _, |, 37)
=1
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N—-2
Trl[Rr,RelL[Rr ReI[R:, Re]1=4 0W2+E (FioaWi—FiWi )2+ FF W31 |. (38)
In Ref. 14 it was shown that v |2
v 2 KN= (L) (39

and from this we see that all the terms (B2) are proportional to (*]&|?)~2 and that after
integrating out the angular dependence the energy reduces to

2 N 1

(1 )\) .
=—j 2dr[——(2 i +2 g7+ 22 kzl (Ok— Ok-1)Zk
(1-2) N-2
4r4 Z§+k21 (Zk_zk+1)2+zﬁ—1)
\ N-2
+16r4(F ZZ+E (Fro1 Zk—FuZis 1)?+FR L, 2% 1)] (40

whereZ,=k(N—k)(1—cosF_1))-

In Ref. 14 the field$-; defined by(33) were used, and very special solutions were obtained by
takingFo=F;=--- =Fy_,. It was observed that whef;(0)=27 andF;()=0 this solution
of the SUN) pure Skyrme model has a topological chaRye (N/6) (N°—1) and has an energy
equal exactly to I§/6) (N2—1) times the energy of the single Skyrmion solutions. It is easy to
show that, if one uses the same ansatz for the sixth order Skyrme model, the profilg2
satisfies the hedgehog profile equati®) and the energy of the configuration is given by
E(N)=4Ey(\) whereEy(N\) is the energy of the hedgehog solution for the generalized model.
These configurations are not exact solutions, except for th&)Shiodel.

To consider the most general ansatz, one can derive f#@rthe following equations for the

profile functionsF,, =0,...,N—2):
I N-2
_2(|N )2 (i+1)F, +22 Z F+(ir)|:|(|+1)(|\|—|— 1)(1—cosF))
% 2(|+1) Z (i+1)F, +22 (2k Fi +(17:2)\—)F,2(I+1)(N—I—1)sinF,
2 . (1-X) .
—r—2(|+1)(N—|—1)smF,— — (1+1)2(N—1—1)%(1—cosF,)sinF,
(1-2)) .
+ TS (I+1)(N=I=21)sinF|[I(N=1)(1—cosF,_;)+(1+2)(N=1=2)(1—cosF,1)]

+ %{2 Fi(l+1)2(N—1—1)%(1—cosF|)?>—F,_11(1+1)(N=1)(N—1—1)(1—cosF,_;)
X (1—cosF))—F, 1(1+1)(1+2)(N=1—1)(N—1I—2)(1—cosF)(1—cosF, )}

+ ;—r);{z Fi(1+1)2(N—1—1)2(1—cosF|)2—F,_4l(I+1)(N—=1)(N—1—1)(1—cosF,_;)
X (1—cosF))—F, 1(1+1)(1+2)(N=1—1)(N—I—2)(1—cosF)(1-cosF, )}

+ %{2 F2(1+1)2(N—1—1)%(1—cosF))sinF|— FZ ;1 (I+1)(N=1)(N—1—1)sinF,_,

X (1—cosF|)— FHl(I +21)(1+2)(N=1—=1)(N—=1-2)(1—cosF,)sinF, ,}=0. (41
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WhenN= 3, the solution of the two equations lead to exact solutions of the model, while for
larger values oN, the ansatZ14) corresponds to low-energy configurations.

We would like to point out at this stage that as proved in Ref. 14, the topological charge for
the configuration(14) is given by

N—2
B= >, Dy(F—sinF)iZg, (42)
i=0
where
o1 |F>kj1h|2d i
Dk——lmfw &d¢ (43

takes integer values given by the degre€ iof the wedge produt? of h and its derivatives
1 k Kk k
Dkzzdeqw )), h®=hAg,hA---Ad%h, k=0,...N—1. (44)

Each configuration is thus characterized by the boundary conditions for the profile fuRgtion
and we can without loss of generality impose the condition_ljint;(r) =0. For the configuration
to be well-defined at the origin we must also impose a condition of the type

Fi(0)=n; 2, (45)

wheren; e N.

V. RADIALLY SYMMETRIC SU (3) SOLUTIONS
To describe the solution of the $8) model, we use the profilE=F, andg=F; and the
energy(40) simplifies to
1 2 .. . 1 .
E= GJ r2dr{ §(gz+ F2+gF)+ r—z((l—cosF)((l—)\)F2+4)+(1—cosg)
_ 2
x((l—)\)gz+4))+(1—)\)r—4((1—cosF)Z—(l—cosF)(l—cosg)+(1—cosg)2)

A . N
+ W(Fz(l—cosF)er gz(l—cosg)z—(l—cosF)(l—cosg)gF)] . (46)

The equations for the profile functidh andg are then given by

1 F, o, 3
grr+ EF”‘FT‘FZT‘FEZ

(1—x><1—cosg>gn+%sing((l—x>g?—4>

+ %sing((l—)\)gf—4)+(1—)\)%((1—cosF)—2(1—cosg))sir‘(g)+ %(1—0039)

x| 2| singg?+ (1—cosg)

gl’ . 2 FI’
grr—ZT —sinFF;—(1—cosF) Frr—ZT =0, (47
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TABLE I. Topological charge and energy of the hedgehod23dolution.

SU(2) Energy

Ng B E(0) E(1)

1 1 1.2315 0.9395

1 Froor 3 )
Frr+Eg”+27+T+p(smF((l—)\)Fr—4)+2(1—)\)(1—cosF)Frr)

3 3\
—(1—)\)?(2(1—cosF)—(l—cosg))sinF+ W(l—cosF)

. 2 Fr . 2 gl’
X112 sinF F7+(1—cosF) Frr—ZT —sing gr—(1—cosg) g”—ZT =0.
(48)
The topological charge of the solution now reads
1 f r=o . r=om
B=—((F—sinF)|;=5+(g—sing))li =5 (49)
and, if we take the boundary conditions
F(0)=ng2m,
(50)
g(0)=ng2m,

whereng andng are integers, we hav@=2(n¢+ngy). Whenng andn, are of opposite signs, we
can interpret the solutions as a mixture of Skyrmions and anti-Skyrmions.

In Table I, we give the energy of the hedgehog solutiB=(@) for the SU2) model. This
solution is an embedded solution of any $Y(model and it is the solution with the lowest
energy. We thus use it as the reference energy for all the other solutions.

In Table Il we present the properties of the different solutions for thé3Bidodels. The first
two columns specify the boundary condition of the solution, and the third column gives the
topological charge of that solution. In columns 4 and 5 we give the energy of the solutions for the
pure Skyrme model and the pure Sk6 model while columns 6 and 7 give the corresponding relative
energy per Skyrmion, that is, the energy divided by the energy of the single Skyrmion and the total
number of Skyrmions. For the solutions corresponding to the superposition of Skyrmions and
anti-Skyrmion, we define the total number of Skyrmions as the total number of Skyrmions and
anti-Skyrmions. Notice that the casag=0,nz=1 andny=1,n=0 correspond to the same
solution modulo an internal rotation.

In Fig. 3, we present the energy of the three different types of solution as a functian of

TABLE II. Topological charge and energy of some SWsolutions.

SU(3) Total energy Relative energy
Ne Ng B E(0) E(1) Es(0)/(|B|E1(0)) Es(1)/(|B[E4(1))
1 1 4 4,928 3.758 1 1
1 0 2 2.377 1.819 0.965 0.968
0 1 2 2.377 1.819 0.965 0.968
1 -1 2-2 3.862 3.191 0.784 0.849
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FIG. 3. Energy of the S(B) solution for the boundary conditiorta) ng=0,ng=1, (b) ne=1,ny=0, (c) ng=1ny=—1,(d)
Ng=1n,=1.

VI. LOW-ENERGY SU(4) CONFIGURATIONS

As was shown in the last two sections, the angat provides an exact solution of the sixth
order model only for the S(3) model, or wher\ =0, that is for the usual Skyrme model. For the
SU(N) model withN=4, the ansatz still produces low-energy configurations. In particular, when
\ is small, we can expect the ansatz to be very close to an exact solution. In this section we look
at some configurations of the $1) model. For this model, we have three profile functiéns F;
andF, and the energy for the general anséit4) is explicitly given by

1 1 o ey . .2
E=Ef rzdr+Z(SFS+4F§+3F§+4F0F1+4F1F2+2F0F2)+ —2[3(1—cosFo)

1. .
+4(1—cosF;)+3(1—cosF,)]+(1—\) EZ[SFg(l—cosF0)+4Ff(1—cosF1)

) 1
+3F2(1—cosF,)]+ F{g (1—cosF)?+16(1—cosF;)2+9 (1—cosF,)?

A .
—12(1-cosFq)(1—cosF,)—12(1—cosFq)(1—cosF,)}{ + W{9FS(1— cosFg)?

+16F2(1—cosF )2+ 9F5(1—cosF,)?— 12F oF (1— cosF)(1— cosF ;)
—12F1F2(1—cosFl)(l—cost)}] (51

from which we can derive the following equations:

3\(1—cosFy)? 2(1—\)(1—cosF . 2 N1l-cosFgp)(l—cosF,)\. 1.
( 0) N ( )( O)+1)Fo+<__ ( 0)( 1) £

2r4 r2 r4 1 §F2
4sinF, 6F,+4F,+2F, (1—-\)F2sinF nF
AR R e S 2 % (1-0) 2 (4(1— cosFy)
r 3r r r
(1—cosFg) (3., . L, (1—cosFgy) .
—6(1—cosF0))+)\r—4 EFosmFo—FlsmFl —)\r—5(3F0(1—cosF0)
—2F4(1—cosF,))=0, (52)
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FIG. 4. Energy density of the $) multi-projector ansatZa) n,=0, n;=0, n,=1; (b) ny=1, n;=0, n,=0; (c) ngy
=0,n,=1,n,=0; (d) ng=1,n,=0,n,=1; (e) np=1,n,=1,n,=0; and(f) np=0,n,=1, n,=1.

(1 3\(1—cosFg)(1—cosF,)

. 2M(1—cosF;)?> 2(1—\)(1—cosF,))..
- o F0+(1+ ( 1) N ( )( 1) F

r4 r2 1

1 3N(1—-cosF;)(1—cosF,)\. (1-NFZsinF; Fo+2F,;+F, sinF,
2 4r* Fat r? * r R

sinF N
+(1-\) 3 l(3(1—cosF0)+3(1—cosF2)—8(1—cosF1))— r—5(1—cosF1)

N
X +r_4(1_ cosF,)

: 3. 3.
4F(1—cosF,)— EFO(l—cosFo)— EFz(l—cost)

. 3. 3.
X 2F§sinF1——nginFo——ngian)=O, (53

4 4

and

2 N2--cosF;)(1—-cosF,)\.. 3N(1—cosF,)? 2(1—\)(1-— cosF,) ..
1. 2F,+4F,+6F, sinF, (1—\)F3sinF sinF
i S A L R P2 (1-N) 2 (4(1—Fy)
3 3r r r
(1— cosF,)

—6(1=F;)) =N —— 5 (3Fz(1— cosF,)—2F (1~ cosFy))

(1—cosF,) (3., . o
N Engsz—FismFl =0. (54)

Describing the boundary condition for the profile functions as befer@)=n;2, the topologi-
cal charge is given by

B:3n0+4n1+3n2. (55)

Downloaded 26 Apr 2011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



5592 J. Math. Phys., Vol. 42, No. 12, December 2001 |. Floratos and B. M. A. G. Piette

TABLE IlIl. Topological charge and energy of some @WUconfigurations.

SuU(4) Total energy Relative energy

No ny n; B E(0) E(1) Es(0)/(|B|E1(0)) Es(1)/(IB[EL(1))
0 0 1 3 3.517 39 2.666 53 0.952 10 0.945 98

1 0 0 3 3.517 39 2.72915 0.952 10 0.968 19

0 1 0 4 4.788 07 6.333 22 0.972 04 1.685 07

1 0 1 6 7.224 64 6.046 04 0.977 80 1.072 44

1 1 0 7 8.452 19 6.629 98 0.980 52 1.008 02

0 1 1 7 8.452 19 7.28058 0.980 52 1.106 94

1 1 1 10 12.311 9.396 05 1 1

In Table Il we present the energy values of various types of configurations Wiéh and
A= 1. We notice that whek =0, the solutions are symmetric under the exchagef,, but that
the sixth order term breaks the symmetry. This results in a difference of energy between the
configuration withng=0,n,;=0,n,=1 andny=1,n,;=0,n,=0 as well as between the configu-
rations withng=1,n;=1,n,=0 andny=0,n;=1,n,=1. In Fig. 4, we present the curve for the
energy of the configurations as a function)of

VII. SU(N) LOW-ENERGY CONFIGURATION

After inserting the ansat®) in the full equation for the SU{) model, we found that we had
only two independent profile functiorg, andg, and that the ansatz would only provide solutions
for the SU3) model. One can nevertheless use thel$Ugnsatz to compute low-energy configu-
rations. For example, if we consider the reduced ansatz defin€s) bygether with the constraint
0i_»—0i_3=0;—0i_, and define the profile§ =g,—g; and g=gy_, we can minimize the
energy(40) and solve the equations fér andg for various boundary conditions. We found that
to get configurations corresponding to a bound state, i.e., a configuration with an energy per
Skyrmion smaller than the energy of the hedgehog solution, we mushtak® andng=1. The
energies that we found are given in Table IV.
In Figs. 5 and 6 we present the profile and the energy density for different valivearad for
A =0.5. It shows that the energy density has the shape of a hollow sphere ofradiug/N. The
profile g has the same shape for all valuesMfut is shifted to the right abl increases. The
profile F, on the other hand, is also shifted as the shell radius increases, but its amplitude
decreases like W?. Note that in Fig. 6, the profiles fod=100 andN =200 have been multiplied
by 100 to make them visible. For other valueshathe graphics look very much the same except
that the shell radius and width are slightly different, but the conclusions remain the same.
Figure 6b) suggests to simplify the ansatz further for laNyéy takingF(r) =0. This implies
thatg;=g Vi and the multi-projector ansats) becomes

U=exp —ig(Py_1—1/N)), (56)

wherePy_, can also be written as

TABLE IV. Topological charge and energy for the reduced ansatz mita 0 andng=1.

Total energy Relative energy
Model B E(0) E(1) Es(0)/(|B|E4(0)) Es(1)/(IB|E4(1))
SUQ3) 2 2.377 1.819 0.965 0.968
SuU4) 3 3.624 2.759 0.981 0.979
SU(5) 4 4.811 3.632 0.977 0.966
SuU(6) 5 6.015 4518 0.977 0.962
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FIG. 5. Energy density of the multi-projector solution with=0, ng=1, A=0.5. (8 N=10, (b) N=20, (c) N=50, (d)
N=100, and(e) n=200.

S
=]
—+

Pno1= (57

=

i

whereh is equal, up to a unitjlry rotation, to the complex conjugate of the holomorphic Wégtor
defined in(20) and(21): h=AV,, for someA e SU(N) with dzA=dA=0. This is shown by using
the fact thatPy_, is an antiholomorphic projecttrand that solving39) recursively we have
kI(N—-1)!

2_ +|g[2N-1-2k
and so|Vy_|2=(N—1)!?|1+]£[?/*"N. Knowing that up to an overall coefficiefivy_4|? is a
polynomial in¢ of degreeN—1, we can conclude that up to a unitary iso-rotatid, ; is equal
to the complex conjugate d&f.
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FIG. 6. Profile(a) g and(b) F of the multi-projector solution witmg=0, ng=1, A=0.5. (a) F for N=10, (b) F for N
=20, (c) F for N=50, (d) 100X F for N=100, and(e) 100X F for N=200.
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FIG. 7. EnergyE/(Eg-1(N—1)) for the SUN), configuration56) for (a) A=0, (b) A=0.25,(c) A=0.5,(d) A\=0.75, and
(e) A=1.

The topological charge of the antiholomorphic projed®y_; is equal to =N and as the
profile function is—g, the baryon number for this configurationNs- 1. The ansatz56) is not a
solution, but its energy

E—lfsz_l'Zl N—1)(1 1-N)§2+4
= 6o | 0 +ﬁ+( —1)(1—cogm)((1—\)g°+4)

+i N—1)%(1— 2 (1-\ o g2 (59)
Spal (1=com)?| (1-M)+ 72971,

can easily be computed by solving the equation

g N 1. A
20y + 47+ 2 (1—x>(1—cosg>g”+5smg((l—k>g?—4>)+WN(N—1><1—cosg>
. 2 gl’
X| singgy +(1—cog) g,,—ZT =0. (60)

In Fig. 7, we present the relative ener@(\)/(Eg-1(N\)(N—1)), of this configuration as a
function of N for different values ol. We see that this configuration corresponds to a bound state
of Skyrmions and that the energy per Skyrmion decreasesNviffhe energy of this configuration
corresponds to an upper bound for the energy oBkeN— 1 radially symmetric solution of the
SU(N) model and these configurations correspond to bound states of Skyrmions for all values of
N and all values oh. As every SUp) solution can be trivially embedded in an S}{)(solution
whenp < g we can claim that for everB<N the SUN) model has a radially symmetric solution
of chargeB corresponding to a bound state. With the exception of the hedgehog solutions, these
solutions are expected to be unstable when the radial symmetry is broken as their energies are
larger than the known S@) solutions'®

VIIl. CONCLUSIONS

In this article we have shown how to construct some radially symmetric solutions of % SU
sixth order Skyrme model. The construction is similar to the one used for the pure Skyrme model
in Ref. 14 except that, because of an extra constraint, the construction only works for (Ble SU
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model. The same ansatz can nevertheless be used to compute low-energy configurations of the
SU(N) model. In particular we showed that for evetythere is a radially symmetric solution of
chargeB<N which corresponds to a bound state of Skyrmions.
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