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Abstract—Let k � 4 be even and let n � 2. Consider a faulty k-ary n-cube Qk
n in which the number of node faults fv and the number of

link faults fe are such that fv þ fe � 2n� 2. We prove that given any two healthy nodes s and e of Qk
n, there is a path from s to e of

length at least kn � 2fv � 1 (respectively, kn � 2fv � 2) if the nodes s and e have different (respectively, the same) parities (the parity of

a node in Qk
n is the sum modulo 2 of the elements in the n-tuple over f0; 1; . . . ; k� 1g representing the node). Our result is optimal in

the sense that there are pairs of nodes and fault configurations for which these bounds cannot be improved, and it answers questions

recently posed by Yang et al. [22] and by Fu [11]. Furthermore, we extend known results, obtained by Kim and Park [15], for the case

when n ¼ 2.

Index Terms—Interconnection networks, k-ary n-cubes, fault tolerance, embeddings, longest paths.

Ç

1 INTRODUCTION

THE choice of how we connect the processors in a
distributed-memory parallel machine is a fundamental

design decision. There are numerous, often conflicting
considerations to bear in mind. For instance, we would
like our interconnection topology to be symmetric, have a
small diameter, be recursively decomposable, be highly
connected, be regular of low degree, support rapid and easy
interprocessor communication, support the simulation of
other machines based on other topologies, and so on. There
does not exist an interconnection topology that is optimal
on all accounts, and trade-offs generally have to be made.

An extremely popular interconnection topology is the
hypercube. The hypercube has been used as the interconnec-
tion topology of a number of distributed-memory multi-
processors such as the Cosmic Cube [19], the Ametek S/14 [4],
the iPSC [9], [10], the Ncube [5], [10], and the CM-200 [6], and
the properties of hypercubes relevant to parallel computing
have been well studied. One drawback of the hypercube is
that as the dimension of a hypercube increases, so does the
degree of its nodes. Consequently, given a collection of
processors, if we wish to connect these processors in the
topology of a hypercube, then we have no choice as to the
degree of the nodes of the resulting network. The k-ary n-cube
has been proposed as an alternative to the hypercube. The
k-ary n-cube is very “hypercube-like” and has similar proper-
ties to the hypercube. Furthermore, the two parameters
available, k andn, allow us to regulate the degree of the nodes
yet still incorporate large numbers of processors, although
usually at a cost to some other property such as the diameter
or the connectivity. A number of distributed memory multi-
processors have been built with a k-ary n-cube forming the

underlying topology, such as the Mosaic [20], the iWARP [7],
the J-machine [18], the Cray T3D [14], and the Cray T3E [3].

As more and more processors are incorporated into
parallel machines, faults become more common, be it faults
in the processors themselves or faults on the interprocessor
connections. Given the significant cost of parallel machines,
we would prefer to be able to tolerate small numbers of
faults and still be able to use our parallel machine. A key
property we would like our “faulty” machine to have is that
a large number of the healthy processors should remain in a
connected component and be able to undertake significant
parallel computations. Numerous existing algorithms for
k-ary n-cubes utilize the orderings of processors and involve
the use of long paths and cycles (note that a path in a
multiport bidirectional network results in a closed path
containing the nodes of the path exactly twice), and we
would wish to utilize such structures even in the presence
of faults. Also, fundamental and abundant in parallel
computing are linear arrays and rings of processors, and
at the very least, our faulty machine should be able to
simulate (the large number of) algorithms designed for
machines whose processors are joined in the form of linear
arrays or rings (see, for example, [2] and [16]). We remark
that our situation is of a different nature to that where a
faulty network is to simulate another (healthy) network but
where this simulation comes about due to an embedding of
the healthy network in the faulty network with low load,
congestion, and/or dilation (such a scenario can be found
in, for example, [1], [8], [12], and [17], where hypercubes,
arrays, and butterflies are considered).

In this paper, we continue the study of the k-ary n-cube
with regard to the existence of long paths and cycles in the
presence of limited numbers of node and link faults. We are
motivated by the work in four recent publications. In [15],
Kim and Park study the existence of Hamiltonian paths in
two-dimensional tori. They provide conditions when a two-
dimensional torus with at most two faulty nodes is
Hamiltonian, Hamiltonian-connected, and bi-Hamiltonian
connected. In [11], Fu proves that ann-dimensional hypercube
with f � n� 2 faulty nodes is such that there is a path of
length at least 2n � 2f � � between any two distinct healthy
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nodes, where � ¼ 1 if the two nodes have different parities
and � ¼ 2 otherwise. In [13], Hsieh and Chang show that Fu’s
result holds even when f � 2n� 5 but only so long as every
healthy node is adjacent to at least two healthy nodes (the so-
called conditional fault assumption). In [22], Yang et al.
proved that in a k-ary n-cube where k is odd, if the number of
faulty nodes and links is at most 2n� 3, then there is a
Hamiltonian cycle, and if the number of faulty nodes and
links is at most 2n� 2, then there is a Hamiltonian path
joining any two distinct healthy nodes. Note that Yang et al.
prove no results when k is even beyond remarking that when
k is even, the k-ary n-cube is bipartite, and so, if there is one
faulty node, then there can be no Hamiltonian cycle, and there
exists a pair of distinct healthy nodes not joined by a
Hamiltonian path.

Our main result is given as follows: Let k � 4 be even
and let n � 2. In a faulty k-ary n-cube Qk

n in which the
number of node faults fn and the number of link faults fe
are such that fn þ fe � 2n� 2, given any two healthy
nodes s and e of Qk

n, there is a path from s to e of length
at least kn � 2fn � 1 (respectively, kn � 2fn � 2) if the nodes
s and e have different (respectively, the same) parities. Our
result resolves the situation in [22] when k is even, answers
the questions posed by Yang et al. and by Fu, and extends
known results, obtained by Kim and Park, for the case when
n ¼ 2. The rest of this paper is devoted to a proof by
induction of our main theorem. Section 2 contains the basic
definitions. In Section 3, we deal with the base case of the
induction, and in Section 4, we deal with the inductive step.
We present our conclusions in Section 5.

2 BASIC DEFINITIONS

The k-ary n-cube Qk
n, for k � 3 and n � 2, has kn nodes

indexed by f0; 1; . . . ; k� 1gn, and there is a link
ððu1; u2; . . . ; unÞ, ðv1; v2; . . . ; vnÞÞ if and only if there exists
d 2 f1; 2; . . . ; ng such that minfjud � vdj; k� jud � vdjg ¼ 1
and ui ¼ vi, for every i 2 f1; 2; . . . ; ng n fdg. Many structural
properties of k-ary n-cubes are known, but of particular
relevance for us is that a k-ary n-cube is node symmetric;
that is, given any two distinct nodes v and v0 of Qk

n, there is
an automorphism of Qk

n mapping v to v0. Throughout, we
assume that the addition of tuple elements is modulo k.

An index d 2 f1; 2; . . . ; ng is often referred to as a
dimension. We can partition Qk

n over dimension d by fixing
the dth element of any node tuple at some value v, for
every v 2 f0; 1; . . . ; k� 1g. This results in k copies
Qd;0; Qd;1; . . . ; Qd;k�1 of Qk

n�1 (with Qd;v obtained to fix
the dth element at v), with corresponding nodes in
Qd;0; Qd;1; . . . ; Qd;k�1 joined in a cycle of length k (in
dimension d). Such a partition proves to be extremely
useful (in proofs by induction, as we shall see).

The parity of a node v ¼ ðv1; v2; . . . ; vnÞ of Qk
n is defined to

be
Pn

i¼1 vi modulo 2. We speak of a node as being odd or
even according to whether its parity is odd or even. A pair of
nodes fv;v0g is odd (respectively, even) if v and v0 have
different (respectively, the same) parities.

We write paths in Qk
n as sequences of incident links, and

when k is even, paths necessarily consist of links joining,
alternatively, odd and even nodes. We often refer to a
path as �ðu;vÞ; the notation denotes that this is a path
joining node u and node v. On occasion, we might refer to a

link ðx;yÞ as appearing on a path �ðu;vÞ or, equivalently,
the path �ðu;vÞ as containing the link ðx;yÞ; when we do,
the notation denotes that if we traverse the path �ðu;vÞ
starting at node u, then we shall reach node x immediately
before we reach node y. If �ðu;vÞ is a path and x and y are
nodes on this path, then �ðx;yÞ denotes the subpath of
�ðu;vÞ starting at x and ending at y.

A fault in Qk
n refers to a faulty node or a faulty link. If a

node is faulty, then we imagine that the node and its
incident links do not exist; if a link is faulty, then we
imagine that this link does not exist. When we refer to a
path in a faulty Qk

n, we mean that all nodes and links on
the path should be nonfaulty, that is, healthy (unless
otherwise stated).

We repeatedly apply the following construction through-
out. Suppose that we have partitioned a k-ary n-cube Qk

n

over some dimension d so as to obtain k-ary ðn� 1Þ-cubes
Qd;0; Qd;1; . . . ; Qd;k�1 and that we have a path �ðu;vÞ in Qk

n of
length l. Suppose also that ðxi;yiÞ is a link of �ðu;vÞ, with
xi, yi 2 Qd;i and that we have another path �0ðxiþ1;yiþ1Þ of
length l0 that shares no nodes in common with �ðu;vÞ,
where xiþ1 and yiþ1 are the neighbors of xi and yi,
respectively, in Qd;iþ1. We refer to the path obtained by
removing the link ðxi;yiÞ from �ðu;vÞ and replacing it with
the path ðxi;xiþ1Þ, �0ðxiþ1;yiþ1Þ, ðyiþ1;yiÞ, so as to obtain a
new path from u to v of length lþ l0 þ 1, as the join of
�ðu;vÞ to �0ðxiþ1;yiþ1Þ over ðxi;yiÞ. We can equally well join
two paths over a subpath rather than a link; with the above
notation, we would remove a subpath �ðxi;yiÞ from �ðu;vÞ
and replace it with the path ðxi;xiþ1Þ, �0ðxiþ1;yiþ1Þ,
ðyiþ1;yiÞ. We have analogous constructions should we wish
to join a cycle and a path to obtain a path or two cycles to
obtain a cycle (when joining a cycle, we lose one edge from
the cycle).

Henceforth, for reasons of clarity, we drop the use of
bold type to denote the nodes of Qk

n (hitherto, we have used
bold type to emphasize the representation of nodes as
tuples of elements).

3 THE BASE CASE

In this section, we deal with the base case of our
forthcoming inductive proof of the main result, namely,
when we have a k-ary 2-cube with no more than two faults.
We begin with some notation specific to our constructions
in this section.

We consider Qk
2 as a k� k grid with wraparound, and we

think of a node vi;j as indexed by its row i and column j.
Given two row indices i, j 2 f0; 1; . . . ; k� 1g, where j 6¼ i,
we define the row torus rtði; jÞ to be the subgraph of Qk

2

induced by the nodes on rows i, iþ 1; . . . ; j if i < j or
rows i; iþ 1; . . . ; k� 1; 0; . . . ; j if j < i but with all column
links between nodes on row j and nodes on row i removed
if i ¼ jþ 1 or (i ¼ 0 and j ¼ k� 1). Throughout, we assume
that the addition of row or column indices is modulo k.

We define the following paths in the row torus rtð0; 1Þ
(of some Qk

2). The names of these paths are derived from the
shape of their pictorial representations (see the figures
coming up). Also, if i ¼ 0, then i ¼ 1, and if i ¼ 1, then i ¼ 0.
The paths are given as follows:
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Cþmðvi;j; vi;jÞ ¼ ðvi;j; vi;jþ1Þ; ðvi;jþ1; vi;jþ2Þ; . . . ;

ðvi;m�1; vi;mÞ; ðvi;m; vi;mÞ; ðvi;m; vi;m�1Þ;
ðvi;m�1; vi;m�2Þ; . . . ; ðvi;jþ1; vi;jÞ;
where 0 � i � 1; 0 � j � k� 1;

0 � m � k� 1; and m 6¼ j:
C�mðvi;j; vi;jÞ ¼ ðvi;j; vi;j�1Þ; ðvi;j�1; vi;j�2Þ; . . . ;

ðvi;mþ1; vi;mÞ; ðvi;m; vi;mÞ; ðvi;m; vi;mþ1Þ;
ðvi;mþ1; vi;mþ2Þ; . . . ; ðvi;j�1; vi;jÞ;
where 0 � i � 1; 0 � j � k� 1;

0 � m � k� 1; and m 6¼ j:
Nþðvi;j; vi;j0 Þ ¼ ðvi;j; vi;jÞ; ðvi;j; vi;jþ1Þ; ðvi;jþ1; vi;jþ1Þ;

ðvi;jþ1; vi;jþ2Þ; ðvi;jþ2; vi;jþ2Þ; ðvi;jþ2;

vi;jþ3Þ; ðvi;jþ3; vi;jþ3Þ; ðvi;jþ3; vi;jþ4Þ;
. . . ; ðvi;j0�1; vi;j0 Þ; where 0 � i � 1;

0 � j 6¼ j0 � k� 1; and jj� j0j is even:

N�ðvi;j; vi;j0 Þ ¼ ðvi;j; vi;jÞ; ðvi;j; vi;j�1Þ; ðvi;j�1; vi;j�1Þ;
ðvi;j�1; vi;j�2Þ; ðvi;j�2; vi;j�2Þ; ðvi;j�2;

vi;j�3Þ; ðvi;j�3; vi;j�3Þ; ðvi;j�3; vi;j�4Þ;
. . . ; ðvi;j0þ1; vi;j0 Þ; where 0 � i � 1;

0 � j0 6¼ j � k� 1; and jj� j0j is even:

Zþðvi;j; vi;j0 Þ ¼ ðvi;j; vi;jþ1Þ; ðvi;jþ1; vi;jþ1Þ;
ðvi;jþ1; vi;jþ2Þ; ðvi;jþ2; vi;jþ2Þ;
ðvi;jþ2; vi;jþ3Þ; ðvi;jþ3; vi;jþ3Þ;
ðvi;jþ3; vi;jþ4Þ; ðvi;jþ4; vi;jþ4Þ;
. . . ; ðvi;j0 ; vi;j0 Þ; where 0 � i � 1;

1 � j 6¼ j0 � k� 1; and jj� j0j is even:

Z�ðvi;j; vi;j0 Þ ¼ ðvi;j; vi;j�1Þ; ðvi;j�1; vi;j�1Þ;
ðvi;j�1; vi;j�2Þ; ðvi;j�2; vi;j�2Þ;
ðvi;j�2; vi;j�3Þ; ðvi;j�3; vi;j�3Þ;
ðvi;j�3; vi;j�4Þ; ðvi;j�4; vi;j�4Þ;
. . . ; ðvi;j0 ; vi;j0 Þ; where 0 � i � 1;

1 � j0 6¼ j � k� 1; and jj� j0j is even:

In addition, we define Cþj ðvi;j; vi;jÞ ¼ C�j ðvi;j; vi;jÞ ¼ ðvi;j; vi;jÞ.
We also use the above notation to describe paths in other
row tori of the form rtðl; lþ 1Þ in Qk

2. Furthermore, if we
write, for example, Nþðvi;j; vi;jþ1Þ, Z�ðvi;j; vi;jÞ or some other
illegal node pairing, then we regard the path so denoted as
being the empty path.

We begin with two lemmas: the first concerning paths in a
row torus rtð0; 1Þ in which there is a faulty node and the
second concerning paths in a row torus rtð0; p� 1Þ in which
there are no faults. These two lemmas are used repeatedly in
the proofs of the subsequent propositions, each of which deals
with a specific configuration of faults relating to the base case.

Lemma 1. Let k � 4 be even and consider the row torus rtð0; 1Þ
in Qk

2, where one node of the row torus is faulty. If the pair of
distinct healthy nodes fs; eg of the row torus is odd
(respectively, even), then there is a path �ðs; eÞ in the row
torus joining s and e of length at least 2k� 3 (respectively,
2k� 4).

Proof. By the symmetric properties of the row torus rtð0; 1Þ,
without loss of generality, we may assume that the fault
is the node v0;0.

Suppose that s and e are both odd. Without loss of
generality, there are four cases. (Throughout, we proceed
by a case-by-case analysis, eliminating some cases by
applying automorphisms of rtð0; 1Þ such as “reflections
in the vertical bisecting plane” or “toroidal rotations.”)

Case a. s and e both lie on row 0, with s ¼ v0;i, e ¼ v0;j,
and i < j. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;1Þ; ðv1;1; v1;0Þ; ðv1;0; v1;k�1Þ;
N�ðv1;k�1; v1;jÞ; ðv1;j; v0;jÞ:

This path has length 2k� 2 and is as depicted in Fig. 1a.
Case b. s and e lie on different rows, with s ¼ v0;i,

e ¼ v1;j, and i < j. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;1Þ; ðv1;1; v1;0Þ; ðv1;0; v1;k�1Þ;
N�ðv1;k�1; v1;jþ1Þ; ðv1;jþ1; v0;jþ1Þ; ðv0;jþ1; v0;jÞ; ðv0;j; v1;jÞ:

This path has length 2k� 2 and is as depicted in Fig. 1b.
Case c. s and e lie on different rows, with s ¼ v0;i and

e ¼ v1;0. Consider the path

Cþk�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;1Þ; ðv1;1; v1;0Þ:

This path has length 2k� 2 and is as depicted in Fig. 1c.
Case d. s and e both lie on row 1, with s ¼ v1;i, e ¼ v1;j,

and i < j. Consider the path

N�ðv1;i; v1;0Þ; ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jþ1Þ;
ðv1;jþ1; v0;jþ1Þ; ðv0;jþ1; v0;jÞ; C�iþ1ðv0;j; v1;jÞ:

This path has length 2k� 2 and is as depicted in Fig. 1d.
Suppose now that s and e are both even. Without loss

of generality, there are three cases.
Case e. s and e both lie on row 0, with s ¼ v0;i, e ¼ v0;j,

and i < j. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;2Þ; ðv1;2; v1;1Þ; ðv1;1; v1;0Þ;
ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jþ1Þ; ðv1;jþ1; v0;jþ1Þ; ðv0;jþ1; v0;jÞ:
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This path has length 2k� 4 and is similar to the path
depicted in Fig. 1a.

Case f. s and e lie on different rows, with s ¼ v0;i,
e ¼ v1;j, and i < j. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;2Þ; ðv1;2; v1;1Þ; ðv1;1; v1;0Þ;
ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jÞ:

This path has length 2k� 4 and is similar to the path
depicted in Fig. 1b.

Case g. s and e both lie on row 1, with s ¼ v1;i, e ¼ v1;j,
and i < j. Consider the path

N�ðv1;i; v1;1Þ; ðv1;1; v1;0Þ; ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jþ2Þ;
ðv1;jþ2; v0;jþ2Þ; ðv0;jþ2; v0;jþ1Þ; ðv0;jþ1; v0;jÞ; C�iþ1ðv0;j; v1;jÞ:

This path has length 2k� 4 and is similar to the path
depicted in Fig. 1d.

Suppose now that one of s and e is odd and the other
is even and, further, that s and e lie on the same row.
Without loss of generality, there are three cases.

Case h. s and e both lie on row 0, with s ¼ v0;i odd,
e ¼ v0;j even, and i < j. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;1Þ; ðv1;1; v1;0Þ; ðv1;0; v1;k�1Þ;
N�ðv1;k�1; v1;jþ1Þ; ðv1;jþ1; v0;jþ1Þ; ðv0;jþ1; v0;jÞ:

This path has length 2k� 3 and is as depicted in
Fig. 2h.

Case i. s and e both lie on row 1, with s ¼ v1;i odd,
e ¼ v1;j even, and 0 6¼ i < j. Consider the path

Cþj�1ðv1;i; v0;iÞ; Z�ðv0;i; v0;2Þ; ðv0;2; v0;1Þ; ðv0;1; v1;1Þ;
ðv1;1; v1;0Þ; ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jÞ:

This path has length 2k� 3 and is as depicted in
Fig. 2i.

Case j. s and e both lie on row 1, with s ¼ v1;0 and
e ¼ v1;j even. Consider the path

ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jþ2Þ; ðv1;jþ2; v0;jþ2Þ;
ðv0;jþ2; v0;jþ1Þ; ðv0;jþ1; v0;jÞ; C�1 ðv0;j; v1;jÞ:

This path has length 2k� 3 and is as depicted in Fig. 2j.
Suppose now that one of s and e is odd and the other

is even and, further, that s and e lie on different rows.
Without loss of generality, there are five cases.

Case k. s lies on row 0, and e lies on row 1, with s ¼ v0;i

odd, e ¼ v1;j even, and i < j. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;1Þ; ðv1;1; v1;0Þ; ðv1;0; v1;k�1Þ;
N�ðv1;k�1; v1;jÞ:

This path has length 2k� 3 and is as depicted in
Fig. 3k.

Case l. s and e lie on different rows, with s ¼ v0;i odd,
e ¼ v1;i even, and i 6¼ 1. Consider the path

Z�ðv0;i; v0;3Þ; ðv0;3; v0;2Þ; ðv0;2; v1;2Þ; ðv1;2; v1;1Þ; ðv1;1; v1;0Þ;
ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jÞ:

This path has length 2k� 3 and is as depicted in Fig. 3l.
Case m. s and e lie on different rows, with s ¼ v0;i

even, e ¼ v1;i odd, and i < j. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;2Þ; ðv1;2; v1;1Þ; ðv1;1; v1;0Þ;
ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jþ1Þ; ðv1;jþ1; v0;jþ1Þ;
ðv0;jþ1; v0;jÞ; ðv0;j; v1;jÞ:

This path has length 2k� 3 and is as depicted in Fig. 3m.
Case n. s and e lie on different rows, with s ¼ v0;i even

and e ¼ v1;0. Consider the path

Cþj�1ðv0;i; v1;iÞ; Z�ðv1;i; v1;2Þ; ðv1;2; v1;1Þ; ðv1;1; v1;0Þ:

This path has length 2k� 3 and is as depicted in Fig. 3n.
Case o. s and e lie on different rows, with s ¼ v0;i even

and e ¼ v1;i odd. Consider the path

Z�ðv0;i; v0;2Þ; ðv0;2; v0;1Þ; ðv0;1; v1;1Þ; ðv1;1; v1;0Þ;
ðv1;0; v1;k�1Þ; N�ðv1;k�1; v1;jþ1Þ; ðv1;jþ1; v1;jÞ:

This path has length 2k� 3 and is as depicted in Fig. 3o.
The result follows. tu
The following lemma proves to be useful throughout.
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Lemma 2. Let k � 4 be even and consider the row torus
rtð0; p� 1Þ in Qk

2, where 2 � p � k. If the pair of distinct
nodes fs; eg of the row torus is odd (respectively, even), then
there is a path �ðs; eÞ in the row torus joining s and e of length
pk� 1 (respectively, pk� 2).

Proof. We proceed by induction on p. Suppose that p ¼ 2
and consider the row torus rtð0; 1Þ. Without loss of
generality, we may assume that e ¼ v0;0.

Suppose that s ¼ v0;i is odd. The path

Cþk�1ðs; v1;iÞ; Z�ðv1;i; v1;1Þ; ðv1;1; v1;0Þ; ðv1;0; eÞ

has length 2k� 1.
Suppose that s ¼ v0;i is even. The path

Cþk�1ðs; v1;iÞ; Z�ðv1;i�2; v1;2Þ; ðv1;2; v1;1Þ; ðv1;1; v1;0Þ; ðv1;0; eÞ

has length 2k� 2.
Suppose that s ¼ v1;i is odd. The path

Cþk�1ðs; v0;iÞ; Z�ðv0;i; eÞ

has length 2k� 1.
Suppose that s ¼ v1;i is even. The path

Cþk�1ðs; v0;iÞ; Z�ðv0;i; v0;1Þ; ðv0;1; eÞ

has length 2k� 2. Therefore, the result holds for p ¼ 2.
Suppose, as our induction hypothesis, that the result

holds for all p such that 1 � p < q, where 1 < q � k� 1.
Consider rtð0; qÞ.

Case a. It is not the case that s lies on row 0 and e lies
on row q, and it is not the case that s lies on row q and e
lies on row 0.

Without loss of generality, assume that s and e lie in
rtð0; q � 1Þ. By the induction hypothesis, there is a path
�ðs; eÞ in rtð0; q � 1Þ of length qk� 1 (respectively, qk� 2)
if fs; eg is odd (respectively, even). A simple counting
argument yields that the path �ðs; eÞ must contain a link
ðvq�1;i; vq�1;iþ1Þ lying on row q � 1. Consider the path

�ðs; vq�1;iÞ; ðvq�1;i; vq;iÞ; ðvq;i; vq;i�1Þ; ðvq;i�1; vq;i�2Þ; . . . ;

ðvq;iþ2; vq;iþ1Þ; ðvq;iþ1; vq�1;iþ1Þ; �ðvq�1;iþ1; eÞ:

This path is as required (with reference to our construc-
tion as detailed at the beginning of this section, an
alternative description of this path would be as that
obtained by joining �ðs; eÞ to the cycle

ðvq;0; vq;1Þ; ðvq;1; vq;2Þ; . . . ; ðvq;k�2; vq;k�1Þ; ðvq;k�1; vq;0Þ;

over the links ðvq�1;i; vq�1;iþ1Þ and ðvq;i; vq;iþ1ÞÞ.
Case b. The node s lies on row 0, and the node e lies

on row q.
If e ¼ vq;i, then define e0 ¼ vq�1;i�1. Note that e is odd

if and only if e0 is odd. By the induction hypothesis, there
is a path �ðs; e0Þ in rtð0; q � 1Þ of length qk� 1 (respec-
tively, qk� 2) if fs; eg is odd (respectively, even). The
path

�ðs; e0Þ; ðe0; vq;i�1Þ; ðvq;i�1; vq;i�2Þ; ðvq;i�2; vq;i�3Þ;
. . . ; ðvq;iþ1; eÞ

is as required.
The result follows by induction. tu

We now deal with the first scenario in the base case.

Proposition 3. Consider the k-ary 2-cube Qk
2, where k � 6 is

even and where two of the nodes are faulty. Let s and e be any

two distinct nonfaulty nodes. There is a path of length at least

k2 � 5 (respectively, k2 � 6) from s to e if fs; eg is odd

(respectively, even).

Proof. Without loss of generality, suppose that the

two faulty nodes are f0 ¼ v0;0 and f1 ¼ vp;p0 , with p 6¼ 0.
We begin by partitioning Qk

2 into three or four row tori.

If p 2 f1; 2; k� 2; k� 1g, then

. if p ¼ 1 or p ¼ 2, then we partition Qk
2 into

A¼ rtðk� 1; 0Þ, B ¼ rtð1; 2Þ, and X ¼ rtð3; k� 2Þ,
and

. if p ¼ k� 2 or p ¼ k� 1, then we partition
Qk

2 i n t o A ¼ rtð0; 1Þ, X ¼ rtð2; k� 3Þ, a n d
B¼ rtðk� 2; k� 1Þ.

If p 62 f1; 2; k� 2; k� 1g, then

. if p 6¼ 3 is odd, then we partition Qk
2 into

A¼ rtð0; 1Þ, X¼ rtð2; p� 2Þ, B ¼ rtðp� 1; pÞ, and
Y ¼ rtðpþ 1; k� 1Þ,

. if p ¼ 3, then we partition Qk
2 into A ¼ rtðk� 1; 0Þ,

X ¼ rtð1; 2Þ, B ¼ rtð3; 4Þ, and Y ¼ rtð5; k� 2Þ,
. if p is even, then we partition Qk

2 into
A ¼ rtð0; 1Þ, X¼ rtð2; p� 1Þ, B ¼ rtðp; pþ 1Þ, and
Y ¼ rtðpþ 2; k� 1Þ.

The outcome is that we have one of the two partitioned

structures as in Fig. 4, where consecutive row tori are

joined by column links. In particular, without loss of
generality, we may assume that when the partition

involves three row tori, we have the situation as in

Fig. 4a, with f0 ¼ v0;0 2 A ¼ rtð0; 1Þ, X ¼ rtð2; k� 3Þ
and f1 2 B ¼ rtðk� 2; k� 1Þ; and when the partition

involves four row tori, we have the situation as in
Fig. 4b, with f0 ¼ v0;0 2 A ¼ rtð0; 1Þ, X ¼ rtð2; q � 1Þ,
f1 2 B ¼ rtðq; q þ 1Þ, and Y ¼ rtðq þ 2; k� 1Þ, for some

even q, where 4 � q � k� 4.
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Throughout the proof, � ¼ 1 if fs; eg is odd, and � ¼ 2
if fs; eg is even.

Case a. Qk
2 is partitioned into three row tori.

Subcase a.1. The nodes s and e both lie in A.
By Lemma 1, there exists a path �Aðs; eÞ in A of length

at least 2k� 2� �. A simple counting argument yields
that there is at least one link of �Aðs; eÞ lying on row 1;
without loss of generality, let ðv1;i; v1;iþ1Þ be such a link
(the case when the link is ðv1;iþ1; v1;iÞ is almost identical).
By Lemma 2, there exists a path �Xðv2;i; v2;iþ1Þ in X of
length kðk� 4Þ � 1. Let �ðs; eÞ be obtained by joining
�Aðs; eÞ to �Xðv2;i; v2;iþ1Þ over ðv1;i; v1;iþ1Þ. Again, a simple
counting argument yields that there are at least two
nonincident links of �ðs; eÞ lying on row k� 3; without
loss of generality, let ðvk�3;j; vk�3;jþ1Þ be such a link where
vk�2;j 6¼ f1 6¼ vk�2;jþ1. By Lemma 1, there exists a path
�Bðvk�2;j; vk�2;jþ1Þ in B of length at least 2k� 3. The path
obtained by joining �ðs; eÞ to �Bðvk�2;j; vk�2;jþ1Þ over
ðvk�3;j; vk�3;jþ1Þ has length at least k2 � 4� �.

Subcase a.2. The node s is in A, and the node e is in X.
Choose v1;i such that v1;i is odd if and only if s is even

and v2;i 6¼ e (a simple counting argument yields that such
a node v1;i exists). By Lemma 1, there exists a path
�Aðs; v1;iÞ in A of length at least 2k� 3. By Lemma 2,
there exists a path �Xðv2;i; eÞ in X of length kðk� 4Þ � �.
Let �ðs; eÞ be the path

�Aðs; v1;iÞ; ðv1;i; v2;iÞ; �Xðv2;i; eÞ:

A simple counting argument yields that �ðs; eÞ contains
at least two nonincident links on row k� 3; without loss
of generality, let ðvk�3;j; vk�3;jþ1Þ be a link of �ðs; eÞ such
that vk�2;j 6¼ f1 6¼ vk�2;jþ1. By Lemma 1, there exists a
path �Bðvk�2;j; vk�2;jþ1Þ in B of length at least 2k� 3. The
path obtained by joining �ðs; eÞ to �Bðvk�2;j; vk�2;jþ1Þ over
ðvk�3;j; vk�3;jþ1Þ has length at least k2 � 4� �.

Subcase a.3. The node s is in A, and the node e is in B.
Choose v1;i such that v1;i is odd if and only if s is even

and v1;i 6¼ s. By Lemma 1, there exists a path �Aðs; v1;iÞ in
A of length at least 2k� 3. Choose vk�2;j such that vk�2;j is
odd if and only if e is even and f1 6¼ vk�2;j. By Lemma 1,
there exists a path �Bðvk�2;j; eÞ in B of length at least
2k� 3. By Lemma 2, there exists a path �Xðv2;i; vk�3;jÞ in
X of length kðk� 4Þ � �. The path

�Aðs; v1;iÞ; ðv1;i; v2;iÞ; �Xðv2;i; vk�3;jÞ; ðvk�3;j; vk�2;jÞ;
�Bðvk�2;j; eÞ

has length at least k2 � 4� �.
Subcase a.4. The nodes s and e both lie in X.
By Lemma 2, there exists a path �Xðs; eÞ in X of length

kðk� 4Þ � �. A simple counting argument yields that
�Xðs; eÞ always contains at least one link on row 2 and
also that there are two nonincident links on row k� 3,
unless we have the special situation where k ¼ 6, s and e
have a common neighbor on row k� 3 with this neighbor
not lying on �Xðs; eÞ, and neither s nor e is adjacent on
�Xðs; eÞ to a node on row k� 3. Suppose that there are two
nonincident links on row k� 3. Without loss of generality,
let ðvk�3;j; vk�3;jþ1Þ and ðv2;i; v2;iþ1Þ be links of �Xðs; eÞ,
where vk�2;j 6¼ f1 6¼ vk�2;jþ1. By Lemma 1, there exists a
path �Bðvk�2;j; vk�2;jþ1Þ (respectively, �Aðv1;i; v1;iþ1Þ) in B

(respectively, A) of length at least 2k� 3. Without loss of
generality, suppose that the nodes vk�3;j, vk�3;jþ1, v2;i, and
v2;iþ1 come in that order as we move along the path�Xðs; eÞ.
The path

�Xðs; vk�3;jÞ; ðvk�3;j; vk�2;jÞ; �Bðvk�2;j; vk�2;jþ1Þ;
ðvk�2;jþ1; vk�3;jþ1Þ; �Xðvk�3;jþ1; v2;iÞ; ðv2;i; v1;iÞ;
�Aðv1;i; v1;iþ1Þ; ðv1;iþ1; v2;iþ1Þ; �Xðv2;iþ1; eÞ

has length at least k2 � 4� �.
Alternatively, suppose that we are in the special

situation described above (and so, k ¼ 6). Without loss of
generality, suppose that s ¼ v3;0 and e ¼ v3;2, so the path
ðv3;3; v3;4Þ; ðv3;4; v3;5Þ is a subpath of �Xðs; eÞ. If f1 6¼ v4;4,
then we can find two links ðv3;j; v3;jþ1Þ and ðv2;i; v2;iþ1Þ of
�Xðs; eÞ, as above, and so obtain our path as required.
Therefore, suppose that f1 ¼ v4;4. Let �Bðv4;3; v4;5Þ be
the path

ðv4;3; v4;2Þ; ðv4;2; v4;1Þ; ðv4;1; v4;0Þ; ðv4;0; v4;5Þ;

and join �Xðs; eÞ to �Bðv4;3; v4;5Þ over ðv3;3; v3;4Þ; ðv3;4; v3;5Þ
to obtain the path �ðs; eÞ of length 16� �. We can now
join �ðs; eÞ to the cycle induced by the nodes on row 5
over two appropriate links and to an appropriate path
�Aðv1;i; v1;iþ1Þ in A of length at least 9, as we did above, to
obtain our required path of length at least 32� � (that
is, k2 � 4� �).

The remaining subcases are essentially identical to
those already considered.

Case b. Qk
2 is partitioned into four row tori.

If s and e lie inA [X [B, then by the analysis for case a,
there is a path �ðs; eÞ in A [X [B (and the connecting
column links) of length at least kðq þ 2Þ � 4� � (note that
all paths constructed in case a actually lie in the row torus
induced by A [X [B). A simple counting argument
yields that there is at least one link of �ðs; eÞ on row q þ 1 or
on row 0; without loss of generality, suppose that it is
row q þ 1 and let ðvqþ1;j; vqþ1;jþ1Þ be such a link. By
Lemma 2, there exists a path �Y ðvqþ2;j; vqþ2;jþ1Þ in Y of
lengthkðk� 1� q � 1Þ � 1. Join�ðs; eÞ to�Y ðvqþ2;j; vqþ2;jþ1Þ
over ðvqþ1;j; vqþ1;jþ1Þ to obtain a path of length at least
k2 � 4� �. A similar argument holds should s and e lie in
B [ Y [A.

Necessarily, the only remaining case is when s lies in
X and e lies in Y . Let v0;i be such that s and e do not lie
on column i and v0;i is odd if and only if e is odd. By
Lemma 2, there exists a path �Y ðvk�1;i; eÞ in Y of length
kðk� 1� q � 1Þ � 1. Let v1;j be such that s does not lie
on column j and v1;j is odd if and only if s is odd. By
Lemma 2, there exists a path �Xðs; v2;jÞ in X of length
kðq � 2Þ � 1. By Lemma 1, there exists a path �Aðv1;j; v0;iÞ
in A of length at least 2k� 2� �. Let �ðs; eÞ be the path

�Xðs; v2;jÞ; ðv2;j; v1;jÞ; �Aðv1;j; v0;iÞ; ðv0;i; vk�1;iÞ; �Y ðvk�1;i; eÞ:

Necessarily, there are at least two nonincident links of
�Xðs; v2;jÞ on row q � 1; without loss of generality, let
ðvq�1;m; vq�1;mþ1Þ be such a link with vq;m 6¼ f1 6¼ vq;mþ1.
By Lemma 1, there exists a path �Bðvq;m; vq;mþ1Þ in B of
length 2k� 3. The path obtained by joining �ðs; eÞ to
�Bðvq;m; vq;mþ1Þ over ðvq�1;m; vq�1;mþ1Þ has length at least
k2 � 4� �. The result follows. tu
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We deal with the case when k ¼ 4 later (as we do also for

subsequent propositions).
The next proposition deals with the next scenario in the

base case.

Proposition 4. Consider the k-ary 2-cube Qk
2, where k � 6 is

even and where one of the nodes is faulty. Let s and e be any

two distinct nonfaulty nodes. There is a path of length at least

k2 � 3 (respectively, k2 � 4) from s to e if fs; eg is odd

(respectively, even).

Proof. The proof is a much simplified version of the proof of

Proposition 3. Essentially, we partition Qk
2 into two row

tori, A ¼ rtð0; 1Þ and X ¼ rtð2; k� 1Þ, and follow the

constructions in subcases a.1, a.2, and a.4 of Case a. The

result follows. tu

We now consider when there are only faulty links in Qk
2,

but first, we construct some basic Hamiltonian circuits on

row tori. Consider the row torus rtð0; p� 1Þ in Qk
2, for

some even p, where 2 � p � k� 1. For every even

i 2 f0; 1; . . . ; p� 2g, build the following cycle Ci:

ðvi;0; vi;1Þ; ðvi;1; vi;2Þ; . . . ; ðvi;k�2; vi;k�1Þ; ðvi;k�1; viþ1;k�1Þ;
ðviþ1;k�1; viþ1;k�2Þ; . . . ; ðviþ1;1; viþ1;0Þ; ðviþ1;0; vi;0Þ:

Join the cycle C0 to the cycle C2 over the links ðv1;0; v1;1Þ and

ðv2;0; v2;1Þ and denote the resulting cycle by E0;0. Now, join

E0;0 to the cycle C4 over the links ðv3;0; v3;1Þ and ðv4;0; v4;1Þ
and denote the resulting cycle by E0;0 also. Proceed in this

way to obtain the Hamiltonian cycle E0;0 of the row torus

rtð0; p� 1Þ rooted at v0;0.
If 3 � p � k� 1 is odd, then build the cycle E0;0 in the

row torus rtð0; p� 2Þ and join it to the cycle induced by the

nodes on row p� 1 over the links ðvp�2;0; vp�2;1Þ and

ðvp�1;0; vp�1;1Þ. Denote the resulting cycle as the cycle E0;0

of rtð0; p� 1Þ rooted at v0;0. The Hamiltonian cycle E0;0 in

rtð0; 6Þ in Q7
2 can be visualized as in Fig. 5.

Note that we also have the Hamiltonian cycles E0;i of

rtð0; p� 1Þ, for all p 2 f2; 3; . . . ; kg and i 2 f1; 2; . . . ; k� 1g,
obtained by starting the above process at the root node v0;i

as opposed to node v0;0.

Proposition 5. Consider the k-ary 2-cube Qk
2, where k � 6 is

even and where there is one faulty link. Let s and e be any
two distinct nodes in the row torus rtð0; p� 1Þ, where

2 � p � k. There is a path in rtð0; p� 1Þ from s to e of
length pk� 1 (respectively, pk� 2) if fs; eg is odd (respec-

tively, even).

Proof. By Lemma 2, we may assume that the faulty link lies
in rtð0; p� 1Þ. Without loss of generality, we may assume
that the faulty link is either ðva;0; vaþ1;0Þ or ðva;0; va;1Þ,
where 0 � a � p� 2. As before, � ¼ 1 if fs; eg is odd, and
� ¼ 2 if fs; eg is even.

Case a. a ¼ 0, and the faulty link is ðv0;0; v1;0Þ.
Subcase a.1. s and e lie on row 0.
If s ¼ v0;i and e ¼ v0;j, then without loss of generality,

we may assume that i < j and that it is not the case that
i ¼ 0 and j ¼ k� 1.

Suppose that it is not the case that i ¼ 1 and j ¼ k� 1.
Let �0ðs; eÞ be the path

ðs; v0;i�1Þ; ðv0;i�1; v0;i�2Þ; . . . ; ðv0;jþ1; eÞ:

Note that the length of �0ðs; eÞ is odd if and only if fs; eg
is odd, so there are an even number of nodes on row 0
that are not on �0ðs; eÞ if and only if fs; eg is odd. Let C
be the cycle induced by the nodes on row 1. Iteratively
join C to appropriate links ðv0;l; v0;lþ1Þ over ðv1;l; v1;lþ1Þ so
that the nodes used on row 0 do not already appear on
�0ðs; eÞ. Links should be replaced (by paths) so that if
fs; eg is odd (respectively, even), then every node of
rtð0; 1Þ appears on the (amended) cycle C or on �0ðs; eÞ
(respectively, except one). Join �0ðs; eÞ to C over two
corresponding links (this is always possible) and denote
the new path by �Aðs; eÞ. The path �Aðs; eÞ has length
2k� �. This construction can be visualized in Fig. 6,
where the dashed links show how �0ðs; eÞ is joined to the
amended C.

Suppose that i ¼ 1 and j ¼ k� 1. Let �0ðs; eÞ be
the path

ðs; v0;2Þ; ðv0;2; v0;3Þ; . . . ; ðv0;k�2; eÞ:

Let C be the cycle induced by the nodes on row 1. Join
�0ðs; eÞ to C over ðv0;1; v0;2Þ and ðv1;1; v1;2Þ and denote the
new path by �Aðs; eÞ. The path �Aðs; eÞ has length 2k� 2.

If p ¼ 2, then we are done. If p > 3, then let D be the
Hamiltonian cycle E2;0 in the row torus rtð2; p� 1Þ, and if
p ¼ 3, then let D be the cycle induced by the nodes on
row 2. Join �Aðs; eÞ to D over two corresponding links,
and the resulting path is as required.

Subcase a.2. s lies on row 0, and e lies on row 1.
Let s ¼ v0;i and e ¼ v1;j; without loss of generality, we

may assume that i 6¼ k� 1. If i 6¼ 1, then let e0 be a
neighbor of s on row 0 that does not lie in the same
column as e. If i ¼ 1 and j 6¼ 2, then let e0 ¼ v0;2. Either
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Fig. 5. The Hamiltonian cycle E0;0 in rtð0; 6Þ in Q7
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way, let �0ðs; e0Þ be a path on row 0 of length k� 1. If
i ¼ 1 and j ¼ 2, then let e0 ¼ v0;3 and let �0ðs; e0Þ be a path
on row 0 of length k� 2.

Let s0 be the neighbor of e0 on row 1 and let �1ðs0; eÞ be
a path on row 0 that contains the link ðv1;0; v1;1Þ. Define
the path �Aðs; eÞ as

�0ðs; e0Þ; ðe0; s0Þ; �1ðs0; eÞ:

Iteratively join �Aðs; eÞ to appropriate links ðv1;l; v1;lþ1Þ
over ðv0;l; v0;lþ1Þ so that the nodes used on row 1 do not
already appear on �Aðs; eÞ. Links should be replaced
(by paths) so that if fs; eg is odd (respectively, even),
then every node of rtð0; 1Þ appears on (the amended)
�Aðs; eÞ (respectively, except one).

If p ¼ 2, then we are done. If p > 3, then let D be the
Hamiltonian cycle E2;0 in the row torus rtð2; p� 1Þ, and if
p ¼ 3, then let D be the cycle induced by the nodes on
row 2. Join �Aðs; eÞ to D over the links ðv1;0; v1;1Þ and
ðv2;0; v2;1Þ. The resulting path is as required.

Note that if p ¼ 2, then we have covered all cases, so
henceforth, we assume that p � 3.

Subcase a.3. s lies on row 0, and e lies on rows
2; 3; . . . ; p� 1.

Suppose that s ¼ v0;i. If i 6¼ 1, then define e0 ¼ v0;i�1,
and if i ¼ 1, then define e0 ¼ v0;iþ1. Define the path
�0ðs; e0Þ to be the path on row 0 of length k� 1. Let e00 be
the neighbor of e0 on row 1, and let e000 be a neighbor of e00

on row 1 that does not lie in the same column as e. Define
the path �1ðe00; e000Þ as the path of length k� 1 on row 1.
Define the path �Aðs; e000Þ as

�0ðs; e0Þ; ðe0; e00Þ; �1ðe00; e000Þ:

The path �Aðs; e000Þ has length 2k� 1.
Let s0 be the neighbor of e000 on row 2. If p � 4, then by

Lemma 2, there is a path �Xðs0; eÞ in rtð2; p� 1Þ of length
kðp� 2Þ � �, and the path

�Aðs; e000Þ; ðe000; s0Þ; �Xðs0; eÞ

is as required. If p ¼ 3, then define the path �Xðs0; eÞ to be

a path on row 2 and let �ðs; eÞ be the path

�Aðs; e000Þ; ðe000; s0Þ; �Xðs0; eÞ:

Iteratively join �ðs; eÞ to appropriate links ðv2;l; v2;lþ1Þ
over ðv1;l; v1;lþ1Þ so that the nodes used on row 2 do not

already appear on �ðs; eÞ. Links should be replaced (by

paths) so that if fs; eg is odd (respectively, even), then

every node of row 2 appears on the amended path

(respectively, except one). The resulting path is as

required.
Subcase a.4. s and e lie on row 1.
Proceed as in subcase a.1 to build a path (analogous

to) �Aðs; eÞ. The path �Aðs; eÞ is such that it contains a link
on row 1. Join �Aðs; eÞ to the cycle D, as constructed in
subcase a.1 and over corresponding links, to obtain a
required path.

Subcase a.5. s lies on rows 1; 2; . . . ; p� 1, and e lies on
rows 2; 3; . . . ; p� 1.

By Lemma 2, there exists a path �ðs; eÞ in rtð1; p� 1Þ of
length ðp� 1Þk� �. There is at least one link of �ðs; eÞ on

row 1 that is not incident with v1;0. Join �ðs; eÞ to the cycle
induced by the nodes on row 0 over two corresponding
links to obtain a required path.

Case b. 0 6¼ a 6¼ p� 2, and the faulty link is ðva;0; vaþ1;0Þ.
Subcase b.1. s and e lie on rows 0; 1; . . . ; a.

By Lemma 2, there is a path �Aðs; eÞ in rtð0; aÞ of
length ðaþ 1Þk� �. Either there exist two disjoint links of
�Aðs; eÞ on row a, and so, we have a link of �Aðs; eÞ on
row a that is not incident with va;0, or k ¼ 6, and the
nodes va;2; va;3; va;4 constitute s, e, and a node not on
�Aðs; eÞ. However, in this latter case, let E0;0 be the
Hamiltonian cycle in rtð0; aÞ but with the subpath from s
to e involving (some of) the nodes va;2; va;3; va;4 removed
(therefore, the length of this subpath is one if fs; eg is odd
and two if fs; eg is even). Either way, we obtain a path,
call it �Aðs; eÞ, in rtð0; aÞ of length ðaþ 1Þk� � with the
property that there is a link of �Aðs; eÞ on row a that is not
incident with va;0.

Join �Aðs; eÞ to the Hamiltonian cycle Eaþ1;0 of
rtðaþ 1; p� 1Þ over some appropriate links, and the
path obtained is as required.

Subcase b.2. s lies on rows 0; 1; . . . ; a, and e lies on
rows aþ 1; aþ 2; . . . ; p� 1.

Suppose that we can choose e0 on row a such that
va;0 6¼ e0 6¼ s, e and e0 are not adjacent, and fs; e0g ¼ fs; eg.
If so, then by Lemma 2, there is a path �Aðs; e0Þ in rtð0; aÞ
of length ðaþ 1Þk� � so that e is not adjacent to e0. Define
s0 to be the neighbor of e0 on row aþ 1. By Lemma 2,
there is a path �Xðs0; eÞ in rtðaþ 1; p� 1Þ of length
ðp� a� 1Þk� 1. The path

�Aðs; e0Þ; ðe0; s0Þ; �Xðs0; eÞ

is as required.
Alternatively, suppose that e0 does not exist. This only

happens when k ¼ 6, and (s ¼ va;2 and e ¼ vaþ1;4) or
(s ¼ va;4 and e ¼ vaþ1;2). Define e0 ¼ va;3 and let E0;0 be
the Hamiltonian cycle in rtð0; aÞ with the link ðs; e0Þ
removed; call this path �Aðs; e0Þ. By Lemma 2, there
is a path �Xðvaþ1;3; eÞ in rtðaþ 1; p� 1Þ of length
ðp� a� 1Þk� 1. The path

�Aðs; e0Þ; ðe0; vaþ1;3Þ; �Xðvaþ1;3; eÞ

is as required.
Case c. a ¼ 0, and the faulty link is ðv0;0; v0;1Þ.
Subcase c.1. s and e lie on row 0.

Let �0ðs; eÞ be the path on row 0 that contains the
faulty link ðv0;0; v0;1Þ and let C be the cycle induced by the
nodes on row 1. Join �0ðs; eÞ to C over the links ðv0;0; v0;1Þ
and ðv1;0; v1;1Þ and denote the resulting path by �ðs; eÞ.
Iteratively join �ðs; eÞ to appropriate links ðv0;l; v0;lþ1Þ
over ðv1;l; v1;lþ1Þ so that the nodes used on row 0 do not
already appear on �ðs; eÞ. Links should be replaced (by
paths) so that if fs; eg is odd (respectively, even), then
every node of row 0 appears on the amended path
(respectively, except one). Denote the amended path by
�ðs; eÞ also.

If p > 3, then let D be the Hamiltonian cycle E2;0 in
rtð2; p� 1Þ, and if p ¼ 3, then let D be the cycle induced
by the nodes of row 2. Joining �ðs; eÞ to D over
two corresponding links yields a path as required.
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Subcase c.2. s lies on row 0, and e lies on row 1.
Suppose that s ¼ v0;i and e ¼ v1;j. Without loss of

generality, we may assume that i is odd.
If fs; eg is odd and 1 � j < i, then define �ðs; eÞ as

Cþ0 ðs; v1;iÞ; Z�ðv1;i; v1;jþ2Þ; ðv1;jþ2; v1;jþ1Þ; ðv1;jþ1; v0;jþ1Þ;
ðv0;jþ1; v0;jÞ; C�1 ðv0;j; eÞ:

If fs; eg is odd and i < j � k� 1, then define �ðs; eÞ as

C�1 ðs; v1;iÞ; Zþðv1;i; v1;j�2Þ; ðv1;j�2; v1;j�1Þ; ðv1;j�1; v0;j�1Þ;
ðv0;j�1; v0;jÞ; Cþk�1ðv0;j; eÞ:

If fs; eg is odd and i ¼ j, then define �ðs; eÞ as Cþ0 ðs; eÞ,
and if i 6¼ 1, then define C as the cycle

C�1 ðv0;i�1; v1;i�1Þ; ðv1;i�1; v0;i�1Þ:

If fs; eg is even and 2 � j < i, then define �ðs; eÞ as

Cþ0 ðs; v1;iÞ; Z�ðv1;i; v1;jþ3Þ; ðv1;jþ3; v1;jþ2Þ; ðv1;jþ2; v0;jþ2Þ;
ðv0;jþ2; v0;jþ1Þ; ðv0;jþ1; v0;jÞ; C�0 ðv0;j; eÞ:

If fs; eg is even and j ¼ 0, then define �ðs; eÞ as

C�1 ðs; v1;iÞ; Zþðv1;i; v1;k�1Þ; ðv1;k�1; eÞ:

If fs; eg is even and i < j � k� 1, then define �ðs; eÞ as

C�1 ðs; v1;iÞ; Zþðv1;i; v1;j�3Þ; ðv1;j�3; v1;j�2Þ; ðv1;j�2; v1;j�1Þ;
ðv1;j�1; v0;j�1Þ; ðv0;j�1; v0;jÞ; Cþ0 ðv0;j; eÞ:

If p > 3, then let D be the Hamiltonian cycle E2;0 of
rtð2; p� 1Þ, and if p ¼ 3, then let D be the cycle induced
by the nodes on row 2. If there is a cycle C, then join C
and D over two corresponding links and denote the
new cycle by D also. Now, join �ðs; eÞ to the cycle D, and
the path obtained is as required.

Subcase c.3. s lies on row 0, and e lies on
rows 2; 3; . . . ; p� 1.

Suppose that p > 3. If fs; eg is even, then let the
node e0 on row 1 be such that e0 and s have a common
neighbor on row 0 and also such that e0 does not lie on
the same column as e. If fs; eg is odd, then let e0 be the
neighbor of s on row 1. By the construction in
subcase c.2, there is a path �Aðs; e0Þ in rtð0; 1Þ of
length 2k� �.

Let s0 be the neighbor of e0 on row 2 (note that s0 6¼ e
and that fs0; eg is odd). By Lemma 2, there is a path
�Xðs0; eÞ in rtð2; p� 1Þ of length ðp� 2Þk� 1. The path

�Aðs; e0Þ; ðe0; s0Þ; �Xðs0; eÞ

is as required.
Suppose that p ¼ 3. Let s0 be a neighbor of e on row 2

so that s0 does not lie on the same column as s and let e0

be the neighbor of s0 on row 2. By the construction in
subcase c.2, there is a path �Aðs; e0Þ in rtð0; 1Þ of length
2k� �. Let �Xðs0; eÞ be the path on row 2 of length k� 1.
The path

�Aðs; e0Þ; ðe0; s0Þ; �Xðs0; eÞ

is as required.
Subcase c.4. s and e lie on row 1.

Let s ¼ v1;i and e ¼ v1;j; without loss of generality,
we may assume that i < j. Let �1ðs; eÞ be the path on row 1
containing the link ðv1;0; v1;1Þ. Join �1ðs; eÞ to the cycle
induced by the nodes on row 0 over the links ðv1;0; v1;1Þ and
ðv0;0; v0;1Þ and denote the resulting path by �Aðs; eÞ.
Iteratively join �Aðs; eÞ to appropriate links ðv1;l; v1;lþ1Þ
over ðv0;l; v0;lþ1Þ so that the nodes used on row 1 do not
already appear on �Aðs; eÞ. Links should be replaced (by
paths) so that iffs; eg is odd (respectively, even), then every
node of row 1 appears on the amended path (respectively,
except one). Denote the amended path by �ðs; eÞ.

If p � 4, then let D be the Hamiltonian cycle E2;1 of
rtð2; p� 1Þ, and if p ¼ 3, then letD be the cycle induced by
the nodeson row 2. Join�ðs; eÞ toDover twocorresponding
links, and the resulting path is as required.

Subcase c.5. s lies on row 1, and e lies on rows
2; 3; . . . ; p� 1.

Suppose that p � 4. Let e0 be a neighbor of s on row 1
such that e does not lie on the same column as e0. We
now define a path �Aðs; e0Þ in rtð0; 1Þ. If s ¼ v1;1 and
e0 ¼ v1;0, then define �Aðs; e0Þ as

Nþðs; v1;k�1Þ; ðv1;k�1; v0;k�1Þ; ðv0;k�1; v0;0Þ; ðv0;0; e
0Þ;

and if s ¼ v1;0 and e0 ¼ v1;1, then define �Aðs; e0Þ as

N�ðs; v1;2Þ; ðv1;2; v0;2Þ; ðv0;2; v0;1Þ; ðv0;1; e
0Þ:

Otherwise, let �1ðs; e0Þ be the path on row 1 containing
the link ðv1;0; v1;1Þ and join �1ðs; e0Þ to the cycle induced
by the nodes on row 0 (which contains the faulty link)
over the links ðv1;0; v1;1Þ and ðv0;0; v0;1Þ, denoting the
resulting path by �Aðs; e0Þ (joining as we do results in the
path �Aðs; e0Þ being fault free).

Let s0 be the neighbor of e0 on row 2. By Lemma 2,
there is a path �Xðs0; eÞ in rtð2; p� 1Þ of length
ðp� 2Þk� �. The path

�Aðs; e0Þ; ðe0; s0Þ; �Xðs0; eÞ

is as required.
Suppose that p ¼ 3. Let e0 be a node on row 1 such that

s 6¼ e0 and e0 is in a column adjacent to the column on
which e lies. Clearly, fs; eg is odd if and only if fs; e0g
is odd. We now build a path �Aðs; e0Þ in rtð0; 1Þ;
without loss of generality, we may assume that s ¼ v1;i,
e0 ¼ vi;j, and i < j, with i 6¼ 0 (as usual, we can apply
automorphisms of rtð0; 1Þ if necessary). If fs; eg is odd
and i 6¼ 1, then define �Aðs; e0Þ as

C�1 ðs; v0;iÞ; Zþðv0;i; v0;j�1Þ; ðv0;j�1; v0;jÞ; Cþ0 ðv0;j; e
0Þ:

If fs; eg is odd and i ¼ 1, then define �Aðs; e0Þ as

Nþðs; v1;j�1Þ; ðv1;j�1; v0;j�1Þ; ðv0;j�1; v0;jÞ; Cþ0 ðv0;j; e
0Þ:

If fs; eg is even and s 6¼ 1, then define �Aðs; e0Þ as

C�1 ðs; v0;iÞ; Zþðv0;i; v0;j�2Þ; ðv0;j�2; v0;j�1Þ; ðv0;j�1; v0;jÞ;
Cþ0 ðv0;j; e

0Þ:

If fs; eg is even and s ¼ 1, then define �Aðs; e0Þ as

Nþðs; v1;j�2Þ; ðv1;j�2; v0;j�2Þ; ðv0;j�2; v0;j�1Þ; ðv0;j�1; v0;jÞ;
Cþ0 ðv0;j; e

0Þ:
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Let s0 be the neighbor of e0 on row 2 and let �Xðs0; eÞ be

the path on row 2 of length k� 1. The path

�Aðs; e0Þ; ðe0; s0Þ; �Xðs0; eÞ

is as required.
Subcase c.6. s and e lie on rows 2; 3; . . . ; p� 1.
Suppose that p � 4. By Lemma 2, there is a path

�Xðs; eÞ in rtð2; p� 1Þ of length ðp� 2Þk� �. Let C be the
cycle

C�1 ðv1;0; v0;0Þ; ðv0;0; v1;0Þ:

Joining �Xðs; eÞ to C over two corresponding links yields

a required path.
Suppose that p ¼ 3. If (s ¼ v2;0 and e ¼ v2;1) or (e ¼ v2;0

and s ¼ v2;1), then let �Xðs; eÞ be the path on row 2 of
length k� 1; otherwise, let �Xðs; eÞ be the path on row 2
not containing the link ðv2;0; v2;1Þ. Join �Xðs; eÞ to C over
two corresponding links and denote the resulting path
by �ðs; eÞ.

If (s ¼ v2;0 and e ¼ v2;1) or (e ¼ v2;0 and s ¼ v2;1), then
�ðs; eÞ is as required. Otherwise, iteratively join �ðs; eÞ to
appropriate links ðv2;l; v2;lþ1Þ over ðv1;l; v1;lþ1Þ so that the
nodes used on row 2 do not already appear on �ðs; eÞ.
Links should be replaced (by paths) so that if fs; eg is
odd (respectively, even), then every node of row 2
appears on the amended path (respectively, except one).
The path so obtained is as required.

Case d. The faulty link is ðva;0; vaþ1;0Þ, where
1 � a � p� 3.

Subcase d.1. s and e lie on rows 0; 1; . . . ; aþ 1.
By case c, there is a path �Aðs; eÞ in rtð0; aþ 1Þ of

length ðaþ 2Þk� �. If a 6¼ p� 3, then let C be the
Hamiltonian cycle Eaþ2;0 of rtðaþ 2; p� 1Þ, and if
a ¼ p� 3, then let C be the cycle induced by the nodes
on row p� 1. Joining �Aðs; eÞ and C over two corre-
sponding links yields a path as required.

Subcase d.2. s lies on rows 0; 1; . . . ; aþ 1, and e lies on
rows aþ 2; aþ 3; . . . ; p� 1.

Suppose that a 6¼ p� 3. Let the node e0 on row aþ 1
be such that s 6¼ e0 and fs; eg ¼ fs; e0g. By case c, there is
a path �ðs; e0Þ in rtð0; aþ 1Þ of length ðaþ 2Þk� �. Let s0

be the node on row aþ 2 adjacent to e0. By Lemma 2,
there is a path �Xðs0; eÞ in rtðaþ 2; p� 1Þ of length
ðp� a� 2Þk� 1. The path

�Aðs; e0Þ; ðe0; s0Þ; �Xðs0; eÞ

is as required.
Suppose that a ¼ p� 3. Let the node e0 on row aþ 1

be such that e0 6¼ s and e0 lies on a column adjacent to the
column on which e lies. By case c, there is a path �ðs; e0Þ
in rtð0; p� 2Þ of length ðp� 1Þk� �. Let s0 be the
neighbor of e0 on row p� 1 and let �Xðs0; eÞ be the
path of length k� 1 on row p� 1. The path

�Aðs; e0Þ; ðe0; s0Þ; �Xðs0; eÞ

is as required. tu

Proposition 6. Consider the k-ary 2-cube Qk
2, where k � 6 is

even and where two of the links are faulty. Let s and e be

any two distinct nodes. There is a path of length k2 � 1
(respectively, k2 � 2) from s to e if fs; eg is odd (respectively,
even).

Proof. Without loss of generality, we may assume that
ðv0;0; v1;0Þ is a faulty link. Partition Qk

2 into rtðk� 1; 0Þ and
rtð1; k� 2Þ. As usual, � ¼ 1 if fs; eg is odd, and � ¼ 2
if fs; eg is even.

Case a. Both s and e lie in rtðk� 1; 0Þ.
By Proposition 5, there is a path �Aðs; eÞ in rtðk� 1; 0Þ of

length 2k� �. Either there is a link of �Aðs; eÞ on row k� 1
that is not incident with any faulty link or there is a link of
�Aðs; eÞ on row 0 that is not incident with any faulty link;
without loss of generality, suppose that ðvk�1;i; vk�1;iþ1Þ is a
link of �Aðs; eÞ such that neither ðvk�1;i; vk�2;iÞ nor
ðvk�1;iþ1; vk�2;iþ1Þ is faulty (the alternative case is similar).
By Proposition 5, there is a path �Xðvk�2;i; vk�2;iþ1Þ in
rtð1; k� 2Þ of length ðk� 2Þk� 1. The path obtained by
joining �Aðs; eÞ to �Xðvk�2;i; vk�2;iþ1Þ over ðvk�1;i; vk�1;iþ1Þ is
as required.

Case b. s lies in rtðk� 1; 0Þ and e lies in rtð1; k� 2Þ.
Let ðvk�1;i; vk�2;iÞ be a healthy link such that s 6¼ vk�1;i,

e 6¼ vk�2;i, and fs; vk�1;ig ¼ fs; eg. By Proposition 5, there
is a path �Aðs; vk�1;iÞ in rtðk� 1; 0Þ of length 2k� �, and
there is a path �Xðvk�2;i; eÞ in rtð1; k� 2Þ of length
ðk� 2Þk� 1. The path

�Aðs; vk�1;iÞ; ðvk�1;i; vk�2;iÞ; �Xðvk�2;i; eÞ

is as required. tu
Finally, we deal with the case when there is one faulty

node and one faulty link.

Proposition 7. Consider the k-ary 2-cube Qk
2, where k � 6 is

even and where there is a faulty node and a faulty link. Let s
and e be any two distinct nonfaulty nodes. There is a path of
length at least k2 � 3 (respectively, k2 � 4) from s to e if fs; eg
is odd (respectively, even).

Proof. Without loss of generality, we may assume that the
faulty node is v0;0. Moreover, we may assume that either
the faulty link does not lie in rtð0; 1Þ or the faulty link is
ðv0;0; v0;1Þ (again, by applying the usual automorphisms).
However, if the faulty link is ðv0;0; v0;1Þ, then we can
assume that there are no faulty links as the fact that v0;0 is
a faulty node means that the link ðv0;0; v0;1Þ is never used.
Thus, we can assume that the faulty link does not lie in
rtð0; 1Þ. As usual, � ¼ 1 if fs; eg is odd, and � ¼ 2 if fs; eg
is even.

Case a. Both s and e lie in rtð0; 1Þ.
By Lemma 1, there is a path �Aðs; eÞ in rtð0; 1Þ of

length at least 2k� 2� �. Either there is a link of �Aðs; eÞ
on row 0 that is not incident with v0;0 nor a faulty link or
there is a link of �Aðs; eÞ on row 1 that is not incident with
a faulty link. Without loss of generality, suppose that
ðv1;i; v1;iþ1Þ is a link of �Aðs; eÞ that is not incident with a
faulty link (the alternative case is similar). By Proposition
5, there is a path �Xðv2;i; v2;iþ1Þ in rtð2; k� 1Þ of length
ðk� 2Þk� 1. The path obtained by joining �Aðs; eÞ to
�Xðv2;i; v2;iþ1Þ over ðv1;i; v1;iþ1Þ is as required.

Case b. s lies in rtð0; 1Þ, and e lies in rtð2; k� 1Þ.
Let v1;i be such that s 6¼ v1;i, ðv1;i; v2;iÞ is healthy and

fs; v1;ig ¼ fs; eg. By Lemma 1, there is a path �Aðs; v1;iÞ in
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rtð0; 1Þ of length at least 2k� 2� �. By Proposition 5, there
is a path �Xðv2;i; eÞ in rtð2; k� 1Þof length ðk� 2Þk� 1. The
path

�Xðs; v1;iÞ; ðv1;i; v2;iÞ; �Xðv2;i; eÞ

is as required. tu
From Propositions 3, 4, 6, and 7, we obtain the base case

for our main result so long as k � 6. However, when k ¼ 4,
a simple computer program (implementing an exhaustive
search) verifies that Propositions 3, 4, 6, and 7 all still hold
(we leave this verification as an exercise). Hence, we have
the following result.

Theorem 8. Let k � 4 be even. In a faulty k-ary 2-cube Qk
2 in

which the number of node faults fv and the number of link
faults fe are such that fv þ fe � 2, given any two healthy
nodes s and e of Qk

2, there is a path from s to e of length at least
k2 � 2fv � 1 (respectively, k2 � 2fv � 2) if the nodes s and e
have different (respectively, the same) parities.

4 THE INDUCTIVE STEP

In this section, we complete the proof by induction of our
main theorem. The following lemma simplifies the situation
considerably.

Lemma 9. LetQk
n have 2n� 2 faulty nodes and links, wheren � 4.

There exists a dimension d such that when we partitionQk
n over

dimension d, the resulting k-ary ðn� 1Þ-cubes Qd;0; Qd;1; . . . ;
Qd;k�1 each contain at most 2n� 4 faulty nodes and links.

Proof. Suppose, as our induction hypothesis, that n � 5 and
that the result holds for Qk

n�1 (with 2n� 4 faults). Let Qk
n

have 2n� 2 faults. Partition Qk
n over dimension 1; if

the resulting k-ary ðn� 1Þ-cubes Q1;0; Q1;1; . . . ; Q1;k�1 are
such that each contains at most 2n� 4 faults, then we are
done. Therefore, without loss of generality, suppose that
Q1;0 contains 2n� 2 or 2n� 3 faults.

Suppose thatQ1;0 contains 2n� 3 faults, and so, there is
exactly one fault not in Q1;0. Temporarily regard some
fault, w, say, of Q1;0 as healthy and apply the induction
hypothesis to Q1;0 (note that w might be a node or a link).
Thus, there is a dimension d such that when we partition
Q1;0 over dimension d, the resulting k-ary ðn� 2Þ-cubes
each contain at most 2n� 6 faults. Consequently, when we
partition Qk

n over dimension d, each of the resulting
k-ary ðn� 1Þ-cubes contains at most 2n� 4 faults (the
“temporarily healthy fault” w needs to be recast as faulty,
and there is one other fault not in Q1;0 to consider).

Suppose that Q1;0 contains 2n� 2 faults, and so, there
are no faults outside Q1;0. Temporarily regard two faults,
w and w0, say, of Q1;0 as healthy and apply the induction
hypothesis to Q1;0. Thus, there is a dimension d such that
when we partition Q1;0 over dimension d, the resulting
k-ary ðn� 2Þ-cubes each contain at most 2n� 6 faults.
Consequently, when we partition Qk

n over dimension d,
each of the resulting k-ary ðn� 1Þ-cubes contains at most
2n� 4 faults (the two “temporarily healthy faults” w and
w0 need to be recast as faulty).

In order for the result to follow by induction, all we
need to do is to verify the statement of the lemma for
when n ¼ 4. Let the faults of Qk

4 be wi, for i ¼ 1; 2; . . . ; 6.

Partition Qk
4 over dimension 1. Either each resulting k-ary

3-cube contains at most four faults, and we are done, or
the nodes involved in at least five of fwi : i ¼ 1; 2; . . . ; 6g
have identical first components (if wi is a link, then the
nodes involved in wi are the nodes of the link, and if wi is
a node, then the node involved in wi is the node itself).
We may assume that it is the latter and that the five faults
whose first components (of the nodes involved) are
identical are w1, w2, w3, w4, and w5.

Partition Qk
4 over dimension 2. Either each resulting

k-ary 3-cube contains at most four faults, and we are
done, or one of the resulting k-ary 3-cubes contains either
five or six faults. We may assume that the second
components of w1, w2, w3, and w4 are identical.

Partition Qk
4 over dimension 3. Either each resulting

k-ary 3-cube contains at most four faults, and we are
done, or one of the resulting k-ary 3-cubes contains either
five or six faults. We may assume that the third
components of w1, w2, and w3 are identical.

Partition Qk
4 over dimension 4. Either each resulting

k-ary 3-cube contains at most four faults, and we are
done, or one of the resulting k-ary 3-cubes contains either
five or six faults. We may assume that the fourth
components of w1 and w2 are identical. This yields a
contradiction as either w1 and w2 are nodes, and w1 6¼ w2,
or w1 or w2 is a link joining a node to itself. The
result follows. tu

Let us reexamine the proof of Lemma 9. Ideally, we
would like Lemma 9 to apply when n ¼ 3, but the argument
in the proof fails. However, we can classify exactly the fault
configurations leading to failure.

Suppose that Qk
3 has four faulty nodes. Following

through the argument in the proof of Lemma 9 yields that
up to isomorphism, the situations where the argument fails
is when the four faults are of the form ð0; 0; 0Þ, ða; 0; 0Þ,
ð0; b; 0Þ, and ð0; 0; cÞ, for some a, b, and c all different
from zero.

Suppose that Qk
3 has three faulty nodes and one faulty

link. Without loss of generality, suppose that the faulty
link lies in dimension 1. Following the argument in
Lemma 9 yields that up to isomorphism, the situations
where the argument fails is when the three faulty nodes
are of the form ð0; 0; 0Þ, ð0; b; 0Þ, and ð0; 0; cÞ, for some b

and c different from zero, and the faulty link is of the
form ðða; 0; 0Þ; ðaþ 1; 0; 0ÞÞ, for some a.

Suppose thatQk
3 has two faulty nodes and two faulty links.

Without loss of generality, suppose that one of the faulty
links lies in dimension 1 with the other in dimension 2
(the two links cannot lie in the same dimension, as otherwise,
we could partition over this dimension and be done).
Following the argument in Lemma 9 yields that up to
isomorphism, the situations where the argument fails is
when the two faulty nodes are of the form ð0; 0; 0Þ and ð0; 0; cÞ,
for some c different from zero, and the faulty links are of
the form ðða; 0; 0Þ; ðaþ 1; 0; 0ÞÞ and ðð0; b; 0Þ; ð0; bþ 1; 0ÞÞ,
for some a and b.

Suppose that Qk
3 has one faulty node and three faulty

links. Without loss of generality, suppose that one of the
faulty links lies in dimension 1, one in dimension 2, and
one in dimension 3. Following the argument in Lemma 9
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yields that up to isomorphism, the situations where the
argument fails is when the faulty node is of the form (0,
0, 0) and the faulty links are of the form ðða; 0; 0Þ; ðaþ 1;
0; 0ÞÞ, ðð0; b; 0Þ; ð0; bþ 1; 0ÞÞ, and ðð0; 0; cÞ; ð0; 0; cþ 1ÞÞ, for
some a, b, and c.

Suppose thatQk
3 has four faulty links. In this case, Lemma 9

holds, as at least two faulty links lie in the same dimension,
and we can partition over this dimension. We shall use these
observations in the proof of the following theorem.

Throughout the rest of the paper, we adopt the
following notation. Suppose that we partition Qk

n over some
dimension d to get the k-ary ðn�1Þ-cubes Qd;0;Qd;1; . . . ;Qd;k�1.
Let x be a node of Qd;i, say. Then, we refer to the node in Qd;j

corresponding to x (that is, the node of Qd;j whose name is
identical to that of x except that its dth component is j as
opposed to i) as xj. We also refer to the node x as xi.

Theorem 10. Let Qk
n be a k-ary n-cube, for some n � 2 and some

even k � 4, with fv faulty nodes and fe faulty links, where
0 � fv þ fe � 2n� 2. If s and e are distinct healthy nodes
and fs; eg is odd (respectively, even), then there exists a path
from s to e of length at least kn � 2fv � 1 (respectively,
kn � 2fv � 2).

Proof. We proceed by induction on n. The base case of the
induction is handled by Theorem 8. Suppose, as our
induction hypothesis, that the result holds for Qk

m, where
n � 3, and for all m < n. Let Qk

n be a k-ary n-cube as in
the statement of the theorem. Throughout, � ¼ 1 if fs; eg
is odd, and � ¼ 2 if fs; eg is even.

Suppose that n � 4. By Lemma 9, we may assume that
when we partition Qk

n over dimension 1, the resulting
k-ary ðn� 1Þ-cubes Q1;0; Q1;1; . . . ; Q1;k�1 each contain at
most 2n� 4 faults. Suppose that the number of faulty
nodes in Q1;i is fi, for i ¼ 0; 1; . . . ; k� 1.

Case a. s and e lie in Q1;0.
By the induction hypothesis, there is a path �0ðs; eÞ in

Q1;0 of length at least kn�1 � 2f0 � �. Let ðw0; z0Þ be a link of
�0ðs; eÞ for whichw1 and z1 are healthy nodes (ofQ1;1) and
ðw0; w1Þ and ðz0; z1Þ are healthy links (a simple counting
argument shows the existence of such a link). By the
induction hypothesis, there is a path �1ðw1; z1Þ in Q1;1 of
length at least kn�1 � 2f1 � 1. Let �ðs; eÞ be the join of
�0ðs; eÞ to�1ðw1; z1Þover ðw0; z0Þ. The path�ðs; eÞhas length
at least 2kn�1 � 2ðf0 þ f1Þ � �. Proceeding similarly and
iteratively with appropriate paths in Q1;2; Q1;3; . . . ; Q1;k�1

yields a path from s to e of the required length.
Case b. s lies in Q1;0, and e lies in Q1;a, for a 6¼ 0.
A simple counting argument yields that there exists a

healthy node w0 2 Q1;0 n fe0g such that fs; w0g is odd, wi
is healthy, for all i ¼ 0; 1; . . . ; k� 1, and all links
o f fðwi; wiþ1Þ : i ¼ 0; 1; . . . ; k� 2g [ fðwk�1; w0Þg a r e
healthy. By the induction hypothesis, there exists a path
�0ðs; w0Þ in Q1;0 of length at least kn�1 � 2f0 � 1.

Suppose that a 6¼ 1. A simple counting argument yields
that there exists a healthy node z1 2 Q1;1 n fe1g such that
fw1; z1g is odd, zi is healthy, for all i ¼ 0; 1; . . . ; k� 1, and
all links of fðzi; ziþ1Þ : i ¼ 0; 1; . . . ; k� 2g [ fðzk�1; z0Þg are
healthy. By the induction hypothesis, there exists a path
�1ðw1; z1Þ in Q1;1 of length at least kn�1 � 2f1 � 1. Denote
the path

�0ðs; w0Þ; ðw0; w1Þ; �1ðw1; z1Þ

by �ðs; z1Þ.

Suppose that a 6¼ 2. By the induction hypothesis, there
exists a path �2ðz2; w2Þ in Q1;2 of length at least
kn�1 � 2f2 � 1. Denote the path

�ðs; z1Þ; ðz1; z2Þ; �2ðz2; w2Þ

by �ðs; w2Þ.
Proceeding iteratively in this way yields a path

�ðs; za�1Þ or �ðs; wa�1Þ, depending upon whether a� 1
is odd or even, respectively, of length at least
akn�1 � 2ðf0 þ f1 þ . . .þ fa�1Þ � 1. Without loss of gen-
erality, suppose that the path is �ðs; za�1Þ (the other case
is similar). The node za is odd if and only if the node s is
odd; hence, fs; eg ¼ fza; eg.

By the induction hypothesis, there exists a path
�aðza; eÞ in Q1;a of length at least kn�1 � 2fa � �. Denote
the path

�ðs; za�1Þ; ðza�1; zaÞ; �aðza; eÞ

by �0ðs; eÞ. The path �0ðs; eÞ has length at least

ðaþ 1Þkn�1 � 2ðf0 þ f1 þ . . .þ faÞ � �.
A simple counting argument yields that there is a

link ðxa; yaÞ of �aðza; eÞ such that xaþ1 and yaþ1 are both
healthy nodes and ðxa; xaþ1Þ and ðya; yaþ1Þ are both healthy
links (to see this, note that �aðza; eÞ has length at least
kn� 1 � 2fa � � � 22n� 2 � 2ð2n� 4Þ � 2 ¼ 22n� 2 � 4nþ 6,
and so, there are at least 22n�3 � 2nþ 3 mutually disjoint
links on �aðza; eÞ; as there are at most 2n� 2 faulty links in
our Qk

n and 22n�3 � 2nþ 3 > 2n� 2, when n � 3, at least
one such link ðxa; yaÞ of �aðza; eÞ must be as required). By
the induction hypothesis, there is a path �aþ1ðxaþ1; yaþ1Þ in
Q1;aþ1 of length at least kn � 2faþ1 � 1. Form the path
obtained by joining �0ðs; eÞ to �aþ1ðxaþ1; yaþ1Þ over ðxa; yaÞ
and denote this path by�00ðs; eÞ. The path�00ðs; eÞhas length
at least ðaþ 2Þkn�1 � 2ðf0 þ f1 þ . . .þ faþ1Þ � �. Proceed-
ing similarly and iteratively in Q1;aþ2; Q1;aþ3; . . . ; Q1;k�1

results in a path from s to e of the required length
(the construction can be visualized as in Fig. 7).

Now, suppose that n ¼ 3 and suppose further that we
have no faulty links (we deal with when there are faulty
links later). From the observation following Lemma 9, we
may assume that we have four faulty nodes and that
these nodes are ð0; 0; 0Þ, ða; 0; 0Þ, ð0; b; 0Þ, and ð0; 0; cÞ,
for some a, b, and c, all different from zero; otherwise, the
construction above in cases 1 and 2 can be used to build
our path. Partition Qk

3 over dimension 1 to obtain the
k-ary 2-cubes Q1;0; Q1;1; . . . ; Q1;k�1; note that ð0; 0; 0Þ,
ð0; b; 0Þ, and ð0; 0; cÞ lie in Q1;0.
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Case c. s and e lie in Q1;0.
Temporarily suppose that (0, 0, 0) is healthy. By

Theorem 8, there is a path �0ðs; eÞ in Q1;0 of length at least
k2 � 4� � but upon which (0, 0, 0) may lie. If ð0; 0; 0Þ lies
on �0ðs; eÞ, then choose y0 ¼ ð0; 0; 0Þ; otherwise, choose y0

to be any node of �0ðs; eÞ different from s and e.

Let y�0 and yþ0 be the nodes immediately before and after

y0, respectively, on �0ðs; eÞ. Without loss of generality, we

may suppose that y�k�1 and yþ1 are healthy nodes (and that

ðy�0 ; y�k�1Þ and ðyþ0 ; yþ1 Þ are healthy links; recall that there is

one faulty node outsideQ1;0). A simple counting argument

yields that there exists a healthy nodewk�1 2 Qk�1 n fy�k�1g
such that fy�k�1; wk�1g is odd and wi is healthy, for all i ¼
1; 2; . . . ; k� 1 (and the links of fðwi; wiþ1Þ : i ¼ 0; 1; . . . ; k�
2g are healthy; to see this, note that there are at least bðk2 �
1Þ=2chealthy nodeswk�1 for whichfy�k�1; wk�1g is odd, and

this number is greater than zero). By Theorem 8, there

exists a path �k�1ðy�k�1; wk�1Þ in Q1;k�1 of length at least

k2 � 2fk�1 � 1.
A simple counting argument yields that there

exists a healthy node zk� 2 2 Qk� 2 n fyþk� 2 ; wk� 2g
such that fwk�2; zk�2g is odd and zi is healthy, for
all i ¼ 1; 2; . . . ; k� 1 (and the links of fðzi; ziþ1Þ : i ¼
0; 1; . . . ; k� 3g are healthy). By Theorem 8, there exists
a path �k�2ðwk�2; zk�2Þ in Qk�2 of length at least
k2 � 2fk�2 � 1.

Proceeding iteratively in this way yields a path
�0ðs; z1Þ defined as

� s; y�0
� �

; y�0 ; y
�
k�1

� �
; �k�1 y

�
k�1; wk�1

� �
; ðwk�1; wk�2Þ;

�k�2ðwk�2; zk�2Þ; ðzk�2; zk�3Þ; . . . ; ðz2; z1Þ:

By Theorem 8, there is a path �1ðz1; y
þ
1 Þ in Q1;1 of length

at least k2 � 2f1 � 2. Consider the path �00ðs; eÞ defined as

�0ðs; z1Þ; �1 z1; y
þ
1

� �
; yþ1 ; y

þ
0

� �
; �0 y

þ
0 ; e

� �
:

The length of this path is k3�2�k�1
i¼1 fi�6��¼k3�8��.

Hence, the path �00ðs; eÞ is as required (the construction

can be visualized as in Fig. 8).
Case d. s lies in Q1;0, and e does not lie in Q1;0.
For the moment, regard the node x0 ¼ ð0; 0; 0Þ as

healthy. By Theorem 8, there is a path �0ðs; x0Þ in Q1;0 of
length at least k2 � 5 if fs; x0g is odd and k2 � 6 if fs; x0g
is even. Let w0 be the node of �0ðs; x0Þ adjacent to x0.
Without loss of generality, we may assume that w1 and

ðw0; w1Þ are healthy. There are two possibilities: either
e 2 Q1;1 or e 2 Q1;m, where 0 6¼ m 6¼ 1.

Suppose that e 2 Q1;1 and w1 ¼ e. A simple counting
argument yields that there exists a link ðy0; z0Þ of �0ðs; w0Þ
such that y0 6¼ w0 6¼ z0 and y1, z1, ðy0; y1Þ, and ðz0; z1Þ are
healthy. By Theorem 8, there is a path �1ðy1; z1Þ inQ1;1 that
avoids e and is of length at least k2 � 2ðf1 þ 1Þ � 1. Let
�ðs; eÞ be the path obtained by joining

�0ðs; w0Þ; ðw0; eÞ

to �1ðy1; z1Þ over the link ðy0; z0Þ. As fs; x0g ¼ fs; eg, the

length of �ðs; eÞ is at least 2k2 � 2f1 � 6� �.
Suppose that e 2 Q1;1 and w1 6¼ e. By Theorem 8, there

is a path �1ðw1; eÞ in Q1;1 of length at least k2 � 2f1 � 1 if
fw1; eg is odd and kn�1 � 2f1 � 2 if fw1; eg is even. Define
the path �ðs; eÞ as

�0ðs; w0Þ; ðw0; w1Þ; �1ðw1; eÞ:

If fs; eg is odd, then fs; x0g ¼ fs; w1g 6¼ fw0; eg, and the

length of �ðs; eÞ is at least 2k2 � 2f1 � 7. If fs; eg is even,

then fs; x0g ¼ fs; w1g ¼ fw0; eg, and the length of �ðs; eÞ
is at least 2k2 � 2f1 � 8.

Hence, if e 2 Q1;1, then we have a path �ðs; eÞ in
Q1;0 [Q1;1 of length at least 2k2 � 2f1 � 6� � (the
constructions can be visualized as in Fig. 9).

A simple counting argument yields that there is a link
ðu1; v1Þ of �ðs; eÞ such that ðu1; u2Þ and ðv1; v2Þ are both
healthy. By Theorem 8, there is a path �2ðu2; v2Þ in Q1;2 of
length at least k2 � 2f2 � 1. Join the path �ðs; eÞ to the
path �2ðu2; v2Þ over the link ðu1; v1Þ and denote the
resulting path by �ðs; eÞ also. Proceeding iteratively in
this way in Q1;3; Q1;4; . . . ; Q1;k�1 yields a path �ðs; eÞ
whose length is at least k3 � 2�k�1

i¼1 fi � 6� � ¼ k3 � 8� �.
Hence, the path �ðs; eÞ is as required.

Alternatively, suppose that e 2 Q1;m, where 0 6¼ m 6¼ 1.
Let y1 2 Q1;1 be such that fs; y1g is odd, ym 6¼ e, and yi is
healthy, for i ¼ 1; 2; . . . ; k� 1 (and the links of fðyi; yiþ1Þ :
i ¼ 1; 2; . . . ; k� 2g are healthy). By the construction above,
there is a path �0ðs; y1Þ inQ1;0 [Q1;1 of length 2k2 � 2f1 � 7.

Suppose that m 6¼ 2. Let z2 2 Q1;2 be such that fz2; y2g
is odd, za 6¼ e, and zi is healthy, for i ¼ 1; 2; . . . ; k� 1
(and the links of fðzi; ziþ1Þ : i ¼ 2; 3; . . . ; k� 2g are
healthy). By Theorem 8, there is a path �2ðy2; z2Þ in Q1;2

of length k2 � 2f2 � 1.
Suppose that m 6¼ 3. By Theorem 8, there is a path

�3ðz3; y3Þ in Q1;3 of length k2 � 2f3 � 1. Proceeding in this
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way, we obtain paths �2ðy2; z2Þ; �3ðz3; y3Þ; . . . ; and so on,
until �m�1ðym�1; zm�1Þ if m is odd or �m�1ðzm�1; ym�1Þ if
m is even. Applying Theorem 8 again yields a path
�mðzm; eÞ or �mðym; eÞ in Q1;m, depending upon whether
m is odd or even, respectively. If m is odd (respectively,
even), then �mðzm; eÞ (respectively, �mðym; eÞ) has length
at least k2 � 2fm � 1 if fzm; eg (respectively, fym; eg) is
odd and k2 � 2fm � 2 if fzm; eg (respectively, fym; eg) is
even.

If m is odd, then let �ðs; eÞ be defined as

�0ðs; y1Þ; ðy1; y2Þ; �2ðy2; z2Þ; ðz2; z3Þ; �3ðz3; y3Þ; . . . ;

ðzm�1; zmÞ; �mðzm; eÞ;

and if m is even, then let �ðs; eÞ be defined as

�0ðs; y1Þ; ðy1; y2Þ; �2ðy2; z2Þ; ðz2; z3Þ; �3ðz3; y3Þ; . . . ;

ðym�1; ymÞ; �mðym; eÞ:

It can easily be verified that if m is odd, then

fs; eg ¼ fzm; eg, and if m is even, then fs; eg ¼ fym; eg.
Thus, the length of the path �ðs; eÞ is at least

ðmþ 1Þk2 � 2�m
i¼1fi � 6� �. If m 6¼ k� 1, then the path

�ðs; eÞ can be iteratively joined to a path in Q1;i of length

k2 � 2fi � 1, for i ¼ mþ 1;mþ 2; . . . ; k� 1, just as we

did above, to obtain a path, also denoted �ðs; eÞ, of length

at least k3 � 2�k�1
i¼1 fi � 6� �. Hence, our path �ðs; eÞ is as

required.
Case e. s and e lie in Q1;p and Q1;m, respectively, where

m 6¼ 0 6¼ p 6¼ m.
Without loss of generality, suppose that p > m. Let

s0 2 Q1;0 be such that s0, s0k�1 and ðs0k�1; s
0Þ are healthy and

fs0; sg is odd. By the construction in Case d above, there
is a path �0ðs0; eÞ in Q1;0 [Q1;1 [ . . . [Q1;m of length at
least ðmþ 1Þk2 � 2�a

i¼0fi � 7.
Let wp be a node of Qp such that fs; wpg is odd,

w0 6¼ s0, and wi is healthy, for i ¼ p; pþ 1; . . . ; k� 1 (and
the l inks of fðwi; wiþ1Þ : i ¼ p; pþ 1; . . . ; k� 2g are
healthy). By Theorem 8, there is a path �pðs; wpÞ in Q1;p

of length at least k2 � 2fp � 1.
Let ypþ1 be a node of Q1;pþ1 such that fwpþ1; ypþ1g is

odd, y0 6¼ s0, and yi is healthy, for i ¼ pþ 1; pþ 2; . . . ;
k� 1 (and the links of fðyi; yiþ1Þ : i ¼ pþ 1 ; pþ 2; . . . ;
k� 2g are healthy). By Theorem 8, there is a path
�pþ1ðwpþ1; ypþ1Þ in Qpþ1 of length at least k2 � 2fpþ1 � 1.

Again, by Theorem 8, there are paths �pþ2ðypþ2; wpþ2Þ,
�pþ3ðwpþ3; ypþ3Þ, and so on, up to �k�2ðyk�2; wk�2Þ if p is
even and �k�2ðwk�2; yk�2Þ if p is odd that are of lengths
k2 � 2fpþ2 � 1; k2 � 2fpþ3 � 1; . . . ; k2 � 2fk�2 � 1, respec-
tively; note that fs; eg ¼ fwk�1; s

0
k�1g if p is odd (respec-

tively, fs; eg ¼ fyk�1; s
0
k�1g if p is even). Yet again, by

Theorem 8, there is a path �k�1ðwk�1; s
0
k�1Þ (respectively,

�k�1ðyk�1; s
0
k�1Þ) in Qk�1 of length at least k2 � 2fk�1 � � if

p is even (respectively, odd). Let �ðs; eÞ be the path

�pðs; wpÞ; ðwp; wpþ1Þ; �pþ1ðwpþ1; ypþ1Þ; ðypþ1; ypþ2Þ;
�pþ2ðypþ2; wpþ2Þ; . . . . . . ; s0k�1; s

0� �
; �0ðs0; eÞ:

The path �ðs; eÞ has length at least

ðk� pþm� 1Þk2 � 2�m
i¼0fi � 2�k�1

i¼p fi � 2� �:

If p 6¼ mþ 1, then the path �ðs; eÞ can be iteratively
joined to a path in Q1;i of length k2 � 2fi � 1, for
i ¼ mþ 1;mþ 2; . . . ; p� 1, just as we did in Case d, to
obtain a path, also denoted �ðs; eÞ, of length at least
k3 � 2�k�1

i¼1 fi � 6� �. Hence, our path �ðs; eÞ is as required.
Case f. s and e lie in Q1;m, where m 6¼ 0.
By Theorem 8, there is a path �mðs; eÞ in Q1;m of

length at least k2 � 2fm � �. There exists a link ðwm; ymÞ
of �mðs; eÞ such that wmþ1, ymþ1, ðwm;wmþ1Þ, and
ðym; ymþ1Þ are healthy. By Theorem 8, there exists a
path �mþ1ðwmþ1; ymþ1Þ in Q1;mþ1 of length at least
k2 � 2fmþ1 � 1. Join �mðs; eÞ to �mþ1ðwmþ1; ymþ1Þ over
ðwm; ymÞ and denote this path by �ðs; eÞ also. The path
�ðs; eÞ can be iteratively joined to a path in Q1;i of
length k2 � 2fi � 1, for i ¼ mþ 2;mþ 3; . . . ;m� 1, to
obtain a path of length at least k3 � 8� � as required.

Now, suppose that we have one faulty link. Partition
over the dimension containing this faulty link, and if
each resulting k-ary 2-cube Q1;0; Q1;1; . . . ; Q1;k�1 contains
at most two faults, then apply the construction as in
Cases a and b to build our path. Hence, we may assume
that Q1;0 contains three faulty nodes. However, if we
follow exactly the constructions in each of Cases c, d, e,
and f, then these constructions still apply, and we obtain
a path of the required length. Exactly the same can be
said of the scenarios when we have two and three faulty
links. The result now follows. tu
We note that givenQk

n, where k � 4 is even, and fn and fe,
where fn þ fe � 2n� 2, there are configurations of fn faulty
nodes, fe faulty links, and pairs of distinct healthy nodes so
that the longest path joining the two nodes has length exactly
kn � 2fn � 1 (respectively, kn � 2fn � 2) if the parities of the
two nodes are different (respectively, the same). Hence, in
this sense, our result can be viewed as optimal.

Also, there are configurations of 2n� 1 faulty nodes inQk
n

and pairs of healthy nodes such that the longest path joining
the two nodes has length one; take healthy adjacent nodes x
and y where all other neighbors of x are faulty. Hence, the
total number of faults in Theorem 10 cannot be increased.

5 CONCLUSIONS

Theorem 10, allied with the result in [22], fully resolves the
situation regarding the existence of longest cycles in
k-ary n-cubes where the total number of faults (nodes and
links) is at most 2n� 2 and where the faults are configured
in a “worst case” scenario with respect to the pair of nodes
in question. Of course, there are configurations of, for
example, 2n� 2 faulty nodes in Qk

n where certain pairs of
nodes have paths joining them of lengths strictly greater
than the bounds stated in Theorem 10. It would be
interesting to build the longest paths joining pairs of nodes
but taking into account the configuration of faults (though
this would appear to be a demanding task).

We expect that if we assume the conditional fault
assumption, then we should be able to tolerate more faults
yet still prove a result analogous to Theorem 10. It would be
worthwhile to investigate this scenario, and we conjecture
that the path lengths will be exactly as in Theorem 10.

The existence of paths and cycles in (faulty) interconnec-
tion networks does not guarantee that we can efficiently
construct these paths and cycles using a distributed
algorithm implemented on the underlying topology (see
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[21] regarding the issues involved with the distributed
embedding of a Hamiltonian cycle in a faulty k-ary n-cube).
The existence of an efficient distributed algorithm that
“implements” Theorem 10 should be investigated.
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