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Abstract

Starting with just one bare seed for each member of a scalar nonet, we investigate when
it is possible to generate more than one hadronic state for each set of quantum numbers.
In the framework of a simple model, we find that in the I = 1 sector it is possible to
generate two physical states with the right features to be identified with the a0(980)
and the a0(1450). In the I = 1/2 sector, we can generate a number of physical states
with masses higher than 1 GeV, including one with the right features to be associated
with the K∗

0 (1470), but none which can be identified with the light κ scalar meson.
The I = 0 sector is the most complicated and elusive: since all outcomes are very
strongly model dependent, we cannot draw any robust conclusion. Nevertheless, we
find that in that case too, depending on the coupling scheme adopted, the occurrence
of numerous states can be achieved. This shows that dynamical generation of physical
states is a possible solution to the problem of accounting for more scalar mesons than
can fit in a single nonet, as experiments clearly deliver.
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1 Introduction

In the naive quark model picture with three flavours, quarks and antiquarks are assumed

to be bound into states, the quantum numbers of which are determined by the spin S and

the relative orbital angular momentum L of the qq system. This leads to the multiplet

structures that can be elegantly described by the SU(3) group of flavor symmetry. The

masses of hadrons are then related to the constituent masses of the quarks and simple

relations among them are found. For instance, the non-strange ρ and ω vector mesons, both

made out of up and down quarks, have roughly the same mass, whereas the φ, being a pure

ss state has a mass approximately 300 MeV heavier. Furthermore, the mass of a meson like

the ρ, made of two constituent quarks, is about 2/3 of the mass of a proton or a neutron,

made of three such quarks. However, the simple and successful picture that the quark model

delivers does not apply to the scalar meson sector: apparently scalars are different. First of

all there are far more scalar mesons than can be accomodated in one conventional nonet,

moreover their masses turn out to be hundreds of MeV lighter than one would simply deduce

from the constituent structure of the mesons.

In Ref. [1], Tornqvist presented a model in which the central focus is to consider the loop

contributions given by the hadronic intermediate states that each meson can access: it is via

these hadronic loops that the bare states become “dressed” and, in the case of scalar mesons,

hadronic loop contributions totally dominate the dynamics of the process. He shows that

the mass shift, which is a direct consequence of the presence of strongly coupled hadronic

intermediate states, is so dramatic that it completely spoils the one–to–one correspondence

between the resonances we observe and the underlying constituent structure. Though we

follow Tornqvist’s modelling quite closely, very similar models have been considered by van

Beveren et al. [2], Geiger and Isgur [3] and by Oller and Oset [4] among others.

In this paper, following and extending the method of Tornqvist and Roos [5], we will in-

vestigate the possibility of generating, in the scalar sector, more than one state with the

same quantum numbers, by initially inserting only one “bare seed”. We will show that the

outcome depends on the kinematics of the intermediate channels: crucially, on the number

and position of each threshold opening and on the strength of their individual couplings.

Therefore, every case has to be considered separately and it is not possible to reach one

common conclusion for all the members of the scalar meson family.
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2 The model of hadronic dressing

We start by considering a simple model in which all bare meson states belong to ideally

mixed quark multiplets. We call nn the nonstrange light state and suppose that substituting

a strange quark for a light one increases the mass of the state by ∆ms ≃ 150 MeV.

The bare propagator for each of these bound states will be of the form

P =
1

M2
0 − s

, (1)

with a pole on the real axis, corresponding to a non decaying state; for example for the

vector I = 0 state

|φ〉0 = |ss〉.

If we now assume that the experimentally observed hadrons are obtained from the bare

states (nn, sn, ss, ...) by dressing them with hadronic interactions, the propagator becomes

P (s) =
1

M2(s) − s − iM(s) Γ(s)
, (2)

where a sum over all hadronic interactions (in the loop) is implicit (see Fig. 1). The pole

then moves in the complex s-plane. The corresponding vector state can be decomposed as

|φ〉 =
√

1 − ǫ2|ss〉 + ǫ1|KK〉 + ǫ2|ρπ〉 + ... (3)

where calculation would give ǫ2 = |ǫ1|2+|ǫ2|2+... ≪ 1. The hadronic loop contributions allow

the bare states (ss in this example) to communicate with all hadronic channels permitted

by quantum numbers, and this enables the meson to decay, its lifetime being inversely

proportional to the width Γ. However, in this case the switching on of interactions produces

a relatively tiny effect and the physical φ is still overwhelmingly an ss state. For this reason

the naive quark model works very well; so from the observed hadron we can easily infer its

quark structure. A similar picture works for the tensors.

For scalar mesons the situation is different and the one–to–one correspondence between

the observed scalar mesons and their underlying quark content is distorted by dynamical

effects. This is because they couple strongly to more than one meson-meson channel, creating

overlapping and interfering resonance structures. Furthermore, since the interactions are

S–waves, the opening of each threshold produces a more dramatic s-dependence in the

-1
= --

-1

Figure 1: Pictorial representation of the full propagator in Eq. (2).
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propagator. At each threshold, there is a centrifugal barrier factor of kL, where k is the

appropriate c.m. 3-momentum of the decaying products and L their relative orbital angular

momentum. This means that the thresholds for higher spin states open more smoothly.

Let us now go into more detail about the model starting, for simplicity, from the case in

which only one underlying bare state has to be considered. This is the case, for example, for

the I = 1/2 and I = 1 sectors, the seeds of which are sn and nn respectively. We define a

vacuum polarization function Π(s) which accounts for all the possible two pseudoscalar loop

contributions to the propagator P (s) [1]. Referring to the pictorial representation of Eq. (2)

in Fig. 1, we can easily write Π’s imaginary part:

ImΠ(s) = −
∑

i

G2
i (s) = −

∑

i

g2
i

ki(s)√
s

(s − sA,i) F 2
i (s) θ(s − sth,i) (4)

where the index i runs over the pseudoscalar channels and the ki’s are the c.m. momenta

of the two intermediate pseudoscalars. The gi’s are the SU(3) flavour couplings connecting

the bare state to the two–pseudoscalar loop: gi = γγi, see Refs. [1, 6] for more details. The

terms (s− sA,i) give the Adler zeros, required for S–waves by chiral dynamics. Fi(s) are the

form factors, which take into account the fact that the interaction is not pointlike but has a

spatial extension.

Since the vacuum polarization function, Π(s), is an analytic function, its real part can be

deduced from the imaginary part by making use of a dispersion relation

Re Π(s) =
1

π
P

∫ ∞

sth,1

ds′
ImΠ(s′)

s′ − s
. (5)

No subtraction is needed, since the form factors are built in such a way that they decrease

fast enough when |s| → ∞.

At this point, we can write the propagator in terms of the vacuum polarization function:

P (s) =
1

m2
0 + Π(s) − s

(6)

The mass and the width of the decaying hadron are determined, in a process independent

way, by the pole of the propagator. Consequently, in order to find the pole position, we have

to continue Eqs. (4, 5, 6) into the complex s–plane onto the appropriate unphysical sheets.

The contribution of this resonance pole to the i → j amplitude is then

Aij(s) =
Gi(s) Gj(s)

m2
0 + Π(s) − s

. (7)

which respects the unitarity requirement, A − A† = 2i AA†. As a consequence, for each

elastic channel we can define a resonant phase-shift by

Aii(s) =
1

2i

(

ηi e2iδi − 1
)

. (8)
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The amplitude Aij in Eq. (7) represents a generalization of the well-known Breit-Wigner

formula, at least in the neighbourhood of the pole. This is readily seen by writing the

vacuum polarization function in terms of its real and imaginary parts, then

Aij(s) =
Gi(s) Gj(s)

m2
0 + ReΠ(s) − s + iImΠ(s)

=
mR[Γi(s)Γj(s)]

1/2

m2(s) − s − i mRΓtot(s)
, (9)

having identified

Γtot(s) = −ImΠ(s)

mR
=

∑

i

Γi(s) , (10)

where

Γi(s) =
G2

i (s)

mR
, (11)

and

m2(s) = m2
0 + ReΠ(s) . (12)

Here m2(s) is the running squared mass, given by the sum of the bare mass squared and the

real part of the vacuum polarization function ReΠ(s), which is responsible for the mass shift.

The imaginary part of the vacuum polarization function ImΠ(s) is directly proportional

to the width of the state. The mass shift function ReΠ(s) is generally negative and is

approximately constant only in the energy regions far from any threshold. For S–waves the

s–dependence becomes crucially important nearby thresholds, since ReΠ(s) has square root

cusps at the opening of each of them.

Though the only correct way to calculate the mass of a particle is to find the position of the

propagator pole in the complex s–plane, it is useful to define another quantity, again obtain-

able from the propagator, which we will call the Breit–Wigner mass mBW . It corresponds

to the intersection of the running mass m2(s) with the curve s, i.e. the particular value of

s where the function (m2
0 + ReΠ(s) − s) vanishes, with s wholly real:

m2
BW = m2

0 + ReΠ(m2
BW ) . (13)

This gives a rough estimate of what the physical mass is. As a matter of fact, moving into the

complex plane the real coordinate of the pole position can change considerably if thresholds

to strongly coupled channels are located nearby, and when the dynamics are particularly

complicated. As mBW of Eq. (13) is defined as the energy at which the function m2(s) is

equal to s, this is a point that we refer to as a crossing for reasons that will become clear in

Fig. 2. Clearly at
√

s = mBW , the amplitudes Aij of Eq. (9) become purely imaginary. It is

this simple fact and its physical consequences that are the theme of this paper.

4



-3

-2

-1

0

1

2

3

4

0.6 0.8 1 1.2 1.4 1.6 1.8

E (GeV)

Π
Im

   
 (

s)
m

2 (s
)

πη KK- πη,

Figure 2: The curves m2(s), s and ImΠ(s) as functions of the energy E =
√

s, for the sector I = 1. Each
intersection between m2(s) and s is referred to as a crossing. The first of these is situated at approximately
915 MeV, between the πη and the KK threshold. The second crossing, well above the πη′ threshold, is
at E = 1430 MeV. The third intersection, at 1.82 GeV, is a non-physical state according to the Wigner
condition.

3 I = 1 sector and the role of the Wigner condition

We now turn our attention to the issue of accomodating all the scalar meson states (which

experiments deliver) in either one or more quark model multiplets. In Ref. [1] Tornqvist

finds a scalar nonet composed of the K∗
0(1430), the a0(980), the f0(980) and the f0(1370).

Furthermore, in Ref. [5], one extra low energy pole is found, which the authors identify with

the much discussed broad σ meson, called f0(400 − 1200) in the Particle Data Tables [7].

Nevertheless, this study leaves out the a0(1430), for instance, for which Crystal Barrel [8]

finds clear evidence.

Consequently, we begin by examining the I = 1 sector, since this is relatively simpler than

the others. We ask: can we “generate” one or more extra physical states in the same sector,

in the framework of our simple model, by starting from only one nn bare seed ?

By increasing the overall coupling γ and the bare mass of the nn seed (γ = 1.53, m0 = 1.620

GeV, as opposed to γ = 1.13, m0 = 1.420 GeV used in Ref. [1]), we find it is possible to

obtain a scenario in which more than one intersection between the mass function m2(s) and

the s curve appear in the mass plot, as shown in Fig. 2 (upper half). The first crossing,

situated at approximately 915 MeV, between the πη and the KK threshold, corresponds to

a state which can be identified with the a0(980). We treat the charged and neutral kaons as

degenerate in mass and so neglect the possibility of isospin mixing between I = 1 and I = 0
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Figure 3: The phase δπη reaches 90o at E = 915 MeV, corresponding to the first physical state identified
with the a0(980) (the point is labelled by a star on the left hand plot). The phase δπη′ reaches zero twice
(the two points are labelled on the right hand plot), the first time raising from negative to positive values
and giving the second physical a0 state, the second time quickly dropping from positive to negative values,
and delivering the unphysical third state, as confirmed by the Wigner condition.

states [9]. The second crossing, occurring well above the πη′ threshold, at mBW = 1430

MeV, is again a physical state and has the right features to represent the Crystal Barrel

relatively broad a0(1450); the third intersection occurs at E = 1.82 GeV. In the lower half of

Fig. 2 we plot the curve ImΠ(s), which shows how the second state which we identify with

the a0(1450) is much broader than the a0(980).

To know which state is physical we refer to the Wigner condition [10]. This condition follows

from the principle of causality, i.e. the requirement that the scattered wave does not leave

the scatterer before the incident wave has reached it. In the present context, Wigner’s

theorem limits the rate of fall of the phase-shift, δij. A physical resonance cannot occur if

the phase shift falls through 90o. In fact, such a resonance would have a negative width

and correspond to a pole on the upper half plane in the physical sheet. It would therefore

represent a non-causal, exponentially increasing state. Since it is not possible to have a state

with a lifetime greater than the period of scattering, Wigner’s condition requires

dδ

dk
≥ − 1

mπ

√
s

2k
. (14)

where the phase-shift δ refers to the same channel as the c.m. 3-momentum k and is defined

by Eq. (8). The Wigner condition is particularly useful in the inelastic region, where reso-

nances do not necessarily correspond to δ = 90o, but more generally occur when δ = nπ/2

and the real part of the scattering amplitude is zero.

Fig. 3 shows the phases, δπη and δπη′ , which tell us about the characteristics of the states we

find: δπη goes through 90o at E = 915 MeV, in correspondence with the first physical reso-
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Figure 4: Argand plot of the amplitude Aπη: in the elastic region, ImAπη raises quickly anti-clockwise
and ReAπη reaches zero at E = 915 MeV, the lighter physical a0. The second and third states occur above
πη′ threshold, as indicated by the two stars on the plot. Notice that the heavy unphysical state is situated
immediately after an abrupt change of direction in the curve ImAπη.

nance, the lighter a0. Instead, δπη′ reaches zero twice: the first time rising from negative to

positive values and giving the second physical a0 state, the a0(1450); the second time quickly

dropping from positive to negative values: the third crossing at 1820 MeV is unphysical as

given by Eq.(14).

Finally, Fig. 4 shows the Argand plot of the amplitude Aπη: in the elastic region, ImAπη

rises quickly anti-clockwise and ReAπη reaches zero at E = 915 MeV, the lighter physical a0.

The second and third states occur above πη′ threshold, as indicated by the two stars on the

plot. Notice that the heavy unphysical state is situated immediately after an abrupt change

of direction in the curve ImAπη.

Our conclusions about yet heavier states are not reliable in the present model, since higher

thresholds are not included which may well affect the picture at higher energies dramatically.

Nevertheless just including the lightest two pseudoscalar channels we can definitely say that

a scenario in which not only one but a series of scalar physical states with I=1 can easily be

achieved, by fine tuning key free parameters of the model.

Generating more than one physical state with the same quantum number starting from one

seed brings us closer to the picture emerging from experiment. Will this be the case for the

other sectors as well ? And to what extent is the adjustment of the overall coupling and

mass parameters permitted within this model? That is what we discuss in the following

Sections.
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Figure 5: The curves m2(s), s = E2 and ImΠ(s) as functions of the energy E. The first crossing point
is located below the Kπ threshold and corresponds to a pole on the real axis (i.e. a non-decaying state).
The second crossing is again an unphysical state because it does not satisfy the Wigner condition, as clearly
shown by the phase shift and the Argand plot in Figs. 6 and 7. On the contrary, the third intersection point
corresponds to an unphysical state. Finally the last two crossings correspond to a non-physical and a heavier
and broader physical state respectively.

4 The I = 1/2 sector

In an analogous manner to the I = 1 case, we now want to examine the possibility of

dynamically generating more physical states with the same quantum numbers from only one

bare seed, ns in this particular case. Here the main issue is to investigate whether it is

possible to generate the light I = 1/2 state called κ, advocated for example in Refs. [2,4,11].

The situation for the I = 1/2 sector is rather different from the I = 1 case. Here there are

only two relevant thresholds and their positions and coupling strengths are such that the

shape of the mass function curve, m2(s), is very rigid and varying the parameters changes

this little. Nevertheless, by using the same changes we used for the I = 1 sector (γ = 1.53,

m0 = 1.620 GeV, with sA,πK = −1.0 GeV2) we obtain the plot shown in Fig 5.

The first interesting observation is that the first point of intersection between the mass

function m2(s) and the curve s, is always bound to be below the Kπ threshold and it

corresponds to a pole on the real axis, i.e. to a state with zero width: in fact, the cusp

signals the precise location of the threshold itself, so that varying the coupling strength

only slightly alters the position of the crossing point, but never allows it to move above

the threshold. The second intersection point is not a physical state since it violates the
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Wigner condition, as is clearly shown by the phase shift and the Argand plot in Figs. 6 and

7. Notice once again that the conclusion that this state is not physical does not depend on

the strength of the coupling to the Kπ channel: varying this only produces a tiny shift in

the position of the crossing point, and does not alter the characteristics of the state. Thus

within this model having just one ns bare seed, it turns out to be impossible to generate

a physical κ-like state. In contrast, the third intersection point corresponds to a physical

state which can easily be interpreted as the K∗
0 (1430), already found in Tornqvist results of

Ref. [1]. It is interesting to notice that the same kind of picture would emerge when using the

parameterization proposed in Ref. [5]: the first crossing point is again below threshold and

the second one corresponds to a state which, violating the Wigner condition, is unphysical.

Indeed, only the third intersection point is a physical one.

Moving to higher energies, we find two further crossing points between the s = E2 curve and

the mass function m(s)2: according to the Wigner condition, only the last one, situated at

E = 1.96 GeV, corresponds to a physical state. As we mentioned in the previous Section,

results concerning states with heavy masses are not completely reliable since the present

model does not include higher meson-meson thresholds. Nevertheless, it is quite interesting

to notice that the last physical state predicted by our calculation could be identified with

the K∗
0 (1950) reported by the PDG group (see table on p. 51 of Ref. [7]).

Compared with other results available in the literature, as far as the I = 1/2 and I = 1

sectors are concerned, ours are similar to those presented in the work of Minkowski and

Ochs [12], where they claim the existence of two complete nonets in the light scalar meson

spectrum, the first one characterised by the K∗
0 (1430) and the a0(980), and the second one

by the K∗
0(1950) and the a0(1450). To the isoscalar sector they assign the f0(980), f0(1500)

and the f0(1720), f0(2020) respectively, with singlet-octet mixing angle (much as in the

pseudoscalar nonet), having dismissed the σ and the f0(1370).

In contrast, van Beveren et al. [2] find two lower mass nonets, given by

κ, a0(980), f0(980), σ

K∗
0(1430), a0(1450), f0(1370), f0(1500) ,

whereas Shakin and collaborators [13] predict the existence of up to three scalar nonets,

characterized by

a0(980), K∗
0(1430)

a0(1450), K∗
0 (1730)

a0(1857), K∗
0 (1950)

and keep the σ and κ mesons out, using their particular definition of “dynamically generated

states” with no right to be classified into a nonet structure. Moreover the a0(1857) and

the K∗
0(1730) are resonances which appear in their calculation but are not confirmed by

experiment yet.

To complete our picture we now move to the I = 0 sector.
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Figure 6: The phase δKπ drops extremely quickly through 90o at E = 670 MeV, in correspondence with
the unphysical state generated by the second crossing point in Fig. 5. It then rises through 90o at E = 1420
MeV, signalling the presence of a physical state, (the two points are labelled on the left hand plot). The
phase δKη′ goes through 90o twice (the two points are each labelled by a star on the right hand plot), the
first time decreasing quickly from 180o at Kη′ threshold, giving the third unphysical state, the second time
while increasing again to larger values, and delivering the last physical state, as confirmed by the Wigner
condition.
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5 The I = 0 sector

This is the most complex and delicate sector, and drawing any kind of conclusion is particu-

larly difficult: let’s see why. As discussed in the previous Sections, in the I = 1 and I = 1/2

sectors physical states originate from one “bare seed” only, either nn or ns, and are then

“dressed” by coupling to meson-meson channels. In contrast, in the I = 0 case we already

have two possible “bare seeds” to start with, nn and ss, which not only get dressed but in

fact do mix through hadronic loops. And mixing entangles the situation to such an extent

that the one–to–one correspondence between the phase shift behaviour and the occurrence of

physical states is lost: then the Wigner condition cannot be used to sort the physical states

from the unphysical ones. Moreover, the couplings of the isoscalar bare seeds to the relative

meson-meson channels, ππ, KK, ηη etc ... are not calculated in a standard and unique way:

there are several calculations in the literature, each of which is based on different (but in our

opinion equally good or bad) assumptions (see for example Refs. [1] and [2]). So one has to

make a choice of coupling scheme as well, and unfortunately the outcome strongly depends

on this choice.

If we simply use for the parameters γ and m0 the same values as in Sections 3 and 4 and the

coupling scheme as given by Tornqvist in Ref. [1] (with the ηη′ threshold coupling enhanced

by a factor β = 1.6) or by van Beveren et al. [2], we find scenarios in which multiple crossings

do occur and many isoscalar states are generated. Unfortunately, we cannot tell them apart,

because the phase shift behaviour does not help, especially in the region around and above 1

GeV, where the mixing is maximal and the overlapping among resonances is crucial. And we

cannot say which of them are physical states either, because the Wigner condition cannot

be applied. Moreover, as we anticipated, the position and features of the crossing points

are very strongly model dependent, and very different scenarios can be created by varying

the coupling scheme, so that no robust model independent conclusion can be reached in

this sector. For instance, if we apply purely SU(3) pseudoscalar-pseudoscalar couplings, as

presented in Refs. [1, 6] without enhancing the ηη′ threshold, only two resonant states are

found.

Nevertheless, it is a fact that a number of states larger than two can be created starting from

just two bare seeds. For certain parameter configurations and with certain coupling schemes,

the I = 0 experimental candidates can be accounted for. This shows that the dynamical

generation of physical states is a possible solution to the problem of accounting for more

scalar mesons than can fit in one nonet. Notice, though, that this is a “democratic” model,

in which we cannot distinguish which are the intrinsic (or pre-existing) states as opposed to

the dynamically generated ones (a discussion about this issue was raised by van Beveren et

al. in a comment [15] on a paper by Shakin and Wang [16]).
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6 Scattering amplitudes

To what extent are we free to change the parameters of the model to allow the double crossing

to occur that generates the a0(1430) as well as the a0(980)? This question is addressed

by considering the relationship of the propagators in Eqs. (1,2,6,7) to the corresponding

physical scattering amplitudes. As noted in Section 2, knowing the propagator of s−channel

resonances determines a key part of the scattering amplitudes, Eqs. (7,9). For Tornqvist

and Roos, this amplitude Aij is all there is to the hadronic scattering amplitude. However,

s−channel dynamics is not all that controls the scattering. So while the amplitude A defined

in Eq. (7) respects unitarity, it is not the most general amplitude that achieves this, having

its numerator and denominator related by the same couplings Gi (see Eq. (4)). Knowing

the structure of the propagator P (s), Eq. (6), we can write in complete generality the full

scattering amplitude as

T (s) =
N(s)

m2(s) − s + Π(s)
, (15)

where we drop the channel labels ij. The numerator N(s) is an unknown complex function

of the variable s, which can be re–expressed in terms of its modulus and phase as

N(s) = |N(s)| eiα(s) . (16)

Imposing both elastic and inelastic unitarity one finds that

|N(s)| = [m2(s) − s + ReΠ(s)] sin α(s) − ImΠ(s)ei α(s) , (17)

which allows the most general hadronic amplitude to be written as

T (s) = A(s) e 2i α(s) + sin α(s) e i α(s) (18)

where α(s) is an unknown function of s real along the right hand cut, and the second term

in Eq. (18) can be regarded as a background contribution. It is important to note that if the

phase-shift of the amplitude A is ω, then the phase-shift of the full amplitude T is δ = ω+α.

The model of Tornqvist and Roos is to set α = 0 everywhere.

In Ref. [17] we have improved on Tornqvist’s study by performing new fits to experimental

data, based on the general amplitude T (s) rather than the pole dominated amplitude A(s).

From this we conclude that very good solutions can be obtained by using relatively small

values for the parameter α (we chose a constant value of 15o as an example) and varying

the m0 and γ parameters by a few hundred MeV. For instance, to fit πK scattering data

in terms of the pure pole amplitude A, Tornqvist requires the position of the Adler zero

to be at sA,πK = −0.42 GeV2 far from its position in chiral perturbation theory (current

algebra predicts (mK − mπ)2 ≤ sA,πK ≤ (mK + mπ)2 with an average value of 0.24 GeV2).

In contrast, by a simple choice of α of about 150 we can fit these same data with the full

hadronic amplitude T which has the Adler zero at the position required by chiral dynamics.
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This puts our attempts to generate extra states with the same quantum numbers by varying

the free parameters of the model on more solid ground. We know that small changes in the

value of m0 and γ can give equally good fits using the full hadronic amplitudes, T . This gives

us confidence in our general conclusions. The fact that there is more to a scattering process

than s−channel dynamics means that fitting data along the real axis cannot accurately

determine the true pole position of a broad state without an analytic continuation, or a

very specific model. This casts doubt on the determination of the position of the σ−pole by

Tornqvist and Roos. Their fit to ππ data in terms of the amplitude A gives quite different

parameters than using the full amplitude T of Eq. (18). That there is more to dynamics

than s-channel resonances has been noted by Isgur and Speth in this same context [18].

7 Conclusions

The present work focusses on the study of the I = 1 and I = 1/2 sector of the light scalar

meson spectroscopy. Previous papers from Tornqvist and Roos [1,5] seemed to suggest that

using a simple model based on the hadronic “dressing” of bare seeds, one could generate

more than one, possibly a whole family of mesons, with the same quantum numbers, starting

with one bare seed only. This is certainly a very interesting possibility, since we know that

experiment has detected many more light scalar mesons that can be accomodated in one

nonet. We started by investigating the I = 1 sector, where two strong candidates have been

found: the long known a0(980) and the heavier a0(1450), detected by the Crystal Barrel

collaboration [19]. By slightly increasing two crucial parameters of the model, the overall

coupling γ and the bare mass m0, we have shown that it is possible to find a picture in

which both states can easily be generated starting from one bare nn seed only. Due to the

structure of the vacuum polarization function, the heavier of the two states is automatically

broader than the lighter one. Drawing conclusions on further, heavier states would require

detailed treatment of heavier thresholds, which are not included here.

Encouraged by these results we then moved to the I = 1/2 sector, to try and see whether we

could also give a legitimate place to the controversial κ meson. Due to the nature of the ns

couplings to pseudoscalar-pseudoscalar channels, it turns out to be impossible to generate

such a light I = 1/2 scalar meson in our framework. Further heavier states can be generated,

one of which has the right features to be identified with the K∗
0 (1430), whereas the others

might only be an artifact of the poor treatment of heavy thresholds in the model. Again,

only a more rigorous description of such heavier thresholds could enable us to rule out their

existence or not.

To complete the study, we considered the I = 0 sector: even though the heavily structured

dynamics of the isoscalars make any clear–cut result far from robust, at least in the framework

of our simple model, we can conclude that the multiple crossing mechanism is certainly active

in this sector as well, and that dynamical generation of many states with the same quantum
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numbers but different masses can be a plausible explanation of the experimental occurence

of many more 0++ states that can fit in one quark–model nonet.

We conclude that the detailed pole parameters of Ref. [5] are strongly model dependent, as

previously suggested by the comments of Refs. [18].

As opposed to the work in Ref. [16], we cannot tell which are intrinsic states and which

are dynamically generated, nor can we state that we have definitely found enough strong

candidates to complete two full nonets as in Refs. [2, 12]: we can find no way to produce

the light κ meson and no precise assignment can be made for the isoscalar sector. As far as

the isovector and isodoublet states are concerned, our picture is similar to that of Ref. [12],

with the occurrence of two a0 and two K∗
0 physical states and the possibility to produce a

number of f0’s, depending on the coupling scheme.
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