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Multiserver Support for Large-Scale
Distributed Virtual Environments

Beatrice Ng, Rynson W. H. Lau, Antonio Si, and Frederick W. B. Li

Abstract—CyberWalk is a distributed virtual walkthrough
system that we have developed. It allows users at different ge-
ographical locations to share information and interact within a
shared virtual environment (VE) via a local network or through
the Internet. In this paper, we illustrate that as the number of
users exploring the VE increases, the server will quickly become
the bottleneck. To enable good performance, CyberWalk utilizes
multiple servers and employs an adaptive region partitioning
technique to dynamically partition the whole VE into regions. All
objects within each region will be managed by one server. Under
normal circumstances, when a viewer is exploring a region, the
server of that region will be responsible for serving all requests
from the viewer. When a viewer is crossing the boundary of two or
more regions, the servers of all the regions involved will be serving
requests from the viewer since the viewer might be able to view
objects within all these regions. This is analogous to evaluating a
database query using a parallel database server, which could im-
prove the performance of serving a viewer’s request tremendously.
We evaluate the performance of this multiserver architecture of
CyberWalk via a detail simulation model.

Index Terms—Adaptive region partitioning, distributed virtual
environments, multiserver architecture.

I. INTRODUCTION

CyberWalk [7], [8] is a distributed virtual walkthrough pro-
totype system that we have developed. It allows users at

different geographical locations to share information and in-
teract within a shared virtual environment (VE) via a local net-
work or through the Internet. This VE may represent a physical
museum or place of interest. It may also represent a place to be
constructed, such as a planned theme park. CyberWalk employs
a standard client-server architecture. Information on virtual ob-
jects, including their locations and shapes, are maintained in a
central database server. When a viewer (user) walks through a
VE, geometry information of the virtual objects located within a
visible distance from the viewer will be conveyed to the viewer’s
client machine. The information will then be processed and ren-
dered into images to be viewed in a timely fashion. In gen-
eral, the virtual objects could be dynamic, changing their loca-
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tions and orientations within the VE. However, since the current
CyberWalk prototype supports only static objects (i.e., objects
cannot be changed/modified), we focus on VEs with static ob-
jects only in this paper.

Our goal in this project is to provide good performance
for virtual walkthrough with Cyber-Walk, both in terms of
responsiveness and image quality, under the existing constraint
of relatively low Internet bandwidth. In [8], we have introduced
a multiresolution caching mechanism, which allows frequently
accessed virtual objects to be cached in a client’s local storage
at appropriate resolutions. The caching mechanism is also
complemented with a prefetching mechanism, which attempts
to predict the movement of a viewer and transmits the objects
to the client in advance. We have verified that the caching and
prefetching mechanisms provide impressive improvement in
system performance.

In this paper, we illustrate that when the number of viewers
exploring the VE increases, the server will quickly become the
bottleneck through serving queries from the clients, which in-
clude retrieving and transmitting the requested object models
to the clients. CyberWalk addresses this problem by employing
parallelism using an array of object servers. We propose an
adaptive region partitioning technique to partition the whole VE
into multiple regions. All objects within a region will be man-
aged by one server. Requests from viewers for any object within
a region will be served by the server managing that region. This
reduces the number of viewers that each server needs to handle.
When a viewer is crossing the boundary of two or more regions,
all the servers of the relevant regions will be serving requests
from the viewer since the viewer may be able to view objects
within all these regions. However, when a server is overloaded
by a large number of requests due to too many clients accessing
its region, the managed region will be partitioned and part of it
will be transferred to a lightly loaded neighbor server. We illus-
trate in this paper the performance improvement of CyberWalk
using this parallel architecture.

The rest of the paper is organized as follows. Section II de-
scribes relevant research work. Section III introduces the par-
allel server architecture of CyberWalk. Section IV presents the
load balancing mechanism through the adaptive region parti-
tioning scheme. Section V discusses the performance of Cy-
berWalk via several simulated experiments. Finally, Section VI
briefly concludes the paper.

II. RELATED WORK

In this section, we introduce existing multiserver techniques
for distributed virtual environments and compare local ap-
proach with global approach to load balancing. We then give
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an overview of our CyberWalk prototype system and discuss
the unique features of CyberWalk to achieving load balancing.

A. Multiservers for Distributed Virtual Environments

As the number of clients accessing a VE increases, the
amount of messages needed to be sent among them increases
dramatically. The server loading in managing the VE and han-
dling the messages also increases significantly. Traditionally, in
a VE there are two types of architecture for multiple clients to
participate in: peer-to-peer and client-server.

Earlier systems, such as NPSNET [13] and DIVE [3], are
implemented in a peer-to-peer architecture. This approach has
minimal communication overheads, but may not scale well
to handle many simultaneous clients due to the saturation of
network bandwidth in handling broadcast or multicast mes-
sages from the clients. To improve scalability, systems such
as BrickNet [24], Community Place [20] and MASSIVE-3
[16], are implemented in client-server architecture. With this
approach, each client sends messages to the server for further
propagation to other clients and/or servers in the same VE.
The advantage of this approach is that the server may perform
message filtering to minimize the amount of messages needed
to be handled by each client and to be propagated through the
network. The major limitation, however, is that as the number
of clients accessing the VE increases, the amount of messages
needed to be sent among them increases dramatically. The
server loading in managing the VE and handling the messages
also increases significantly. Another problem is that the server
may potentially become a single point of failure.

A distributed VE system with a multiserver architecture could
solve these problems. The VE may be partitioned into regions,
and each of which is assigned to a separate server, distributing
the workload among them. This may also prevent the single
point of failure problem if clients can be connected to different
servers dynamically. Systems of this approach include RING
[14], NetEffect [9], and CittaTron [18].

In RING [14], the VE is partitioned statically and each re-
gion is assigned to a fixed server. With this approach, some
servers may still be overloaded if a large number of clients con-
verge to some particular regions of the VE. A client in RING,
however, may choose to connect to a server statically or dy-
namically based on its current position. In NetEffect [9], the
VE is partitioned dynamically based on client density of indi-
vidual communities (regions), and it is possible for one server
to handle multiple communities. A master server is responsible
for performing the load balancing duty. It periodically checks
the client density of all communities and performs load bal-
ancing by transferring communities among the servers. In ad-
dition, a client may be migrated to a different community of
another server when its community is overcrowded. However,
after the client is migrated to a new community, it needs to wait
for the client machine to download the scene of the new commu-
nity. In CittaTron [18], the VE is partitioned into regions dynam-
ically based on the server loading as a result of the number of
clients in the region. Each region is assigned to a unique server.
The size of each region may be adjusted during run-time and
clients may be transferred among the servers in order to achieve

load-balancing. However, factors such as object density and lo-
cality are not considered for load balancing.

Existing multiplayer online games have already implemented
with distributed game servers. For example, Quake III Arena
[22] and Diablo II [11] offer a list of game servers for clients to
join. However, each game server maintains a unique game state,
which is not shared among the servers. This is essentially a set
of separated client-server systems running the same game and
may not be considered as a real multiserver system. EverQuest
[12], in contrast, divides the entire VE into distinct zones, and
maintains these zones by individual game servers. EverQuest
allows a client to travel from one zone (game server) to another
freely. Ultima Online [25] and Asheron’s Call [1] adopt similar
approach as EverQuest, but they divide the entire VE into visu-
ally continuous zones. The boundary of each zone is mirrored at
neighbor server to reduce the lag problem and to improve inter-
activity when a user crosses from one zone to another. In addi-
tion, Asheron’s Call is technically more advanced in that it may
dynamically transfer a portion of the zone controlled by a given
game server to any other lightly loaded server. Unfortunately,
object coherency is not considered.

B. Local and Global Load Balancing

There are two major approaches to load balancing in tradi-
tional distributed systems: global and local. Global approach
considers the loading information of all servers during load
balancing. Usually, a single processor is responsible for col-
lecting the loading information from all processors in the
system, making the load balancing decisions, and organizing
the load migration processes. Local approach, on the other
hand, considers the loading information of local servers only
when making the load balancing decisions for a server. In
general, global approach can produce more accurate balancing
decisions as the processors responsible for handling the load
balancing process have the loading information of the entire
system. However, it involves high overheads on network band-
width consumption and network delay in collecting the large
amount of loading information from all the servers as well as
processing all the collected information. These overheads are
proportional to the scale of the system. On the other hand,
local approach is generally less accurate in making the load
balancing decisions but it is more efficient, in particular, for
large systems [26].

C. Overview of CyberWalk

Most existing distributed VE systems employ a complete
replication approach by distributing the complete geometry
database to the clients before the start of the application [2],
[3], [21]. As the geometry database is usually large in size,
this approach assumes that the clients will obtain the database
through a high speed network or from some other means, such
as CDROM distribution. Another approach to distribute geom-
etry data is to send them on demand to the clients at run-time
[13], [23]. When the VE is large, a viewer would likely only
visit a small section of it. It is more efficient and effective to
transmit only the visible region of the VE to the client to reduce
startup time and network traffic.
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CyberWalk [7], [8] is based on the on-demand transmission
approach. It has many advantages over existing systems, in-
cluding minimal transmission cost through progressive model
transmission and the use of viewer/object scopes, minimal
rendering cost through multiresolution object modeling, and
high interactivity and system availability through caching and
prefetching:

• Viewer Scope and Object Scope: To minimize the amount
of data needed to be handled, CyberWalk generalizes the
Area-Of-Interest concept [13] to both viewers and objects,
referred to as the viewer scope and the object scope. A
viewer scope indicates how far the viewer can see. An ob-
ject scope indicates how far an object can be seen, and
its size is proportional to the size of the object. An ob-
ject can only be seen by a viewer when the two scopes
overlap. Hence, objects which scopes do not overlap with
the viewer scope do not need to be transferred to the client
to save transmission, processing, and memory costs. In
CyberWalk, we define a scope as a circular region charac-
terized by a radius. This viewer scope/object scope may be
considered as a restricted form of the Aura/Nimbus model
[15].

• Multiresolution Object Modeling for Progressive Trans-
mission and Rendering: Sending the complete models of
only the visible objects to the client machine on-demand
may still cause a possibly long pause in the walkthrough.
Instead, CyberWalk encodes each object model in a
format similar to the progressive mesh [17] for progres-
sive model transmission and reconstruction. Each object
is modeled as an ordered list. The list begins with a
base mesh, which is a minimal resolution model of the
object, followed by a sequence of progressive records,
each of which stores information that helps increase
the resolution of the model by a small amount. If we
apply the information stored in each of the progressive
records to the base mesh of an object in order, the object
model will gradually increase in resolution until all the
progressive records in the list are exhausted. On the other
hand, we may decrease the resolution of the object model
by reversing the operation. During run-time, the object
distance from the viewer determines the resolution of
the progressive mesh needed to be available at the client.
Since the visibility of an object usually changes slightly
from frame to frame, only a small number of progressive
records need to be transmitted to the client between
consecutive frames.

• Multiresolution Caching: In CyberWalk, a multires-
olution caching technique was developed to allow
fine-granularity of object caching and replacement. A
caching mechanism allows a client to utilize its memory
and local storage to cache currently visible objects that
are likely to be visible in the near future. A local cache
also supports a certain degree of disconnected operation
when the Internet is temporarily unavailable.

• Prefetching: A prefetching mechanism allows a client to
predict objects that are likely visible in the near future and
fetch them in advance to improve response time. In Cyber-

Walk, an EWMA with residual adjustment scheme was
developed to predict the viewer’s movement in the VE.
Considering the fact that most users use PCs equipped
with two-dimensional (2-D) mice for three-dimensional
(3-D) navigation, we have recently developed a hybrid
motion prediction method for predicting the viewer’s fu-
ture movement based on the motion pattern of the 2-D
mouse [5].

D. Unique Features of CyberWalk to Load Balancing

Although there are similarities in the load balancing process
between distributed VEs and traditional distributed systems,
there are two major differences here. First, in traditional dis-
tributed systems, we may transfer any tasks to any servers
[4]. This provides a greater flexibility to the load balancing
process. In distributed VEs, however, virtual objects exhibit
visual coherency—if an object is visible to the viewer, objects
that are geographically close to this object are likely visible to
the viewer too. To minimize the communication overheads, we
need to cluster nearby objects into the same regions as much
as possible so that they can be served by the same servers.
Hence, in the load balancing process, an overloaded server may
transfer its load to its adjacent servers only.

Second, in traditional distributed systems, the general objec-
tive of load balancing is to complete all the tasks within the
shortest possible time. Hence, it is important to balance the
loadings of all the processors as much as possible. However,
in distributed VEs, our objective is to complete all the update
operations within a given time (referred to as the performance
threshold). Hence, if we can complete all the tasks within the
given time, there is no need to perform load balancing. This can
minimize the overhead of the load balancing process.

Unlike distributed systems, mobile communication systems
only provide very limited degree of load balancing. A mobile
system is generally constructed by a collection of cells. Each
cell is served by a dedicated base station (i.e., server) located at
the center of the cell and is allocated a fixed number of chan-
nels. When all the channels of a cell are taken up by the mobile
users, it is possible for the cell to borrow additional channels
from neighbor cells or from a central controller in order to serve
additional users. Once the cell fails to get additional channels, it
will have to reject the service request from new users [19]. The
major difference between mobile systems and distributed VEs
is that in mobile systems, the geographical locations of the base
stations are basically fixed and cannot be dynamically adjusted
according to the density of the mobile users. On the other hand,
in distributed VEs, we may dynamically adjust the size and lo-
cation of the region served by a server in order to achieve load
balancing.

III. PARALLEL ARCHITECTURE OF CYBERWALK

To study the impact of the number of clients on the perfor-
mance of a centralized server, we have conducted a simulated
experiment to measure the average latency time and response
time of multiple viewers on single-server CyberWalk. Latency
time measures the average time required to retrieve the base
meshes of all visible objects, i.e., from the moment the viewer
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makes a move to the moment when there is a coarse image of
all visible objects. Response time measures the average time that
the viewer needs to wait from the moment the viewer makes a
move to the moment when all the visible objects are available at
the client at their optimal resolutions. Latency time inherently
measures the interactivity of the system, while response time
measures the absolute performance of the system. The number
of clients that we have experimented ranges from 2, 4, 8, 16, 32,
64, and 128.

The size of the VE was set to 100 100 square units (or
cells); 6000 virtual objects are uniformly distributed among the
cells. The radius of each object scope is randomly generated,
ranging from 0.7% to 1% of the size of the VE, with a mean
of 0.85%. Each object is modeled by a progressive mesh, con-
taining 4500 to 7000 progressive records with a mean of 5300.
Each progressive record has a size of 40 bytes while each base
mesh has a size of 3 kB. The database is approximately 1.2 GB.
The viewer’s viewing angle is set to 120 degrees. The radius
of the viewer scope is also generated in the same way as that
of the object scope. We assume that the network bandwidths of
the server and of each client are 20 and 2 Mbps, respectively.
The client movement in the VE is determined by sampling the
movement of a real user who interacts with the CyberWalk pro-
totype using a mouse. The movement is modeled as follows.
The viewer moves circularly. Each movement step includes a
translation of 15 units along the viewing direction, followed by
a rotation of the viewing direction of 12 degrees. At each step,
the viewer rotates his/her head by 20 degrees. In addition, the
moving direction changes with an angle of 10 degrees, after
every four movement steps. This is termed changing circular
moving pattern (CCP).

Both caching and prefetching mechanisms are activated in
each client. Since in our previous study [8], we have found that
1% cache size is able to achieve a cache hit of 86%, the size of
the storage cache of each client is set to 1% of that of the data-
base, i.e., 12 MB. Both the server and the client programs run on
PCs with a Pentium III 800-MHz CPU and 512-MB RAM. The
result of the experiment is shown in Fig. 1. Fig. 1(a) and 1(b) de-
picts the performance of the server when the number of clients
ranges from 2 to 128. As the performance of the server cannot
be seen clearly in these diagrams when the number of clients is
less than 16, we show it in a much finer scale in Fig. 1(c) and
1(d).

From the figure, both latency and response times of the server
as observed by each client increase super-linearly as the number
of clients increases. For example, the latency time for 128 clients
is as high as 28 s. This is very nonfavorable for walkthrough
as each client will start experiencing low interactivity when the
number of clients accessing the VE reaches a certain value. As-
suming that a 0.2-s latency time is the performance threshold
that a client can tolerate, we observe from Fig. 1(c) that all
clients will experience low interactivity when there are more
than about ten clients.

To address this problem, CyberWalk employs a parallel archi-
tecture of multiple servers. A parallel architecture is fundamen-
tally a share-nothing architecture [10]. As illustrated in Fig. 2,
each server manages its own memory and database repository
of virtual objects. In traditional share-nothing architecture, one

Fig. 1. Effect of number of clients on the performance of the server.

Fig. 2. Parallel architecture of CyberWalk.

of the servers is often dedicated to be a coordinator, which has
complete knowledge of the data managed in each of the other
servers. When the coordinator receives a query from a client, it
forward the query to the server which manages the data required
by the query. However, the coordinator could quickly become
a bottleneck when the rate of query submission becomes high.
Another problem with such architecture, which is regarded as
very important in our application, is that any changes made by
a client may have to go through many network communication
steps before the client receives a reply. This extra delay can se-
riously affect the interactivity of the system, especially if the
servers are not physically located in the same LAN.

In CyberWalk, we partition the complete VE into a two-di-
mensional array of regions. Virtual objects within a region will
be managed by a single server only. Each server will be serving
only those clients who are exploring objects within the region
managed by the server. In other words, each client will be com-
municating directly to the server which manages the virtual ob-
jects that the client is exploring. Under normal circumstances,
when a viewer is exploring a region, the server managing the re-
gion will be responsible for serving all requests from the viewer.
However, when the viewer moves to the region boundary, it
may be able to see objects belonging to the neighbor regions.
Fig. 3 shows such an example. When viewer is crossing the
boundary from region to region , i.e., when the viewer
scope of , , touches the boundary of and , both
servers and , in addition to , will now be serving re-
quests from since is able to view objects within regions

, , and .
To handle this situation, when first touches the boundary

of , server will send a message to server of the format
, where is the ID of , which is inherently
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Fig. 3. Visual interaction of a client with mulitiple servers.

the IP address of the client machine, is the location of
in the VE, and is the viewing direction of . Once server

has received such a message from server , it determines
the objects in that are visible to and transmits the cor-
responding progressive records and/or base meshes directly to

. will then maintain direct communication channels with
both and as long as overlaps with both regions. If the
viewer scope of now touches , server will send a similar
message to server and will now be communicating with
server , and . When eventually moves into region ,

will stop communicating with server and and will only
communicate with server .

An advantage of this architecture is that each server will
effectively be serving for a considerable less number of clients.
When the number of clients inside a region has substantially
increased to the extent which affects the performance per-
ceived by a viewer, that region may be further partitioned and
the newly partitioned region may be allocated to a less busy
neighbor server.

As depicted in Fig. 2, one process, named the Loading Col-
lector (LoC) process, is dedicated to collect the loading infor-
mation of each server. Each server will periodically inform the
LoC process about its load, and has the flexibility of determining
how often it will inform the LoC process about its load. If a
server’s loading varies more frequently, the server will inform
the LoC more often; otherwise, it could do it less frequently.
The LoC process, thus, has the most up-to-date loading infor-
mation of each server. Approaches to determine such duration
has been studied in [6] and is thus beyond the scope of this
paper. When a server is overloaded, it contacts the LoC process
and requests for the loading information of its neighbor servers.
The overloaded server will then select a neighbor server with
the lowest load to absorb the newly partitioned region. The LoC
process could also be piggybacked as a point of contact for each
newly-jointed client. It finds the appropriate server for the user
to contact to explore the relevant part of the VE. Note that the
LoC process could be hosted in any one of the servers. When
the server hosting the LoC process fails or is overloaded, a new
server could be selected to host it.

In order to fully realize the advantage of this parallel architec-
ture, we need to address two issues. First, we need a mechanism
to monitor the servers’ loading. Since the load of each server
needs to be updated frequently, this mechanism must be effi-
cient in order not to cause extra load to each server. Second, we
need to properly partition the VE into regions. Since the virtual

objects may not be uniformly distributed among the regions, if
the VE is simply partitioned in a uniform manner, some servers
will need to manage more objects than others. This will cause
some servers to experience a heavier workload than others. In
addition, some regions may contain more interesting objects and
attract more visitors. This skewed popularity characteristic of
virtual objects may further affect the load distribution among
the servers. An efficient partitioning scheme which would con-
sider the loading of the affected servers is needed. We term our
partitioning scheme, adaptive region partitioning, as the parti-
tioning of regions will be adapted to the load among the servers.

IV. ADAPTIVE LOAD BALANCING

In CyberWalk, the complete VE is regularly subdivided
into a large number of rectangular cells. Each cell, , con-
tains a set of objects, i.e., .
The VE is also partitioned into a set of regions, i.e.,

, while each region contains an
integer number of cells, i.e., . Fig. 4
depicts a partition of nine regions, each containing nine cells
and managed by one server.

There are several ways to partition the VE into regions. The
simplest way is to evenly partition it and we refer to it as the
even scheme. Each region will cover the same geographical size
of the VE and contain the same number of cells, i.e.,

. However, since the virtual objects might
not be distributed uniformly within the VE, some regions may
contain more objects than others. This could be addressed by
partitioning the VE based on “object density” and we refer to it
as the density scheme. In this scheme, each region will contain
approximately the same number of objects, i.e.,

. However, each region may cover
a different geographical size of the VE, and thus may contain
different number of cells.

Note that when the virtual objects are distributed uniformly
within the VE, the density scheme and the even scheme will
result in a similar partition. The density scheme attempts to
achieve a uniform load among all servers by ensuring that each
server will manage the same number of objects. This is based on
an assumption that each object has a similar degree of interest
to the viewers and thus, a similar probability of being accessed.
In practice, however, viewers may show particular interests in
certain objects and explore certain regions more frequent than
others. Hence, the density scheme may not necessarily result in
a uniform load among the servers. We address this issue by our
adaptive region partitioning scheme, in which the partitioning
of the regions is adapted to the load among the servers.

A. The Adaptive Region Partitioning Scheme

When CyberWalk is first started, there is no information re-
garding to the loading of each server and the VE is partitioned
into regions based on the density scheme. Each server com-
putes its own loading periodically. When server is found to
be overloaded, region will be partitioned. The newly parti-
tioned region will then be allocated to a neighbor server of
with the lowest load. This inherently directs all future viewers’
requests on the newly partitioned region to the neighbor server
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Fig. 4. Partitioning of the VE.

and thus reduces the load of . For example, in Fig. 4, when
server of region is overloaded, is partitioned into two
subregions, and , such that may be transferred to
a neighbor server.

To determine if a region needs to be partitioned, each
server will continuously monitor its own load by main-
taining two monitor windows called the short duration
window, , and long duration window, , with a
window size of and , respectively, where

. (Hereafter, we will leave out when
the context is clear.) The short duration window monitors the
load of within a very short duration of time. The purpose
is to detect sudden bursts of load on the server either due to
network congestion or a sudden increase in interest on region

. In order for a server to respond to the sudden bursts of load
quickly, should be set as small as possible. However,
the smallest is limited by the frequency at which the
server updates its own loading. By contrast, the long duration
window monitors the load of within a much longer period
of time. The purpose is to detect a continuous high load on the
server. cannot be set too high or the server will not
be too responsive to the change in loading, and it cannot be set
to small or it will increase the partitioning overhead. From our
experiments, setting to a few times higher than the
value of produces reasonably good results in most
situations.

We model the server’s loading by two factors: CPU loading
factor and network loading factor . The
CPU loading factor captures the processing overhead required to
identify and retrieve the object models requested by the viewers.
It is modeled by the server utilization and approximated by the
number of objects processed in a second

where is the maximum number of objects a server can
process in a second. This information inherently captures the
CPU overhead of the server. The network loading factor cap-
tures the transmission overhead required to transmit the progres-
sive records to the viewers and is approximated by the amount
of object data sent to the client per second

where the effective network bandwidth is the actual network
bandwidth allocated to the server. Hence, each server will mon-
itor the number of bytes sent through the network and determine
the duration to transmit the data.

To determine if a region needs to be further partitioned, each
server maintains two sets of partitioning thresholds,
and for the short duration window and and

for the long duration window. When exceeds
either or , the region will be further partitioned.
Likewise, when exceeds either or , the
region will also be partitioned. The setting of these two sets of
thresholds determines the loading at which the server should
activate the partitioning process. Since each server compares
its loading with the thresholds for the short duration window
frequently (once every ), the thresholds essentially
specify a maximum loading that the server should not exceed in
order to maintain the system’s interactivity. On the other hand,
each server compares its average loading with the thresholds
for the long duration window in a less frequent manner (once
every ), the thresholds essentially specify an average
loading that the server should not exceed in order to maintain
the system’s interactivity. In other words, these two sets of
thresholds specify the bounds on the CPU usage and Network
usage of the server. In order to maximize the resource usage
of the server, we may set the thresholds for the short dura-
tion window as high as possible. The thresholds for the long
duration window should be set lower than those of the short
duration window. However, they should not be set too low as it
would waste the server’s resources.

The following steps summarize the process of partitioning a
region .

1) When server is overloaded, it contacts the LoC for the
loading information of its neighbor servers. For instance,
in Fig. 4, neighbor servers of are , , and .

2) When server receives the loading information of its
neighbor servers, it selects the neighbor server with the
lowest load as the target server to offload some of
its load. This load transfer is achieved by partitioning

and allocating the newly partitioned subregion to the
target server, i.e., the newly partitioned subregion will be
merged with managed by . Referring to Fig. 4, as-
suming that server is overloaded and is selected as
the target server, will partition into subregions
and , and transfer to . Future requests on re-
gion will then be handled by .

3) Server will determine the total amount of load needed
to be transferred to neighbor servers. We refer to such
goal as the target load. In our prototype, each server will
reduce its load to 10% below the threshold value.

4) The partitioning is performed on a per cell basis. Each
server will maintain a workload indicator for each cell.
The partitioning of a region is achieved by de-allo-
cating one or more of its boundary cells, , from
and transferring them to the target server, i.e.,

and . For example, cells ,
, and in Fig. 4 are the boundary cells of to be

merged with .
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5) Sometimes, it is possible for the target load to be higher
than the amount of load that the target server can accept.
To prevent overloading the target server, only transfers
a portion of the target load to the target server. It then
selects another target server and transfers the remaining
load to it.

As discussed in Section II-D that virtual objects in the VE
exhibit visual coherency, should offload its load to only its
neighbor servers instead of any arbitrary servers, to reduce the
communication overheads of the system. In Fig. 4, if server
offloads cells , , and at three different load balancing
operations to arbitrary servers, these three cells may potentially
be offloaded to three different servers. When the viewer scope
of a viewer overlaps with these cells, the client will have to com-
municate with multiple servers in order to receive object models
within these cells. On the other hand, when offloading is per-
formed only to the neighbor servers, all these three cells may
well be offloaded to server and the client will only need to
communicate with two servers.

B. Identifying Target Servers and Target Cells

When an overloaded server is to transfer part of its load to
a neighbor server, it needs to identify some boundary cells as
the target cells to be transferred and a neighbor server as the
target server to accept the cells. We use Fig. 5 as an example to
show how we identify the target server and the target cells. We
assume that server is overloaded and needs to transfer some
of its load to a neighbor server.

We define a break point as a cell that indicates a potential
location for finding boundary cells to be transferred when the
server is overloaded. All boundary cells that have at least two of
their four sides connected to cells managed by other servers are
identified as break points. To minimize the cost of identifying
break points during the load balancing process, each server will
maintain a break point list to indicate all the break points along
its boundary. At the same time, the server will also maintain a
boundary edge list. Each edge is either a horizontal line or a
vertical line that joins two aligned break points. For example, in
Fig. 5, and will form an edge because they are aligned
horizontally; however, and will not because they are not
aligned vertically or horizontally. Hence, region has four
edges (highlighted as thick lines) in its boundary edge list. We
further maintain a neighbor server list to indicate the neighbor
servers that are adjacent to edges found in the boundary edge
list. Once we have constructed the neighbor server list, we may
select a server with the lightest load from the neighbor server
list as the target server of .

In Fig. 5, if we assume that server is selected as the target
server, the boundary cells between to will be selected
as the target cells to be transferred to , until the target load
is reached. After transferring the boundary cells between
and to , break points and will be removed from
the break point list. The cell to the left of will become a
new break point to be inserted to the break point list. A new
boundary edge will then be generated which is formed by
and the new break point. Hence, we need to remove the edge
between to from the boundary edge list and add the new

Fig. 5. Break points and boundary edges of a region.

edge to the list. If the total load of all the boundary cells between
and is lower than the target load, we will select the cells

along the new edge as the target cells to be transferred to ,
until the target load is reached. However, if cannot accept
the complete target load, will transfer the remaining load to

, if is the next lightest loaded server in the neighbor server
list.

The basic idea of the adaptive region partitioning scheme
is that the overloaded server always looks for a lightly loaded
neighbor server and “peels” its own boundary cells to that server.
Note that we do not include edges that are not found in the
boundary edge list for cell transfer, because if we do so, it will
likely increase the perimeters of the regions. For example, trans-
ferring the boundary cells between to will likely de-
crease the perimeters of regions and , while transferring
the boundary cells between to will likely increase the
perimeters of the regions and hence increase the chance that a
viewer needs to be served by more than one server.

V. RESULTS AND DISCUSSIONS

We have developed a simulation model and conducted ex-
perimental studies to quantify and evaluate the performance of
the parallel architecture of CyberWalk. The parameters used
in our experiments are listed in Table I. Our experimental set-
tings are similar to those described in Section III. In our sim-
ulation model, the VE is regularly subdivided into 100 100
cells. The complete VE is partitioned into regions, with

. Since each region is managed by one server,
servers will be required.

There are virtual objects in the VE distributed among the
cells. The modeling of each virtual object has been described
in Section III. There are clients accessing the VE. Both the
server and the client programs run on a Pentium III PC with a
800-MHz CPU and 512-MB RAM. The network settings are es-
sentially the same as described earlier. We model two object dis-
tribution patterns, , in our experiments: uniform and skew.
In uniform distribution, the objects are distributed uniformly
among all regions. In skew distribution, each region contains
a random percentage of objects, ranging from 30% to 200%
of the mean value. We study three different region partitioning
schemes, : even, density, and adaptive. In even and density,
each region will not be further partitioned into subregions re-
gardless of the workload of the server. In adaptive, a region
might be further partitioned into subregions using the adaptive
partitioning scheme.
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TABLE I
PARAMETER VALUES FOR THE EXPERIMENTS

To monitor the load, the window size of the short duration
window of each server is set to 1 sd, as we update the server
loading once a second. The window size of the long duration
window of each server is set to 5 s in our experiments. We as-
sume the effective bandwidth ratio to be 0.8. Since the max-
imum network bandwidth of each server is 20 Mbps, the ef-
fective network bandwidth is thus 16 Mbps. In addition, we set

to , which is the maximum number of objects
that the server can process in a second. This number is obtained
through experiments.

To determine at what loading to initiate the partitioning
process, we set both CPU and Network partitioning thresholds
for the short duration window and , respectively,
to 1. As mentioned in Section IV-A, these two thresholds deter-
mine the maximum loading of the server. We also set the two
thresholds for the long duration window and to
0.9, except for experiment #5, where we attempt to study how
the setting of the two thresholds may affect the performance of
the system.

Each viewer will be residing at a random position within the
VE when the simulation starts, and move within the VE ac-
cording to the changing circular pattern (CCP) described in Sec-
tion III. Our simulation program ensures that the path of each
viewer is different. We measure latency time and response time,
as defined in Section III, experienced by each client. In each ex-
periment, each metric is determined by averaging the metrics
obtained from all movement steps of all clients. The standard
deviations are found to be small. Here, we present six of the
experiments to quantify the performance of the parallel archi-
tecture of CyberWalk.

A. Experiment #1

In the first experiment, we study the effect of number of
servers on the performance of CyberWalk. In this experiment,

is fixed at 6000 objects. We depict the overhead when there
are 128 clients. The region partitioning scheme is fixed at even.
(The effect of various region partitioning schemes are studied in
Experiments #3 and #4.) The object distribution pattern is fixed
at uniform. (The effect of various object distribution patterns
will be studied in Experiment #3.) The number of servers, ,
ranges from one, three, six, and nine. The measurements of
the two metrics are depicted in Fig. 6(a) and (b). Since the
values of the metrics for six and nine servers are too small to
be noticeable, we zoom in the scale for these two data points
in Fig. 6(c) and (d). We observe from the diagrams that both
latency time and response time decrease exponentially with

Fig. 6. Effect of number of servers on system performance.

the number of servers. Using the 0.2-s performance threshold
for acceptable visual perception, we can see from the figure
that nine (or more than six) servers are sufficient to serve for a
population of 128 clients.

B. Experiment #2

In the second experiment, we study the effect of number of
objects on the performance of CyberWalk. In this experiment,
ranges from 1000 to 6000 objects. The number of clients ranges
from 16 to 128. The number of servers is fixed at nine. The re-
gion partitioning scheme is still fixed at even, and the object
distribution pattern is fixed at uniform. Fig. 7 depicts the mea-
surements of the two metrics. The first row shows the metrics
versus the number of objects, while the second row shows the
metrics versus the number of clients. We can see that both la-
tency time and response time increase with the number of ob-
jects. It is very encouraging that all the latency times fall below
the 0.2-s performance threshold, meaning that users are able to
experience a good visual perception on the system, even with a
lot of clients and objects.

When comparing Fig. 7(b) and (d), we also observe that the
number of objects does not have as big effect on the performance
as the number of clients. This is because the amount of data, or
details, transmitted depends on the distance of an object from
the viewer. In a typical walkthrough, only a few objects are re-
ally rendered at high detail at any time. Increasing the number of
objects will only moderately increase the amount of data needed
to be sent. In contrast, increasing the number of clients will con-
tribute to a greater amount of data transmitted from the server
since each client will need to request for its own copy of all the
visible object models.
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Fig. 7. Effect of number of objects/clients on system performance.

Fig. 8. Performance of even/density region partitioning schemes.

C. Experiment #3

In the third experiment, we compare the performance be-
tween even and density region partitioning schemes. In this ex-
periment, is fixed at 6000 objects. The number of clients
ranges from 16 to 128. The number of servers is again fixed at
9. Since two partitioning schemes differ only when the objects
are not distributed uniformly across the VE, we will only look
at the skew object distribution pattern here.

In Fig. 8, we show three sets of data in each graph, depicting
the lowest, the average, and the highest overheads among the
nine servers. We observe that in even partitioning, there is a
big difference in performance among the servers. This indicates
that some servers might be overloaded, while others might be
under utilized. This is because in even partitioning, the VE is di-
vided into equal-sized regions and hence each server will need
to handle different number of objects, resulting in a nonuni-
form workload among the servers. We also observe that when
there are 128 clients, the latency time experienced by the clients
will be higher than the 0.2-s performance threshold. In con-
trast, in density partitioning, the difference in overhead among
the servers is minimal. This indicates that density partitioning
is able to evenly distribute the workload among the servers. In
addition, all clients will experience a good visual perception as
the latency times of all clients are under the 0.2-s performance
threshold.

Fig. 9. Performance of density/adaptive region partitioning scheme.

D. Experiment #4

In Experiment #3, we have indicated that by partitioning the
regions based on object density, all servers will have relatively
uniform load and thus, similar performance. This is based on the
assumption that each viewer has a similar degree of interest in
each object. Therefore, if all regions have a similar number of
objects, they will also have a similar access probability. How-
ever, in practice, viewers usually have different degrees of in-
terest in different objects. Hence, a region may have a higher
access probability if the viewers have a high interest in the ob-
jects within it, disregarding of the number of objects that the
region contains. Consequently, a uniform object density among
various regions does not necessarily result in a uniform work-
load among the servers.

In the fourth experiment, we study the effect of our adap-
tive region partitioning scheme in balancing the load among the
servers. We fix the number of clients to 128 and the number of
objects to 6000. We only look at the skew object distribution
pattern in this experiment, as the even object distribution pat-
tern has a similar behavior. For comparison purpose, we show
results of both density and adaptive partitioning schemes since
the density scheme is shown to be able to achieve certain degree
of uniform load among the servers in Experiment #3. To model
different degrees of interest in objects, the center region is ded-
icated to be the hottest region in which of the viewers will
visit.

To collect the loading information, each server notifies the
LoC process of its load once a second in our experiment. We
measure the performance of the hottest region by varying
from 10% to 80%. Fig. 9 shows the performance of the center
server, i.e., the hottest server, and the average performance of its
affected neighbor servers. We can see that both latency and re-
sponse times increase with the number of viewers. With the den-
sity partitioning scheme, the center server experiences a much
higher overhead than the neighbor servers. We can see from
the figure that the neighbor servers are under utilized, while the
center server is overloaded. Using the 0.2-s second performance
threshold, we observe that the clients will start experiencing a
poor visual perception when more than 40% of the viewers are
visiting the center region. By contrast, with the adaptive parti-
tioning scheme, the overhead experienced by the center server
is similar to that experienced by the neighbor servers. This in-
dicates that the center server could offload its workload to its
neighbor servers properly. Hence, each server is able to support
a much larger percentage of viewers. From Fig. 9(a), we can see
that even with 80% of the viewers visiting the center region, the
latency time of the center server (the second curve from the top)
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Fig. 10. Effect of setting the partitioning thresholds on system performance.

is only just above the 0.2-s performance threshold with our pro-
posed method.

E. Experiment #5

In this experiment, we attempt to study how the setting of
the partitioning thresholds would affect the performance of the
system. All the other settings of this experiment are the same as
those in experiment #4, except that here, we vary the percentage
of viewers visiting the hottest region from 10% to 100%. We
would like to see how the system would behavior when the
loading of the hottest server reaches its thresholds. Since the
thresholds for the short duration window specify the maximum
loading of the server, we keep them at 1 throughout the exper-
iment. We vary the thresholds for the long duration window to
see how they affect the load distribution.

Fig. 10 shows results of this experiment. The two numbers
associated with each curve indicate the thresholds for the
short/long duration windows. At low viewer percentages, we
can see from Fig. 10(a) that the setting of the thresholds has very
little effect on the load distribution. The difference between
the loading of the hottest server and the average loading of the
affected neighbor servers is roughly the same for all threshold
settings. However, as the percentage of viewers visiting the
hottest region increases, the difference in loading decreases
when the thresholds are set lower (e.g., 0.5). This is because
at lower threshold values, the hottest server will become over-
loaded at lower loading and activate the partitioning process
more often. As the number of viewers increases, all curves
will approach to their maximum latency times. We can see
that with low threshold setting, difference in loading between
the hottest server and the affected neighbor servers becomes
small. This is because at higher loading, the hottest server will
initiate the partitioning process more frequently to keep its
own load to within the threshold. Concurrently, some of the
affected neighbor servers may become overloaded themselves
and transfer some of their loads to their own neighbor servers,
which in effect increases the number of affected neighbor
servers to share the load. We may note that there is a wider
gap between the loading of the hottest server and the average
loading of the affected server when the thresholds are set at
0.9. This indicates that the loading of the servers are not fully
saturated yet.

Judging from the results, setting lower threshold values for
the long duration window allows the system to complete the task
well before the 0.2-s performance threshold. However, since the
servers would now initiate the partitioning process at a lower
threshold, it can only serve fewer clients. On the other hand, by
setting higher threshold values for the long duration window,

Fig. 11. Partitioning of the VE when there is a large number of clients.

the server will initiate the partitioning process at higher loading.
This will increase the number of clients that the system can serve
but at the same time increase the latency time. From Fig. 10(a),
the hottest server has exceeded the 0.2-s performance threshold
when the thresholds of the long duration window are set at 0.9.

F. Experiment #6

Fig. 11 demonstrates how the shape of the regions changes
as we introduce viewers into the VE. Fig. 11(a) shows the
initial partitioning of the VE, based on object density, into nine
regions managed by nine servers. (Grey dots represent objects.)
Hence, regions with high object density have smaller size.
Fig. 11(b) shows the new partitioning after we have introduced
a large number of clients (shown as black dots) and let them
walk around for a while. We can see that regions with a lot
of clients are significantly smaller in size now. We can also
see that the size of some regions becomes larger even though
they also have some clients inside, for example, the left middle
region. This is because they have taken up some of the loading
from their neighbor regions. As they are not overloaded yet,
they do not distribute any of their own loads to other regions.
Overall, our adaptive region partitioning scheme can effectively
distribute the load among all the servers while minimizing the
communication costs.

G. Evaluations: Local Approach Versus Global Approach

Although the global approach to load balancing can achieve
a more accurate load balancing in general, there are two reasons
for us to adopt the local approach here. First, the local approach,
in particular our proposed method, in general has a much lower
computation overhead as it only needs to process loading infor-
mation of the neighbor servers. This is important as the load bal-
ancing process runs on the overloaded processor. Second, unlike
the global approach that generally aims at achieving even load
distribution among the processor, in our application, we only
need to solve the overloading problem as it occurs. This can re-
duce overall network consumption and computation overhead.
As long as the system can complete all the tasks within the per-
formance threshold, the user will be able to enjoy a satisfactory
performance even if some servers may have a high loading than
the others.

Although it is difficult to compare the complexity of the
local approach with the global approach under all possible
situations, a general comparison can be found in [26], which
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describes a detailed comparison among various load balancing
methods in terms of information dependency, load balancing
overheads and aging of information. The conclusion is that
diffusive methods in general perform better than other methods
including the global methods. Since our method is also a dif-
fusive method, which propagates the excessive load out from
the overloaded server, our method also performs better than the
global methods in general. Further, due to visual coherency of
virtual objects, global methods cannot simply pass any cells
from an overloaded server to any lightly loaded server. The
load still has to propagate from the overloaded server through
all the intermediate servers to the lightly loaded server. Hence,
the performance of the global methods is expected to be even
worst when applied here.

To explain the above point, we may consider a situation where
all the neighbor servers of an overloaded server are nearly over-
loaded. With our method, the overloaded server, , will first
indicate to a neighbor server, , that will need to transfer
certain amount of its load to . If determines that it will
be overloaded after receiving the load, it will initiate a parti-
tioning process to transfer some of its load to its own neighbor
server, , before accepting the load from . With a global
method, even though if we can identify that is the nearest
lightly loaded server of , we cannot simply pass the boundary
cells of to . We need to pass the boundary cells of to

, which in turn passes its own boundary cells to .

VI. CONCLUSION

In this paper, we have described a parallel architecture to sup-
port virtual walkthrough and illustrated its implementation in
our CyberWalk prototype. We have pointed out that in tradi-
tional client/server architecture, a single server has limitation in
serving multiple clients. As one alternative to improving the per-
formance, we propose a parallel architecture and employ mul-
tiple servers in serving the clients. We have discussed several
ways of partitioning the virtual environment into multiple re-
gions and studied their behaviors under various object distribu-
tion patterns. We have also introduced the adaptive region par-
titioning scheme to address the problem of nonuniform access
among the regions. This scheme, in effect, partitions the virtual
environment based on the viewers’ degrees of interest on the re-
gions.

We have studied our parallel architecture via simulation and
experiments. Our studies show that the adaptive region parti-
tioning scheme is very effective in maintaining a uniform load
among the servers. Although we have not conducted experi-
ments on other moving patterns, we believe the CCP moving
pattern studied in this paper is able to present an overall perfor-
mance behavior of our approach.
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