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Abstract

The goal of this paper is to study the BMN correspondence in the fermionic sector.
On the field theory side, we compute matrix elements of the dilatation operator in N = 4
Super Yang-Mills for BMN operators containing two fermion impurities. Our calculations
are performed up to and including O(λ′) in the ’t Hooft coupling and O(g2) in the Yang-
Mills genus counting parameter. On the string theory side, we compute the corresponding
matrix elements of the interacting string Hamiltonian in string field theory, using the
three-string interaction vertex constructed by Spradlin and Volovich (and subsequently
elaborated by Pankiewicz and Stefanski). In string theory we use the natural string
basis, and in field theory the basis which is isomorphic to it. We find that the matrix
elements computed in field theory and the corresponding string amplitudes derived from
the three-string vertex are, in all cases, in perfect agreement.
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1 Introduction

In [1], Berenstein, Maldacena and Nastase (BMN) proposed an intriguing correspondence
between type IIB superstring theory on a pp-wave background geometry and a sector of
N = 4 Super Yang-Mills (SYM). BMN compared the exact expression [2] for the mass
spectrum of the string states in free string theory, gst = 0, to the planar anomalous
dimension of certain field theory operators - since then called the BMN operators - to
the first order in the ’t Hooft coupling of the theory λ′, finding remarkable agreement.
Shortly after it was shown in [3] that, thanks to the superconformal invariance of the
N = 4 theory, it was actually possible to reproduce from field theory the full (all orders
in λ′) expression for the masses of string states at gst = 0. An important step forward
was subsequently taken in [4, 5], where the correspondence was expressed as [5]

1

µ
Hstring = ∆− J , (1.1)

where Hstring is the interacting string Hamiltonian, µ is the scale parameter of the pp-
wave metric, and ∆− J is the difference between the gauge theory dilatation operator ∆
and the R-charge J . The relation (1.1) is conjectured to hold in the double-scaling limit
N ∼ J2 →∞ to all orders in the two parameters of the theory, g2 and λ′, where

λ′ =
g2
YMN

J2
=

1

(µp+α′)2
, (1.2)

g2 =
J2

N
= 4π gst (µp+α′)2 . (1.3)

Here λ′ is the effective ’t Hooft coupling of the BMN sector [1], and g2 is the genus
counting parameter of Feynman diagrams [1, 6, 7]. The right hand sides of (1.2), (1.3)
express λ′ and g2 in terms of the parameters in pp-wave string theory, so that 1/λ′ ∝ µ
measures the deviation from flat space µ → 0 and, importantly, the Yang-Mills genus
counting parameter g2 is proportional to the string coupling gst.

Tests of the relation (1.1) rely on the careful comparison of string amplitudes obtained
in pp-wave string field theory to the matrix elements of the dilatation operator ∆ in Yang-
Mills, and have been performed, for the bosonic sector of the theory, in a variety of cases:

a. in [8], the case of BMN operators with two scalar impurities of different flavour was
studied;

b. in [9,10], BMN operators with an arbitrary number of scalar impurities was consid-
ered; and finally,

c. in [10], all the SO(4)×SO(4) representations of two scalar impurity and two vector
impurity BMN operators were studied, as well as BMN operators with mixed (one
scalar/one vector) impurities.
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In all cases, precise agreement was found between the string amplitudes obtained using
the superstring vertex1 and the corresponding matrix elements obtained in field theory
[8–10]. In particular, the analysis of [10] clarified a puzzle concerning the realisation of the
Z2 ⊂ SO(8) symmetry of the pp-wave background geometry.2 Apparently, the Z2 part
of the bosonic symmetry of the pp-wave background is not respected by the Spradlin-
Volovich three-string interactions [12, 15–18]: a relative minus sign appears in the string
amplitude involving states with two oscillators along the first SO(4) compared to that
with two oscillators along the second SO(4). However, the string vertex is invariant under
Z2, and the puzzle is solved, if one makes the parity assignment under the Z2 symmetry:
|0〉 → |0〉, |v〉 → −|v〉, where |v〉 is the true ground state of the pp-wave theory, whereas
|0〉 is the string state corresponding to the ground state for flat background (but not for
µ 6= 0, where its energy is proportional to µ). In [10], the emergence of the previous parity
assignment was explicitly shown in field theory.

An important point should now be emphasised. In order to use and in particular to
test (1.1) at the level of matrix elements, it is essential to construct the isomorphism
which connects the basis of states on which the string theory Hamiltonian acts to the
corresponding basis of field theory operators. Lightcone string field theory is naturally
equipped with an orthonormal basis of single- and multi-string states, which does not
correspond to either the “natural” basis in field theory, i.e. the basis of operators with
well-defined conformal dimension (henceforth called the ∆-BMN basis), or to the basis
originally considered by BMN. This subtle issue required some time to be appreciated and
fully understood [5,8,19], but the isomorphism was finally constructed and used in [8–10]
to successfully test the correspondence. Specifically, in [10] the natural emergence of the
isomorphic to string basis was explained by constructing the proper overlap of states in
terms of two-point function of BMN operators where the conjugated BMN operator is
defined through hermitian conjugation plus an inversion [20]. This procedure, which was
applied in [10] to BMN operators with scalar and/or vector impurities, will be used in
section 3 in the case of fermion BMN operators.

Fermion BMN operators have recently been studied, with an emphasis on mixing
issues, in [21, 22], however the equivalence relation (1.1) has not been investigated so far
in the fermionic part of the BMN sector of N = 4 Yang-Mills. The aim of this paper is to
fill this important gap. One of the main motivations for our analysis lies in the fact that
fermionic matrix elements of Hstring have never been compared to any field theory result.
Moreover, string field theory in the fermionic sector is not just a simple extension of its
bosonic counterpart, and the construction of the fermionic prefactor of the string field
Hamiltonian is not straightforward. Therefore, it is particularly compelling to investigate
the BMN correspondence in the fermionic sector.

1The expression for this vertex was originally obtained by Spradlin and Volovich [11, 12], and further
studied and clarified by Pankiewicz and Stefanski in [13, 14].

2The presence of a five-form flux in the pp-wave background breaks the lightcone SO(8) symmetry
down to SO(4)×SO(4)×Z2. The first (second) SO(4) rotates the first (last) four directions {xi} ({xa}),
while the Z2 symmetry swaps {xi} → {xa}.
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In this paper we will make use of the superstring vertex in the SO(4)×SO(4) formal-
ism, whose construction was given in [23]. It was shown in [24] that the SO(8) formalism
of [11–14] is actually completely equivalent to the SO(4)× SO(4) construction, as it was
already conjectured in [23]. The SO(8) and the SO(4)× SO(4) formalism differ in that,
in the former, the string interaction vertex is built upon the state |0〉 (the ground state
of the theory in flat background); whereas in the latter, the vertex is constructed on the
true pp-wave ground state |v〉. In both formalisms the external string states are built on
the true pp-wave ground state |v〉.

Our analysis in field theory will be performed up to and including O(λ′) in the pp-wave
’t Hooft coupling and O(g2) in the genus counting parameter, and hence incorporates
string interactions at the first nontrivial order.3 Our result is simple: for all cases we
consider, the matrix elements of the string field theory Hamiltonian derived from the
superstring vertex of [11, 12, 14, 23] agree perfectly with the corresponding field theory
quantities. This result allows us to confirm the validity of the conjectured duality relation
(1.1) in the fermionic sector, and at the level of string interactions.

The plan of the rest of this paper is as follows. In the next section we introduce and
discuss BMN operators with two fermion impurities. In section 3, we review in detail the
procedure which leads to the identification of the basis in field theory which is isomor-
phic to the natural string basis of single- and multi-string states. We also summarise the
strategy we follow in order to compare the matrix elements of the Yang-Mills dilatation
operator to the matrix elements of the interacting string Hamiltonian – with particular
attention to the new features arising from considering fermion BMN operators. In section
4 we derive the desired fermionic matrix elements of the string Hamiltonian in light-
cone string field theory. Section 5 and 6 contain the calculation in field theory and the
comparison to the string results previously derived. We conclude with a few appendices
containing details of the calculations, as well as our notation and conventions in field and
string theory.

2 Fermion BMN operators

In order to study the BMN sector of N = 4 Super Yang-Mills, we need to pick an R-
charge subgroup U(1)J ⊂ SU(4). Hence we need to decompose SU(4)→ SO(4)×U(1)J ∼
SU(2) × SU(2)× U(1)J . The branching rule for the fermion representation 4 of SU(4),
to which the fermions λAα of the N = 4 theory belong, is [27]

4 −→ (2, 1)+ + (1, 2)− , (2.1)

3This result, as well as the results of [8–10,25] are in contradistinction with [26], where it was argued
that nonplanar effects (corresponding to string interactions in string theory) should not be incorporated
into the pp-wave string theory/N = 4 SYM duality.
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from which we have, in terms of fields,

λAα −→
(
λrα, (1/2) , λṙα, (−1/2)

)
, (2.2)

λ̄Aα̇ −→
(
λ̄rα̇, (−1/2) , λ̄ṙα̇, (1/2)

)
. (2.3)

Here α, α̇ = 1, 2 are spin indices, A = 1 . . . 4, and r = 3, 4, ṙ = 1, 2. Notice that there
are four fermions with positive R-charge, λrα, (1/2) and λ̄ṙα̇, (1/2), and four with negative
R-charge, λṙα, (−1/2), λ̄rα̇, (−1/2). We will refer to the former as to the BMN fermions, and
to the latter as to the anti-BMN fermions. To simplify the notation, we will omit from
now on the U(1) R-charge subscript in the fermion fields.

The following table summarises the field content (scalar, vector and fermion fields)
of the N = 4 SYM theory participating in the BMN correspondence, together with
their canonical dimensions, R-charge and decomposition into irreducible representations
of SO(4)× SO(4) ∼ SU(2)× SU(2)× SU(2)× SU(2).

field ∆0 J ∆0 − J SO(4)× SO(4)
Z 1 1 0 (1, 1)
Z̄ 1 -1 2 (1, 1)
φi 1 0 1 (1, 4)
Dµ 1 0 1 (4, 1)
λrα 3/2 1/2 1 ((2, 1), (2, 1))
λ̄ṙα̇ 3/2 1/2 1 ((1, 2), (1, 2))
λ̄rα̇ 3/2 -1/2 2 ((2, 1), (1, 2))
λṙα 3/2 -1/2 2 ((1, 2), (2, 1))

Table 1: In this table we list the canonical dimension ∆0, R-charge J and SO(4)×SO(4)
representations for the fields of N = 4 Super Yang-Mills. For convenience, we also write
the corresponding ∆0 − J for each field.

We now discuss the two-impurity fermion BMN operators. Their precise form can be
obtained by acting with two supersymmetry transformations on the scalar BMN operators

OJij,m = C
[ J∑

l=0

e
2πiml

J Tr
(
φiZ

lφjZ
J−l
)
− δij Tr(Z̄ZJ+1)

]
, (2.4)

where i, j = 1, . . . , 4 and we have defined

C :=
1√

JNJ+2
0

, N0 :=
g2

2

N

4π2
. (2.5)

The normalisation of the operators is such that their two-point functions take the canoni-
cal form in the planar limit. This procedure correctly identifies the possible compensating
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terms which may be present in the expression of the operators. We would like to remind
the reader that these compensating terms are crucial for a correct understanding of the
dynamics of the BMN sector.

Specifically, we will be considering

OJvac =
1√
JNJ

0

TrZJ , (2.6)

Oαβ;J
33;m =

C
2

[ J∑

l=0

e
2πiml

J Tr(λα3 Z
l λβ3 Z

J−l)
]
, (2.7)

Oαβ;J
34;m =

C
2

[ J∑

l=0

e
2πiml

J Tr(λα3 Z
l λβ4 Z

J−l) −
√

2

4
Tr
(
(Fµνσ

µν) βγ ǫ
αγ ZJ+1

)]
. (2.8)

Very similar expressions can be written for operators where (3, 4)→ (1, 2), i.e. undotted
SU(2) indices are replaced by dotted ones.

In the following, we will also make extensive use of the expressions for the double-trace
operators

T J,yrα,sβ;m = : Oy·Jrα,sβ;m : : O(1−y)·J
vac : , (2.9)

T J,y
ṙα̇,ṡβ̇;m

= : Oy·J
ṙα̇,ṡβ̇;m

: : O(1−y)·J
vac : , (2.10)

where y ∈ (0, 1).

A few important comments are in order.

1. First, note the appearance on right hand side of (2.8) of an all-important compen-
sating term which modifies the näıve expression for Oαβ;J

34;m. Compensating terms are
required in order for the corresponding operators to be conformal primaries in the
BMN limit, and are present also in the case of scalar BMN operators [28] (as the
right hand side of (2.4) for i = j shows) and vector BMN operators [29, 30].

2. Second, we would like to stress that these compensating terms play a key rôle in
the evaluation of the conformal three-point functions of vector and mixed BMN
operators. Indeed, had they not been taken into account, one would erroneously
conclude that the three-point functions for scalar, vector and mixed BMN operators
take actually all the same form. The three-point function coefficients for vector and
for mixed BMN operators were computed in [20] and [10], respectively, and found
to be different from that of the scalar case [31].4 Of course, this is striking evidence
against a direct correspondence between the conformal three-point functions and the
superstring vertex at the nontrivial, interacting level.

4Their expressions are given in Eqs. (3.29)-(3.31) of [10].
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3. Furthermore, the analysis of [10] showed that precisely thanks to the differences
between the three-point function coefficients for scalar, vector and mixed impurity
BMN operators it is possible to reproduce, from the field theory point of view, two
key properties of the three-string vertex of Spradlin and Volovich, namely:
a. the vanishing of the three-string amplitude for string states with one vector and
one scalar impurity; and
b. the relative minus sign in the string amplitude involving states with two vector
impurities compared to that with two scalar impurities.
Once this is taken into account, perfect agreement between the string and field
theory predictions is found.

To further clarify the rôle of the compensating terms, we consider the flavour-singlet
and flavour-triplet combinations:

Oαβ;J
34,S;m =

C
2
√

2

[ J∑

l=0

e
2πiml

J Tr(λα3 Z l λ
β
4 ZJ−l − λα4 Z l λ

β
3ZJ−l) −

√
2

2
Tr
(
(Fµνσ

µν)βγ ǫαγ ZJ+1
)]

(2.11)

Oαβ;J
34,T;m =

C
2
√

2

[ J∑

l=0

e
2πiml

J Tr(λα3 Z l λ
β
4 ZJ−l + λα4 Z l λ

β
3 ZJ−l)

]
. (2.12)

We can further decompose each of the two operators in (2.11) and (2.12) into singlet and
triplet of the spin, that is

Oαβ;J
34,S;m −→ (1, 3+) + (1, 1) , (2.13)

Oαβ;J
34,T;m −→ (3+, 3+) + (3+, 1) . (2.14)

It is immediately seen that the compensating term on the right hand side of (2.11) is
symmetric under the exchange of the spin indices α and β. This means that this compen-
sating term will affect only the (1, 3+) representation. This is perfectly consistent with
the decomposition of the two-impurity BMN operators with vector impurities according to
irreducible representations of SO(4)×SO(4). Indeed, by combining two vector impurities
we can form the following representations:

(1, 4)× (1, 4) = (1, 1) + (1, 9) + (1, 3+) + (1, 3−) . (2.15)

The only representation the right hand sides of (2.13) and (2.14) have in common with
the right hand side of (2.15) are precisely (1, 3+), which receives a compensating term,
and (1, 1), for which however no compensating term is generated as this order.5

For completeness, we mention here what are the possible irreducible representations
of SO(4)×SO(4) ∼ SU(2)×SU(2)×SU(2)×SU(2) that can be obtained by combining

5For a discussion along similar lines on the possible mixing of fermion BMN operators with scalar
operators, see [22].
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two fermion impurities:6

((2, 1), (2, 1))× ((2, 1), (2, 1)) = (1, 1) + (3+, 3+) + (3+, 1) + (1, 3+) ,(2.16)

((1, 2), (1, 2))× ((1, 2), (1, 2)) = (1, 1) + (3−, 3−) + (3−, 1) + (1, 3−) ,(2.17)

((2, 1), (2, 1))× ((1, 2), (1, 2)) = (4, 4) . (2.18)

3 Comparing matrix elements of Hstring and ∆

In this section we briefly review the strategy adopted in [8,10] to compare matrix elements
of the dilatation operator ∆ in SYM to matrix elements of the fully interacting string
Hamiltonian Hstring.

To begin with, we notice that Hstring and ∆ act on the states of two different theories.
Hence, in order to test the duality (1.1) we need to construct an isomorphism between
the Hilbert spaces of the lightcone pp-wave string field theory and of the BMN sector
of N = 4 Yang-Mills. The choice of the basis in string theory and in field theory is in
principle arbitrary, however we remember that string field theory is naturally equipped
with an orthonormal basis of single- and multi-string states, given by the tensor product
of single-string states. This natural string basis, {|sα〉string}, diagonalises the free string
Hamiltonian. Once interactions are taken into account, they allow the strings to split
and join, i.e. the states in the natural string basis are not eigenstates of the interacting
pp-wave string Hamiltonian Hstring. Matrix elements of Hstring are known in the natural
string basis, hence our goal will be the identification of the field theory basis {|sα〉SYM}
which is isomorphic to it. This, in turns, will enable us to recast (1.1) at the level of the
matrix elements as

string〈sα|µ−1Hstring|sβ〉string = SYM〈sα|∆− J |sβ〉SYM . (3.1)

But what is the situation in field theory? In the conformal N = 4 Yang-Mills there is
also a privileged basis of states, the basis of conformal primary BMN operators O∆α

(x),
or ∆-BMN basis. This is the basis of the eigenstates of the SYM dilatation operator,
and its eigenkets can be expressed as linear combinations of the original BMN operators
Oα(x) proposed in [1]. For BMN operators with scalar impurities, the ∆-BMN basis
was explicitly constructed in [31], and extended to include vector and mixed impurities
in [20]. Conformal invariance guarantees that, in the ∆-BMN basis, two- and three-point
functions of ∆-BMN operators take the canonical form, with a universal x-dependence.
Specifically, for scalar conformal primary operators one has

〈O†
∆α

(x)O∆β
(0)〉 =

δαβ
(x2)∆α

, (3.2)

6See also the discussion in section IV of [35].
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〈O∆1
(x1)O∆2

(x2)O†
∆3

(x3)〉 =
C123

(x2
12)

∆1+∆2−∆3
2 (x2

13)
∆1+∆3−∆2

2 (x2
23)

∆2+∆3−∆1
2

. (3.3)

Correlation functions of conformal primary operators with vector or mixed impurities
appear to be harder to interpret, however it was noted in [20] that this problem is elim-
inated, and the correlators for all types of impurities can be expressed in a form similar
to (3.2) and (3.3), if on the left hand sides of (3.2) and (3.3) we use a different notion
of conjugation Ō instead of O† [20, 26]. This different notion of operator conjugation is
defined as hermitian conjugation followed by an inversion of the insertion point of the
operator x′µ = xµ/x

2.

Let us now briefly review the transformation properties under an inversion of scalar
and fermion operators [36]. A scalar operatorO∆(x) of conformal dimension ∆ transforms
as

O∆(x)→ O′

∆(x′) = x2∆O∆(x) , xµ → x′µ =
xµ
x2

, (3.4)

while vector or tensor operators (i.e. operator with vector impurities) pick a factor Jµν(x) =
δµν − 2xµxν/x

2 on the right hand side for each vector index of the operator. Jµν(x) is
the usual inversion tensor, in terms of which the Jacobian of the inversion is expressed
∂x′µ/∂xν = Jµν(x)/x

2. This prescription is essential in order to make vector ∆-BMN op-
erators orthonormalisable, see section 2 of [20] for more details. Let us now concentrate
on the fermionic operators which are of direct concern for this paper.7 It is well known
that, under conformal inversion, a Dirac spinor field ψ of dimension d transforms as [36]

ψ(x)→ ψ′(x′) = η
x̂

|x| x
2d ψ(x) , η4 = 1 , (3.5)

where x̂ = xµγ
µ, and γµ are the Euclidean gamma matrices. In terms of Weyl spinors λα,

ξ̄α̇, (3.5) implies

λα(x)→ λ′α(x
′) = η

(xξ̄)α
|x| x2d , (3.6)

ξ̄α̇(x)→ ξ̄α̇
′

(x′) = η
(x̄λ)α̇

|x| x2d , (3.7)

where we set x = xµσ
µ, x̄ = xµσ̄

µ. Hence, an operator of conformal dimension ∆ with
f = p+ q fermionic insertions transforms under inversion as:

Oα̇1...α̇q

α1...αp
(x) → ηf x2∆ Jα1β̇1

· · ·Jαpβ̇p
· · · J̄ α̇1β1 · · · J̄ α̇qβq Oβ̇1...β̇p

β1...βq
(x) , (3.8)

where

Jαβ̇(x) :=
xαβ̇
|x| , J̄ α̇β(x) :=

x̄α̇β

|x| . (3.9)

7The transformation under inversion of fermionic BMN operators has also been considered in [26].
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The notion of conjugation [20], as ordinary hermitian conjugation followed by an inversion,
can then applied to a generic operator with conformal dimension ∆ with scalar, vector or
fermion impurities; and the conjugated operator Ō can then be written (schematically)
as:

Ō∆(x) ≡ x2∆ J · O†
∆(x) , (3.10)

where by J we mean the tensor product by the appropriate inversion operators Jµν(x),
for each vector index, and Jαα̇(x) (or J̄ α̇α(x)), for each spinor index. It was noticed in [20]
that the advantage of this new conjugation resides in that the two-point function for
scalar, vector and fermion ∆-BMN operators take all the same canonical form when the
Ō operator is employed:

〈Ō∆a
(x)O∆b

(0)〉 = δab . (3.11)

The right hand side of (3.11) does not depend on x, and represents the overlap of the
corresponding states in conformal N = 4 Super Yang-Mills.8

The operators of a generic basis in field theory will not enjoy the simple interpretation
in terms of states given by (3.11), nevertheless we can always decompose these operators
along the eigenvectors of the ∆-BMN basis. Specifically, for any operator basis Õα such
that

Õα = Uαβ O∆β
, (3.12)

where Uαβ is a constant matrix, we can easily compute the overlap of the basis vectors:
this is simply given by [10]

〈 ¯̃Oα(x)Õβ(0)〉 = UβγU
†
γα ≡ Sβα . (3.13)

The previous relation is highly nontrivial: despite the fact that the operators Õα do not
have definite scaling dimensions, the overlap (3.13) does not depend on x! The key step
in this procedure is to be found in the inversion procedure. Indeed, notice that in (3.4)
the full conformal dimension ∆ of the conformal BMN operator O∆α

is used in order to
define the proper notion of conjugation. This expression will have in general a perturbative
(and, in principle, nonperturbative) expansion in λ′, which is eventually responsible for
the simple form of (3.13) (and (3.11)).

A simple and practical way of calculating simultaneously the overlaps of states and
the matrix elements of the anomalous dimension operator δ = ∆ − ∆cl (where ∆cl is
the canonical dimension in the free theory) was described in [10]. We will apply this
procedure in the following, therefore we briefly outline its steps. First, one defines the

barred-operator ¯̃O(x) as the Hermitian conjugation of Õ(x) followed by an inversion of
the resulting operator, defined as if it was free, i.e. instead of the factor x2∆ in (3.10) we
put x2∆cl , such that

Ō∆(x) ≡ x2∆cl J · O†
∆(x) . (3.14)

8A side comment: for two-impurity fermion BMN operators, an additional minus sign should be
included in the definition of the hermitian conjugation of the operators in order to get the two-point
functions normalised as in (3.11).
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The two-point function takes now the form:

〈 ¯̃Oα(x)Õβ(0)〉 = Uβγ e
δγ log(Λx)−2

U †
γα

= Sβα + Tβα log(Λx)−2 +O
(
(log(Λx)−2)2

)
, (3.15)

where we have expanded the full result in powers of log x−2. From (3.15) we can read off
the overlap of the two states, defined as the zeroth-order term of the expansion,

Sβα = UβγU
†
γα , (3.16)

as well as the matrix of anomalous dimensions in this basis, given by the first order term,

Tβα = UβγδγU
†
γα . (3.17)

We now consider the original BMN basis, for which we have

〈Ōα(x)Oβ〉 = Sβα + Tβα log x−2 + · · · , (3.18)

and relate this basis to the isomorphic to string basis via a transformation U as in (3.12):

Ostring
β = UβγOγ , Ōstring

α = ŌδU †
δα . (3.19)

In the basis isomorphic to the natural string basis, we have

Sstring = 1l = USU † , T string = UTU † . (3.20)

Notice that S is a Hermitian, positive matrix, therefore S−1/2 is well-defined.9 S is then
diagonalised by choosing

U := S−1/2 · V , (3.21)

where V †V = 1l:

S −→ USU † = 1l , (3.22)

T −→ UTU † = V †(S− 1
2TS− 1

2 )V . (3.23)

At this point, there is still an arbitrariness contained in V . This was fixed in [5, 8]
by requiring that (3.1) holds and that the known three-string interaction vertex of the
pp-wave light-cone string field theory [11, 12] is reproduced from gauge theory matrix
elements involving BMN states (operators) with two scalar impurities. This condition
implies V = 1l. Hence, we conclude that the matrix of anomalous dimensions in the string
basis is given by [8, 10]

Γ := T string = S− 1

2 T S− 1

2 . (3.24)

This is the result we wanted to derive. The procedure for obtaining the matrix elements
of the anomalous dimension operator (and hence of the dilatation operator in Yang-Mills)
in the basis in field theory which is isomorphic to the natural string basis is therefore

9The matrix S−

1

2 also appears in [19] and [40].
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clear: choose an arbitrary operator basis in Yang-Mills (in particular the simple basis
originally considered by BMN in [1]), and compute two-point functions as in (3.15) (or
(3.18)); work out the expressions for the matrices S and T ; and, finally, apply (3.24) to
derive the desired matrix elements in the isomorphic to string basis.

Eq. (3.24) was employed in [10] to explore and successfully test the bosonic (scalar and
vector) sector of the BMN correspondence, finding precise agreement between the matrix
elements in of the interacting string Hamiltonian in string field theory and the dual matrix
elements (3.24) of the field theory dilatation operator. In the next sections we will pursue
this programme and carry out a number of tests in the fermionic sector of the string and
field theory. More precisely, we will show that, with the same choice of V = 1l, the matrix
elements of Γ between BMN operators with two fermion impurities precisely agree with
the corresponding matrix elements of the interacting string Hamiltonian.

Other studies of the dilatation operator in N = 4 Yang-Mills and its interpretation in
quantum mechanical and integrable models can be found in the recent papers [37–46].

4 Matrix elements of Hstring in string field theory

There are two equivalent ways to describe superstring interactions in string field theory,
known as the SO(8) and the SO(4) × SO(4) formalism. In the former approach, the
three-string vertex in string field theory is built upon a state |0〉 with energy equal to 4µ.
This state is therefore not the ground state, but it has the advantage that, as µ → 0,
the SO(8) construction flows smoothly to string field theory in flat space [47–50]. In the
SO(4)×SO(4) formalism, the Hilbert space of states in string field theory is built on the
true vacuum |v〉 of pp-wave string theory (see Appendix A for details). Remarkably, the
two formalisms have been shown to be completely equivalent [23], hence it is only a matter
of convenience which one to use. In this paper we will make use of the SO(4)× SO(4)
vertex, since there it is more straightforward to compute string amplitudes involving
fermionic oscillators.

The string amplitude has the form [11,12]10

〈1|〈2|Hstring |3〉 = 〈Φ|P|VB〉|VF 〉 , (4.1)

where 〈Φ| := 〈1|〈2|〈3|′ is the external three–string state, and |VB〉 and |VF 〉 are the
kinematical part of the bosonic and fermionic vertex, (B.6) and (B.7) respectively. Finally,
the prefactor P is written in (B.9).

We will be interested in external states with fermionic impurities,

βαβ †

n(r) β
α′β′ †

−n(r) |v〉r , (4.2)
10The reader is referred to Appendix A for more details on the string field theory vertex.
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where the fermionic operators β’s are related to the oscillators in the string basis by [14]

βn =
1√
2
(bn + ib−n) , β−n =

1√
2
(bn − ib−n) . (4.3)

Specifically, we will compute matrix elements of the form

Hrα,sβ;m,J
r′α′,s′β′;n,J,y :=

1

µ
〈T J,yr′α′,s′β′;n |Hstring|Orα,sβ;m

J 〉 , (4.4)

for all possible values of the indices. After a lengthy but straightforward algebra, we
obtain:

〈v|βαβ,−m(3)βγδ,m(3)βα′β′,n(1)βγ′δ′,−n(1)|H3〉 = Cnorm
β + 1

3π2µ
sin2 πmβ (4.5)

·
[
ǫα′αǫγ′γ(ǫδβǫδ′β′ + ǫδβ′ǫδ′β) + ǫγ′αǫα′γ(ǫδβǫδ′β′ + ǫδδ′ǫββ′)− ǫαγǫα′γ′(ǫββ′ǫδδ′ − ǫδβ′ǫδ′β)

]
,

where Cnorm is given in (B.14). An expression similar to (4.5) holds when the fermions in
(4.5) have both dotted indices. Notice that from (4.5) it follows that
a. the string amplitude vanishes whenever a fermion appears more than once, whereas
b. it is nonvanishing when all fermions are different, and gives always the same result
(up to a minus sign).

It is more illuminating to write (4.5) for a few basic cases:

H12,11;m,J
11,12;n,J,y := µ−1〈v|β12

−m(3)β
11
m(3)β11,n(1)β12,−n(1)|H3〉 (4.6)

= −µ−1〈v|β21,−m(3)β22,m(3)β11,n(1)β12,−n(1)|H3〉 = −λ′Cnorm
β + 1

π2
sin2 πmβ ,

H11,11;m,J
11,11;n,J,y := µ−1〈v|β11

−m(3)β
11
m(3)β11,n(1)β11,−n(1)|H3〉

= µ−1〈v|β22,−m(3)β22,m(3)β11,n(1)β11,−n(1)|H3〉 = 0 , (4.7)

H22,11;m,J
11,22;n,J,y := µ−1〈v|β22

−m(3)β
11
m(3)β11,n(1)β22,−n(1)|H3〉 (4.8)

= µ−1〈v|β11,−m(3)β22,m(3)β11,n(1)β22,−n(1)|H3〉 = 0 ,

H21,11;m,J
11,21;n,J,y := µ−1〈v|β21

−m(3)β
11
m(3)β11,n(1)β21,−n(1)|H3〉 (4.9)

= −µ−1〈v|β12,−m(3)β22,m(3)β11,n(1)β21,−n(1)|H3〉 = λ′Cnorm
β + 1

π2
sin2 πmβ .

We can directly compare the expressions (4.6)-(4.9) to the analogous matrix elements
obtained from the three-string vertex of [11,12] for scalar and for vector and mixed (scalar-
vector) BMN states:

1

µ
〈T J,yij,n|Hstring|OJij,m〉 = −λ′Cnorm

β + 1

π2
sin2 πmβ , (4.10)
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1

µ
〈T J,yiµ,n|Hstring|OJiµ,m〉 = 0 , (4.11)

1

µ
〈T J,yµν,n|Hstring|OJµν,m〉 = λ′Cnorm

β + 1

π2
sin2 πmβ . (4.12)

Notice hat the amplitude in (4.6) is identical to the amplitude (4.10) involving two scalars
of different flavour, whereas that in (4.9) is equal to the amplitude (4.12) involving two
different vectors. Similar considerations apply to the vanishing of the mixed amplitude
(4.11) and (4.7), (4.8).

The equality of the string amplitude between two BMN states with scalar impurities
and two BMN states with fermion impurities had already been derived, in the SO(8)
formalism, in [14]. We also notice that our amplitudes, derived in the SO(4) × SO(4)
formalism, precisely coincide with those of [14].

5 Matrix elements of ∆ in N = 4 Yang-Mills

In [10], a general technique was devised for deriving the matrix of overlaps S (3.16), the
matrix of anomalous dimension T (3.17), and hence the desired matrix elements of the
SYM dilatation operator in the isomorphic to string basis, (3.24), from the coefficients of
the three-point functions of BMN operators. Here we report the results of the analysis
of [10], referring the curious reader to section 3 of that paper for more details.11

The matrices S and T have an expansion in powers of g2, but in our analysis we will
only need their expressions up to and including O(g2) terms. We will also work at one
loop in the effective ’t Hooft coupling λ′. Notice that the matrix T is of O(λ′), whereas
S is of O(1). In this case, (3.15) is simply

〈Oα(0)Ōβ(x)〉 = Sαβ + Tαβ log(xΛ)−2 . (5.1)

Let us focus on the following three-point correlators,

G(x1, x2, x3) = 〈Oy·JAB,n(x1)O(1−y)·J
vac (x2)ŌJAB,m(x3)〉 , (5.2)

where A can be a scalar, vector or fermion index, and A 6= B. On general grounds, these
three-point function take the form [7, 31–34]

G(x1, x2, x3) = g2Cm,ny
[
1− λ′

(
am,ny log(x31Λ)2 + bm,ny log(x32x31Λ/x12)

)]
, (5.3)

where g2Cm,ny is the tree-level contribution, with

Cm,ny :=

√
(1− y)/y sin2(πmy)√
J π2(m− n/y)2

, (5.4)

11Our notation and conventions in Yang-Mills are reviewed in Appendix A.
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and the coefficients am,ny and bm,ny must be calculated in perturbation theory at O(λ′).

The two-point function 〈T J,yAB,n(0) ŌJAB,m(x)〉 can easily be derived from (5.2) by simply
setting x13 = x23 = x and x12 = Λ−1 [34],

〈T J,yAB,n(0) ŌJAB,m(x)〉 = g2Cm,ny
[
1 + λ′ (am,ny + bm,ny) log(xΛ)−2

]
. (5.5)

The analysis of section 3 of [10] then showed that the matrices S and T are then given,
up to O(g2), by the following expressions:

S =




δmn g2Cm,qz

g2Cpy,n δpq


 + O(g2

2) = 1l + g2s+O(g2
2) , (5.6)

(5.7)

T = λ′




m2 δmn g2Cm,ny (a+ b)m,qz

g2Cpy,n (a + b)py,n (p2/y2) δpqδyz



 + O(g2
2) (5.8)

≡ d + g2t + O(g2
2) ,

with

d = λ′




m2 δmn 0

0 (p2/y2) δpqδyz



 , (5.9)

t = λ′




0 Cm,ny (a + b)m,qz

Cpy,n (a+ b)py,n 0


 . (5.10)

It then follows that
S−1/2 = 1l− g2(s/2) +O(g2

2) (5.11)

diagonalises S at O(g2), and hence (3.24) leads to

Γ = d+ g2

[
t− 1

2
{s , d}

]
. (5.12)

We now need to compute the explicit expressions for aymn and bymn for the fermion case.
First, it was observed in [10] that, at O(λ′) in planar perturbation theory, the coefficient
aymn is simply given by the O(λ′) anomalous dimension of the “small” BMN operator at
x1. In accordance with supersymmetry, it turns out that the O(λ′) anomalous dimension
of BMN operators with two arbitrary impurities is given by

am,ny =
n2

y2
, (5.13)

independently of the type of impurity considered. This result was first obtained for the
case of two scalar impurities in [1], for one scalar and one vector impurity in [29], for two
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vector impurities in [52]. We have also explicitly derived (5.13) in the fermion case with
a perturbative calculation in Yang-Mills.

We now move on to consider bm,ny. From (5.3), we see that bm,ny is the coefficient
which multiplies the log x12 contribution in the three-point function G(x1, x2, x3) in (5.2),
where the “large” (“small”) BMN operator ŌJAB,m (Oy·JAB,n) is inserted at x3 (x1), and the
vacuum operator Ovac at point x2. Hence, the tactic we will follow in the next section
will consist in computing the log x12 term of the three-point function12 G(x1, x2, x3).

Let us quote here the result for bm,ny in the case of scalar, mixed, or vector BMN
operators in (5.2) [10]:

[bm,ny]scalar = m2 − mn

y
, (5.14)

[bm,ny]scalar−vector =
1

2

(
m2 − n2

y2

)
, (5.15)

[bm,ny]vector = −n
2

y2
+
mn

y
. (5.16)

We conclude this section with one important comment, which anticipates our results for
the fermions to be derived in the next section: we will show that, for fermion BMN
operators, the coefficients bm,ny for the various representations precisely take one of the
three expressions (5.14)-(5.16).

5.1 The three-point function of fermion BMN operators

In the previous section we explained how to obtain the matrix elements of the SYM dilata-
tion operator in any arbitrary basis of SYM operators, and specifically in the isomorphic
to string basis. Here we present the field theory computation of the coefficients bm,ny
appearing in (5.3), from which the coefficient of the conformal three-point function of
two-impurity fermion BMN operators can also be derived. The matrix elements (5.12) of
the SYM dilatation operators in the natural string basis will then be obtained using the
expressions for bm,ny and (5.6)-(5.10) and (5.13). The reader not interested in the details
of this calculations may skip a few pages, and proceed directly to section 6.

Let us consider the three-point function of the operators in (2.8), i.e.

〈Oy·J3α,4β;n(x1)O(1−y)·J
vac (x2) ŌJ3α̇,4β̇;m

(x3)〉 . (5.17)

12It was shown in [10,53] that from the knowledge of the coefficient bm,ny it is also possible to determine
the coefficient of the conformal three-point function, despite the fact that, due to mixing effects [31, 54],
the correlator (5.2) does not take the conformal form (3.3), since the original BMN operators in (5.3) are
not conformal primaries for g2 6= 0.
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We start off by evaluating the Feynman diagrams which originate from the pure BMN
parts of both the barred and unbarred operators. These diagrams are represented in
Figure 1, where we draw only the diagrams where the impurities λ4α and λ̄4β̇ participate
in the interactions, and the other impurity propagates freely. In diagram 1a (type I), the
interacting impurity goes across, while in 1b the interacting impurity goes straight (type
II). The latter diagram has a minus sign relative to the former from the Yukawa vertex
(see (A.3)). The result for the type I diagram is, concentrating on the interacting part:

λ̄3α̇ λ̄3α̇λ̄3α̇

λ̄3α̇λ̄3α̇λ̄3α̇

λ̄4β̇

λ̄4β̇λ̄4β̇

λ̄4β̇λ̄4β̇λ̄4β̇

λ4αλ4α

λ4α

λ4α

λ4α

ZZ

ZZ

x1 x2

1a 1b 1c

1d 1e 1f

Figure 1: Feynman diagrams from the pure BMN parts: of type I (in 1a and 1d) and
type II (1b and 1e). Diagrams 1d, 1e, are the mirrors of 1a, 1b. Diagrams 1d and 1e
have phase factors which are the complex conjugate of those of 1a and 1b. The gluon
interaction diagrams in 1c and 1f have the same BMN factor and cancel each other.

JI
αβ̇

= (∂1
νσ

ν
αα̇)(−

√
2iǫψ̇α̇)σρ

χψ̇
(−
√

2iǫβχ)(−∂3
µσ

µ

ββ̇
)Hρ1423 , (5.18)

where

Hρ1423 =

∫
d4x d4y ∆(x1 − x)∆(x4 − x)

[
−∂xρ∆(x− y)

]
∆(x3 − y)∆(x4 − y)

= −(∂1
ρ + ∂4

ρ)H1432 . (5.19)
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Notice that in order to be able to perform the inversion in the conjugated operator, we
momentarily split the insertion points of the fermion and the Z impurity, respectively x3

and x4. The last equality is obtained after integrating by parts with respect to x and
then converting the x derivative acting on ∆(x1 − x) and ∆(x4 − x) to derivatives with
respect to x1 and x4, respectively. The partial derivatives in (5.18) come from the fermion
propagator Sαα̇(x) = −∂αα̇∆(x), where ∂αα̇ := ∂µσ

µ
αα̇.

Using now (A.9) and ignoring the ǫ term which eventually does not contribute to the
log x2

12 term, one obtains:

JI
αβ̇

= 2
[
∂3
αβ̇
JA + ∂1

αβ̇
JB + (∂1 + ∂4)αβ̇JC

]
, (5.20)

where

JA = ∂1 · (∂1 + ∂4)H1423 , (5.21)

JB = ∂3 · (∂1 + ∂4)H1423 , (5.22)

JC = −∂3 · ∂1 H1423 . (5.23)

The explicit expressions for JA, JB and JC are worked out in (E.8)-(E.10). After some
algebra, one realises that the only non-zero contribution to JI

αβ̇
comes from the term

involving JA. Keeping track of the relevant to us terms which contain log x2
12, we get:

JI
αβ̇

=
1

23π2
log x2

12 ∆(x4 − x1)
[
∂4
αβ̇

∆(x4 − x1)
]
. (5.24)

We note that (5.24) is precisely of the form of (a first-order correction to) two freely
propagating fields, one Z boson and one fermion, as it is expected. In order to make
the comparison with the string amplitude, we should now apply the inversion on the
conjugated operator, that is on the scalar Z field and the interacting fermion. For the
scalar field this is rather trivial: according to (3.4), one has to multiply JI

αβ̇
by x2

4. For

the fermion, (3.6) instructs us to multiply by ηx2
4σ̄

β̇β
µ xµ4 . Taking into account the identity

(σµ)αβ̇σ̄
β̇β
ν xµxν = δβα x

2 one obtains:

− 4
(g2

2

)3

PI
log x2

12

28π6
η2δβα . (5.25)

The overall factor (g2/2)3 comes from the insertion of two vertices, which give (2/g2)2, and
five propagators, which give (g2/2)5. PI is the phase factor associated with the diagrams
of type I, and is explicitly calculated in (C.2). In order to obtain the final result for the
type I diagrams, we have still to multiply (5.25) by a factor of 2 from the free contraction
of the non-interacting impurity, and by a factor of 1/4 from the normalisation of the two
fermion BMN operators. Doing so, and setting η2 = 1 we get:

type I− fermions : −2
(g2

2

)3

PI
log x2

12

28π6
δβα . (5.26)
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Notice that this result is precisely the same as the result for the case of two different
scalar impurities. Similarly, one gets, for the type II diagrams:

type II− fermions : 2
(g2

2

)3

PII
log x2

12

28π6
δβα . (5.27)

To the type II diagrams is associated the phase factor PII of (C.2). Moreover, in order
to get the final expression for the coefficient bm,ny, one should also include the diagrams
where the other impurity, λ3, participates in the interaction.

If this was the whole story, we would conclude that three-point functions of fermions
take the same form as the three-point functions for scalars. But the correct expressions for
BMN operators often contain compensating terms, and so is the case for the operator in
(2.8). Importantly, these compensating terms do contribute to the three-point functions
and must be taken into account. In our case, the compensating terms affect the fermion
operators that have a projection in the (1, 3+) representation (see the discussion after
(2.14)), and the corresponding contribution is important and we will now compute it.

In Figure 2 we draw the Feynman diagrams obtained by taking the compensating term
on the right hand side of (2.8) for the operator sitting at x1 . To the diagrams 2a and 2c
a BMN phase factor equal to 1 is associated. From the first diagram in Figure 2 we get:13

Iα̂γ̂,α̇β̇ = −2 · (−1)3∂4
µσ

µ

ββ̇
∂3
νσ

ν
αα̇(−iσ̄γ̇βρ )στγγ̇(−

√
2iǫγα)∂1

δ (σδρ)
β̂
γ̂ǫα̂β̂(−Hτ1432) . (5.28)

The factor of (−1)3 comes from three propagators, while the factor of 2 arises from the
two terms in the field strength Fρδ. The σρδ is related to the compensating term of
the operator at x1 while the σ̄ρ matrix comes from the gluon-fermion interaction vertex.
Finally, the minus sign in front of (5.28) comes from Wick contracting fermions.

We can now elaborate (5.28) using the completeness relation (A.8), to obtain:

Iα̂γ̂,α̇β̇ = 2
√

2
[
(σδσ̄τσν)γ̂α̇σ

µ

α̂β̇
+ (σδσ̄τσν)α̂α̇σ

µ

γ̂β̇

]
∂4
µ∂

3
ν∂

1
δ (−Hτ,1432) . (5.29)

Using (A.9), and discarding the irrelevant ǫ-terms as before, we get:

Iα̂γ̂,α̇β̇ = 2
√

2∂4
α̂β̇

(
∂3
γ̂α̇JA + ∂1

γ̂α̇JB + (∂1 + ∂4)γ̂α̇JC
)

+ α̂←→ γ̂ . (5.30)

Similarly to the diagrams in Figure 1, the log x2
12 contributions from JB and JC cancel

out, and we are left with:

Iα̂γ̂,α̇β̇ = 8
√

2
1

28π6
log x2

12 (σµ
α̂β̇
σνγ̂α̇ + σµ

γ̂β̇
σνα̂α̇)

xµ3x
ν
3

(x2
3)

4
. (5.31)

13As in [10], the diagrams where the compensating term is taken in the external operator, or both in
the external and internal operator, do not contribute.
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λ̄3α̇λ̄3α̇

λ̄3α̇

λ̄3α̇

λ̄4β̇

λ̄4β̇

λ̄4β̇λ̄4β̇

2a 2b

2c 2d

Figure 2: Gluon emission diagrams originating from the compensating term in the internal
operator. The gluon is absorbed by the fermion field. There are also mirror diagrams, not
drawn in this figure.

Now we perform the inversion for the fermions, thus arriving at:

Iαβα̂γ̂ = 8
√

2
1

28π6
log x2

12 (δαα̂δ
β
γ̂ + δαγ̂ δ

β
α̂) . (5.32)

The calculation for the diagram in Figure 2c (where the other fermion absorbs the gluon)
proceeds in a similar fashion to that of Figure 2a, giving the same result as in (5.32) but
with α and β swapped. Since the expression for Iαβα̂γ̂ is symmetric under this exchange, the
results is the same as for the diagram in Figure 2a. We should also not forget to multiply
our result by 1/4 due to the normalisation of the operators (1/2 for each operator), and
by a factor of −

√
2/4 coming from the compensating term on the right hand side of

(2.8). Taking also account the powers of g2/2 associated with vertices and propagators,
we finally get the result for the sum of diagrams 2a and 2c:

− 2

(
g2

2

)3
1

28π6
log x2

12 (δαα̂δ
β
γ̂ + δαγ̂ δ

β
α̂) . (5.33)
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λ̄3α̇

λ̄3α̇

λ̄3α̇

λ̄3α̇

λ̄4β̇

λ̄4β̇

λ̄4β̇

λ̄4β̇

3a 3b

3c 3d

Figure 3: Gluon emission diagrams originating from the compensating term in the internal
operator. The gluon is absorbed by the Z field.

The diagrams in Figure 2b and 2d can be computed in a similar way. Notice that they
have a relative minus sign compared to 2a and 2c, and a different BMN factor q̄J1+1.

For α 6= β, the result of (5.33) is exactly the same as the result obtained from the
compensating diagrams for the case of BMN operators with mixed impurities (one vector
and one scalar impurity). We addressed this case in section 4 of [10]. Furthermore, for
α = β we get the same result as that of the compensating diagrams of BMN operators
with vector impurities, i.e. twice that of the mixed case (see [10,20]). From (5.14)-(5.16),
one can easily work out the contributions of the compensating terms alone for the mixed
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and vector case,

[bm,ny]
c.t.
mixed = [bm,ny]mixed − [bm,ny]scalar = −1

2

(
m− n

y

)2

, (5.34)

[bm,ny]
c.t.
vector = [bm,ny]vector − [bm,ny]scalar = −

(
m− n

y

)2

(5.35)

= 2 [bm,ny]
c.t.
mixed .

Finally, let us note that at the order we are working, the diagrams of Figure 3 are also
present. However, the diagram in 3a cancels against that in 3b because of the relative
minus sign associated with the vertex where the gluon is absorbed; and, similarly, 3c
cancels against 3d. Therefore the net contribution of the diagrams in Figure 3 is zero.

We conclude by summarising the results of this section.
a. The contribution of the pure BMN part of the operators involved in the three-point
function (5.17) is precisely the same obtained for scalar BMN operators. Hence the
corresponding coefficient bm,ny is given by (5.14).
b. The previous remark also implies that, when no compensating term is present in the
expression for the BMN operator considered, the result (5.14) gives the full answer.
c. When a compensating term appears, it contributes precisely as the compensating
term of the mixed (scalar-vector) case when α 6= β, of the vector case for α = β. The
corresponding expressions for bm,ny are then (5.15) and (5.16), respectively.

6 Testing the BMN correspondence in the fermion

sector

We can now apply the results derived in the previous section to test the pp-wave/SYM
correspondence in the fermionic sector. In particular, we will reproduce in the gauge
theory the three-string amplitudes for the following flavour-conserving processes:

(λ31 . . . λ32)m −→ (λ31 . . . λ32)n + vac. , (6.1)

(λ31 . . . λ31)m −→ (λ31 . . . λ31)n + vac. , (6.2)

(λ31 . . . λ42)m −→ (λ31 . . . λ42)n + vac. , (6.3)

(λ31 . . . λ41)m −→ (λ31 . . . λ41)n + vac. . (6.4)

A few comments are in order.

1. First, it does not take long to realise that these cases actually cover all the irre-
ducible representations of the two-impurity fermion BMN operators, where the two
impurities are Weyl spinor of the same chirality (see (2.16) and (2.17)).
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2. The case where the two impurities have opposite chirality, λrα and λ̄ṙβ̇ (see (2.18)),
can of course be treated with a similar technique. Notice that, in that case, a com-
pensating term containing (Dµφ

i)σµ
αβ̇

will always be present in the precise expression

of the BMN operator containing the λrα, λ̄ṙβ̇ impurities, in agreement with the fact
that the right hand side of (2.18) contains only one irreducible representation.

3. Finally, notice that the operators taking part in the first two processes (6.1) and
(6.2) do not have compensating terms, i.e. they do not have a projection onto the
(1, 3+) representation of SO(4) × SO(4), in contradistinction with the operators
taking part in the remaining last two, (6.3) and (6.4).

Let us write down the string amplitudes corresponding to the processes of (6.1)-(6.4),
taking into account that in the three-string vertex of [11,12,14,23] all the external states
are written as ket states:

µ−1〈v| β12
−m(3) β

11
m(3) β11,n(1) β12,−n(1) |H3〉 ≡ A1 ,

µ−1〈v| β11
−m(3) β

11
m(3) β11,n(1) β11,−n(1) |H3〉 ≡ A2 ,

µ−1〈v| β22
−m(3) β

11
m(3) β11,n(1) β22,−n(1) |H3〉 ≡ A3 ,

µ−1〈v| β21
−m(3) β

11
m(3) β11,n(1) β21,−n(1) |H3〉 ≡ A4 . (6.5)

We have already computed the string amplitudes in (6.5) in (4.6)-(4.9), finding

A1 = −λ′Cnorm
β + 1

π2
sin2 πmβ , (6.6)

A2 = 0 , (6.7)

A3 = 0 , (6.8)

A4 = λ′Cnorm
β + 1

π2
sin2 πmβ . (6.9)

We start our analysis from the first process (6.1). For this case, we have found in the
previous section that the corresponding coefficient bm,ny of the field theory three-point
function is exactly the same as that obtained in the case of BMN operators with two
scalar impurities of different flavours. This is due to the absence of compensating terms
in the operators participating in the process (6.1), so that only the diagrams of Figure 1
contribute (with λ4 replaced by the second λ3). As explained in (5.13), supersymmetry
guarantees that the anomalous dimension of the two fermion BMN operators is the same
as that of two scalars; therefore, the coefficient am,ny for the fermions is identical to that
of two different scalars. The consequence of this is that the gauge theory prediction for
the string amplitude of (6.1) is exactly the same as the prediction obtained in the case of
BMN operators with two different scalar impurities; and it was shown in [10] that there
is precise agreement between the field theory and string theory prediction in the case of
two scalar impurities of different flavours. The result obtained in string field theory for
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the process (6.1) is given in (6.6). Indeed, this result (6.6) precisely coincides with the
string amplitude for the case of two scalar impurities, Eq. (4.10). This is our first test.

Two identical fermions, both in the unbarred and barred operators, take part in the
process in (6.2). The corresponding gauge theory calculation is therefore slightly more
complicated, since there are twice as many contractions as in the previous case, and thus
twice as many Feynman diagrams. Taking these diagrams into account, the S and T
matrices take the following form:

S =




δmn g2 (Cm,qz − Cm,−qz)

g2 (Cpy,n − C−py,n) δpq


 + O(g2

2) (6.10)

= 1l + g2s+O(g2
2) ,

T = λ′




m2 δmn g2

[
Cm,qz (a+ b)m,qz

−Cm,−qz (a+ b)m,−qz
]

g2

[
Cpy,n (a+ b)py,n (p2/y2) δpqδyz

−C−py,n (a + b)−py,n
]




+ O(g2
2) (6.11)

= d + g2t + O(g2
2) .

In (6.11) the coefficient am,ny is as in (5.13), and bm,ny is given in (5.14), as explained
in section 5. We should note the crucial minus sign between the two terms appearing
in the non-diagonal matrix elements of T . This comes from the anticommuting nature
of the fermion impurities. We can now work out the expression for the matrix Γ of the
SYM dilatation operator in the field theory basis which is isomorphic to the natural string
basis. Using (5.12), we get immediately

Γ = d+ g2

[
t− (1/2){s, d}

]
= λ′




m2 δmn 0

0 (p2/y2) δpqδyz


 . (6.12)

Thus, we conclude that the field theory prediction for the second process (6.2) is 0. This
is in agreement with the vanishing of the corresponding string amplitude of (6.7).

Next, we consider the third process, (6.3). In this case the compensating diagrams
of Figure 2 should be taken into account. As we have noticed in the previous section
(see the discussion after (5.33)), the contribution of the compensating term is the same
as that arising from compensating terms of BMN operators with mixed (one scalar-one
vector) impurities. Furthermore, the contribution of the diagrams where only the pure
BMN parts of the operators is taken into account, is the same for all the cases (i.e. scalar,
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mixed, vector and fermion impurities). Therefore, we conclude that the coefficient bm,ny
appearing in the the three-point function, and thus the whole calculation, are identical
to the mixed case studied in [10].14 It was found in [10] that the matrix elements of the
dilatation operator in the isomorphic to string basis for the case of BMN operators with
mixed impurities is given by

Γmixed = d+ g2

[
tmixed − (1/2){s, d}

]
= λ′




m2 δmn 0

0 (p2/y2) δpqδyz



 . (6.13)

Therefore, the previous result (6.13) precisely reproduces, in the gauge theory, the van-
ishing three-string amplitude of (6.8).

Finally, we focus on the last process of (6.4). We noticed in section 5 that the diagrams
from the compensating terms contribute, in this case, exactly as the diagrams from the
compensating term for two vector operators. Following similar arguments as before, we
conclude that the field theory prediction for this process is the same as that for the vector
case. The result for the vector case was found in [10] to be equal to the negative of the
result for the process for the scalars, which in turns is equal to the result for (6.1). This
is again in perfect agreement with the string amplitude obtained in (6.9). This is our last
test.

We close this section with a comment about how the Z2 symmetry of the pp-wave
background is realised in the string amplitudes of (6.5). It is known that under the Z2

symmetry the two indices of a fermion creation or annihilation operator are exchanged,

Z2 : βαβ −→ ββα . (6.14)

However, whereas the string vertex |H3〉 is invariant under Z2, the true vacuum |v〉 cor-
responds to a combination of the trace of the metric and the five-form field on one of the
R4’s [55], and thus one has to assign negative Z2 parity to it [18, 23]. The correctness
of this assignment was also verified from the field theory perspective in [10] (see also the
discussion in the Introduction). If we apply (6.14) to the string amplitudes in (6.5) we
obtain:

Ẑ2A1 ≡ −A4 = A1 ,

Ẑ2A2 ≡ −A2 = A2 ,

Ẑ2A3 ≡ −A3 = A3 ,

Ẑ2A4 ≡ −A1 = A4 . (6.15)

Therefore, we conclude that the Z2 symmetry leaves the value of the string amplitudes of
(6.1)-(6.4) invariant.

14As before, in order to reach this conclusion we also used the fact that the anomalous dimension of
all two-impurity operators, i.e. is the am,ny coefficient, is the same for any kind of impurity.
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Appendix A: Notation and conventions in gauge
theory

We write the Euclidean N = 4 Lagrangian as

L = LB + LF , (A.1)

where

LB =
2

g2
Tr

(
1

4
FµνFµν + (DµZ̄ i)(DµZi)− [Zi, Zj][Z̄

i, Z̄j] +
1

2
[Zi, Z̄

i][Zj, Z̄
j]

)
, (A.2)

and

LF =
2

g2
Tr

(
λAσ

µDµλ̄
A −
√

2i([λ4, λi]Z̄
i + [λ̄4, λ̄i]Zi) +

i√
2
(ǫijk[λi, λj]Zk + ǫijk[λ̄

i, λ̄j ]Z̄k)

)
.

(A.3)

In the above equation A = 1, . . . , 4 and i, j, k = 1, . . . , 3. Zi are the the three complex
scalars defined by

Z1 =
φ1 + iφ2√

2
, Z2 =

φ3 + iφ4√
2

, Z3 =
φ5 + iφ6√

2
, (A.4)

where φi, i = 1, . . . , 6 are the real scalar fields transforming under the SO(6) R-symmetry
group. We will also set Z3 := Z.

We define the covariant derivative is Dµφi = ∂µφi − i[Aµ, φi], where Aµ = AaµT
a, and

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ].

Our SU(N) generators are normalised as

Tr
(
T aT b

)
= δab , (A.5)

so that, for example,

〈
Z i
j(x)Z̄

l
m(0)

〉
=
g2

2
δimδ

l
j ∆(x) , ∆(x) =

1

4π2x2
. (A.6)

Our Euclidean sigma matrices satisfy

σµσ̄ν + σν σ̄µ = 2δµν , σ̄µσν + σ̄νσµ = 2δµν . (A.7)

The completeness relation reads:

σµ
αβ̇
σ̄γ̇δµ = 2 δδα δ

γ̇

β̇
. (A.8)
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Another useful identity is:

σν σ̄ρ σµ = δνρσµ + δµρσν − δµνσρ + ǫνρµτστ (A.9)

We also define σµν and σ̄µν by:

σµν =
1

2
(σµσ̄ν − σν σ̄µ) = iηaµνσ

a , (A.10)

σ̄µν =
1

2
(σ̄µσν − σ̄νσµ) = iη̄aµνσ

a , (A.11)

where ηaµν (η̄aµν) are the (anti-)self-dual ’t Hooft symbols [56].

Finally, we will use the definitions J := J1 + J2 and J1 = y · J , where y ∈ (0, 1).

Appendix B: The three-string vertex

We begin by specifying the notation and conventions used in pp-wave string field theory.
The combination α′p+ for the r-th string is denoted αr and

∑3
r=1 αr = 0. As is standard

in the literature, we will choose a frame in which α3 = −1,

αr = α′p+
(r) : α3 = −1, α1 = y, α2 = 1− y. (B.1)

In terms of the U(1) R-charges of the BMN operators in the gauge theory three-point
function, 〈OJ1

1 OJ2

2 ŌJ3 〉 we have

y =
J1

J
, 1− y =

J2

J
, y ∈ (0, 1) , (B.2)

and J = J1 + J2.

The effective SYM coupling constant (1.2) in the frame (B.1) takes the simple form

λ′ =
1

(µp+α′)2
≡ 1

(µα3)2
=

1

µ2
. (B.3)

Here µ is the mass parameter which appears in the pp-wave metric, in the chosen frame
it is dimensionless15 and the expansion in powers of 1/µ2 is equivalent to the perturbative
expansion in λ′. Finally, the frequencies are defined via

ωrm =
√
m2 + (µαr)2 . (B.4)

The three-string vertex |H3〉 can be represented as a ket-state in the tensor product
of three single-string Fock spaces. It has the form [11,12]

1

µ
|H3〉 = P|VF 〉|VB〉 δ

( 3∑

r=1

αr

)
, (B.5)

15It is p+µ which is invariant under longitudinal boosts and is frame-independent.
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where the kets |VB〉 and |VF 〉 are constructed by requiring they satisfy the bosonic and
fermionic kinematical symmetries, and αr are defined in (B.1). |VB〉 is given by

|VB〉 = exp

(
1

2

3∑

r,s=1

∞∑

m,n=−∞

8∑

I=1

a(r) I†
m N

(rs)

mna
(s) I†
n

)
|v〉1|v〉2|v〉3 , (B.6)

where the N
(rs)

mn are the Neumann matrices in the number operator basis. The fermionic
ket state |VF 〉, which is relevant for this paper, is given in the SO(4)× SO(4) formalism
by [23, 58]

|VF 〉 = exp

(
3∑

r,s=1

∑

m,n≥0

(bαβ †

−m(r) b
†

n(s)αβ + bα̇β̇ †

m(r) b
†

−n(s) α̇β̇
)Q

(rs)

mn

)
|v〉1|v〉2|v〉3 , (B.7)

where Q
(rs)

mn are the fermionic Neumann matrices. The complete perturbative expansion
of the Neumann matrices in the pp-wave background in the vicinity of µ = ∞, was
constructed in [57]16. The vacuum state |v〉 ≡ |v〉1|v〉2|v〉3 is defined as the state which is
annihilated by all a’s and b’s,

an(r) |v〉r = 0 , bn(r) |v〉r = 0 , ∀n . (B.8)

The prefactor P is determined by imposing the dynamical symmetries of the pp-wave
superalgebra, and was derived in [23]. Its expressions reads:

P =

[(
KiK̃j +

µβ(β + 1)

2
α3

3 δ
ij

)
Vij −

(
KaK̃b +

µβ(β + 1)

2
α3

3 δ
ab

)
Vab

− Kα̇α1 K̃β̇β2 S+
αβ(Y )S−

α̇β̇
(Z) − K̃α̇α1 Kβ̇β2 S−

αβ(Y )S+

α̇β̇
(Z)

]
Cnorm , (B.9)

where i = 1 . . . 4 and a = 1 . . . 4 label the first and second group of four bosonic directions
of the pp-wave geometry, respectively. Full details about the expressions appearing in
(B.9) can be found in the original paper [23] or, for instance, in the review [35]. We will
only need the following expressions:

Vij = δij

[
1 +

1

12
(Y 4 + Z4) +

1

144
Y 4Z4

]
− i

2

[
Y 2
ij(1 +

1

12
Z4)− Z2

ij(1 +
1

12
Y 4)

]

+
1

4
(Y 2Z2)ij , (B.10)

Vab = δab

[
1− 1

12
(Y 4 + Z4) +

1

144
Y 4Z4

]
− i

2

[
Y 2
ab(1−

1

12
Z4)− Z2

ab(1−
1

12
Y 4)

]

+
1

4
(Y 2Z2)ab , (B.11)

where

Y αβ =
3∑

r=1

∑

n≥0

Ḡn(r) b
†αβ
n(r) , Z α̇β̇ =

3∑

r=1

∑

n≥0

Ḡn(r) b
†α̇β̇
−n(r) , (B.12)

16See also [59], and Appendix of [60] for some useful properties of the Neumann matrices.
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Y 2
αβ := YαγY

γ
β , Y 4 := Y 2

αβ(Y
2)
αβ
. (B.13)

Similar expressions hold for the Z’s. The matrices Ḡn(r) are given in (3.12) of [23]. Finally,
the overall normalisation Cnorm cannot be fixed by imposing the dynamical constraints,
and is determined (once and for all) by requiring agreement with a single field theory
calculation. Its value will be taken to be:

Cnorm = −g2

2

1√
J

1√
y(1− y)

. (B.14)

Appendix C: Summing over the BMN phase factors

We report here the expressions for the coefficients PI and PII which arise after summing
over the BMN phase factors in the interacting diagrams derived in section 5.1. Defining

q = e2πim/J , q1 = e2πin/J1 , (C.1)

the expressions for PI and PII are given by

PI =

J1∑

l=0

(q̄q1)
l q̄ , PII =

J1∑

l=0

(q̄q1)
l . (C.2)

We also need to evaluate the quantity 2(PI + P̄I)− 2(PII + P̄II), which in the BMN limit
is

2(PI + P̄I)− 2(PII + P̄II) = − 8m

m− n/y sin2 πmy . (C.3)

Appendix D: The functions X, Y and H

The expressions for three-point functions of BMN operators with scalar, vector, mixed or
fermion impurities involve the integral

X1234 =

∫
d4z ∆(x1 − z)∆(x2 − z)∆(x3 − z)∆(x4 − z) . (D.1)

X1234 develops a log x2
12 term X as x1 approaches x2, which repeatedly appears in section

5.1. The expression for X is [20]

X := X1234|x3=x4
=

log (x12Λ)−1

8π2 (4π2x2
31)

2
. (D.2)
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Another important function ubiquitously appearing in the calculations is

Y123 =

∫
d4z∆(x1 − z)∆(x2 − z)∆(x3 − z) . (D.3)

It is easy to realise that, as x12 → 0, the function Y123 contains a logarithmic term given
by

Y123|x12→0 = − 1

24π2
∆(x13) log x2

12 . (D.4)

One also needs the following expression for the log x2
12 term in the first derivative of Y :

(∂1αY123)x12→0 =
1

25π2
log x2

12 ∂3α∆(x13) . (D.5)

Notice that (D.5) should be derived directly from (D.3) rather than by differentiating
(D.4).

In the calculation, we also encounter the function H defined by

H14,23 = (∂x1

µ −∂x4

µ )(∂x2

µ −∂x3

µ )

∫
d4z d4t ∆(x1− z)∆(x4− z)∆(x2− t)∆(x3− t)∆(z− t) ,

(D.6)
which can be evaluated with the useful relation proved in [31]

H14,23

∆14∆23

= X1234

(
1

∆12∆43

− 1

∆13∆24

)
+G1,23 −G4,23 +G2,14 −G3,14 , (D.7)

where ∆ij = ∆(xi − xj) and

Gi,jk = Yijk

(
1

∆ik
− 1

∆ij

)
. (D.8)

We can recast (D.7) as

H14,23 = −X1234
∆14∆23

∆13∆24
+

(
Y123

∆13
+
Y124

∆24

)
∆14∆23 + · · ·

= HI + HII + · · · , (D.9)

where the dots stand for terms which either vanish or do not contain the log x2
12.

Appendix E: More detailed calculations for the
evaluation of the Feynman diagrams

The three-point functions with fermion BMN operators discussed in section 5 are ex-
pressed in terms of JA, JB and JC defined in (5.21)-(5.23). Here we sketch the calculation
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of the log(x2
12) parts of these quantities. Let us start by calculating the following integral:

A = ∂1
k∂

4
kH1432 =

∫
d4z d4t ∂zk∆1z ∂

z
k∆4z∆zt ∆2t∆3t = (E.1)

−
∫
d4z d4t∆1z�z∆4z ∆zt∆2t∆3t −

∫
d4z d4t∆1z∂

z
k∆4z ∂

z
k∆zt ∆2t∆3t .

The box acting on the propagator gives a delta function which eliminates the z integration,
giving a result proportional to Y234. Y234, however, does not contain any log x2

12 term so
for our purposes this term can safely be ignored. Therefore we are left with:

A =

∫
d4z d4t ∂zk∆1z ∆4z∂

z
k∆zt ∆2t∆3t +

∫
d4z d4t∆1z∆4z�z∆zt ∆2t∆3t

= −
∫
d4z d4t�z∆1z ∆4z∆zt∆2t∆3t −

∫
d4z d4t ∂zk∆1z ∂

z
k∆4z∆zt ∆2t∆3t −X1234

= ∆14Y123 − A−X1234 . (E.2)

From the last expression one can obtain A:

A =
1

2

(
−X1234 + ∆14Y123

)
. (E.3)

In the above derivation , we have integrated by parts with respect to z several times, and
we used �x∆(x) = −δ(x). Since the log x12 terms of X1234 and Y123 are well known (see
Appendix D), the same is also true for A.

Upon using the useful identity (∂1
µ + ∂2

µ + ∂3
µ + ∂4

µ)H1423 = 0, and the expression for A
derived above, one can evaluate (∂3 · ∂4 + ∂2 · ∂4)H1423:

(∂2 + ∂3) · ∂4H1423 = −(∂1 + ∂4) · ∂4H1423 = −A−�4H1423 →= −A , (E.4)

since again �4 acting on H1423 does not give rise to a log x2
12 term. One can also evaluate

the difference (∂3 · ∂4 − ∂2 · ∂4)H1423 using

∂i · ∂jH1423 =
1

2
(�k + �l −�i −�j)H1423 + ∂k · ∂lH1423 , (E.5)

where (E.5) holds for i 6= j 6= k 6= l.

Starting from

H14,23 = (∂1 − ∂4) · (∂2 − ∂3)H1423 , (E.6)

substituting for ∂1 · ∂2 and ∂1 · ∂3 the corresponding expressions from (E.5), and solving
for (∂3 · ∂4 − ∂2 · ∂4)H1423, we obtain:

(∂3 · ∂4 − ∂2 · ∂4)H1423 =
1

2

[
H14,23 + (�2 −�3)H1423

]
. (E.7)
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Now, since the divergences of the right hand side of (E.7) are known [10], the divergence
of (∂3 ·∂4−∂2 ·∂4)H1423 is also known. In conclusion, we have computed the log x2

12 parts
of (E.7) and (E.4). That means we can evaluate the log x2

12 parts of ∂3 · ∂4 H1423 and
∂2 · ∂4 H1423 separately.

We are now in position to write down the expressions for the J ’s as functions of X1234,
Y123 and Y124. These are the following:

JA = −1

2
(X1234 + ∆41Y123) + · · · , (E.8)

JB = −1

2
(−X1234 + ∆23Y124) + · · · , (E.9)

JC =
1

4
(−∆41Y123 −X1234 + ∆23Y124 +H14,23) + · · · , (E.10)

where the dots stand for terms which do not contain the log x2
12. H14,23 is given in (D.7).

In the evaluation of the diagrams involving the compensating term, we also made use of
the following relations:

∂4
ν∂

3
µX1234 |x3 = x4,x12→0 = − 1

(4π2)3

x3µx3ν

(x2
3)

4
log x2

12 , (E.11)

∂4
ν∂

4
µX1234 |x3=x4,x12→0 = ∆23∂

4
ν∂

4
µY124 |x3=x4,x12→0 (E.12)

=
log x2

12

2(4π2)3(x2
3)

3

(
δµν − 4

x3µx3ν

x2
3

)
,

∂1
νY123 |x3=x4,x12→0 =

−x3ν

26π4(x2
3)

2
log x2

12 , (E.13)

∂3
νY123 |x3=x4,x12→0 =

x3ν

25π4(x2
3)

2
log x2

12 . (E.14)
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