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The Tutte polynomial T (G; x, y) of a graph evaluates to many interesting combinatorial

quantities at various points in the (x, y) plane, including the number of spanning trees,

number of forests, number of acyclic orientations, the reliability polynomial, the partition

function of the Q-state Potts model of a graph, and the Jones polynomial of an alternating

link. The exact computation of T (G; x, y) has been shown by Vertigan and Welsh [8] to

be #P-hard at all but a few special points and on two hyperbolae, even in the restricted

class of planar bipartite graphs. Attention has therefore been focused on approximation

schemes. To date, positive results have been restricted to the upper half plane y > 1, and

most results have relied on a condition of sufficient denseness in the graph. In this paper

we present an approach that yields a fully polynomial randomized approximation scheme

for T (G; x, y) for x > 1, y = 1, and for T (G; 2, 0), in a class of sparse graphs. This is the

first positive result that includes the important point (2, 0).

1. Introduction

An acyclic orientation is an assignment of orientations to the edges of the graph G, such

that the resulting directed graph contains no cycles. The associated counting problem is

the evaluation of the Tutte polynomial at T (G; 2, 0). Although this may seem a somewhat

special problem, it turns out by a classic result of Zaslavsky [10] that this is related to

hyperplane arrangements. We regard each edge (x, y) of a graph G on n vertices as the

hyperplane x = y in n-dimensional Euclidean space. The number of acyclic orientations

of G equals the number of chambers in the arrangement of hyperplanes described in this

way by G. For example the well-known braid arrangement of hyperplanes comes from

the complete graph Kn (see Orlik and Terao [7]). The number of forests in a graph equals

T (G; 2, 1). These are two of a host of points in the (x, y) plane at which the evaluation
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of the Tutte polynomial is an interesting invariant of the underlying graph. The Tutte

polynomial is a polynomial of two variables, which can be defined for a graph, matrix

or a general matroid. It is defined recursively, and it follows that direct computation

of the Tutte polynomial of a graph on m edges takes time exponential in m. A diverse

collection of properties turns out to be determined by the Tutte polynomial. In addition to

standard graph-theoretic properties, there are examples from many other fields including

statistical physics, knot theory and network theory. The following well-known problems

are specializations of the Tutte polynomial to particular points or lines in the (x, y) plane:

(i) the chromatic polynomial of a graph, along y = 0;

(ii) the flow polynomial of a graph, along x = 0;

(iii) the all terminal network reliability probability of a network, along x = 1, y > 1;

(iv) the partition function of the Ising and Q-state Potts model, on the hyperbola

(x− 1)(y − 1) = Q;

(v) the Jones polynomial of an alternating knot, on the hyperbola xy = 1;

(vi) the weight enumerator of a linear code over GF(q), on the hyperbola

(x− 1)(y − 1) = q.

Exact computation of the Tutte polynomial has been shown to be #P-hard at all but

a few points in the plane [8]. Indeed, T (G; −2, 0) counts the number of proper three-

colourings of the graph G. Since the associated decision problem is NP-complete, no

approximation scheme that reliably differentiates zero from nonzero can exist for this

point, unless NP = RP. In other regions the decision problems are not NP-complete,

indeed they are often trivial: every graph has an acyclic orientation. So at these points the

assumption that NP �= RP does not immediately rule out a fully polynomial randomized

approximation scheme (FPRAS).

A RAS for a quantity π(G) is a randomized approximation algorithm such that, for

any given ε > 0, δ > 0, with probability greater than 1 − δ the output π̂(G, ε, δ) is within

a relative error of 1 ± ε,

Pr[|π(G) − π̂(G, ε, δ)| > επ(G)] < δ.

A RAS is described as fully polynomial (FPRAS) if the running time is bounded by a

polynomial in |G|, 1/δ and 1/ε. The question of where in the (x, y) plane and for which

classes of graphs there exists an FPRAS is wide open.

The positive results are few: Jerrum and Sinclair [4] presented an FPRAS along the

hyperbola (x− 1)(y − 1) = 2 for all graphs, Annan [2] dealt with the case y = 1, x � 1 for

dense graphs (those having minimum degree Ω(|V (G)|), Alon, Frieze and Welsh [1] showed

that an FPRAS exists for x � 1, y � 1 for dense graphs, and for all y � 1 for strongly

dense graphs (minimum degree > |V (G)|/2). Recently Karger [5] proved the existence of

a similar scheme (for all y > 1) for graphs with no small cutset (edge connectivity at least

c log |V (G)| for some c depending on x and y). Even though all these previous results

except [4] have made use of a denseness or similar condition, Welsh conjectured [9] that

there exists an FPRAS scheme for all graphs, in the region x � 1, y � 1.

A full survey on the Tutte polynomial can be found in [9]. Throughout, our graph G

will have n vertices and m edges. A circuit C is a connected subgraph of G such that every
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vertex in C has degree two (a simple cycle). The length of a circuit is the number of edges

it contains. The girth g of a graph is the length of the smallest circuit. The evaluations

considered are trivial for graphs with no circuits, therefore we assume that G has at least

one circuit, and hence that g is well defined for all G.

1.1. Results

In this paper we present an FPRAS for T (G; x, y) along the half line x > 1, y = 1, and at

the point (2, 0), for a class of graphs with large girth (girth at least c log |V (G)| for some

c depending on x). The evaluations of the Tutte polynomial at these points includes the

number of acyclic orientations and the number of forests of the graph. To be precise we

prove the following result.

Theorem 1.1. Let δ > 0, x > 1 be fixed, and let Gδ,x be the class of graphs with girth

g � (5 + δ) logx(n). Then

(i) there is an FPRAS for T (G; x, 1) for all G ∈ Gδ,x,

(ii) there is an FPRAS for T (G; 2, 0) for all G ∈ Gδ,.

This is the first result that provides an approximation scheme outside the hyperbola

(x− 1)(y − 1) = 2 for any class of sparse graphs, and also the first positive result that

includes the point (2, 0). We include a proof that exact evaluation is #P-hard even on this

restricted class of graphs.

Although this class of sparse graphs (those with large girth) may look restrictive, in

computing there is much interest in expander graphs, which make efficient networks using

few edges. There are many well-known constructions of expanders with constant degree

and girth of order log n [3].

Our approach is essentially a dualization (in the matroidal sense) of that of Karger [5],

who presents an FPRAS for evaluating the reliability polynomial for the class of graphs

with minimum edge cut-set of size c logy n. In Section 2 we bound the number of minimum

circuits (those with length equal to the girth), and near-minimum circuits of graphs. In

Section 3 we show that the near-minimum circuits can be enumerated in polynomial

time. In Section 4 we introduce WASTE(p), the probability that a random subgraph of

G contains a cycle. Using the previous results, we first bound WASTE(p) for graphs with

girth greater than c log1/p n, and then by converting the problem into a DNF boolean

formula we present an FPRAS for WASTE(p) for all graphs. In Section 5 we introduce

the efficiency probability Eff(G, p), a dual to the well-known reliability probability and

essentially given by the Tutte polynomial along the line y = 1, x > 1. We observe that

1 − WASTE(G, p) = Eff(G, p) = (p−1 − 1)m−n+1pmT (G; p−1, 1)

and hence we construct an FPRAS for evaluating T (G; x, 1) for x > 1 from the FPRAS

for WASTE(p), whenever WASTE(p) can be bounded away from 1. Then, in Section 6, we

extend the previous work to incorporate the point (2, 0), by using an alternative reduction

to DNF formulae. Section 7 contains a proof that even on this class of sparse graphs, exact

evaluation of the Tutte polynomial is #P-hard in the region considered. Finally Section 8

presents an FPRAS at some additional points on the hyperbola (x− 1)(y − 1) = −1.
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2. Counting paths and circuits

In this section we calculate bounds on the number of short circuits in simple graphs, via

bounds on the number of paths of short length.

Lemma 2.1. Let G be a simple graph on n vertices, with girth g. Then, for any v ∈ V (G)

there are at most n− 1 distinct paths of length strictly less than g/2, that have v as one

endpoint.

Proof. Consider a fixed vertex v ∈ V (G). Let P1 and P2 be any two distinct paths of

length strictly less than g/2, with v as one endpoint. Let u1 and u2 be the other endpoints

of P1 and P2 respectively. Then u1 and u2 are distinct, for otherwise G must contain a

circuit of length strictly less than g (since |Pi| < g/2, for i = 1, 2). The number of distinct

endpoints of paths starting at v is at most n− 1, hence the number of distinct paths of

length strictly less than g/2 with v as one endpoint is at most n− 1.

We now use this lemma to put a bound on the number of short circuits. To do this

we regard a simple circuit as being made up of a collection of short paths, and establish

bounds on the possible ways of combining short paths. The following result may be

known, but I have been unable to find it in the literature.

Proposition 2.2. Let G be a simple graph on n vertices, with girth g. Then, for any h � g,

there are at most n2 h
g−2 +1, circuits of length h.

Proof. Let d be the largest integer less than g/2. In other words d= g/2 − 1 for g even,

and d= (g− 1)/2 for g odd. Any circuit C of length h can be expressed as the union

of �h/d� paths of length d, and one path of length l = h− �h/d�d (if h is not an exact

multiple of d). We shall label these paths P1, P2, . . . , Pt.

Let us first count the number of circuits containing a fixed vertex v. These circuits can

certainly be expressed as a union of paths such that P1 has v as an endpoint. Hence

by Lemma 2.1 there are at most n− 1 choices for P1, and since Pi+1 must start at the

endpoint of Pi, there are at most n− 1 ways of choosing each of the subsequent paths

(again by Lemma 2.1). Finally, the last path (Pt = P�h/d�) is forced in order to make a

circuit, since both endpoints are fixed and the existence of two short (length l) paths

between them would imply the existence of a circuit of length less than g. Hence the total

number of circuits containing v is at most (n− 1)�h/d�. Hence the total number of circuits

of length h is at most

n(n− 1)�h/d� < n�h/d�+1 � n2 h
(g−2) +1.

Note that, for h = g � 6, there are at most n2 g
g−2 +1 � n4 minimum circuits, for h = g < 6

we can achieve the same bound by using a little more care. We now define an α-small

circuit. A circuit C in a graph of girth g is called α-small if |C| � αg.
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Corollary 2.3. Let G be a graph on n vertices, with girth g � 6. Then, for any α � 1, G

has at most n3α+2 α-small circuits.

Proof. Since no circuit can have length greater than n, we may assume αg� n. From

Proposition 2.2, the number of α-small circuits in G is at most∑
h�αg

n2 h
g−2 +1 < αgn2 αg

g−2 +1

� αgn3α+1

� n3α+2.

3. Listing small circuits

In Section 2 we have bounded the number of α-small circuits in a graph G. When we

come to constructing an FPRAS in Section 4, we will need a full list of the α-small circuits

for some fixed α. However, the observations used in proving the theorems of Section 2

will enable us to create such a list by exhaustive search.

Theorem 3.1. Let G be a simple graph on n vertices, with girth g � 6. Then, for α � 1, a

complete list of all α-small circuits can be constructed in running time O(n3α+3).

Proof. First form a list of all the paths of length d, where d is the largest integer less

than g/2, as in Theorem 2.2. This can be done in time O(n3), since there are at most n

such paths starting at each vertex, and these can be found in time O(n2). Next, for each

h, g � h � αg, we can use the construction of Theorem 2.2 to exhaustively check all of

n�h/d� possible circuits through each vertex v. So for each h there are at most n3α+1 circuits

to be checked, and they can be checked in time O(n3α+2). This gives a total running time

bounded by O(n3α+3).

4. Approximating WASTE(G, p)

For a given graph G, let ν(G) be the cyclomatic number of G, in other words, for G with

κ(G) connected components,

ν(G) = |E(G)| − |V (G)| + κ(G) = m− n+ κ(G).

Note that ν(G) = 0 if and only if G is a forest, i.e., G has no cycles. For a fixed graph G, let

Gp be a random subgraph of G obtained by deleting each edge of G independently with

probability (1 − p). Let WASTE(G, p) be the probability that ν(Gp) > 0. WASTE refers to

the fact that Gp has at least one cycle, therefore ‘wasted’ edges that could be removed,

while retaining the same connected components. In the remainder of the paper we shall

write WASTE(p) for WASTE(G, p) where there is no confusion over the subject graph.

We now use the results of Section 2 to bound WASTE(p), and then to present an FPRAS

for WASTE(p).



6 M. Bordewich

4.1. Bounding WASTE(p)

Theorem 4.1. For fixed 0 < p < 1, let G be a graph with girth g = (5+ δ)
| log(p)| log(n) for some

δ > 0. Let Gp be a random subgraph of G obtained by independently deleting each edge with

probability (1 − p). Then:

(1) the probability that ν(Gp) > 0 is at most n−δ(1 + 5
δ
),

(2) for α > 1 the probability that some cycle of length at least αg is present in Gp is at most

n−αδ(1 + 5
δ
).

Proof. Let all the circuits of G be listed in order of nondecreasing length C1, C2, . . . .

Let pi = p|Ci|. First note that pg = n−(5+δ). Also, from Corollary 2.3 there are fewer than

n3α+2 < n5α circuits of length at most αg, so we have that pn5α < pαg = n−5α(1+δ/5). Hence,

WASTE(p) �
∑

C: cycles in G

p|C|

�
n5∑
i=1

pg +
∑
i>n5

pi

� n5n−(5+δ) +
∑
i>n5

i−(1+δ/5)

< n−δ +

∫ ∞

n5

x−(1+δ/5) dx

< n−δ +

[
−5

δ
x− δ

5

]∞

n5

< n−δ +
5

δ
n−δ .

This gives part (1). For part (2) we split the sum slightly differently to get the result:

Pr(∃ C ∈ Gp : |C| � αg) �
∑

C:|C|�αg
p|C|

�
n5α∑
i=1

pαg +
∑
i>n5α

pi

� n5αn−(5α+αδ) +
∑
i>n5α

i−(1+δ/5)

< n−αδ +
5

δ
n−αδ .

4.2. An FPRAS for WASTE(p)

We now present an FPRAS for WASTE(p). We begin with a technical lemma, which

asserts that we can find an α which splits the circuits of G into α-small circuits, which we

can deal with, and larger circuits which are unlikely to appear in Gp.

Lemma 4.2. Given ε > 0 and 0 < p < 1. Let G be a graph. If pg � n−10, then for α =

2 − ln(ε/6)
2 ln n

the probability that any circuit of length greater than αg is present in Gp is less

than (ε/3) WASTE(p).
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Proof. Since pg < n−10 < n−5, we have that

pg = n−(5+δ) some δ � 5, g =
(5 + δ) log n

| log p| . (4.1)

Hence g satisfies the conditions of Theorem 4.1. Using the observation that WASTE(p) �
pg , we see that

α = 2 − ln(ε/6)

2 ln n
,

α > 1 +
5

δ
− ln(ε/6)

δ ln n
,

αδ ln n > (δ + 5) ln n− ln(ε/6),

n−αδ <
ε

6
n−(δ+5),

2n−αδ < ε/3 WASTE(p),

(1 + 5/δ)n−αδ < ε/3 WASTE(p).

The result follows by Theorem 4.1.

Theorem 4.3. Given fixed 0 < p < 1, then for any graph G there is an FPRAS for

WASTE(p).

Proof. We split the proof into two cases, depending on the number of vertices n of G,

the girth g and the fixed probability p.

Case 1: pg � n−10.

If pg � n−10 then WASTE(p) � n−10, since the probability that a given minimum circuit is

present is at least n−10. Hence we can use a simple Monte Carlo approximation as follows.

For j = 1 to t we simulate Gp by deleting each edge with probability (1 − p), and set Xj = 1

if ν(Gp) > 0 and Xj = 0 otherwise. Our estimate for WASTE(p) will be X = 1
t

∑t
j=1Xj .

Clearly E[X] = WASTE(p), and the variance of X is WASTE(p)(1 − WASTE(p))/t. Hence,

given δ, ε > 0, we set t = � n10

ε2δ
� and Chebyshev’s inequality gives

Pr[|X − WASTE(p)| � εWASTE(p)] � Var(X)

ε2WASTE(p)2

� (1 − WASTE(p))

ε2WASTE(p)t

<
ε2δ

ε2WASTE(p)n10

< δ.

Finally, since t is polynomial in δ−1, ε−1 and n, and also since each simulation takes time

polynomial in n, we have an FPRAS for WASTE(p).

Case 2: pg < n−10.

As shown in Lemma 4.2, we can find an α which splits the set of circuits of G into large

circuits, such that the probability of any one being present is less than (ε/3) WASTE(p),
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and α-small circuits which we can list. Following the approach of Karger [5], once the

α-small circuits have been listed, we can encode the information in a boolean formula in

disjunctive normal form. We take a boolean variable xe for each edge in G. We take xe
to be true if e is present, and false otherwise. Then, if we take a list of all the α-small

circuits, C1, C2, . . . the clause corresponding to circuit Ci is Ĉi = ∧e∈Cixe. The event that at

least one α-small circuit is present is then Ĉ = ∨iĈi. This is a formula of |E(G)| variables,

in disjunctive normal form, of length bounded by αgc, where c is the number of small

circuits. Karp, Luby and Madras [6] present an FPRAS for any ε > 0 which approximates

the probability that a randomly generated assignment to such a formula is satisfying, to

within a relative error of 1 ± ε in O(l/ε2) time, where l is the length of the formula. We

use this FPRAS to approximate the probability that no α-small circuit is present, and

hence WASTE(p).

To be precise, given any ε, δ > 0 we take α = 2 − ln(ε/6)
2 ln n

, ignore the circuits of length

greater than αg, and by Lemma 4.2 only incur an absolute error of (ε/3)WASTE(p)

by doing so. By Theorem 3.1, we can list all the circuits of length at most αg in time

O(n3α+3) = O(n9ε−3/2). Hence, using Karp, Luby and Madras’s FPRAS for DNF formulae,

with input size O(αgn3α+2) = O(n9ε−3/2), we can approximate the probability that a circuit

of length up to αg is present in Gp to within a relative error of ε/3, with high probability

in polynomial time (i.e., for any δ > 0, this probability can be made greater than 1 − δ

in time polynomial in δ−1). Hence we have an approximation for WASTE(p) to within a

relative error of ε/3 + ε/3 < ε with high probability in polynomial time.

5. Approximating the Tutte polynomial

Alon, Frieze and Welsh [1] used an approximation scheme for the reliability polynomial

(for dense graphs) and a manipulation of the Tutte polynomial, in order to get an

approximation scheme for T (G; x, y) for x, y � 1. We introduce the efficiency probability,

a dual concept to the reliability probability. As before we have a fixed graph G, and a

random subgraph Gp. Whereas Rel(G, p), gives the probability that Gp is connected, we

define Eff(G, p) to be the probability that Gp is a forest. Thus Eff(G, p) = 1 − WASTE(G, p).

Recall that ν(Gp) = |E(Gp)| − |V (Gp)| + κ(Gp) = |E(Gp)| − r(Gp), where κ(Gp) is the

number of connected components of Gp, r(Gp) is the (matroid) rank of Gp. The Tutte

polynomial can be evaluated by analysis of the probability distribution of ν(Gp), where

p = 1
x

(for x � 1).

Let Q = (x− 1)(y − 1) and p = x−1. Assuming G is connected then

T (G; x, y) =
∑
A⊆E

(x− 1)n−1−r(A)(y − 1)|A|−r(A)

=
∑
A⊆E

[(x− 1)(y − 1)]ν(A)(x− 1)n−1−|A|

=
∑
A⊆E

Qν(A)(x− 1)n−m−1xm
(

1

x

)|A|(
x− 1

x

)m−|A|

= (x− 1)n−m−1xmE
[
Qν(Gp)

]
.
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Note that when y = 1, Q = 0, and hence Qν(Gp) is nonzero only when ν = 0, so

T (G; x, 1) = (x− 1)n−m−1xmPr(ν(Gp) = 0),

and when p = 1/2, we get the familiar

T (G; 2, 1) = 2mPr(A ⊆ E is acyclic) = #forests of G.

We already have enough machinery to approximate T (G; x, 1) for x > 1. The probability

that ν(Gp) = 0 is precisely Eff(G, p) = 1 − WASTE(p). We have presented in Section 4.2 an

FPRAS for WASTE(p). So provided WASTE(p) is small enough, we can use our FPRAS

to get an accurate approximation for Eff(G, p) and hence T (G; x, 1). We illustrate this first

with a general lemma.

Lemma 5.1. Let 0 � ψ � 1 be a quantity dependent on an input of size n, such that there is

an FPRAS for ψ. Let d be a fixed integer such that ψ < (1 − Ω(n−d)). Then (1 − ψ) admits

an FPRAS.

Proof. Since ψ < (1 − Ω(n−d)), there exist positive numbers c and N such that, for all

n � N, ψ < (1 − cn−d). To show the existence of an FPRAS for (1 − ψ) it is enough to

show the existence of an FPRAS for all n > N. Given ε, δ > 0, use the FPRAS for ψ to

get an estimate ψ̂ for ψ such that

Pr

[
|ψ − ψ̂| � ε

cn−d

1 − cn−d ψ

]
< δ

in running time polynomial in n, ε−1 and δ−1. We take (1 − ψ̂) to be our estimate

for (1 − ψ). Note that for n � N, cn−d < (1 − ψ), and ψ
(1 − cn−d)

< 1. Hence

Pr[|(1 − ψ) − (1 − ψ̂)| � ε(1 − ψ)] < Pr[|ψ − ψ̂| � εcn−d]

< Pr

[
|ψ − ψ̂| � εcn−d ψ

1 − cn−d

]

< δ.

Now we use this lemma to prove the first part of the main theorem of the paper. We

show the existence of an FPRAS for T (G; x, 1), whenever WASTE(p) can be bounded

away from 1.

Theorem 5.2. Let δ > 0, x > 1 be fixed. For any graph G on n vertices, with girth g at

least (5 + δ) logx(n), there is an FPRAS for T (G; x, 1).

Proof. We take p = 1/x. By Section 4.2, there exists an FPRAS for WASTE(p). By

Theorem 4.1, WASTE(p) � n−δ(1 + 5
δ
). Hence we may apply Lemma 5.1, to deduce that

there is an FPRAS for Eff(G, p) = (1 − WASTE(p)). Our approximation for T (G; x, 1) is

(x− 1)n−m−1xmEff(G, p), which differs from Eff(G, p) by an easily computable multiplicative

factor. Hence the FPRAS for Eff(G, p) induces an FPRAS for T (G; x, 1).
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Note that the running time of the FPRAS depends upon δ in the following sense. Since

WASTE(p) � n−δ(1 + 5
δ
), we have that WASTE(p) < 0.99 for n > N =

( 1 + 5/δ
0.99

)1/δ
. This is

enough to show the existence of an FPRAS, by Lemma 5.1, since for fixed δ, 2N is a

constant, and we can handle the graphs of size at most N by direct calculation (in time

O(2N
2

)). However, as δ shrinks to towards zero, this constant increases.

6. Acyclic orientations

We now extend the work of previous sections to evaluating T (G; 2, 0). The evaluation of

the Tutte polynomial at this point counts the number of acyclic orientations of a graph.

An acyclic orientation is an assignment of orientations to the edges of a graph, such that

the resulting directed graph contains no directed circuits. We will call a circuit consistent

in an orientation if it forms a directed circuit. We will call an orientation cyclic if it is not

an acyclic orientation (i.e., some circuit is consistent). We will denote the probability that

a random orientation of G is cyclic by Cyc(G). Our approach will be to first present an

FPRAS for Cyc(G), and then to bound this strictly below 1 for graphs with large girth, so

that we can obtain an FPRAS for 1-Cyc(G), just as for WASTE(G, p) and 1-WASTE(G, p).

We will first take an arbitrary base orientation σ, for example by an ordering of the

vertices, and directing each edge upwards. Any other orientation will be thought of as a

function τ : E → {0, 1}, where for each edge e ∈ E, τ(e) = 0 if e is oriented as in σ and

τ(e) = 1 otherwise. Consider a random orientation of the edges π(E(G)), where π(e) is

selected uniformly at random from {0, 1} independently for each edge. Thus

Cyc(G) = Pr[π(E(G)) is cyclic].

6.1. Bounding Cyc(G)

Now using the observation that the probability that a given circuit C is consistent in

π(E(G)) is simply 2−|C|+1, we can bound Cyc(G).

Theorem 6.1. Let G be a graph with girth g = (5 + δ) log2 n, for some δ > 0. Then:

(1) Cyc(G) is at most n−δ(2 + 10
δ
),

(2) for α > 1 the probability that some cycle of length at least αg is consistently orientated

in π(E(G)) is at most n−αδ(2 + 10
δ
).

Proof. We use similar arguments to those used in the proof of Theorem 4.1. Let all

the circuits of G be listed in order of nondecreasing length C1, C2, . . . . Let pi = 2−|Ci|+1.

First note that 2−g+1 = 2n−(5+δ). Also, from Corollary 2.3 there are fewer than n3α+2 < n5α

circuits of length at most αg, so we have pn5α < 2−αg+1 = 2n−5α(1+δ/5). Hence

Cyc(G) �
∑

C: cycles in G

2−|C|+1

�
n5∑
i=1

2−g+1 +
∑
i>n5

pi
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� n52n−(5+δ) +
∑
i>n5

2i−(1+δ/5)

< 2n−δ + 2

∫ ∞

n5

x−(1+δ/5) dx

< 2n−δ + 2

[
− 5

δ
x− δ

5

]∞

n5

< 2n−δ + 2
5

δ
n−δ .

This gives (1). For (2) we split the sum slightly differently to get the result:

Pr(∃ consistent C ∈ π(E(G)) : |C| � αg) �
∑

C:|C|�αg
2−|C|+1

�
n5α∑
i=1

2−αg+1 +
∑
i>n5α

pi

� n5α2n−(5α+αδ) +
∑
i>n5α

2i−(1+δ/5)

< 2n−αδ + 2
5

δ
n−αδ .

6.2. An FPRAS for Cyc(G)

We now follow the same route that we took for constructing an FPRAS for WASTE(G, p).

First, we prove a second technical lemma, similar to Lemma 4.2.

Lemma 6.2. Given ε > 0, and G a graph. If 2−g � n−10 then for α = 2 − ln(ε/12)
2 ln n

the prob-

ability that any circuit of length greater than αg is consistent in π(E(G)) is less than

(ε/3) Cyc(G).

Proof. Since 2−g < n−10 < n−5, we have

2−g = n−(5+δ) some δ � 5, g = (5 + δ) log2 n. (6.1)

Hence g satisfies the conditions of Theorem 6.1. Observing that Cyc(G) � 2−g , we see that

α = 2 − ln(ε/12)

2 ln n

α > 1 +
5

δ
− ln(ε/12)

δ ln n
αδ ln n > (δ + 5) ln n− ln

n−αδ <
ε

12
n−(δ+5).

4n−αδ < ε/3 Cyc(G)

(2 + 10/δ)n−αδ < ε/3 Cyc(G).

The result follows by Theorem 6.1.
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Theorem 6.3. For any graph G there is an FPRAS for Cyc(G), the probability that a random

orientation of the edges is cyclic.

Proof. As in Theorem 4.3, we split the proof into two cases. Let n be the number of

vertices of G, and g its girth. If 2−g � n−10, we use simple Monte Carlo approximation,

whereas if 2−g < n−10 we use an efficient reduction to DNF counting.

Case 1: 2−g � n−10.

If 2−g � n−10 then Cyc(G) � n−10, since the probability that a given minimum circuit is

consistent is at least n−10. Hence we can use a simple Monte Carlo approximation as

follows. For j = 1 to t we simulate π(G) by orienting each edge randomly, and set Xj = 1

if π(E(G)) is cyclic and Xj = 0 otherwise. Our estimate for Cyc(G) will be X = 1
t

∑t
j=1Xj .

Clearly E[X] = Cyc(G), and the variance of X is Cyc(G)(1 − Cyc(G))/t. Hence, given

δ, ε > 0 we set t = � n10

ε2δ
� and Chebyshev’s inequality gives:

Pr[|X − Cyc(G)| � εCyc(G)] � Var(X)

ε2Cyc(G)2

� (1 − Cyc(G))

ε2Cyc(G)t

<
ε2δ

ε2Cyc(G)n10

< δ.

Finally, since t is polynomial in δ−1, ε−1 and n, and also since each simulation takes time

polynomial in n, we have an FPRAS for Cyc(G).

Case 2: 2−g < n−10.

Proceeding as before, by Lemma 6.2 we can find an α which splits the set of circuits of

G into large circuits, such that the probability of any one being consistent is less than

(ε/3) Cyc(G), and α-small circuits which we can list. We can again encode the information

in a boolean formula in disjunctive normal form; however, we take a different formula

to the one used for WASTE(G, p). We take a boolean variable xe for each edge in G.

We take xe to be true if π(e) = 0, and false otherwise. We form a list of all the α-small

circuits, C1, C2, . . . . We form two clauses for each circuit Ci as follows. Let τi(G) be some

orientation such that Ci is consistent in τi(G); then the clauses Ĉi, C̄i corresponding to

circuit Ci are Ĉi = ∧e∈Ci x̃e, and C̄i = ∧e∈Ci ¯̃xe, where x̃e = xe if τi(e) = 0, and x̃e = x̄e if

τi(e) = 1. The event that Ci is consistent is (Ĉi ∨ C̄i). Hence the event that at least one

α-small circuit is consistent is then F = ∨i(Ĉi ∨ C̄i). This is a formula of |E(G)| variables,

in disjunctive normal form, of length bounded by 2αgc, where c is the number of small

circuits. We again use the FPRAS of Karp, Luby and Madras [6] to approximate the

probability that no α-small circuit is consistent, and hence Cyc(G).

So, given any ε, δ > 0, we take α = 2 − ln(ε/12)
2 ln n

, ignore the circuits of length greater

than αg, and by Lemma 6.2 only incur an absolute error of (ε/3)Cyc(G) by doing so. By

Theorem 3.1, we can list all the circuits of length at most αg in time O(n3α+3) = O(n9ε−3/2).

Hence using Karp, Luby and Madras’s FPRAS for DNF formulae, with input size

O(αgn3α+2) = O(n9ε−3/2), we can approximate the probability that a circuit of length up
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to αg is consistent in π(E(G)) to within a relative error of ε/3, with high probability in

polynomial time. Hence we have an approximation for Cyc(G) to within a relative error

of ε/3 + ε/3 < ε with high probability in polynomial time.

6.3. Approximating T (G; 2, 0)

Theorem 6.4. Let δ > 0 be fixed. For any graph G with girth g at least (5 + δ) log2(n),

there is an FPRAS for T (G; 2, 0).

Proof. In order to approximate T (G; 2, 0) it remains to observe

T (G; 2, 0) = 2mPr[π(E(G)) is acyclic]

= 2m(1 − Pr[π(E(G)) is cyclic])

= 2m(1 − Cyc(G)).

Hence, an FPRAS for (1 − Cyc(G)) can be used to give an FPRAS for T (G; 2, 0). By

Section 6.2, there exists an FPRAS for Cyc(G). By Theorem 6.1, Cyc(G) � n−δ(2 + 10
δ
).

Hence we may apply Lemma 5.1, to deduce that there is an FPRAS for (1 − Cyc(G)).

Our approximation for T (G; 2, 0) is 2m(1 − Cyc(G)). Hence the FPRAS for (1 − Cyc(G))

induces an FPRAS for T (G; 2, 0).

Note that the running time of the FPRAS depends on δ as in Theorem 5.2. Theorems 5.2

and 6.4 together give Theorem 1.1.

7. Exact evaluation is #P-hard

We have shown the existence of approximation schemes for the Tutte polynomial at

specific points in a certain class of graphs. We now show that exact evaluation of the

Tutte polynomial is indeed #P-hard for this class of graphs.

Theorem 7.1. For fixed δ > 0, exact evaluation of T (G; 2, 0) for the class of graphs with

girth at least (5 + δ) log(n) is #P-hard.

Proof. It is well known that evaluating the Tutte polynomial at T (G; 2, 0) is #P-hard for

general graphs [8]. Suppose that we can exactly evaluate T (G; 2, 0) in time polynomial in

n, the number of vertices of the graph, for graphs of girth at least (5 + δ) log(n). Let G

be a general graph; let its girth be g. We define sk(G) to be the k-stretch of G: that is to

say, we replace each edge (u, v) of G by a path of length k, joining u to v. Note that the

girth, g′, of sk(G) is kg, and the number of vertices, n′, in sk(G) is n+ (k − 1)m. Since the

girth is increasing by a multiplicative factor of k, but the log of the number of vertices

is increasing by (approximately) an additive factor of log(k), we have g′ > (5 + δ) log(n′)

for k > K , where K depends on G and δ, but is certainly at most (5 + δ)n (for n at

least 6). Hence we can evaluate T (sk(G); 2, 0) exactly for k > K , in time polynomial in n

whenever k, and hence the number of vertices in sk(G), is only polynomially large. The
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Tutte polynomial of a graph and its stretch are related by the following formula [8]:

T (sk(G); x, y) =

(
xk − 1

x− 1

)α

T (G;X,Y ),

where

X = xk Y =
y + x+ x2 + · · · + xk−1

1 + x+ x2 + · · · + xk−1

and α is known and easily computable.

Note that (x− 1)(y − 1) = (X − 1)(Y − 1). Since we are able to evaluate T (sk(G); 2, 0),

we can evaluate T (G; x, y) at a point (depending on k) on the hyperbola (x− 1)(y − 1) =

−1. We now form sk(G) for sufficiently many k > K , so that we can obtain the univariate

polynomial of the restriction of T (G; x, y) to this hyperbola by Lagrange interpolation.

This can be done in time polynomial in n, since the maximum degree of the Tutte

polynomial, and therefore the number of points we will need to evaluate, and the time

taken for each evaluation are both polynomial in n. We use this to recover T (G; 2, 0).

Since this is known to be #P-hard to evaluate exactly, we conclude that even on the class

of graphs of girth at least (5 + δ) log(n), it is #P-hard to evaluate T (G; 2, 0) exactly.

The same proof can be used to show that for x > 1, it is #P-hard to evaluate T (G; x, 1)

exactly even on the class of graphs of girth at least (5 + δ) logx(n).

8. Extension to other points in the Tutte plane

The technique of stretching graphs introduced in Section 7 can be used to provide an

extension to the earlier work. We use stretching to get an FPRAS for some additional

points on the hyperbola (x− 1)(y − 1) = −1.

Theorem 8.1. Let δ > 0 and k a positive integer, be fixed. For any graph G on n vertices

with girth g at least (5 + δ) log2(n), there is an FPRAS for T (G; x, y) whenever x = 2k, y =
2 + 22 + ··· +2k−1

1 + 2 + 22 + ··· + 2k−1 .

Proof. Let sk(G) be the k-stretch of G as in Section 7. Then the girth, g′, of sk(G) is kg,

and the number of vertices of sk(G), n′, is n+ (k − 1)m.

Case 1: k > 2.

Let l = �logn k�. Then

log2 n
′ = log2(n+ (k − 1)m)

� log2(n+ (nl − 1)n2)

� log2(n
l+2)

� (l + 2) log2 n.

Note that for k > n we have k � nl−1 � (l + 2) (for n at least 3), and for k � n we have

l = 1, so k � 3 = (l + 2). So

g′ = kg � (l + 2)(5 + δ) log2 n � (5 + δ) log2 n
′.
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Case 2: k = 2.

If k = 2, then g′ = 2g, and n′ = n+ m � n+ n(n− 1)/2 � n2. So

g′ = 2g � 2(5 + δ) log2 n � (5 + δ) log2 n
2 � (5 + δ) log2 n

′.

In either case sk(G) satisfies the conditions of Theorem 6.4, and we may evaluate

T (sk(G); 2, 0), using the FPRAS of Theorem 6.4, in running time polynomial in the

size of G, since the blow-up to sk(G) is polynomial (as k is fixed). Finally, T (G; x, y) =

(2k − 1)−αT (sk(G); 2, 0) where α is known and easily computable, we have an FPRAS for

T (G; x, y).

All previous results giving an FPRAS for some region of the Tutte plane have included

all points along a given branch of a hyperbola (or none at all). Here we have presented

an FPRAS for a large number of points along the hyperbola (x− 1)(y − 1) = −1, though

these are restricted to y � 0. However, it suggests that, for this class of sparse graphs,

approximation along the hyperbola (x− 1)(y − 1) = −1 should be possible.

Conjecture. Let δ > 0, x > 1 be fixed. For any graph G on n vertices, with girth g at least

(5 + δ) logx(n), there is an FPRAS for T (G; x, x− 2
x− 1

).

9. Conclusion

We have bounded the number of minimum and near-minimum circuits in all graphs.

This has enabled us to show the existence of fully polynomial randomized approximation

schemes for WASTE(G, p) and Cyc(G), using Monte Carlo simulation for large probabil-

ities, and an efficient reduction to DNF counting for small probabilities. Interpreting the

Tutte polynomial in the terms of the efficiency probability enabled us to use the FPRAS

for WASTE(p) to approximate T (G; x, 1), x > 1 for graphs with large girth. We also used

the FPRAS for Cyc(G) to approximate T (G; 2, 0), the number of acyclic orientations.

A natural area for further research is to try to use the techniques introduced in

this paper to prove the existence of FPRAS schemes for the same class of graphs in

different regions of the Tutte plane. There are now known to be FPRAS schemes for

T (G; x, y), x > 1, y = 1 for dense graphs [1] and the class of sparse graph defined here.

It is an interesting conjecture that there is an FPRAS for all graphs in this region of the

Tutte plane (indeed in the entire region x � 1, y � 1 [9]).
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