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A Weierstrass-type system of equations corresponding toCtRE~1 harmonic
maps is presented. The system constitutes a further generalization of our previous
constructior]J. Math. Phys44, 328(2003]. It consists of four first order equations

for three complex functions which are shown to be equivalent taR&8 * har-

monic maps. When the harmonic maps are holomorpdi@ntiholomorphit one

of the functions vanishes and the system reduces to the previously given generali-
zation of the Weierstrass problem. We also discuss a possible interpretation of our
results and show that in our new case the induced metric is proportional to the total
energy density of the map and not only to its holomorphic part, as was the case in
the previous generalizations. @03 American Institute of Physics.
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[. INTRODUCTION

A few years ago Konopelchenko, together with his collabordt8istroduced the subject of
Weierstrass representations of surfaces immersed in multidimensional spaces. This has generated
quite a lot of interest* and has led to the connection with t8é°N~ harmonic maps. Exploiting
this connection, we have recently proposed a generalization of these idea€tB%liRef. 5 case
and, more recently, managed to generalize it further—toR& ! case®

These generalizations lead to the study of immersed surfaces, whose metric is then related to
the properties of the corresponding harmonic maps. IrCtRé case all harmonic magfrom S?)
are holomorphidor antiholomorphig and, as the induced metric is characterized by the holomor-
phic component of the energy, this characterization is complete. This is also the case for the
holomorphicCPN~* maps.

In the CPN~* case(for N>2) there are harmonic maps which are not holomorpaid for
them the above mentioned construcfigsmnot complete, as in the general case we would expect
the maps to be characterized by the total energy. Hence a further generalization is called for and
such a generalization is provided in this article.

In the next section we briefly review tt@PN~1 harmonic mapsusing the formalism as given
in Ref. 7) and in the following sections relate these maps to the various versions of the Weierstrass
problem.

II. cPN~1 HARMONIC MAPS

A. Formulation

The CPN~1 models are, in fact, a generalization of the, perhaps the simplest, sigma model,
namely, theS? model—also called the vect@(3) model. TheC PN~ models involve maps from
R?, or S if a nontrivial topology is required, t€ PN, i.e.,
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COOs(={+itp>z=(2....N)eCN, (1)
where the homogeneous coordinates(z%, . . . ,zN) have the following property:
z~z'=xz for A\#O.
Exploiting this projective invariance we can require that
Z'z=1 2)
holds, where t denotes Hermitian conjugation, and we are still left with the gauge symmetry
z—7' =269, 3

where ¢ is a real-valued function.
It is easiest to define th€ PN~! models in terms of the Lagrangian density

L=%(D,2"D,z z'z=1, (4
where the covariant derivative, act onz:S*—CP""! according to the formula
D,z=d,z—(z"d,2)z. (5)

Here the indexu = 1,2 denoteg; and{,. Note that the covariant derivatives,z transform under
the gauge transformatia(3)

D,z—D,z'=(D,2)€"?, (6)

so that the dependence on the phasdrops out of the Lagrangian densi#) and so the model
is really based o€ PN,
The total Lagrangian is given by

ﬁszdgdZ 7)

and, if theCPN~1 model is defined ove®?, we require that is finite.
For theCPN~! sigma model it is convenient to define

f
Z:ﬂ’ (8

where|f|=(fT-f)¥2 In terms off the Lagrangiar(7) becomes

ot +]af?
= Tdﬁ d¢, 9
where|df|?=(af )T (9f ) and|af|?=(af)T- (4 ). The Euler—Lagrange equations fotake the
form

_ ftoof) — (ft of

=0, (10

® T
=T

where we have introduced the holomorphic and antiholomorphic derivatives
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J J — J Jd
o=———"——="—, J=—————="—, (1)
({1tidsy) 9 ANL1—ida) ¢

and bar denotes complex conjugation.

B. Integrability and first conservation laws

As is well known® Egs.(10) can be written as a compatibility condition for a set of two linear
spectral equations for ad-component auxiliary vectow,

v = m[ﬂp, Pl1W,
(12
W= >[9P, P]W
IV = m[ﬁ , P1W,
where\ is a spectral parameter and tNeby N matrix P is the projector given by
1
P=Wf®ft P'=P, P?=P. (13
The compatibility conditions fof12) are then
[9dP, P] =0, (14)

which, as can be easily checked, are equivalent to Bd. Note that(14) can be written in the
form of a conservation law

d[dP, P]+ d[aP,P] =0 (15)
or, equivalently, using the tracelessness of the métrixas
K — oK' =0, (16)
where the matrice& andKT are given by

_ Jfefl —feaf’ foff —. -
= Tk + Tk [(ofT-f)—(fT.9f)], Trk=0, 17)

and consequently

foft — foofT fofl R .
|f|2 + |f|4 [(of"-f)—(f"-0f)].

K'=—[oP,P]=—

Note that due to the invariance of the Lagrangidnhunder the gauge transformati¢d) we
can, without any loss of generality, set one of the components of the vectof fiskyf,, to 1.
Then, in theCP? case, all quantities are expressible through one variable

fa

W:ﬂ_

f, (18

and the Euler—Lagrange equatiail®) take the form
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_ 2w _
dIwW— W(M(M:O. (19

C. Further conservation laws

Let us note that our matriK in (17) is given by

K=M+L, (20
where
feft
Mz(l—P)W (21)
and
foaft
L= —W(l—P). (22)
Thus
. foof ) ofoft
:l—f|2—(1_P), and L :—(1_P)Wr. (23)

Next we note that the matricéd andL, separately, satisfy our conservations la@§). To
see this consider

— gfafl gofef! f@af! foft
IM = IM" = =P+ (1=P) g +(1=P) —pp— = (1=P) gl |

feof! f@aof! foot'—  fooff —
_W_(l_P)_Wr(l_PH e P + e (1-P)o|f|~.
(24
But
P_af®f’f feoft P (e -
S Tl [ 2
and so we see that all the terms(¥4) become
— (ff.of) — (ff.af)
(1—P)| gof — of — — of ~
If] ]
i f _ afte)y  — (oft-f
®W—W® 07(5'fT—z9fT(|f|2)—ﬁfT( |f|2) (1-P). (26)

However, due tq10), this is zero. Hence we have two separate conservation laws, namely,
oM = oM T (27)

and

L = 4L, (29)
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Next we consider the explicit form of the entries of the matritbéksand L. To do this we
introduce

Fij:fi&fj_fjﬁfi, (29)
and

Then, using expression®9) and (30), we can write the entries of the matricht and L,
equivalently, in the form

My = &) (31)
and
Lij=—figr, (32
where we have introduced
1_ _
@izzﬁkoki, A=ff, (33
and
1. —
; =ﬁkaki, (34

and we have used the convention of implicit summation over repeated indices.
Note that from Eqs(30), (33), and(34) we have two algebraic constraints, namely,

fe2=0, f,®2=0, (35)

which imply that only N—1) functions<,oi2 and N—1) functionsd)i2 are linearly independent. So
in our further discussion we take as independent functighs . . .3 and®3, ... 0.
Making use of the symmetr§B) we can set, without any loss of generality, shys 1, and so
we end up with the expressioffor (33), and(34)]
2_ 1 N ry
¢ = pzl(I+ff) o fi =TTk afi) ],
(36)
— 1 _ . _
Of = S+ afi = fi(fafl, i=2...N,
where
A=1+]f,%4- -+ |fy|2
Note that now all the sums over repeated indices run &wve2, . .. N.
Next we invert expression86) and so express all the derivativef in terms ofe{’s andf; .
This way we find that
ofi = ALef + fi fiei. (37

Thus, in particular, for th€ P! case, Eqs(37) become
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af, = A%03, A=1+|fy%
andf, is often denoted by (see, e.g., Ref.)7 while in theCP? case we have
of = AL(L+[f5]%) 05 + fof3 €3],
ofs = AL(L+|f3l*) 5 + faf2 €3], (38
A=1+|f,|%+]|f4)%

Note that in Refs. 5 and 6 the functiohs and f; are denoted by, andw,, respectively.
Similarly,

Efi = A[q_Dlz + f,Tk()Ti] (39)

. THE WEIERSTRASS PROBLEM %2

In the Weierstrass problem we consider two complex functiﬂﬁa//(gf) and ¢= qﬁ(g“,?),
which satisfy

Ip=p¢, dp=—py, p=|d|>+|yl> (40)

Note that we have not specifiets, nor de¢.

A natural question then arises. Is this problem related to the harmonic maps of the previous
sections, presumably corresponding to the case Rf?

This is indeed the case as has been discussed in Ref. 4. To see this we put

w= ﬁ (41)
¢
and note that
(;W) 1/2 (aw) 1/2
B T e 2
satisfy (40). In fact, one can show th&l9) and(40) are equivalent.
Moreover, we can introduce three real quantities:
Xy =i f [y?+ $?1dl~[ P+ $71d¢,
Y
Xo= f [y7— $*1d¢ + [~ ¢?]d¢, (43
Y

xo=-2 Todc + 0L,

wherey is any curve from a fixed point t6. Then, it is easy to show that if and ¢ satisfy(40),
the functionsX; do not depend on the contour of the curydut only on its endpoints.

Furthermore, if we treaX; as components of a vectagr=(X,,X,,X3) and introduce the
metric

¢ = (9F,07), gz = (F,0F), 9= (F, o), (44)
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we find that, for fields which solvél9) on S?, only g¢; is nonzero and is given by
=|Dzf%, (45)

whereD= 1/2(D,—iD,), with D; defined in(5); i.e., is a covariant derivative evaluated with
respect tol. Note that(45) is a term in the general expression for the energy density oCthe

map. However, as all harmonic maps $hsatisfyw=w(¢),” we note thag,, is the total energy
density of this map(We are assuming here that we are not dealing with antiholomorphic maps, as

in this case we simply interchange the rolestaind.)

IV. A GENERALIZED WEIERSTRASS REPRESENTATION IN R

Having observed that the Weierstrass problem is related to the equations @Ptheodel,
we have in Refs. 5 and 6 presentedC®" ! generalization of the Weierstrass problem. Our
generalization was based on the observation that for a generalized Weierstrass system in multi-
dimensional spaces we need a setpind i; which generalize the and ¢ of the CP?! case.

Then we noted that the quantitieé, i=2,... N, defined in(33), provide such a choice as
(37) is a naturalCPN~! generalization 0f42).

What should we take for the functionis? In Ref. 6 we argued thé&#1) suggested that we put

i = Ti i (46)

with no summation over the indicds=2,... N. Then, to complete the generalization of the
Weierstrass system in multi-dimensional spaces, we need relations which would be analogs of

(40), i.e., we need to prescribe the first derivatiw_m and d¢; in terms ofp; and ; .
Note that from(46) we have

oy = a(ti ) = of @ + fi (dgy). (47)

So, we are left to specifﬁpi in terms of;, f; and their derivatives. To do this, in Ref. 1, we
noted that from(36) we had

o filfiof)

; A3 (e ofy + fiafy)

1 - _ _ _ _
+E[(H|f|2)a<9fi—(fkafk)afi—(fkafk)afi—afi(fkafk)—fi(afkafk)—fi(fkaafk)].
(48)

However, Eqg.(10) allowed us to eliminate the second derivati\te%i from (48) and also we

noted that all the terms involving first derivativeg and Jf in (48) canceled. Thus we ended up
with a simple expression

— o — fi fi —
791 =~ 5a (kT = 5 (Ofdf) + 5 55 (afd (flaf). (49
Next, taking the complex conjugate (87),
= Aleg + fifigr], (50

and using(50) we have found
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o 1 o i . _
9= = 5| Ani(e ) + =@ %) + (@ i) (U-9)] (51)
11
(no summation over). The second pair of equations fgt then followed from(47), i.e.,

1 |g)?

3 (o Pal (02 + (e (U ¢)] (52

E
I = Agiei+ S ALY @) —

(no summation over).

Thus, in Ref. 6 we proposed the following form of the generalized Weierstrass system: The
generalized Weierstrass systenm multi-dimensional space is a set ofN2-2) complex func-
tions¢; and¢;, i=2,... N, which obey the following system of equatioft® summation over

i):
— 1 o oy
Iei=—3 Agi(@- ) +ﬁ[(¢ %)+ (e ) (Y- @)]
and

i

oo [(9% 02 + (¢ ) (¥ 9)], (53

=2, 1 — 1
5#’/i—A¢i¢i+§Alﬁi(¢f‘¢)—§

where
N
25
A=1+ .
k22 Ik

From our construction it is clear that the above system of equations is equivalent to the
equations of theCPN~! sigma model(10). Moreover, it is easy to check that the system of
equationg53) reduces to Eq(19) whenN=2.

V. A MODIFIED GENERALIZED WEIERSTRASS REPRESENTATION

The generalized Weierstrass representation given in the previous section leads to pairs of
functionse;, ¢, i=2,... N, and, as discussed in Ref. 6, to a geometric interpretation in terms
of surfaces irRM for which their metric is given byDz|? [as in theC P! case—se¢45)]. This is
the case for the holomorphic solutions but we kAdhat CPN~! models have harmonic maps
which are not holomorphi¢even CP! has such maps; in this case, antiholomorphic maps, but
these can be considered to be complex conjugates of holomorphic Buggor CPN~1, N>2,
we have also maps which are neither holomorphic nor antiholomorphic. So can we generalize the
Weierstrass problem differently to bring out this property?

In fact, our discussion of th€ PN~1 models does tell us what to do. We should use kgth
and®;. Thus we should consider a larger problem and @se ¢;, andf;.

Then taking(36) and repeating the steps as(#8) (and usinge? and®?) we get

997 = —Agi(e" 1) — fil(¢T2 ¢%) + (T 7)) (6" )], (54)
P2 = —ADX(f1.D2) — F,[(DT2 D2) + (1. D2 (DT2.1)]. (55)

These equations should then be supplemented with the expressiaffsdnd af. The latter are
given by (37) and(39) and so take the form
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of, = Ale? + T, fetl,
B B o (56)
of, = A[DZ + f, f, D],

where, as usuaA=1+(f'-f) and all indices, and summations, go over.(2,N).

These four sets of equatioits4)—(56), for three sets of complex functiong,, ¢; and ®,,
constitute ourmodified generalized Weierstrass problem

Let us make a few comments.

() The equations fall into two sef$hose involvingdf; and ¢; and those involvingf; and
®;). Both sets are equivalent to the same equationg;fonamely,(10).

(i)  Instead of taking; we could introduce, in analogy witt#6), new functionsy; and¥; by,
say, ;= f;{p; andW;=f;d;. Then our set of functions Would_effectively decouple.

(i) One can consider what happens wHemre holomorphic; i.e.gf;=0. Then, as is easy to
check,f'-®2=0, which in turn shows thdb?/?=0, thus demonstrating thdt?’=0, and
we are left with(54) and (56) for f;, ¢;, i.e., with the previous systel%3).

VI. GEOMETRICAL ASPECTS

Next we consider some geometrical aspects of our procedure. This requires the introduction of
a real vectorX; e RM which is a generalization of the vecttt3) constructed foCPL. In Ref. 6
we have introduced such a vector and showed that its properties generalize tl@3e of

However, our approach here generalizes the discussion in Ref. 6 and elucidates some of the
points made there. Namely, in our new construction we exploit the mathtesnd L. We
introduce two matrices

v=fMdZ+fMng (57)
Y Y
and

W= LL d¢ + JyLng, (58

and for the components of our vectors we take individual entries of each matrix. Ms=Tir L
=0 we see tha¥ andW have, each, onlj{?>— 1 independent entries so our construction gives us

two vectors inRV "1,
Notice also thatv andV do not depend on the contour of integratipnThis follows from the
fact that for an integral

z= f F(£,0)d¢ + F(£,0) dg
T

to be independent of the integration contduthe condition is thaF andF must satisfy
9F = F,
which is the case foW andW due to, respectively, our conservation la{@3) and (28).
Of course we can reexpress our vectgrandW in terms of the Weierstrass functiops, @;

andf, or in terms ofg;, i, @, and¥,.
Note that in theCP? case the matri%V is given by
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W= (59

T (1+]|w[?)?

1 WOW  — oW
W2OW  —WIw

and so, given(42), we see that the integrands of the first termjrof (43) have the form
x1= —i[Lo—Ligl, Xo=—[La+Lisl, Xz=—Ly=Lo,. (60)
So should we consider a newi{— 1) vector, the first half of whose components are various
entries of the matriy, and the second half those 6 In theCP* case, as shown in Ref. 5, we
can restrict ourselves to a vector with only three components. So we add both contributions and

consider arN?—1 component vector given by all the entri@xcept the top left hand corner one
of the matrix

X = f(lvl+|_)d?+ j(MTJrLT)dg“. (61)
Y Y

Next we calculate the components of the induced metric

9ep= 2 o 9B (62)
wherea and B are ¢ or {. But
aX X
—=M+L), —=M"+LD, (63)
74 24

where we are still using the matrix formulation. Hence
Uz=Tr(M+L)% gp=Tr(M™+L"2 g, =Tr[(M+L)(MT+LD]. (64)
However, given the form oM in (21) andL in (22), we see that
TTM2=TrL2=Tr(MH2=Tr(LHh =TrL™M=TrM'L = 0, (65)
and so we are left with
U;z=2Tr(ML), g,=2Tr(M'LY), gz=Tr[MMT+LL"]. (66)
Next we observe that

gfef fooft aff-agf  (af"-£)(f1-of) )
T T R e AR

TrMMT = Tr(1-P)

where, as in45), D denotes the covariant derivative evaluated with respe¢t 8milarly,
TrLLt =|Dz% (68)
whereD is again the covariant derivative but this time evaluated with respeEt to
Note that, together, the two terms @y, give the total energy density of the mdpe.,

|Dz|2+|Dz]?).
What abouty,, andg,,? They are given by
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- ofefl.feaf! oteat

Jz=—Tr(1- T_—Tf(l—P)W, (69
sfefl-feaf! If@af!

9 = —Tf(l—P)TZ —Tf(l—P)Wz—, (70)

and, at first sight, they appear to be nonvanishing. However, they do, in fact, vanish on the
solutions of theCPN~! model, i.e., on the vectork which satisfy(10), at least those that are
defined onS?. To see this we note that

—|f2(aft-af ) + (aft-£)(f1 of )
0= | | |f|2 (71)

andg,, is its complex conjugate.
However, all solutions of10) defined onS? arée of the type

f="pPkg, (72

where g is a holomorphic vector, i.e.ga&g(f), and k is some integer taken from the set
{0,1,... ,N—1}, andP', g is defined by the successive, i.B!,g=P_ (P', 1g), repetition of the

operation
(h'-ah)
P+h=3h—hw. (73
Then, as is known,PX g satisfy
(P.g)t-Pkg=0 if k=#I, (74)
(PXg™ 9Pk g)
aPEg = P ig Plg Lt 79
[P
— PX g|?
gPkg=— P‘flngj?—b- (76)
|P% gl
Thus @fT-9f)=0 and ¢'-4f )=0 and so we see that,=0 (and so als@;;=0).
VIl. THE CP! CASE REVISITED
In the CP?! case it is convenient to calculate its energy momentum tensor
_ t T 2
T,=(D,2"D,z+(D,2)"D,z—46,,/D,|* (77)
Then, as is knowh
9Ty +iT1p) = 0 (78)
and in theCP?! case
J=Ty,+iT oW oW (79
= | = —5"5.
11 12 [1+ |W|2]2
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When theC P! model is defined oi$? we find thatdJ=0, which shows that all the harmonic
CP! maps or? are either holomorphic or antiholomorpHibut for theC P* model onR?, or for
CPN"1 N>2,J does not have to vanish.

In the CP! model case we havé9),

1 WOW — — W -
W= -5 _ _ 80
1+ \ wZgw  —wow
and
Iw -w —w?
V=-r——b>s _ 81
(1+]w|??| 1 W (81)
This allows us to expresaw in terms ofdw, J andp given by (40). We find
—Ja+ w2 (1+|w)?
oW = o = EYE (82
However, using42), we see that
p* = —rz| ol (83)
(1+]|w|?)
and so we have
EY o (84)
W = JW—s.
p2
This allows us to combine the two vectdvsandW into
oW ~W—RW 1-RW
V+W (85)

T @+ wP2l R-w?  w+RwW)’

whereR= J/p?.

This explains the origin of the expressions for the components given in Ref. 4. However,
it is clear that this possibility to gather both terms into one expression does not generalize to
higherCPN~ models.

VIIl. SUMMARY AND CONCLUDING REMARKS

The main aim of this article has been to derive a generalization of the Weierstrass system to
the CPN~1 case for which the metric of the induced surfaces is determined by the energy density
of the corresponding harmonic map.

This has led us to introduce a set dfl Zomplex functionsp; , ®; andf, which are required
to satisfy a system of four classes of first order equations and which are equivalent to the full
system of equations of th@ PN~ model.

We have also introduced a set ®{— 1) real quantities<;, which can be treated as coordi-
nates of a surface immersed R~ ! and we have shown that the induced metric of our map is
given by

ds?=(|Dz|?+|Dz|?) dZdZ. (86)
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The study of the generalized Weierstrass representations for surfaces immersed in multi-
dimensional spaces was initiated by Konopelchenko and Larfdoiiir work here, in which we
have adopted an alternative approach based o€ & ! sigma models, provides a generaliza-
tion of their results.
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