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A Weierstrass-type system of equations corresponding to theCPN21 harmonic
maps is presented. The system constitutes a further generalization of our previous
construction@J. Math. Phys.44, 328~2003!#. It consists of four first order equations
for three complex functions which are shown to be equivalent to theCPN21 har-
monic maps. When the harmonic maps are holomorphic~or antiholomorphic! one
of the functions vanishes and the system reduces to the previously given generali-
zation of the Weierstrass problem. We also discuss a possible interpretation of our
results and show that in our new case the induced metric is proportional to the total
energy density of the map and not only to its holomorphic part, as was the case in
the previous generalizations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586791#

I. INTRODUCTION

A few years ago Konopelchenko, together with his collaborators,1,2 introduced the subject o
Weierstrass representations of surfaces immersed in multidimensional spaces. This has ge
quite a lot of interest3,4 and has led to the connection with theCPN21 harmonic maps. Exploiting
this connection, we have recently proposed a generalization of these ideas to theCP2 ~Ref. 5! case
and, more recently, managed to generalize it further—to theCPN21 case.6

These generalizations lead to the study of immersed surfaces, whose metric is then re
the properties of the corresponding harmonic maps. In theCP1 case all harmonic maps~from S2)
are holomorphic~or antiholomorphic! and, as the induced metric is characterized by the holom
phic component of the energy, this characterization is complete. This is also the case f
holomorphicCPN21 maps.

In the CPN21 case~for N.2) there are harmonic maps which are not holomorphic7 and for
them the above mentioned construction6 is not complete, as in the general case we would exp
the maps to be characterized by the total energy. Hence a further generalization is called
such a generalization is provided in this article.

In the next section we briefly review theCPN21 harmonic maps~using the formalism as given
in Ref. 7! and in the following sections relate these maps to the various versions of the Weier
problem.

II. CPNÀ1 HARMONIC MAPS

A. Formulation

The CPN21 models are, in fact, a generalization of the, perhaps the simplest, sigma m
namely, theS2 model—also called the vectorO(3) model. TheCPN21 models involve maps from
R2, or S2 if a nontrivial topology is required, toCPN21, i.e.,

a!Electronic mail: grundlan@crm.umontreal.ca
b!Electronic mail: w.j.zakrzewski@durham.ac.uk
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C.V{z5z11 i z2°z5~z1, . . . .,zN!PCN, ~1!

where the homogeneous coordinatesz5(z1, . . . ,zN) have the following property:

z;z85lz for lÞ0.

Exploiting this projective invariance we can require that

z†
•z 5 1 ~2!

holds, where † denotes Hermitian conjugation, and we are still left with the gauge symme

z→z85zeif, ~3!

wheref is a real-valued function.
It is easiest to define theCPN21 models in terms of the Lagrangian density7

L 5 1
4 ~Dmz!†

•Dmz, z†
•z 5 1, ~4!

where the covariant derivativesDm act onz:S2→CPN21 according to the formula

Dmz 5 ]mz 2 ~z†
•]mz!z. ~5!

Here the indexm51,2 denotesz1 andz2 . Note that the covariant derivativesDmz transform under
the gauge transformation~3!

Dmz→Dmz85~Dmz!eif, ~6!

so that the dependence on the phasef drops out of the Lagrangian density~4! and so the mode
is really based onCPN21.

The total Lagrangian is given by

L 5 E L dz dz̄ ~7!

and, if theCPN21 model is defined overS2, we require thatL is finite.
For theCPN21 sigma model it is convenient to define

z 5
f

u f u
, ~8!

whereu f u5( f †
• f )1/2. In terms of f the Lagrangian~7! becomes

L 5 E u ]̄ f u21u] f u2

u f u4
dz dz̄, ~9!

whereu] f u25(] f )†
•(] f ) and u ]̄ f u25( ]̄ f )†

•( ]̄ f ). The Euler–Lagrange equations forf take the
form

S 1 2
f ^ f †

u f u2 D F ]]̄ f 2 ] f
~ f †

• ]̄ f !

u f u2
2 ]̄ f

~ f †
•] f !

u f u2 G 5 0, ~10!

where we have introduced the holomorphic and antiholomorphic derivatives
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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]5
]

]~z11 i z2!
5

]

]z
, ]̄5

]

]~z12 i z2!
5

]

]z̄
, ~11!

and bar denotes complex conjugation.

B. Integrability and first conservation laws

As is well known,8 Eqs.~10! can be written as a compatibility condition for a set of two line
spectral equations for anN-component auxiliary vectorC,

]C 5
2

11l
@]P, P# C,

~12!

]̄C 5
2

12l
@]̄P, P# C,

wherel is a spectral parameter and theN by N matrix P is the projector given by

P 5
1

u f u2
f ^ f †, P†5P, P25P. ~13!

The compatibility conditions for~12! are then

@]]̄P, P# 5 0, ~14!

which, as can be easily checked, are equivalent to Eqs.~10!. Note that~14! can be written in the
form of a conservation law

] @ ]̄P, P# 1 ]̄ @]P, P# 5 0 ~15!

or, equivalently, using the tracelessness of the matrixK, as

]K 2 ]̄K† 5 0, ~16!

where the matricesK andK† are given by

K 5 @ ]̄P, P# 5
]̄ f ^ f † 2 f ^ ]̄ f †

u f u2
1

f ^ f †

u f u4 @~ ]̄ f †
• f !2~ f †

• ]̄ f !#, Tr K50, ~17!

and consequently

K† 52 @]P, P# 52
] f ^ f † 2 f ^ ] f †

u f u2 1
f ^ f †

u f u4 @~] f †
• f !2~ f †

•] f !#.

Note that due to the invariance of the Lagrangian~4! under the gauge transformation~3! we
can, without any loss of generality, set one of the components of the vector fieldf , say f 1 , to 1.
Then, in theCP1 case, all quantities are expressible through one variable

w5
f 2

f 1
5 f 2 ~18!

and the Euler–Lagrange equations~10! take the form
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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]]̄w2
2w̄

~11uwu2!
]w]̄w50. ~19!

C. Further conservation laws

Let us note that our matrixK in ~17! is given by

K5M1L, ~20!

where

M5~12P!
]̄ f ^ f †

u f u2
~21!

and

L 5 2
f ^ ]̄ f †

u f u2 ~12P!. ~22!

Thus

M† 5
f ^ ] f †

u f u2 ~12P!, and L† 5 2~12P!
] f ^ f †

u f u2 . ~23!

Next we note that the matricesM andL, separately, satisfy our conservations laws~16!. To
see this consider

]M 2 ]̄M† 52]P
]̄ f ^ f †

u f u2
1 ~12P!

]̄] f ^ f †

u f u2
1~12P!

]̄ f ^ ] f †

u f u2
2 ~12P!

]̄ f ^ f †

u f u4 ]u f u2

2
]̄ f ^ ] f †

u f u2 ~12P!2
f ^ ]̄] f †

u f u2 ~12P!1
f ^ ] f †

u f u2 ]̄P 1
f ^ ] f †

u f u4 ~12P!]̄u f u2.

~24!

But

]P 5
] f ^ f †

u f u2 1
f ^ ] f †

u f u2 2
P

u f u2 ]u f u2 ~25!

and so we see that all the terms in~24! become

~12P!F ]]̄ f 2 ] f
~ f †

• ]̄ f !

u f u2
2 ]̄ f

~ f †
•] f !

u f u2 G
^

f †

u f u2
2

f

u f u2
^ F ]]̄ f † 2 ] f †

~ ]̄ f †f !

u f u2
2 ]̄ f †

~] f †
• f !

u f u2 G ~12P!. ~26!

However, due to~10!, this is zero. Hence we have two separate conservation laws, namely,

]M 5 ]̄M† ~27!

and

]L 5 ]̄L†. ~28!
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Next we consider the explicit form of the entries of the matricesM and L. To do this we
introduce

Fi j 5 f i ] f j 2 f j] f i , ~29!

and

Gi j 5 f i ]̄ f j 2 f j ]̄ f i . ~30!

Then, using expressions~29! and ~30!, we can write the entries of the matricesM and L,
equivalently, in the form

Mi j 5 F̄ i
2 f̄ j ~31!

and

Li j 5 2 f i w̄ j
2 , ~32!

where we have introduced

w i
2 5

1

A2 f̄ k Fki , A5 f̄ l f l ~33!

and

F i
2 5

1

A2 f k Gki , ~34!

and we have used the convention of implicit summation over repeated indices.
Note that from Eqs.~30!, ~33!, and~34! we have two algebraic constraints, namely,

f̄ k wk
2 5 0, f k Fk

2 5 0, ~35!

which imply that only (N21) functionsw i
2 and (N21) functionsF i

2 are linearly independent. S
in our further discussion we take as independent functionsw2

2 , . . . ,wN
2 andF2

2 , . . . ,FN
2 .

Making use of the symmetry~3! we can set, without any loss of generality, say,f 151, and so
we end up with the expressions@for ~33!, and~34!#

w i
2 5

1

A2 @~11 f k f̄ k! ] f i 2 f i~ f̄ k ] f k!#,

~36!

F̄ i
2 5

1

A2 @~11 f k f̄ k! ]̄ f i 2 f i~ f̄ k ]̄ f k!#, i 5 2, . . . ,N,

where

A511u f 2u21¯1u f Nu2.

Note that now all the sums over repeated indices run overk52, . . . ,N.
Next we invert expressions~36! and so express all the derivatives] f i in terms ofw i

2’s and f i .
This way we find that

] f i 5 A @w i
2 1 f i f̄ kwk

2#. ~37!

Thus, in particular, for theCP1 case, Eqs.~37! become
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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] f 2 5 A2w2
2 , A 5 11u f 2u2,

and f 2 is often denoted byw ~see, e.g., Ref. 7!, while in theCP2 case we have

] f 2 5 A@~11u f 2u2!w2
2 1 f 2 f̄ 3 w3

2#,

] f 3 5 A@~11u f 3u2!w3
2 1 f 3 f̄ 2 w2

2#, ~38!

A511u f 2u21u f 3u2.

Note that in Refs. 5 and 6 the functionsf 2 and f 3 are denoted byw1 andw2 , respectively.
Similarly,

]̄ f i 5 A @F̄ i
2 1 f i f̄ kF̄k

2#. ~39!

III. THE WEIERSTRASS PROBLEM 1,3

In the Weierstrass problem we consider two complex functionsc5c(z,z̄) andf5f(z,z̄),
which satisfy

] c 5 p f, ]̄f 5 2p c, p5ufu21ucu2. ~40!

Note that we have not specified]̄c, nor ]f.
A natural question then arises. Is this problem related to the harmonic maps of the pr

sections, presumably corresponding to the case ofCP1?
This is indeed the case as has been discussed in Ref. 4. To see this we put

w 5
c

f̄
~41!

and note that

c 5w
~ ]̄w̄!1/2

11uwu2
, f 5

~]w!1/2

11uwu2
~42!

satisfy ~40!. In fact, one can show that~19! and ~40! are equivalent.
Moreover, we can introduce three real quantities:

X15 i E
g
@c̄21f2#dz2@c21f̄2#dz̄,

X25E
g
@c̄22f2#dz 1 @c22f̄2#dz̄, ~43!

X3522E
g
c̄fdz 1 cf̄dz̄,

whereg is any curve from a fixed point toz. Then, it is easy to show that ifc andf satisfy~40!,
the functionsXi do not depend on the contour of the curveg but only on its endpoints.

Furthermore, if we treatXi as components of a vectorrW5(X1 ,X2 ,X3) and introduce the
metric

gzz 5 ~]rW,]rW !, gz̄ z̄ 5 ~ ]̄rW,]̄rW !, gzz̄ 5 ~]rW, ]̄rW !, ~44!
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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we find that, for fields which solve~19! on S2, only gzz̄ is nonzero and is given by

gzz̄ 5
u]wu2

~11uwu2!2 5 uDzu2, ~45!

whereD5 1/2 (D12 iD 2), with Di defined in~5!; i.e., is a covariant derivative evaluated wi
respect toz. Note that~45! is a term in the general expression for the energy density of theCP1

map. However, as all harmonic maps onS2 satisfyw5w(z),7 we note thatgzz̄ is the total energy
density of this map.~We are assuming here that we are not dealing with antiholomorphic map
in this case we simply interchange the roles ofz and z̄.)

IV. A GENERALIZED WEIERSTRASS REPRESENTATION IN RM

Having observed that the Weierstrass problem is related to the equations of theCP1 model,
we have in Refs. 5 and 6 presented aCPN21 generalization of the Weierstrass problem. O
generalization was based on the observation that for a generalized Weierstrass system in
dimensional spaces we need a set ofw i andc i which generalize thew andc of the CP1 case.

Then we noted that the quantitiesw i
2 , i 52, . . . ,N, defined in~33!, provide such a choice a

~37! is a naturalCPN21 generalization of~42!.
What should we take for the functionsc i? In Ref. 6 we argued that~41! suggested that we pu

c i 5 f i w̄ i ~46!

with no summation over the indicesi 52, . . . ,N. Then, to complete the generalization of th
Weierstrass system in multi-dimensional spaces, we need relations which would be ana
~40!, i.e., we need to prescribe the first derivatives]̄w i and]c i in terms ofw i andc i .

Note that from~46! we have

]c i 5 ]~ f i w̄ i ! 5 ] f i w̄ i 1 f i ~ ]̄w i !. ~47!

So, we are left to specify]̄w i in terms ofw i , f i and their derivatives. To do this, in Ref. 1, w
noted that from~36! we had

]̄w i
2 5 2

f i~ f̄ l ] f l !

A3 ~ f̄ k ]̄ f k 1 f k ]̄ f̄ k!

1
1

A2 @~11u f u2!]]̄ f i2~ f̄ k]̄ f k!] f i2~ f k]̄ f̄ k!] f i2 ]̄ f i~ f̄ k] f k!2 f i~ ]̄ f̄ k] f k!2 f i~ f̄ k ]]̄ f k!#.

~48!

However, Eq.~10! allowed us to eliminate the second derivatives]]̄ f i from ~48! and also we
noted that all the terms involving first derivatives]̄ f and] f̄ in ~48! canceled. Thus we ended u
with a simple expression

]̄w i 5 2
w i

2A
~ f k ]̄ f̄ k!2

f i

2w iA
2 ~ ]̄ f̄ k] f k! 1

f i

2w iA
3 ~ ]̄ f̄ kf k!~ f̄ l] f l !. ~49!

Next, taking the complex conjugate of~37!,

]̄ f̄ k 5 A @w̄k
2 1 f̄ k f l w̄ l

2#, ~50!

and using~50! we have found
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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]̄w i 5 2
1

2 H Aw i~ w̄•c! 1
c i

w i w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!#J ~51!

~no summation overi ). The second pair of equations forc i then followed from~47!, i.e.,

]c i 5 Aw̄ iw i
21

1

2
Ac i~ c̄•w! 2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!# ~52!

~no summation overi ).
Thus, in Ref. 6 we proposed the following form of the generalized Weierstrass system

generalized Weierstrass systemin multi-dimensional space is a set of (2N22) complex func-
tions w i andc i , i 52, . . . ,N, which obey the following system of equations~no summation over
i ):

]̄w i 5 2
1

2 H Aw i~ w̄•c! 1
c i

w i w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!#J
and

]c i 5 Aw̄ iw i
21

1

2
Ac i~ c̄•w! 2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!#, ~53!

where

A51 1 (
k52

N ucku2

uwku2
.

From our construction it is clear that the above system of equations is equivalent t
equations of theCPN21 sigma model~10!. Moreover, it is easy to check that the system
equations~53! reduces to Eq.~19! whenN52.

V. A MODIFIED GENERALIZED WEIERSTRASS REPRESENTATION

The generalized Weierstrass representation given in the previous section leads to p
functionsw i , c i , i 52, . . . ,N, and, as discussed in Ref. 6, to a geometric interpretation in te
of surfaces inRM for which their metric is given byuDzu2 @as in theCP1 case—see~45!#. This is
the case for the holomorphic solutions but we know7 that CPN21 models have harmonic map
which are not holomorphic~evenCP1 has such maps; in this case, antiholomorphic maps,
these can be considered to be complex conjugates of holomorphic ones!. But for CPN21, N.2,
we have also maps which are neither holomorphic nor antiholomorphic. So can we general
Weierstrass problem differently to bring out this property?

In fact, our discussion of theCPN21 models does tell us what to do. We should use bothw i

andF i . Thus we should consider a larger problem and useF i , w i , and f i .
Then taking~36! and repeating the steps as in~48! ~and usingw2 andF2) we get

]̄w i
2 5 2Aw i

2~w†2
• f ! 2 f i@~w†2

•w2! 1 ~ f †
•w2!~w2†

• f !#, ~54!

]̄F i
2 5 2AF i

2~ f †
•F̄2! 2 f̄ i@~F†2

•F2! 1 ~ f †
•F̄2!~F̄†2

• f !#. ~55!

These equations should then be supplemented with the expressions for] f and] f̄ . The latter are
given by ~37! and ~39! and so take the form
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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] f i 5 A @w i
2 1 f i f̄ kwk

2#,
~56!

]̄ f i 5 A @F̄ i
2 1 f i f̄ kF̄k

2#,

where, as usual,A511( f †
• f ) and all indices, and summations, go over (2,. . . ,N).

These four sets of equations~54!–~56!, for three sets of complex functions,f i , w j andFk ,
constitute ourmodified generalized Weierstrass problem.

Let us make a few comments.

~i! The equations fall into two sets~those involving] f i and w j and those involving] f̄ i and
F j ). Both sets are equivalent to the same equations forf i , namely,~10!.

~ii ! Instead of takingf i we could introduce, in analogy with~46!, new functionsc i andC i by,

say,c i5 f i w̄ i andC i5 f iF̄ i . Then our set of functions would effectively decouple.
~iii ! One can consider what happens whenf i are holomorphic; i.e.,]̄ f i50. Then, as is easy to

check,f †
•F̄250, which in turn shows thatuF2u250, thus demonstrating thatF i

250, and
we are left with~54! and ~56! for f i , w j , i.e., with the previous system~53!.

VI. GEOMETRICAL ASPECTS

Next we consider some geometrical aspects of our procedure. This requires the introduc
a real vectorXiPRM which is a generalization of the vector~43! constructed forCP1. In Ref. 6
we have introduced such a vector and showed that its properties generalize those of~43!.

However, our approach here generalizes the discussion in Ref. 6 and elucidates some
points made there. Namely, in our new construction we exploit the matricesM and L. We
introduce two matrices

V 5 E
g
M dz̄ 1 E

g
M† dz ~57!

and

W 5 E
g
L dz̄ 1 E

g
L† dz, ~58!

and for the components of our vectors we take individual entries of each matrix. As TrM5Tr L
50 we see thatV andW have, each, onlyN221 independent entries so our construction gives
two vectors inRN221.

Notice also thatW andV do not depend on the contour of integrationg. This follows from the
fact that for an integral

Z 5 E
G
F~z,z̄ ! dz 1 F̄~z,z̄ ! dz̄

to be independent of the integration contourG the condition is thatF and F̄ must satisfy

]̄F 5 ]F̄,

which is the case forV andW due to, respectively, our conservation laws~27! and ~28!.
Of course we can reexpress our vectorsV andW in terms of the Weierstrass functionsw i , F j

and f k or in terms ofw i , c j , Fk, andC l .
Note that in theCP1 case the matrixW is given by
011 to 129.234.252.66. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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W 5 2
1

~11uwu2!2 S w]̄w̄ 2 ]̄w̄

w2]̄w̄ 2w]̄w̄
D , ~59!

and so, given~42!, we see that the integrands of the first terms inXi of ~43! have the form

x152 i @ L̄212L̄12#, x252@ L̄211L̄12#, x352L̄115L̄22. ~60!

So should we consider a new 2(N221) vector, the first half of whose components are vario
entries of the matrixW, and the second half those ofV? In theCP1 case, as shown in Ref. 5, w
can restrict ourselves to a vector with only three components. So we add both contributio
consider anN221 component vector given by all the entries~except the top left hand corner one!
of the matrix

X 5 E
g
~M1L ! dz̄ 1 E

g
~M†1L†! dz. ~61!

Next we calculate the components of the induced metric

gab 5 (
lk

]Xkl

]a

]Xlk

]b
, ~62!

wherea andb arez or z̄. But

]X

]z̄
5 ~M 1 L !,

]X

]z
5 ~M† 1 L†!, ~63!

where we are still using the matrix formulation. Hence

gz̄ z̄ 5 Tr ~M1L !2, gzz 5 Tr ~M†1L†!2, gzz̄ 5 Tr @~M1L !~M†1L†!#. ~64!

However, given the form ofM in ~21! andL in ~22!, we see that

Tr M2 5 Tr L2 5 Tr ~M†!2 5 Tr ~L†! 5 Tr L†M 5 Tr M†L 5 0, ~65!

and so we are left with

gz̄ z̄ 5 2 Tr ~ML !, gzz 5 2 Tr ~M†L†!, gzz̄ 5 Tr @MM†1LL†#. ~66!

Next we observe that

Tr MM† 5 Tr ~12P!
]̄ f ^ f †

u f u2

f ^ ] f †

u f u2
5

] f †
• ]̄ f

u f u4
2

~] f †
• f !~ f †

• ]̄ f !

u f u6
5 uDzu2, ~67!

where, as in~45!, D denotes the covariant derivative evaluated with respect toz. Similarly,

Tr LL† 5 uD̄zu2, ~68!

whereD̄ is again the covariant derivative but this time evaluated with respect toz̄.
Note that, together, the two terms ingzz̄ give the total energy density of the map~i.e.,

uDzu21uD̄zu2).
What aboutgzz andgz̄ z̄? They are given by
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gz̄ z̄ 5 2 Tr ~12P!
]̄ f ^ f †

• f ^ ]̄ f †

u f u4 5 2Tr ~12P!
]̄ f ^ ]̄ f †

u f u2 , ~69!

gzz 5 2 Tr ~12P!
] f ^ f †

• f ^ ] f †

u f u4 5 2Tr ~12P!
] f ^ ] f †

u f u2 , ~70!

and, at first sight, they appear to be nonvanishing. However, they do, in fact, vanish o
solutions of theCPN21 model, i.e., on the vectorsf which satisfy~10!, at least those that ar
defined onS2. To see this we note that

gz̄ z̄ 5
2u f u2~ ]̄ f †

• ]̄ f ! 1 ~ ]̄ f †
• f !~ f †

• ]̄ f !

u f u2 ~71!

andgzz is its complex conjugate.
However, all solutions of~10! defined onS2 are7 of the type

f 5 P1
k g, ~72!

where g is a holomorphic vector, i.e.,gÞg( z̄), and k is some integer taken from the s
$0,1,. . . ,N21%, andP1

l g is defined by the successive, i.e.,P1
l g5P1(P1

l 21g), repetition of the
operation

P1h 5 ]h 2 h
~h†

•]h!

uhu2 . ~73!

Then, as is known,7 P1
k g satisfy

~P1
l g!†

•P1
k g 5 0 if kÞ l , ~74!

]P1
k g 5 P1

k11g 1 P1
k g

~P1
k g†

•]P1
k g!

uP1
k gu2 , ~75!

]̄P1
k g 5 2P1

k21g
uP1

k gu2

uP1
k21gu2

. ~76!

Thus (]̄ f †
• ]̄ f )50 and (f †

• ]̄ f )50 and so we see thatgzz50 ~and so alsogz̄ z̄50).

VII. THE CP1 CASE REVISITED

In the CP1 case it is convenient to calculate its energy momentum tensor

Tmn5~Dmz!†
•Dnz1~Dnz!†

•Dmz2dmnuDau2. ~77!

Then, as is known7

]̄~T111 iT12! 5 0 ~78!

and in theCP1 case

J 5 T111 iT125
]w ]̄w

@11uwu2#2 . ~79!
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When theCP1 model is defined onS2 we find thatJ50, which shows that all the harmoni
CP1 maps onS2 are either holomorphic or antiholomorphic,7 but for theCP1 model onR2, or for
CPN21, N.2, J does not have to vanish.

In the CP1 model case we have~59!,

W 5 2
1

~11uwu2!2 S w]̄w̄ 2 ]̄w̄

w2]̄w̄ 2w]̄w̄
D ~80!

and

V 5
]̄w

~11uwu2!2 S 2w̄ 2w̄2

1 w̄ D . ~81!

This allows us to express]̄w in terms of]̄w̄, J andp given by ~40!. We find

]̄w 5
J~11uwu2!2

]w
5 J ]̄w̄

~11uwu2!2

u]wu2 . ~82!

However, using~42!, we see that

p2 5
u]wu2

~11uwu2!2 ~83!

and so we have

]̄w 5 ]̄w̄
J

p2 . ~84!

This allows us to combine the two vectorsV andW into

V1W 5
]̄w̄

~11uwu2!2 S 2w2Rw̄ 12Rw̄2

R2w2 w1Rw̄D , ~85!

whereR5 J/p2.
This explains the origin of the expressions for the components ofXi given in Ref. 4. However,

it is clear that this possibility to gather both terms into one expression does not genera
higherCPN21 models.

VIII. SUMMARY AND CONCLUDING REMARKS

The main aim of this article has been to derive a generalization of the Weierstrass sys
theCPN21 case for which the metric of the induced surfaces is determined by the energy d
of the corresponding harmonic map.

This has led us to introduce a set of 3N complex functionsw i , F j and f k which are required
to satisfy a system of four classes of first order equations and which are equivalent to th
system of equations of theCPN21 model.

We have also introduced a set of (N221) real quantitiesXi , which can be treated as coord
nates of a surface immersed inRN221 and we have shown that the induced metric of our map
given by

ds25~ uDzu21uD̄zu2! dz dz̄. ~86!
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The study of the generalized Weierstrass representations for surfaces immersed in
dimensional spaces was initiated by Konopelchenko and Landolfi.3 Our work here, in which we
have adopted an alternative approach based on theCPN21 sigma models, provides a generaliz
tion of their results.
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