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Abstract. In this paper we analyze a very simple dynamic work-stealing algorithm. In the
work-generation model, there are n (work) generators. A generator-allocation function is simply a
function from the n generators to the n processors. We consider a fixed, but arbitrary, distribution
D over generator-allocation functions. During each time step of our process, a generator-allocation
function h is chosen from D, and the generators are allocated to the processors according to h. Each
generator may then generate a unit-time task, which it inserts into the queue of its host processor.
It generates such a task independently with probability λ. After the new tasks are generated, each
processor removes one task from its queue and services it. For many choices of D, the work-generation
model allows the load to become arbitrarily imbalanced, even when λ < 1. For example, D could be
the point distribution containing a single function h which allocates all of the generators to just one
processor. For this choice of D, the chosen processor receives around λn units of work at each step
and services one. The natural work-stealing algorithm that we analyze is widely used in practical
applications and works as follows. During each time step, each empty processor (with no work to do)
sends a request to a randomly selected other processor. Any nonempty processor having received
at least one such request in turn decides (again randomly) in favor of one of the requests. The
number of tasks which are transferred from the nonempty processor to the empty one is determined
by the so-called work-stealing function f . In particular, if a processor that accepts a request has
� tasks stored in its queue, then f(�) tasks are transferred to the currently empty one. A popular
work-stealing function is f(�) = ��/2�, which transfers (roughly) half of the tasks. We analyze the
long-term behavior of the system as a function of λ and f . We show that the system is stable for any
constant generation rate λ < 1 and for a wide class of functions f . Most intuitively sensible functions
are included in this class (for example, every monotonically nondecreasing function f which satisfies
0 ≤ f(�) ≤ �/2 and f(�) = ω(1) as a function of � is included). Furthermore, we give upper bounds
on the average system load (as a function of f and n). Our proof techniques combine Lyapunov
function arguments with domination arguments, which are needed to cope with dependency.
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1. Introduction. Load balancing is the process of distributing load among a set
of processors. There are two main approaches to distributed load balancing, namely,
sender-initiated strategies, in which processors may decide to give away tasks, and
receiver-initiated strategies (which are often referred to as work-stealing), in which
processors may request extra work. In both cases, the decision to transfer tasks is
typically threshold based. That is, it is based on having too many or too few tasks in
one’s own queue.

In recent years, there has been a lot of work devoted to rigorously analyzing
load balancing, most of which concentrates on sender-initiated approaches or related
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allocation processes such as balls-into-bins games. However, it appears that many
practitioners prefer the receiver-initiated approach (work-stealing) because this ap-
proach appears to work better for their applications. The efficiency of work-stealing
probably helps to explain the success of Leiserson et al.’s language Cilk [10], a lan-
guage for multithreaded parallel programming which uses work-stealing in its kernel.
There are numerous examples of practical applications of work-stealing. In [17], Feld-
mann, Mysliwietz, and Monien investigate the behavior of parallel MIN/MAX-tree
evaluation in the context of parallel game (chess) programs employing work-stealing
strategies. In [14], Decker introduces VDS (virtual data space), a load-balancing sys-
tem for irregular applications that makes use of work-stealing and other strategies. In
[23], Mahapatra and Dutt use work-stealing for parallel branch and bound algorithms.

Despite the practical usefulness of work-stealing, there are not many known theo-
retical results about its performance. Most existing theoretical work on load balancing
assumes a rather well-behaved system. For instance, most work on sender-initiated
load balancing uses a work-generation model in which each processor generates at
most a constant number of new tasks per step. In balls-into-bins games, each ball
(task) chooses its bin (processor) uniformly at random (u.a.r.), which also yields a
relatively balanced system.

In this paper we analyze a simple and fully distributed work-stealing algorithm.
Our work-generation model allows for an arbitrary placement of n so-called generators
among the set of n processors. Each generator generates a new task with a certain
probability λ at each time step. In the extreme case, there can be one processor being
host to n generators. In this case the one processor has an expected increase of λn−1
tasks per step, whereas all other processors do not generate tasks at all.

Our load-balancing algorithm follows a very simple and natural work-stealing
approach. At each time step, each empty processor sends a request to one randomly
chosen other processor. Each nonempty processor having received at least one such
request selects one of them randomly. Now each empty processor P whose request is
accepted by a processor Q “steals” f(�) tasks from Q, where � denotes Q’s load.

Our results are concerned mostly with the stability of the system. A system is
said to be unstable if the system load (the sum of the load of all processors) grows
unboundedly with time. We present both negative and positive results, depending on
the work-stealing function f . First we show that if the work-stealing function is ω(1)
as a function of the load (i.e., f(�) = ω(1) as a function of �), then the system is
stable (provided f is monotonically nondecreasing and satisfies 0 ≤ f(�) ≤ �/2). This
result still holds if we put an upper bound on the amount of work that can be “stolen”
by a single request. That is, for an upper bound hz which is independent of � (but
depends on n) and will be defined in Lemma 2, the work-stealing function defined by
f ′(�) = min(f(�), f(hz)) is also stable. The value hz depends upon the function f ,
but it need not be very large. For the function f(�) = ��/2�, the value hz is bounded
from above by a polynomial in n. See section 3 for details. Our stability results are
complemented by a straightforward lower bound: The system is unstable if f(�) is
too small, for example, if f(�) < λn − 1. Finally, we provide upper bounds on the
system load in a stationary system (again, depending on f).

1.1. New results. Before we state our results, we introduce our model and the
work-stealing algorithm.

The model. We start with a collection of n synchronized processors, connected
by some network topology. During each time step, every processor may send a request
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(requesting extra work) to at most one other processor, and any processor receiving
more than one such request accepts at most one of them.

In our model, we have n generators. A generator-allocation function is a function
from the n generators to the n processors. We consider a fixed, but arbitrary, distri-
bution D over generator-allocation functions. During each time step of our process,
a generator-allocation function h is chosen from D, and the generators are allocated
to the processors according to h. Each generator may then generate a unit-time task
which it inserts into the queue of its host processor. It generates such a task indepen-
dently with probability λ ∈ [0, 1]. After the new tasks are generated, each processor
removes one task from its queue and services it. We assume constant service time for
all tasks.

In the absence of a load-balancing mechanism, many choices of D allow the load
to become arbitrarily imbalanced, even when λ < 1.

The algorithm. The work-stealing algorithm is very simple and natural. During
each time step, each empty processor (with no work to do) sends a request to one other
processor, which is chosen independently and u.a.r. Each nonempty processor that
received at least one request selects one of these independently and u.a.r. Then each
empty processor whose request was accepted “steals” tasks from the other processor.

The number of tasks which are transferred from the nonempty processor to the
empty one is determined by the so-called work-stealing function f . In particular, if a
processor that accepts a request has � tasks stored in its queue, then f(�) tasks are
transferred to the currently empty one. A popular work-stealing function is f(�) =
��/2�, which transfers (roughly) half of the tasks.

The results. Recall that a system is said to be stable if the system load (the
sum of the load of all processors) does not grow unboundedly with time. Obviously,
stability for large arrival rates is one of the most desirable features of load-balancing
algorithms.

In Theorem 10 we show that, given a suitable work-stealing function, our algo-
rithm yields a stable system for any constant arrival rate λ < 1 and any distribution
of the generators. Most intuitively sensible work-stealing functions are suitable (for
example, every monotonically nondecreasing function f(�) which is ω(1) as a func-
tion of � and satisfies 0 ≤ f(�) ≤ �/2 is suitable). The rough requirement (for f to
be suitable) is that for some finite value Φf (which may depend upon n) and some
z = O(log n) and T = Θ(logn), we may apply f to Φf z times and the resulting value
is still at least 2T . (That is, fz(Φf ) ≥ 2T .) Our stability result still holds if we put
an appropriate upper bound on the amount of work that can be stolen by a single
request. Details are given in section 3.

In Theorem 12 we provide upper bounds on the expected system load as well as
corresponding tail bounds. The upper bounds are described in terms of Φf and n.
For many natural work-stealing functions f , Φf is at most a polynomial in n, so the
system-load bounds are polynomial in n. For example, Φf is at most a polynomial
in n for the natural work-stealing function f(�) = ��/2�.

Finally, in Theorem 22, we classify some work-stealing functions that do not result
in a stable system. For example, the system is unstable if f(�) < λn− 1.

The proofs. Since the proofs are technical, we briefly introduce the underlying
idea. We model our system by a discrete-time, countable Markov chain in which states
are tuples giving the number of tasks currently allocated to each processor. The stan-
dard method for determining whether such a Markov chain is ergodic (i.e., whether it
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has a stationary distribution) is to find an appropriate Lyapunov function [11, 16, 25]
(a potential function with an appropriate drift). Foster’s theorem (see Theorem 2.2.3
of [16]) shows that the chain is ergodic if and only if there is a positive Lyapunov
function which is expected to decrease by a positive amount from every state except
some finite subset of the state space. For many computer science applications, it
is apparently prohibitively difficult to find such a one-step Lyapunov function, even
when one is known to exist. Thus, multiple-step analysis is used [21, 18, 3]. We use
the multiple-step extension of Foster’s theorem due to Fayolle, Malyshev, and Men-
shikov (see Lemma 7). The technical difficulty of our proof arises because of the lack
of independence as the system evolves over multiple steps. To derive our results, we
study the behavior of a different and simpler Markov chain. The new Markov chain
does not dominate the original chain forever, but we show that it does dominate the
original chain for a sufficiently long period of time, and this enables us to prove that
the original chain is ergodic. The proof of ergodicity, together with a martingale
bound of [8], gives us our bound on the stationary behavior of the chain.

1.2. Known results. Most known theoretical results on load balancing are for
unconditional algorithms (which perform load balancing every few steps, regardless
of the system state) or for sender-initiated approaches. First, there has been a lot of
work on static problems, in which the number of jobs to be serviced is fixed and may
even be known in advance. For these results, see [4, 34, 13, 2, 5].

In our paper, we work on dynamic load balancing, in which tasks are generated
over time. We will now describe previous work on this problem. In [1], Adler, Beren-
brink, and Schröder consider a process in which m jobs arrive in each round to n
servers and each server is allowed to remove one job per round. They introduce a
simple algorithm in which each job chooses between 2 random servers. They show
that, provided m ≤ n/6e, no job is likely to wait more than O(log log n) rounds. In
[12] the authors analyze several dynamic balls-into-bins games with deletion.

In [26], Mitzenmacher presents a new differential-equations approach for analyz-
ing both static and dynamic load-balancing strategies. He demonstrates the approach
by providing an analysis of the supermarket model: jobs (customers) arrive as a Pois-
son stream of rate λn, λ < 1, at a collection of n servers. Each customer chooses
d servers independently and u.a.r. and waits for service at the one with the shortest
queue. The service time of the customers is exponentially distributed with mean 1.
Mitzenmacher achieves results on the expected time that a customer spends in the
system. Furthermore, he shows that for any time interval of fixed length, the maxi-
mum system load is likely to be at most log log n/ log d+O(1). In [35] Vvedenskaya,
Dobrushin, and Karpelevich independently present similar results. For related results,
see [27, 30, 28].

In [33], Rudolph, Slivkin-Allalouf, and Upfal present a simple distributed load-
balancing strategy. They consider a work-generation model in which, at every time
step, the load change of any processor due to local generation and service is bounded
by some constant. The balancing strategy works as follows. Each processor stores its
tasks in a local queue. Whenever a processor accesses its local queue, the processor
performs a balancing operation with a probability inversely proportional to the size
of its queue. The balancing operation examines the queue size of a randomly chosen
processor and then equalizes their load. They show that the expected load of any
processor at any point of time is within a constant factor of the average load.

In [22], Lüling and Monien use a similar work-generation model. A processor
initiates a load-balancing action if its load has changed by a constant factor since



1264 P. BERENBRINK, T. FRIEDETZKY, AND L. A. GOLDBERG

its last balancing action. They show that the expected load difference between any
two processors is bounded by a constant factor. They also bound the corresponding
variance.

In [6, 7] the authors introduce and investigate the performance of certain ran-
domized load-balancing algorithms under stochastic and adversarial work-generation
models. They consider two different work-generation models. In the first model, in
each step, each processor generates a task with some probability p < 1, and then each
nonempty processor services a task with probability p(1 + ε) for ε > 0. In the second
model, each processor is allowed to change its load in each step, provided that the load
is only increased or decreased by at most a fixed constant amount. With high prob-
ability, the algorithms balance the system load up to additive terms of O(log log n)
and O((log log n)2), respectively. In particular, in the first model, the maximum load
of any processor can be upper bounded by one of these terms (depending on the al-
gorithm), whereas in the second model, the maximum load of any processor can be
upper bounded by the average load plus O(log log n). The algorithms and analysis of
[6, 7] are fundamentally different from the one considered here. In particular, their al-
gorithms are sender-initiated, i.e., overloaded processors seek to distribute their load.
Moreover, their algorithms are considerably more complicated than ours.

There is relatively little existing theoretical work on receiver-initiated approaches.
The interesting thing is that this approach seems to be highly efficient in practice
(much more than, say, “give-away-if-overloaded”), but there are no (or hardly any)
rigorous theoretical results.

In [29], Mitzenmacher applies his differential-equations approach in order to ana-
lyze several randomized work-stealing algorithms in a dynamic setting. In contrast to
our work, he assumes that every processor has a Poisson generating process with rate
λ < 1. Hence, in contrast to our generation model, the load is generated in a more-or-
less balanced fashion and the system is stable even without any work-stealing. Each
task has an exponentially distributed service time with mean 1. He models a number
of work-stealing algorithms with differential equations and compares the equations
with each other in order to predict which strategies will be most successful. For each
set of equations, he shows that the queue-lengths decrease more quickly than for a set
of equations which models the process with no work-stealing.

In [9], Blumofe and Leiserson analyze a scheduling strategy for strict multithreaded
computations. A multithreaded computation consists of a set of threads, each of which
is a sequential ordering of unit-time tasks. During a computation, a thread can spawn
other threads, which are stored in a local queue. They present a work-stealing algo-
rithm in which every idle processor tries to steal a thread from a randomly chosen
other processor. The analysis shows that the expected time to execute such a multi-
threaded computation on P processors is O(T1/P + T∞), where T1 denotes the min-
imum sequential execution time of the multithreaded computation, and T∞ denotes
the minimum execution time with an infinite number of processors. Furthermore,
they estimate the probability that the execution time is increased by an additional
factor. In [15], Fatourou and Spirakis develop an algorithm for k-strict multithreaded
computations. In this case, all data dependencies of a thread are directed to ancestors
in at most k higher levels.

2. The work-stealing process. Suppose that we have n processors and n gen-
erators, which create work for the processors. Each processor keeps a queue of jobs
which need to be done. The evolution of the system can be described by a Markov
chain X. The state Xt after step t is a tuple (Xt(1), . . . , Xt(n)) in which Xt(i) rep-
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resents the length of the ith processor’s queue after step t. Initially, all of the queues
are empty, so the start state is (0, . . . , 0).

Let N = {1, . . . , n}. Let P = {h | N → N} be the set of all generator-allocation
functions. When generators are allocated according a particular function h ∈ P, h(i) is
designated as the host of the ith generator. The Markov chainX has three parameters.
D is an arbitrary distribution over P. A new generator-allocation function is selected
from D during each step of the chain. The parameter λ governs the rate at which
jobs are generated—each generator creates a job during each step independently with
probability λ and adds the job to the queue of its current host. Finally, the function f
is the work-stealing function. In section 3, we will state the properties that f must
satisfy for our analysis. Figure 1 describes the transition from state Xt to state Xt+1.

1. Choose the generator-allocation function ht from D.
2. Each generator generates a new job independently with probability λ.

It adds the job to the queue of its current host. In particular, the ith
processor updates the size of its queue from Xt(i) to X ′

t(i), where X ′
t(i) is

defined to be Xt(i) plus the sum of |h−1
t (i)| independent Bernoulli random

variables with mean λ.
3. Each processor with an empty queue chooses a request destination u.a.r.

from N . Formally, rt(i) is defined to be 0 if X ′
t(i) > 0. Otherwise, rt(i) is

chosen u.a.r. from N .
4. Each processor which receives a request chooses a recipient and allocates

some of its load to give away to the recipient. Formally, we start by setting
j+
t (i) = j−t (i) = 0 for all i ∈ N . Then every k ∈ N for which r−1

t (k) is
nonempty chooses � u.a.r. from r−1

t (k) and sets j+
t (�) = j−t (k) = f(X ′

t(k)).
5. The work is shared and then each queue processes one job. Formally, for

all i, Xt+1(i) is set to max(0, X ′
t(i) + j+

t (i)− j−t (i)− 1).

Fig. 1. The Markov chain X. The transition from Xt to Xt+1.

3. Work-stealing functions. In this section, we state the properties that the
work-stealing function, f , must satisfy for our analysis.

Definition 1. We assume that for a positive constant δ, the arrival rate λ is at
most 1− δ. Let c be a constant which is sufficiently large with respect to δ−1 (see the
proof of Lemma 14) and let α = 4e(c+1). Let z = 
α lg n�. Let ν = n−2+n−α and let
T = 
 2c

1−λ/(1−ν) lg n�. Note that T is positive as long as ν < δ, and we will consider

values of n for which this is true. Let g be the function given by g(�) = f(�− T ). We
will use the function g in our analysis of the work-stealing process. Suppose that a
processor has � units of work in its queue. If no units of work are generated or stolen
during T steps, it will then have �−T units. Finally, it may give away f(�−T ) = g(�)
units to another processor which requests work. Let Φf be the smallest integer such
that, for all j ∈ {0, . . . , z}, gj(Φf/n) ≥ 2T , where gj(y) denotes the j-fold application
of function g to argument y. That is, g0(y) = 1, g1(y) = g(y), g2(y) = g(g(y)), and
so on. If no such integer Φf exists, say Φf = ∞. Informally, Φf is a quantity that is
so large that if we start with Φf units of work and focus on the (at least Φf/n) units
of work in some particular queue and allow this work to be stolen up to z times, the
quantity of work remaining at every processor involved is at least 2T . This idea will
be made more precise later.
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We require the work-stealing function f to satisfy the following properties.

Property 1. 0 ≤ f(�) ≤ �/2.

Property 2. f(�) is monotonically nondecreasing in �.

Property 3. Φf is finite.

Properties 1 and 2 are natural and easy to understand. We conclude this section
by showing that many natural work-stealing functions which satisfy Properties 1 and 2
also satisfy Property 3. We start with a general lemma and then conclude with
particular examples.

Lemma 2. Suppose that the work-stealing function f satisfies Properties 1 and 2.
Let h0 = 2T . Suppose that there are positive integers h1, . . . , hz satisfying f(hi−T ) ≥
hi−1. Then Φf ≤ nhz.

Proof. We wish to show that for all j ∈ {0, . . . , z}, gj(hz) ≥ 2T . Since f satisfies
Property 1, the condition f(hi − T ) ≥ hi−1 implies that hi−1 ≤ hi. Therefore, for
any j ∈ {0, . . . , z}, hz−j ≥ h0 ≥ 2T . Thus, it suffices to prove gj(hz) ≥ hz−j , which
we will do by induction on j with base case j = 0. For the inductive step, note that

gj+1(hz) = f(gj(hz)− T ) ≥ f(hz−j − T ) ≥ hz−(j+1),

where the first inequality uses the monotonicity of f (Property 2) and the inductive
hypothesis.

Corollary 3. Suppose that the work-stealing function f satisfies Properties 1
and 2. Suppose that f(�) = ω(1) as a function of �. Then f satisfies Property 3.

Proof. Since f(�) = ω(1), the function gets arbitrarily big and the values h1, . . . , hz

in Lemma 2 exist.

Corollary 3 demonstrates that having f(�) = ω(1) is sufficient in the sense that
this, together with Properties 1 and 2, implies Property 3. Having f(�) = ω(1) is not
necessary though, as the following observation shows.

Observation 4. Suppose that the work-stealing function f satisfies Properties 1
and 2. Let h0 = 2T . Suppose (as in Lemma 2) that there are positive integers
h1, . . . , hz satisfying f(hi − T ) ≥ hi−1. Let f

′ be the work-stealing function given by
f ′(�) = min(f(�), f(hz)). Then f ′ satisfies Properties 1–3 and has Φf ′ ≤ nhz.

We end the section by giving an upper bound for Φf when f is a member of a
popular class of work-stealing functions.

Lemma 5. Let f(�) = ��/r� for some r ≥ 2. This function satisfies Properties
1–3 and satisfies

Φf ≤ n(2T + 2r)(2r)
z
.

Proof. We use Lemma 2. Let hi = (2T + 2r)(2r)
i
for i ∈ {1, . . . , z}. Then for

i ∈ {1, . . . , z},

f(hi − T ) = f((2T + 2r)(2r)
i − T )

≥ (2T + 2r)(2r)
i

r
− T

r
− 1

=
(2T + 2r)(2r)

i

2r
+

(2T + 2r)(2r)
i

2r
− 2T

2r
− 2r

2r

≥ (2T + 2r)(2r)
i−1

≥ hi−1.
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Remark 6. The value Φf corresponding to the function f in Lemma 5 is bounded
from above by a polynomial in n. To see this, note that the multiplier in the definition
of T is

1

1− λ
1−ν

≤ 1

1− 1−δ
1−ν

=
1− ν

δ − ν
≤ 1

δ − ν
≤ 2

δ
,

where the last inequality assumes ν ≤ δ/2, which is true if n is sufficiently large with
respect to the constant δ−1.

4. Upper bounds. In this section we prove that the system is stable for every
work-stealing function satisfying Properties 1–3 in section 3. Our analysis does not de-
pend upon the particular distribution D which governs the allocation of generators—
the analysis works for an arbitrary distribution.

As already outlined in section 1, the basic idea is the following. The Markov chain
X models our system. Since this chain is difficult to analyze directly, we introduce a
second chain Z and investigate properties of Z instead. Then, using a coupling, we
relate the results to chain X itself.

To put it very informally and nonrigorously, the core idea is to show that during
an interval of length T = O(log n) not too many requests are sent. Since in our model
not sending a request means servicing a task, we can show that in this case the system
load decreases. Obviously, the crux is bounding the number of requests during the
interval. Informally, this is done by assuming (for contradiction) that there are many
requests during the interval, say at least R. Since the system load is initially high,
there is at least one processor, processor P , which initially has a high load. This
implies that after around R′ < R requests, we can view most of the requests that
have been accepted in a tree with P at the root, and the leaves being processors that
either directly or indirectly received a portion of P ’s initial load. By showing that
(i) there are many leaves, and (ii) the tree does not grow very deep, we can conclude
that after R′ requests, there are many processors having a large load (at least T ), and
none of them will send a request during the next T steps. Hence, we can contradict
the assumption that R requests get sent during the interval. Of course, this kind of
proof-by-contradiction is invalid if we want to avoid conditioning the random variables
during the T steps, so we have to do things more carefully.

4.1. Background. We start with some brief definitions regarding Markov chains.
For more details, see [19]. The Markov chains that we consider are time-homogeneous
(transition probabilities do not change over time) and irreducible (every state is reach-
able from every other) and aperiodic (the gcd of the lengths of valid paths from state i
to itself is 1). An irreducible aperiodic Markov chain (Υt) is said to be recurrent if,
with probability 1, it returns to its start state. That is, it is recurrent if

Pr(Υt = Υ0 for some t ≥ 1) = 1.

Otherwise, it is said to be transient. It is said to be positive recurrent or ergodic if
the expected time that it takes to return to the start state is finite. In particular, let

Tret = min{t ≥ 1 | Υt = Υ0}.
The chain is said to be positive recurrent if E[Tret] < ∞. A positive recurrent chain
has a unique stationary distribution π. When we analyze the Markov chain X we will
use the following generalization of Foster’s theorem, due to Fayolle, Malyshev, and
Menshikov (Theorem 2.2.4 of [16]).
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Lemma 7 (Foster; Fayolle, Malyshev, Menshikov [16]). A time-homogeneous ir-
reducible aperiodic Markov chain ζ with a countable state space Ω is positive recurrent
if and only if there exists a positive function Φ(x), x ∈ Ω, a number ξ > 0, a positive
integer-valued function β(x), x ∈ Ω, and a finite set C ′ ⊆ Ω such that the following
inequalities hold:

E[Φ(ζt+β(ζt))− Φ(ζt) | ζt = x] ≤ −ξβ(x), x �∈ C ′,(1)

E[Φ(ζt+β(ζt)) | ζt = x)] < ∞, x ∈ C ′.(2)

We also use the following Chernov–Hoeffding inequalities. The first of these is a
special case of Theorem 4.2 of [31] and the second is taken from Theorem 5.7 of [24].

Lemma 8 (Chernov). Let Z1, . . . , Zs be independent Bernoulli trials with Pr(Zi =

1) = p. Let Ẑ =
∑s

i=1 Zi. Then for any ρ in (0, 1], Pr(Ẑ < (1−ρ)sp) ≤ exp(−spρ2/2)).

Lemma 9 (Hoeffding). Let Z1, . . . , Zs be independent random variables with

ai ≤ Zi ≤ bi for suitable constants ai, bi and all 1 ≤ i ≤ s. Also let Ẑ =
∑s

i=1 Zi.
Then for any t > 0,

Pr
(|Ẑ − E(Ẑ)| ≥ t

) ≤ exp
(
−2t2

/ s∑
i=1

(bi − ai)
2
)
.

4.2. Results. Our Markov chain X is time-homogeneous, irreducible, and ape-
riodic. Its state space is countable. Therefore, it satisfies the initial conditions of
Lemma 7. We will prove the following theorem.

Theorem 10. Let δ be a positive constant and λ an arrival rate which is at
most 1 − δ. Let f be a work-stealing function satisfying Properties 1–3 in section 3.
Then for every n which is sufficiently large with respect to δ−1, the Markov chain X
is positive recurrent.

Theorem 10 guarantees that the Markov chain X has a stationary distribution π.
The next theorem is concerned with the value of the total system load in the stationary
distribution. Recall from Definition 1 that ν = n−2 + n−α. Our next theorem uses
the following additional definitions.

Definition 11. Let ε be (1 − λ/(1 − ν))/4. Let Φ(Xt) be the system load after
step t. That is, Φ(Xt) =

∑n
i=1 Xt(i).

Theorem 12. Let δ be a positive constant and λ an arrival rate which is at most
1− δ. Let f be a work-stealing function satisfying Properties 1–3 in section 3. Then
for every n which is sufficiently large with respect to δ−1,

Eπ[Φ(Xt)] ≤ Φf + 2nT/ε+ nT,

and for any nonnegative integer m,

Prπ[Φ(Xt) > Φf + 2nTm+ nT ] ≤ exp(− ln(1 + ε)(m+ 1)).

4.3. A simpler Markov chain. Let C be the set of states x with Φ(x) < Φf .
In this section we define a simpler Markov chain Z that will be used in order to
analyze the Markov chain X with a start state x �∈ C.

The state space of Z is more complicated than the state space of X, but in some
sense the information contained in a state of Z is less precise than the information
contained in a state of X. In particular, a state Zt consists of a tuple

(Lt(1), . . . , Lt(n), Yt(1), . . . , Yt(n)).
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The variable Lt(i) gives a crude indication of the load at processor i after step t. In
any initial state that we will consider, exactly one processor (which we will call Jx)
will have L0(Jx) large. All other processors will have L0(i) = 0. Informally, these
variables will have the following role for a processor i. Let t be the first time step
during which processor i steals some of the work that originally sat at processor Jx.
For t′ ≤ t, the variable Yt′(i) denotes the load of processor i and Lt′(i) = 0. For
t′ > t, the variable Lt′(i) is positive and Yt′(i) = 0. The exact value of Lt′(i) gives an
indication of how many times the work that processor i acquired at step t has been
split (and, therefore, of how long it will last).

We will be observing the evolution of the Markov chain X starting at a state X0 =
x with Φ(x) ≥ Φf . This condition guarantees that for some i ∈ N , X0(i) ≥ Φf/n.
Let Jx be the smallest such i. In the following, we will be paying special attention to
a load which originates at processor Jx. Thus, in the Markov chain Z, the state Z0

which corresponds to X0 is defined as follows. L0(Jx) = 2z and Y0(Jx) = 0. For all
i �= Jx, L0(i) = 0 and Y0(i) = X0(i). For convenience, we will say that a processor i
is “heavily loaded” in state Zt if and only if Lt(i) > 0. Thus, Jx is the only processor
which is deemed to be “heavily loaded” in Z0. Note that the state Z0 is strictly a
function of x. We will refer to this state as Z(x). The transition from Zt to Zt+1 is
described in Figure 2. It may look surprising at first that the “heavy load” parameter
Lt(k) is halved every time a heavily loaded processor transfers load. This halving
allows us to study the dissemination of load from Jx without considering the many
dependent events.

Let R′
t be the set of requests made during the transition from Zt to Zt+1. (This

transition is referred to as “step t+ 1.”) That is, R′
t = |{i | r′t(i) > 0}|. Let τ ′ be the

smallest integer such that R′
0 + · · · + R′

τ ′−1 ≥ cn lg n. Let Ψ be the smallest integer
such that, for some i, LΨ(i) = 1. Intuitively, LΨ(i) = 1 means that i has received
load (directly or indirectly) from Jx (so it is “heavily loaded”), but this load has been

1. Choose the generator-allocation function ht from D.
2. If Lt(i) > 0, then Y ′

t (i) is defined to be 0 (just like Yt(i)). Otherwise, Y ′
t (i)

is defined to be Yt(i) plus the sum of |h−1
t (i)| Bernoulli random variables

with mean λ.
3. r′t(i) is defined to be 0 except when Lt(i) = 0 and Y ′

t (i) = 0. In this case,
r′t(i) is chosen u.a.r. from N .

4. Start by setting

j+
t (i) = j−t (i) = l−t (i) = l+t (i) = 0

for each i ∈ N . Then every k ∈ N for which r′t
−1

(k) is nonempty chooses �

u.a.r. from r′t
−1

(k) and sets l+t (�) = l−t (k) = Lt(k)/2 and j+
t (�) = j−t (k) =

f(Y ′
t (k)).

5. For all i ∈ N , Lt+1(i) is set to Lt(i) + l+t (i)− l−t (i). If Lt+1(i) > 0, then
Yt+1(i) = 0. Otherwise, Yt+1(i) is set to

max(0, Y ′
t (i) + j+

t (i)− j−t (i)− 1).

Fig. 2. The transition from Zt to Zt+1.
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split many times (it has been split z times, in fact). The following lemma shows that,
with high probability, there are no such i and Ψ if at most cn log n requests are sent.

Lemma 13. Suppose x �∈ C. Run Markov chain Z starting at Z0 = Z(x). Then

Pr(Ψ ≤ τ ′) ≤ n−α.

Proof. Since at most n requests are sent in a single step, the total number of
requests sent during steps 1, . . . , τ ′ is at most (c+ 1)n lg n.

Recall the construction of Z(x) from the beginning of section 4.3. In particular,
there is one “heavily loaded” processor, Jx, with L0(Jx) = 2z. Every other processor i
has L0(i) = 0.

Imagine that the value L0(Jx) = 2z corresponds to a collection of 2z tokens which
initially sit at processor Jx. The value Lt(k) gives the number of tokens which sit
at processor k following step t. This is always a power of 2. If Lt(k) > 1, then the
instruction l+t (�) = l−t (k) = Lt(k)/2 in step 3 of the transition from Zt to Zt+1 splits
the collection of tokens sitting at processor k and transfers half of these tokens to
processor �. The event Ψ ≤ τ ′ occurs if and only if some token has its group split z
times during steps 1, . . . , τ ′.

What is the probability that a given token has its group split z times? This is at
most (

(c+ 1)n lg n

z

)
n−z ≤

(
e(c+ 1) lgn

z

)z

.

The probability that there exists a token which has its group split z times is thus
at most (

2e(c+ 1) lgn

z

)z

≤
(
2e(c+ 1)

α

)α lgn

= n−α.

The next lemma shows that, with high probability, the number of requests sent
during the observed T time steps is less than cn log n. This means that we have very
little idle time during this period, which in turn implies the decrease of the system
load (as we will see later).

Lemma 14. Suppose x �∈ C. Run Markov chain Z starting at Z(x).

Pr(τ ′ ≤ T ) ≤ n−2.

Proof. Recall that R′
t is the number of requests during the transition from Zt

to Zt+1. In particular, R′
t = |{i | Lt(i) = 0 ∧ Y ′

t (i) = 0}|. R′
t is a random variable

which depends only upon the state Zt and upon the host-distribution function ht.
In particular, every processor i with Lt(i) = 0 and Yt(i) = 0 contributes 1 to R′

t

independently with probability (1− λ)
|h−1

t (i)|
and contributes 0 to R′

t otherwise.
To make the conditioning clear, we will let R′(s, h) be the random variable whose

distribution is the same as that of R′
t, conditioned on Zt = s and ht = h.

By Lemma 9,

Pr

(
|R′(s, h)− E(R′(s, h))| ≥ cn lg n

8T

)
≤ exp

(
−2

(
cn lg n

8T

)2

/n

)
.

Let σ denote exp(−2( cn lgn
8T )

2
/n). Note that σ is exponentially small in n. (This

follows from the definition of T .)
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Say that (s, h) is “dangerous” if

E(R′(s, h)) ≥ (cn lg n)/(4T ).

Note that if (Zt, ht) is not dangerous, then, with probability at least 1−σ, the number
of requests during the transition from Zt to Zt+1 is at most

(cn lg n)/(4T ) + (cn lg n)/(8T ) ≤ (cn lg n)/(2T ).

Now suppose that (s, h) is dangerous and let k be any processor. Then

Pr(r′t
−1

(k) = ∅ | Zt = s ∧ ht = h) ≤ σ +

(
1− 1

n

) cn lg n
8T

≤ σ +

(
1− 1

n

) δn
18

≤ 1− γ

for a small positive constant γ which depends upon δ (but not upon c or n). Let Mt

denote the number of heavily loaded processors during step t, i.e.,

Mt = |{i | Lt(i) > 0}|.
Let ξt denote the number of heavily loaded processors during step t that don’t

get requested, i.e.,

ξt = |{k | Lt(k) > 0 ∧ r′t
−1

(k) = ∅}|.
If (s, h) is dangerous, then

E[ξt | Zt = s ∧ ht = h] ≤ (1− γ)Mt.

Thus by Markov’s inequality,

Pr
(
ξt ≥ (1− γ/2)Mt | Zt = s ∧ ht = h

) ≤ 1− γ

2− γ
.

If ξt < (1 − γ/2)Mt, then at least (γ/2)Mt of the Mt heavily loaded processors
give away work, so Mt+1 ≥ (1 + γ/2)Mt. We say that the step following on from a
dangerous state is “useful” if this occurs. We have just seen that for every dangerous
state (s, h), the probability that the next step is useful is at least γ

2−γ .
Thus, if we have D dangerous states during some time interval, the number

of useful steps following them dominates (from above) the sum of D independent
Bernoulli random variables with probability p = γ

2−γ . Applying Lemma 8 with D =

(2/p) log1+γ/2(n) and ρ = 1/2, we find that the probability that this sum is less than
log1+γ/2(n) is at most exp(− log1+γ/2(n)/4). This means that if we have D dangerous
states, then the probability that there are at least log1+γ/2(n) useful steps following
them is at least 1− exp(− log1+γ/2(n)/4).

Now, if there are actually at least log1+γ/2(n) useful steps during steps 1–t,
Mt+1 = n, so there can be no further dangerous states. We conclude that with
probability at least 1 − exp(− log1+γ/2(n)/4) there are at most D dangerous steps
ever.

If we make c sufficiently large with respect to γ, then D < c lg n/2.
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Now we have that, except for probability exp(− log1+γ/2(n)/4), the dangerous
steps contribute fewer than cn lg n/2 requests (ever). Furthermore, except for proba-
bility at most σT , the nondangerous steps contribute at most cn lg n/2 requests during
the first T steps. Thus, the probability that τ ′ ≤ T is at most

exp(− log1+γ/2(n)/4) + σT ≤ n−2.

Lemmas 13 and 14 imply the following.
Corollary 15. Suppose x �∈ C. Run Markov chain Z starting at Z(x).

Pr(T < τ ′ < Ψ) ≥ 1− n−α − n−2.

Lemma 16. Suppose x �∈ C. Run Markov chain Z starting at Z(x). For any
t ≤ Ψ and any i ∈ N , either Lt(i) = 0 or, for some j ∈ {0, . . . , z}, Lt(i) = 2j.

Proof. The lemma is proved by induction on t with the base case t = 0. Consider
the assignment

Lt+1(i) = (Lt(i)− l−t (i)) + l+t (i)

in the transition from Zt to Zt+1 in Figure 1. If the second term in the expression,
l+t (i), is greater than zero, then it is equal to Lt(k)/2 for some k with r′t(i) = k, so
Lt(i) = 0. The first term in the expression, Lt(i) − l−t (i), is either Lt(i) or Lt(i)/2.
Thus, either Lt+1(i) is Lt(i) or it is Lt(k)/2 for some k. Using the terminology from
the proof of Lemma 13, Lt+1(i) = 2z−m means that the tokens that sit at processor i
after step t+ 1 have had their group split m times. Since t ≤ Ψ, m ≤ z.

4.4. Proof of Theorem 10. Our first task is to relate the Markov chain X to
the simpler Markov chain Z. Recall the definitions of τ ′, R′

t, and Ψ from section 4.3.
Let Rt be the set of requests made during the transition from Xt to Xt+1. That is,
Rt = |{i | rt(i) > 0}|. Let τ be the smallest integer such that R0+· · ·+Rτ−1 ≥ cn lg n.

Lemma 17. If x �∈ C, then

Pr(τ ≤ T | X0 = x) ≤ ν.

Proof. A (Markovian) coupling1 of the Markov chains X and Z is a stochastic
process (Xt, Zt) such that (Xt), considered marginally, is a faithful copy of X, and
(Zt), considered marginally, is a faithful copy of Z. We will describe a coupling
starting from state (x, Z(x)). That is, in our coupling, X0 = x and Z0 = Z(x). The
coupling will have the property that for all t ≤ min(T, τ ′,Ψ) and all i,

r′t(i) = rt(i).(3)

From (3), we can conclude that whenever the Z chain satisfies T < τ ′ < Ψ, the
coupled X chain satisfies T < τ . Thus,

Pr(T < τ | X0 = x) ≥ Pr(T < τ ′ < Ψ | Z0 = Z(x)),

so the lemma follows from Corollary 15.
To give the details of the coupling, we will use the notation in Figures 1 and 2.

Recall from Definition 1 that g is the function given by g(y) = f(y − T ), where f is

1The word “coupling” is normally used in reference to combining two copies of the same Markov
chain, so we are using the word in a slightly nonstandard way.
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the work-stealing function which is guaranteed to satisfy gj(Φf/n) ≥ 2T for a finite
Φf and for all j ∈ {0, . . . , z}.

Our coupling will satisfy the following invariants for any i ∈ N and any t ≤
min(T, τ ′,Ψ):

(1) r′t(i) = rt(i),
(2) Lt(i) = 0 implies Xt(i) = Yt(i), and
(3) Lt(i) = 2j implies Xt(i) ≥ gz−j(Φf/n)− t.

As we observed above, our objective is to describe a coupling that satisfies invari-
ant (1). The other invariants will help us to show that our constructed coupling is
indeed a coupling in the sense that the marginal distributions are correct. The pur-
pose of the third invariant is to ensure that, in the chain X, a node will not become
empty soon if the corresponding node in chain Z is heavily loaded.

The coupling is as follows. We start with X0 = x and Z0 = Z(x). Recall the
construction of Z(x) from section 4.3. In particular, L0(Jx) = 2z and Y0(Jx) = 0. For
every other i, L0(i) = 0 and Y0(i) = x(i). Invariants (2) and (3) are satisfied for t = 0
since X0(Jx) ≥ Φf/n.

Now the transition from (Xt, Zt) to (Xt+1, Zt+1) is given as follows. In part 1
of the transition, the same generator-allocation function ht is chosen for both chains.
The X ′

t(i) variables are defined in part 2 of the transition from Xt to Xt+1. In part 2
of the coupled transition from Zt to Zt+1, we set Y ′

t (i) = 0 if Lt(i) > 0. Otherwise, we
set Y ′

t (i) = X ′
t(i). Note that, since invariant (2) held after step t, the Y ′

t (i) variables
are set according to the correct marginal distribution. The rt(i) variables are defined
in part 3 of the transition from Xt to Xt+1. In part 3 of the coupled transition from
Zt to Zt+1, we set r′t(i) = rt(i). To show that the marginal distribution is correct, we
observe that if Lt(i) = 0, then we defined Y ′

t (i) to be X ′
t(i). Thus, the r′t(i) variables

are assigned correctly. On the other hand, if Lt(i) > 0, then, by Lemma 16, Lt(i) = 2j

for some j ∈ {0, . . . , z} so by invariant (3), Xt(i) ≥ gz−j(Φf/n) − t ≥ 2T − t > 0.
Thus, X ′

t(i) > 0, and r′t(i) is defined correctly. In part 4 of the transition from Xt

to Xt+1, we do the following. For every k ∈ N for which r−1
t (k) is nonempty, we

choose � u.a.r. from r−1
t (k). Since r′t

−1
(k) = rt

−1(k), we can make the same choice
for k in part 4 of the transition from Zt to Zt+1.

We need to prove that the coupling maintains invariants (1), (2), and (3). Invari-
ant (1) (the one that we actually want) is by construction. Invariant (2) is not too dif-
ficult. Lemma 16 shows that all of the variables Lt(i) are nonnegative. Furthermore,
the analysis in the proof of Lemma 16 reveals that Lt+1(i) = 0 implies Lt(i) = 0. (To
see this, recall that Lt+1(i) = (Lt(i)− l−t (i))+ l+t (i). The second of these terms is non-
negative, and the first is either Lt(i) or Lt(i)/2.) Thus, whenever we have Lt+1(i) = 0
we have Yt(i) = Xt(i), and in the coupling we get Y ′

t (i) = X ′
t(i). In part 5 of the tran-

sition from Xt to Xt+1 we set Xt+1(i) = max(0, X ′
t(i)+j+

t (i)−j−t (i)−1), and in part 5
of the transition from Zt to Zt+1, we set Yt+1(i) = max(0, Y ′

t (i) + j+
t (i)− j−t (i)− 1).

Thus we need only argue that the j+
t (i) and j−t (i) variables get the same values in

both copies. The j−t (i) variable is the same since Y ′
t (i) = X ′

t(i). The j+
t (i) variables

are positive only if processor i made a request, namely, rt(i) = r′t(i) = k, for some k.
Since Lt+1(i) = 0, we know Lt(k) = 0. Hence, Y ′

t (k) = X ′
t(k), and the j+

t (i) values
are indeed the same.

Finally, we need to prove that the coupling maintains invariant (3). Suppose that
Lt+1(i) = 2j . We wish to show that Xt+1(i) ≥ gz−j(Φf/n)− (t+ 1). First, suppose
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Lt(i) = 0. In this case, Lt+1(i) = Lt(k)/2, where rt(i) = k. Then

Xt+1(i) ≥ f(Xt(k))− 1

≥ f(gz−j−1(Φf/n)− t)− 1

≥ f(gz−j−1(Φf/n)− T )− 1

= gz−j(Φf/n)− 1

≥ gz−j(Φf/n)− (t+ 1),

where the first inequality follows from the transition in Figure 1 and the second
inequality follows from the facts that invariant (3) held after step t and that f is
monotonically nondecreasing (Property 2 in section 3). The third inequality also
follows from the fact that f is monotonically nondecreasing.

Second, suppose Lt(i) = 2j . In this case r−1
t (i) is empty, so

Xt+1(i) ≥ Xt(i)− 1 ≥ gz−j(Φf/n)− t− 1.

Finally, suppose Lt(i) = 2j+1. (To see that these are the only cases, namely, that
Lt(i) ∈ {0, 2j , 2j+1}, see the proof of Lemma 16.) In this case r−1

t is nonempty, so

Xt+1(i) ≥ Xt(i)− f(Xt(i))− 1.

Since f satisfies f(�) ≤ �/2 (Property 1 in section 3), we have

Xt+1(i) ≥ f(Xt(i))− 1,

which is the same as the first case.

The next lemma shows that the load has an appropriate drift when τ > T .

Lemma 18. If x �∈ C, then

E[Φ(XT ) | (X0 = x) ∧ (τ > T )] ≤ Φ(x)− 2εnT.

Proof. Let At be the number of new jobs that arrive in the system during the
transition from Xt to Xt+1. Namely,

At =
∑
i∈N

(X ′
t(i)−Xt(i)).

Let Y = A0 + · · ·+AT−1. Splitting E[Y | X0 = x] into two conditional expectations,
conditioned on whether or not τ > T , we find

E[Y | (X0 = x) ∧ (τ > T )]

=
E[Y | X0 = x]− Pr(τ ≤ T | X0 = x)E[Y | (X0 = x) ∧ (τ ≤ T )]

Pr(τ > T | X0 = x)
.

By Lemma 17, the denominator is at least 1 − ν. The numerator is at most E[Y |
X0 = x], which is λnT , since during each of the T steps each of the n generators
generates a new job independently with probability λ. Thus,

E[Y | (X0 = x) ∧ (τ > T )] ≤ λnT

1− ν
.
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If τ > T , then the number of jobs serviced during steps 1–T is at least nT−cn lg n.
(If a processor does not make a request, then it certainly services a job.) Thus, the
quantity

E[Φ(XT ) | (X0 = x) ∧ (τ > T )]

is at most the initial load, Φ(x), plus the expected number of arrivals, which we have
seen above is at most λnT

1−ν , minus the expected number of services, which is at least
nT − cn lg n. Putting all of this together, we get

E[Φ(XT ) | (X0 = x) ∧ (τ > T )] ≤ Φ(x)−
(
1− λ

1− ν

)
nT + cn lg n

≤ Φ(x)− 1− λ
1−ν

2
nT

= Φ(x)− 2εnT,

where the second inequality uses the definition of T in Definition 1 and the equality
uses the definition of ε in Definition 11.

Lemma 19. Suppose that n is sufficiently large with respect to δ−1. If x �∈ C,
then

E[Φ(XT ) | X0 = x] ≤ Φ(x)− εnT.

Proof.

E[Φ(XT ) | X0 = x] = Pr(τ > T | X0 = x)E[Φ(XT ) | (X0 = x) ∧ τ > T ]

+ Pr(τ ≤ T | X0 = x)E[Φ(XT ) | (X0 = x) ∧ τ ≤ T ].

By Lemma 18, this is at most

Pr(τ > T | X0 = x)(Φ(x)−2εnT )+Pr(τ ≤ T | X0 = x)E[Φ(XT ) | (X0 = x)∧ τ ≤ T ].

Since at most n messages arrive per step, this is at most

Pr(τ > T | X0 = x)(Φ(x)− 2εnT ) + Pr(τ ≤ T | X0 = x)(Φ(x) + nT ).

This can be rearranged as

Φ(x)− (1− Pr(τ ≤ T | X0 = x))(2εnT ) + Pr(τ ≤ T | X0 = x)(nT )

= Φ(x)− 2εnT + Pr(τ ≤ T | X0 = x)(2εnT + nT ).

By Lemma 17, this is at most

Φ(x)− 2εnT + ν(2εnT + nT ) = Φ(x)− εnT − (εnT − ν2εnT − νnT ).

The lemma follows from the fact that

ν ≤ ε

2ε+ 1
,(4)

which is true, provided that n is sufficiently large with respect to δ−1. To establish
(4), refer to Definitions 1 and 11. If n is sufficiently large, then ν ≤ δ/2, so

4ε = 1− λ

1− ν
≥ 1− 1− δ

1− ν
=

δ − ν

1− ν
≥ δ

2
.

Also,

ν ≤ δ/8

2(δ/8) + 1
≤ ε

2ε+ 1
.

Combining Lemmas 19 and 7, we get a proof of Theorem 10.
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4.5. Proof of Theorem 12. The proof of Theorem 12 uses the following theo-
rem, which is Theorem 1 of [8].

Lemma 20 (Bertsimas, Gamarnik, and Tsitsiklis [8]). Consider a time-homogen-
eous Markov chain ζ with a countable state space Ω and stationary distribution π′. If
there is a positive function Φ(x), x ∈ Ω, a number ξ > 0, and a number β ≥ 0 such
that

E[Φ(ζt+1)− Φ(ζt) | ζt = x] ≤ −ξ, Φ(x) > β,(5)

and

|Φ(ζt+1)− Φ(ζt)| ≤ νmax,(6)

and, for any x,

Pr[Φ(ζt+1) > Φ(ζt) | ζt = x] ≤ pmax(7)

and

Eπ′ [Φ(ζt)] < ∞,(8)

then for any nonnegative integer m,

Prπ′ [Φ(ζt) > β + 2νmaxm] ≤
(

pmaxνmax

pmaxνmax + ξ

)m+1

and

Eπ′ [Φ(ζt)] ≤ β +
2pmax(νmax)

2

ξ
.

Let Wi = Φ(XiT ) for i ∈ {0, 1, 2, . . . }. Lemma 19 shows that the process
W0,W1, . . . behaves like a supermartingale above Φf . That is, it satisfies (5) with
ξ = εnT and β = Φf . In itself, this does not imply that E[Wt] is bounded (see
Pemantle and Rosenthal’s paper [32] for counterexamples). However, we also have

|Wt+1 −Wt| ≤ nT(9)

for any t. That is, (6) is satisfied with νmax = nT . This implies (for example, by
Theorem 1 of [32] or by Theorem 2.3 of [20]) that Eπ[Wt] is finite (so (8) is satisfied).
Lemma 20 can now be applied with pmax = 1 to get

Eπ[Wt] ≤ Φf + 2nT/ε,(10)

and for any nonnegative integer m,

Prπ[Wt > Φf + 2nTm] ≤
(

nT

nT + εnT

)(m+1)

.(11)

The theorem now follows from the observation that for 0 ≤ j < T ,

Φ(XiT+j) ≤ Φ(XiT ) + nj.
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5. Lower bounds. In this section we give the straightforward lower bound,
which shows that the system is not stable for unsuitable work-stealing functions. Of
course we have to put some restrictions on D in order to obtain instability. For
example, if D is the point distribution containing a single function h which allocates
one generator to each processor, then the system will be stable even without any
work-stealing.

The proof of our lower bound uses the following lemma, which is Theorem 2.2.7
of [16].

Lemma 21 (Fayolle, Malyshev, and Menshikov [16]). An irreducible aperiodic
time-homogeneous Markov chain ζ with countable state space Ω is transient if there
is a positive function Φ with domain Ω and there are positive constants C, d, and ξ
such that

1. there is a state x with Φ(x) > C, and a state x with Φ(x) ≤ C,
2. E[Φ(ζ1)− Φ(ζ0) | ζ0 = x] ≥ ξ for all x with Φ(x) > C, and
3. if |Φ(x) − Φ(y)| > d, then the probability of moving from x to y in a single

move is 0.

If we use k = 1 in the statement of the following theorem, we find that the system
is unstable if f(�) < λn− 1.

Theorem 22. Let δ be a positive constant and λ an arrival rate which is at
most 1 − δ. Suppose that D contains a single generator-allocation function h which
distributes the n generators equally among some set of k processors. Suppose that for
all �, f(�) ≤ j(n). Then the Markov chain X is transient if

k · (j(n) + 1) < λn.

Proof. This theorem can be proven easily using Lemma 21. Recall that the start
state X0 is (0, . . . , 0) (all queues are initially empty). First, we bound the amount of
work that can be done during any given step. When a processor steals work, it only
gets enough work for at most j(n) rounds. Since each processor gives work to only
one other processor per round, and there are at most k processors with generators,
at most j(n)k processors without generators have work to do during any given step.
Thus, at most (j(n) + 1)k tasks can be done during any step. The expected load
increase of the system during a step is λn. Using Lemma 21 with Φ as the system
load, it is easy to see that the system is transient if k(j(n) + 1) < λn.

6. Conclusions. We have analyzed a very simple work-stealing algorithm, which
is successfully being used in practical applications. In this paper we have analyzed
its performance for a wide range of parameters. We have shown that it is stable for
any constant generation rate λ < 1 and a wide class of work-stealing functions f . On
the other hand, we have shown that for every λ > 0 there is a class of unsuitable
work-stealing functions, for which it is not stable. Finally, we have derived upper
bounds on the system load when the system is stable.

It would be interesting to know whether there is a nice characterization of the
class of functions that lead to stability. It would also be interesting to know how far
our upper bounds on system load are from the truth. We suspect that the system
load is actually much smaller than our upper bounds indicate, but it would be useful
to have rigorous experimental results.
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