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Chaos and Control: Nanotechnology and the Politics of Emergence 
 

 
Entia non sunt multiplicanda praeter necessitatem 

Ockham's Razor 
 
Control 
Science is part of the cosmos it creates. Contra Descartes, science is not some method 

or capacity through which we are able to achieve existential externality in order to 

discover eternal truths. For Bergson the game that science plays in the cosmos is all 

about time – or in his own terms ‘duration’. He states: ‘The universe endures. … The 

systems marked off by science endure only because they are bound up inseparably 

with the rest of the universe’.i That is to say that the endurance of science is 

provisional. Its endurance is marked by the universe it describes. This temporal 

dimension also introduces the possibility for variation and evolution.  

 

Perhaps this is a statement about Science, rather than about science – a statement that 

is too all encompassing. We will leave such thoughts for somebody else, for here we 

are interested in science. We are interested in the specific interventions that particular 

scientists make, and are making, into the material world within the broadly defined 

field of nanotechnology. Indeed, it is at this level of specificity that the notion of 

endurance comes into its own. For nanotechnology, which is both scientific and 

technical (if we must bring up that old distinction), is fundamentally about making 

things. That is, nanotechnology is about the construction, generation and growth of 

objects, devices and architecture – all of which have a certain endurance. In working 

at the nanoscale (10-9m), in the world of Brownian motion and atomic uncertainty, 

this kind of endurance is produced by certain forms of control – specifically the 

control of sub-molecular particles, of biological systems, chemical syntheses, 

reactions and crystal growth. If it is possible to construct a nanostructure from a few 

atoms or molecules, or to grow one using a protein or some process of crystallisation, 

the endurance of this structure is dependent on being able to control atomic-level 

forces that would tear it apart. Such endurance is premised on perpetual control.  

 

Of course Deleuze was also famously interested in control, particularly in his 

‘Postscript for Control Societies’. For Deleuze ‘control’ defines the political 

 2



constitution of the contemporary moment. Critical of Foucault’s analysis of modern 

discipline, he suggests that institutions and technologies of incarceration and 

discipline are being replaced by the mechanisms of control. He states: ‘We’re in the 

midst of a general breakdown of all sites of confinement—prisons, hospitals, 

factories, schools, the family … Control societies are taking over from disciplinary 

societies’. For Deleuze this regime of control is not about any specific mechanism, 

technology or institution of control. Indeed he states: 

 

It’s not a question of amazing pharmaceutical products, nuclear technology, 
and genetic engineering, even though these play a part in the process. It’s not a 
question of asking whether the old of new system is hasher or more bearable, 
because there’s a conflict in each between the ways they free and enslave us. 
With the breakdown of the hospital as a site of confinement, for instance, 
community psychiatry, day hospitals, and home care initially presented new 
freedoms, while at the same time contributing to mechanisms of control as 
rigorous as the harshest confinement. ii

 

This then is one side of control – the side of power and determinism. This is the 

power of total control and it is the dream of many nanotechnologists. This is the kind 

of control through which some suggest that it will be possible to ‘build anything we 

want’ simply by arranging atoms the way we would like themiii. However, for 

Deleuze, control is never absolute in this sense. Control is a product of a repetition of 

force. Therefore in the application of force and control we also see the radical 

possibility for creativity, lines of flight and the nomad. As such Deleuze is more 

interested in modes of control and modes of perpetuating coherence than in absolute 

control per se.  

 

Deleuze’s ‘philosophy of technology’ is both open and dynamic.  He adopts an open 

stance in relation to science and technology. For Deleuze the link between ‘basic’ 

scientific knowledge and technical systems – which is mediated through the 

disciplines of engineering, design, predictability and control – is neither simple or 

necessary. For example, Deleuze’s critique of the hylomorphic schema instead 

suggests that control and predictability emerge almost spontaneously. As such, and 

following Simondon and von Uexküll, technical objects for Deleuze are ontologically 

unstable, produced through processes of individuation and self-organisation in 

complex relations with their milieuiv.  
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What is significant here is not the scientism of Deleuze’s own thought, but rather the 

stance that Deleuzian thought enables one to take in relation to the emergence of 

technical objects and systems. Recent scholarship on the use of scientific concepts in 

Deleuzian thought has tended to be polarised between realist and metaphorical 

interpretations of Deleuzian thought – that defend the use of mathematics and physics 

in Deleuzian thought as either scientifically valid or allegorically salient.v Both of 

these positions interpret the use of science by Deleuze in solely conceptual terms – as 

if what is at stake is either the metaphysical rigour of his use of science or its 

metaphorical resonance. However, this choice between realism and idealism is a false 

one.  Both misunderstand science itself in wholly conceptual terms without any sense 

of the interconnected material practices and interventions fundamentally intertwined 

with the emergence of technical objects and systems.vi Deleuze’s use of science is 

much more political than philosophical, and much more attuned to the mechanisms of 

invention and creation to be simply cast as conceptual intellectual folly.  

 

What is at stake in Deleuze is not Science, or even Philosophy . This is particularly 

the case in Deleuze and Guattari’s almost ‘disrespectful’ treatment of the pillars of 

Science, Art and Philosophy in What is Philosophy in which they state: 

 

The three disciplines (art, science and philosophy) advance by crises or shocks 
in different way and in each case it is their succession that makes it possible to 
speak of ‘progress’. It is as if the struggle against chaos does not take place 
without an affinity with the enemy, because another struggle develops and 
takes on more importance – the struggle against opinion, which claims to 
protect us from chaos itself. vii

 

Deleuze and Guattari’s interpretation of science is fundamentally material. The 

‘affinity with the enemy’ is the same relation that the artisan makes with the wood, or 

the blacksmith makes with the metal outlined in A Thousand Plateaus. In this sense, 

Deleuze refuses the Cartesian definition of science as simply conceptual invention. 

Rather for Deleuze conceptual science is one expression of this material ‘affinity with 

the enemy’ on the same lineage as alchemy, woodwork and blacksmithery. To this 

end, in what follows I will outline Deleuze’s stance in relation to invention, creation 

and technology – suggesting that, in place of the reductionism of ‘total’ control, 
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Deleuze’s ethic aims to vitalise technology. Deleuze aims to open up and potentialise 

science and technology to the internal evolution of matter ‘all the way down’.  
. 

Nanotechnologies 
The prefix nano, from the Greek nanos meaning small, gives an immediate indication 

of the kinds of interventions in the material word envisioned by this word—small 

ones. A nanometre being 10-9m, nanotechnology is technology on the atomic and 

submolecular scale.  

 

Nanotechnology encompasses work of advanced nano-scale science, particularly the 

increased understandings of atomic-scale interactions and the capacity to visualise (or 

more correctly to characterise) and control materials at sub-micron levels using the 

scanning tunnelling microscope. However, as suggested by the suffix—technology—

nanotechnology is also a term that designates new forms of practice at nano-metre 

scale.   

 

The canonical story of the origin of nanotechnology is familiar and oft told. The 

Nobel Prize winning physicist Richard Feynman’s now famous lecture, ‘There is 

plenty of room at the bottom’ is commonly regarded as the first public musings by a 

scientist about the possibilities of technology on the nano-scale.viii He wondered 

‘Why cannot we write the entire twenty-four volumes of the Encyclopaedia 

Britannica on the head of a pin?’. His notion that there is no physical barrier to the 

extreme miniaturisation of technology operates as a central motivating discourse 

around which nanotechnology operates. Indeed in subsequent controversies around 

what counts as ‘fact’ and ‘fancy’ proponents have often claim that they are simply 

expressing the implications of Feynman’s original vision.ix  For example, Eric 

Drexler’s now (in)famous nanotechnology manifesto: Engines of Creation: The 

Coming Age of Nanotechnology, in which he outlines a Feynman-ian notion of the 

sheer physical possibility of molecular nanotechnology technology as an alternative to 

modern ‘bulk technology’: 

 

Coal and diamonds, sand and computer chips, cancer and healthy tissue: 
throughout history, variations in the arrangement of atoms have distinguished 
the cheap from the cherished, the diseased from the healthy. Arranged one 
way, atoms make up soil, air, and water; arranged another, they make up ripe 
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strawberries. Arranged one way, they make up homes and fresh air; arranges 
another, they make up ash and smoke.x

 

For Drexler nanotechnology represents a mode through which life may be understood 

physically. Drexler’s manifesto mirrors Feynman’s vision: that there is no physical 

barrier, or practical reason why current technology – medicine, information 

technology and engineering – cannot operate with precision at the nano-scale.  

 

Nanotechnology is fundamentally technological, it is about technique, process, and 

precision. Drexler’s manifesto, which self-consciously mirrors science fiction in 

developing possible future nanotechnology scenarios, does not break new ground in 

terms of scientific knowledge regarding the atom. Rather it is the preparatory 

exploration, outlining the possible implications of the convergence of abstract atomic 

knowledge with increased technical ability at these scales.  

 

Nanotechnology and reductionist returnsxi

The reductionism implicit in contemporary genetic technologiesxii is both extended 

and intensified in Drexler’s account of nanotechnology.xiii For Drexler all things, both 

organic and inorganic, are simply a collection of atoms and molecules. In this sense 

Drexler’s determinism is fundamentally physicalist. Whereas for genetic determinism 

it is assumed that life forms are determined by the process of heredity, for Drexler life 

itself is determined simply by its physical constitution. In this sense, life itself is 

absolutely divisible, and therefore manipulable. The only difference between material 

objects is the alternative arrangements that such atoms take. Indeed, the radical 

possibility that Drexler presents is that, when control over the structure of matter is 

achieved, it will be possible to make ‘almost anything’ from the ‘bottom-up’.xiv  

 

The root of this physicalist determinism is Schrödinger’s essay What is Life? The 

Physical Aspect of the Living Cell. In this essay Schrödinger outlines a physicalist 

understanding of life and matter upon which the dreams of an unlimited material 

abundance, produced by nanotechnology, are based. Indeed he initiates a ‘materialist 

turn’ in biology by suggesting that biological processes may be explained physically. 

Schrödinger asks: 
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How can events in space and time which take place within the spatial 
boundary of a living organism be accounted for by physics and chemistry? 

 

To which he gave the following answer: 

 

The most essential part of a living cell – the chromosome fibre –may suitably 
be called an a periodic crystal. xv

 

Schrödinger signals the fundamental idea that living cells are physical – that they are 

composed by physical elements, atoms and aperiodic crystals – and as such can be 

conceptualised in physics and chemistry as well as biology. The notion, articulated by 

proponents of nanotechnology, that such technology maybe able to cure diseases, 

remedy pollution and create clean energy, relies on this most basic premise of the 

atomic physicality of ‘life’. Therefore Schrödinger’s physicalism is paradoxical in 

that it also heralds a reductionist notion of the absolute divisibility of all life. In this 

sense the physical itself becomes nothing less than an instrumental concern in the 

technologisation of life and nature.xvi  

 

There is a rich double meaning to Schrödinger’s essay What is Life? His notion of 

matter and of life is irreducibly vitalistic. He is interested in life – in the physics of 

life. In one sense this life is about the physicality of life, its material and atomic bases, 

yet in another it is about a certain physical life or liveliness of matter. Schrödinger 

introduces a notion of the vital life of the atomic. Schrödinger captures the movement, 

variation and digression of the material at atomic and molecular scales. Crandall 

embraces Schrödinger’s move in his vision of nanotechnology: 

 

This bumbling, stumbling dance allows molecules all possible ‘mating 
configurations with the other molecules in their local environment. By 
variously constraining and controlling the chaos of such wild interactions, 
biological systems generate the event we call life.xvii

 

For Crandall the promise of nanotechnology is of a technology of ‘molecular 

construction’, the miniaturisation of macro-scale manufacturing techniques enabling 

the precise placement construction of objects atom by atom. Similar Drexler’s vision 

is of nano-scale replicators – autonomous, self-replicating machines will enable such 

techniques of atomic precision to be infinitely multiplied. Building upon 
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enhancements in the characterisation of atomic structures and the precision with 

which these structures may be controlled, Crandall positions nanotechnology as the 

ability to create nano-scale machines and to construct material objects from the 

bottom up, through the precise alignment of sub-molecular materials.  

 

For both Crandall and Drexler the simple fact that biological life is accomplished 

through the selective control over the movement of atoms and molecules 

demonstrates the possibility of similar human designed processes. Their ontology of 

the atomic, though emphasising the internal movement, variation and flux, operates 

only as the technical limit upon what is possible. For Drexler and Crandall the 

technical limits of nanotechnology are ‘set’ by the nature and being of atomic scale 

matter (its ontological status). At the core of the Drexlerian vision, as expressed by 

Crandall, is a notion of control. If the ‘event we call life’ is generated by the ‘wild 

interactions’ of particles at the nanoscale, the broad goal of fundamental nanoscale 

research must be toward achieving control over these interactions so that they may be 

directed in desired ways. As such, the Drexlarian vision of the possibilities for self-

replicating nano-scale robots has become a programmatic definition of 

nanotechnology as the ‘total (or near total) control over the structure of matter’.xviii  

 

The mechanistic reductionism of nanotechnology also has its roots in a logic of what 

might be properly termed a ‘biological turn’ in theoretical physics and mathematics. 

This ‘biological turn’ may be identified in the move toward the mathematical 

modelling of complex and naturally occurring phenomena – particularly in swarm and 

game theory. Of particular significance in the development of nanoscience and 

nanotechnology is von Neumann’s mathematical modelling of self-reproducing 

systems. Von Neumann’s theory of automata – modelled on the functionality of the 

neuron – is an expression of the sheer algorithmic possibility of computationally 

recreating naturally occurring self-reproducing systems. His is a vision of what is 

‘logically possible’ as he states: 

 

 A new, essentially logical, theory is called for in order to understand high-
 complication automata and in particular the central nervous system.xix
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As such, von Neumann’s thesis suggests that naturally occurring self-replicating 

systems may be modelled mathematically. For von Neumann, the key to the 

mathematical recreation of cellular automata is the inherent logic imbedded within the 

very complexity of such systems – what he terms ‘complication’. At a high degree of 

complication – or complexity – are able self organise themselves. The key therefore is 

to discover the mathematical logic and laws through which systems of such high 

complexity operate: 

  

All these are very crude steps in the direction of a systematic theory of 
automata. They represent, in addition, only one particular direction. This is, as 
I indicated before, the direction towards forming a rigorous concept of what 
constitutes ‘complication’ (or complexity). They illustrate that ‘complication’ 
on its lower levels is probably degenerative, that is, that every automaton that 
can produce over automata will only be able to produce less complicated ones. 
There is however. A certain minimum level where this degenerative 
characteristic ceases to be universal. At this point automata which can 
reproduce themselves, or even construct higher entities, become possible. xx

 

For von Neumann ‘self-reproduction, evolution – life in brief – can be achieved 

within a cellular automaton – a toy world governed by simple discrete rules not unlike 

those of a solitaire game’.xxi Von Neumann’s search was for the laws that governed 

the formation and functioning of cellular automata. His logical route is from the big to 

the small, from the complexity of self-organisation to simple, discrete laws. Von 

Neumann offers a bio-mimetic logic where existing biological systems may be 

modelled through such laws and the precise control of the parameters of such systems. 

As such von Neumann’s notion of the algorithmic recreation of complex systems 

masks an extreme reductionism in which simple laws control complex systems.xxii

 

The importance of Von Neumann’s work in nanoscience and nanotechnology is two-

fold. Firstly, his basic thesis is that self-replicating automata are logically possible 

casts matter and the material as simple instrumental concerns. For von Neumann – 

and also for Dexler – if self-replicating automata are logically possible they must also, 

by necessity, be physically possible. Secondly, the combined effect of Schrödinger’s 

physical understanding of life and von Neumann’s logic of the self-replicating 

automata is to suggest that chemical and biological processes may be understood 

functionally as code or information. Von Neumann suggests that natural occurring 

automata conform to algorithmic logic and that they may be technically recreated by 

 9



manipulating the parameters of algorithms. This reductionism offers the possibility of 

total control of such biological and chemical systems. In this way biological systems 

become a set of mathematical and computational instructions that may be 

technologically re-ordered. Lehn echoes this understanding of biological and chemical 

processes by suggesting that forms of ‘living’ or ‘complex’ matter may be created by 

controlling the informational exchange at the heart of chemistry and biology. In what 

he terms ‘supramolecular’ chemistry he suggests: 

 

Supramolecular chemistry has paved the way toward apprehending chemistry 
as an information science through the implementation of the concept of 
molecular information with the aim of gaining progressive control over the 
spatial (structural) and temporal (dynamic) features of matter and over its 
complexification through self-organisation, the drive to life. xxiii

 

Both the ‘materialist turn’ in biology and the ‘biological turn’ in mathematics and 

physics are concerned with a set of logical possibilities. Schrödinger’s conception of 

the physics of life and von Neumann’s mathematical theory of automata have the 

effect of converting life itself into discrete physical entities which operate as a form of 

information or code. This double move has the paradoxical effect of rendering the 

physicality of biological and chemical systems as merely an instrumental concern in 

the hylomorphic application of computational models onto material substrates. 

Combined with Feynman’s vision of atomic scale machinery nanotechnology operates 

as a set of theoretical promises and possibilities for gaining ‘progressive control’ over 

the structure of matter in the design and manufacture of nanotechnologies. Life itself 

is cast as absolutely divisible. The mechanisms of reproduction and self-organisation 

are themselves recreatable, given the precise control over the parameters of chemical 

synthesis of biological systems.  

 

This rhetorical move from the big to the small, from the complex to the simple and 

from the chaotic to the organised parallels the overall imagination of nanotechnology 

as the ability to precisely control the ultimate building blocks of life. This logic is also 

comparable to the reductionism at the heart of some versions of complexity theory. 

Broadly speaking whereas chaos theory works in the reverse direction – small events 

producing large results – complexity theory suggests that simple structures emerge 

and self-organise in the context of complex and dynamic systems.xxiv Though inherent 
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to theoretical accounts of complexity theory is the spontaneous emergence of 

organised structures, its technological operationalisation often reveals a reductionist 

drive toward simplification and predictive control.xxv It is in the construction of 

complexity theory as a unifying project, through which total systems understanding, 

simplification and predictive control may be achieved, that complexity theory is at its 

most reductionist. For example, Capra defines complexity theory as:  

 

A new mathematical language and a new set of concepts for describing and 
modelling complex nonlinear systems. Complexity theory now offers the 
exciting possibility of developing a unified view of life by integrating life’s 
biological cognitive and social dimension’ (emphasis added). xxvi  

 

By unifying biological, chemical and physical knowledge, complexity theory, is 

thought to enable an enhanced capacity to model non-linear systems. By extension 

complexity theory is seen to enable the precise control and recreation of such 

systems.xxvii The rhetorical move from the complex, the large, and the extensive to the 

simple, the small and the intensive is ambiguously reductionist. Given this ambiguity 

complexity theory masks a ‘reductionist return’xxviii in contemporary technoscience 

inherent that is revealed in the currency of notions such as predictive control, 

modelling, law and total systems knowledge.  

 

This reductionism mirrors the rhetorical efforts of miniaturisation and simplification 

made by Feynman, Schrödinger and von Neumann. The combined effect of Feynman, 

Schrödinger and von Neumann is to cast biological, chemical and material ‘life’ as 

absolutely physically divisible and created through mechanisms that are ultimately 

controllable. Indeed, nanotechnology operates as a similar ‘unifying’ project as 

complexity theory – combining traditional scientific disciplines of physics, chemistry, 

mathematics and biology with technically oriented disciplines of engineering and 

computing. Rhetorically nanotechnology also relies upon a similar rhetorical move 

from the big to the small as the ultimate technical expression of the miniaturisation 

imperative. Thus for Drexler, following Feynman, Schrödinger and von Neumann, the 

sheer logical possibility of nanoscale engineering and manufacture is established 

absolute divisibility of all forms of life and materiality to the atom and the technical 

possibilities for building things ‘atom by atom’.  
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Unity vs. singularity 

The reductionism of advanced nanotechnology is also deeply political. The vision of 

nanotechnology as heralding the ability to remake the world ‘atom by atom’, and as 

leading to the ‘next industrial revolution’, is also a State sanctioned vision of the 

power of science to revolutionise material practice. xxix The reductionism of 

nanotechnology, that demands total control of the atomic scale, is deeply entwined 

with this politics. This is what Deleuze calls the politics of the State, or the ‘apparatus 

of capture’, in which the unifying project of reductionist science works toward the 

total control demanded by the State.  

 

Deleuze’s ontology is of an entirely different order. Deleuze neither moves from the 

complex to the simple, nor from the simple to the chaotic. Rather Deleuze starts with 

the singular or – more properly – the singularity. Whilst in nanotechnology the unity 

represents the absolute divisibility of life Deleuze starts with the notion of the 

singularity as the basis for molecular variation and flux. Deleuze’s ‘philosophy of 

difference’ fundamentally concerned with revalorising the singular, over and above 

the particular. He deploys an explicitly monistic ontology—a material pantheism 

whereby the singularity of matter is alive with the creative potential of endless 

evolutions and innovations. Delueze states:   

 

There has only ever been one ontological proposition: Being is univocal. 
There are not two ‘paths’, as Parmenides’ poem suggests, but a single ‘voice’ 
of Being which includes all its modes, including the most diverse, the most 
varied, the most differentiated. Being is said in a single and same sense of 
everything of which it is said, but that of which it is said differs: it is said of 
difference itself.xxx

 

What Deleuze does here is to free ‘the singular’ from ‘the particular’, giving it an 

individuating capacity. Deleuze’s notion of singularity is at once an absolute rebuttal 

of both the Platonic and Aristotelian metaphysics of matter and a valorisation of the 

creative vitalism of the material. He refuses the categorical difference, established by 

the metaphysicians, between matter and form or between the subject and the object. 

Rather, all things are formed through repetitious individuation of the same 

substance—the monadic singularity—intensities, riffs, sublimations in a singular key. 

Rethinking monadology in explictly materialistic terms enables Deleuze to insist upon 

a materialism that is ‘roughly equivalent to an ongoing Big Bang, permanent 
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Creation’xxxi, precisely because whilst this evolution is both permanent and multiple, 

the substance upon which these operations is performed is singular. Thus it is not 

simply that ‘matter is singular’ as a universal substance. Rather matters are 

singularities—momentary agglomerations in the creative evolution of the singular, 

monistic substance.  

 

Due to his emphasis on a monistic creative evolution Deleuze’s materialism is 

inherently spontaneous. For Deleuze monism is not simply about a reductionism to 

the atomic, the whole, the plane or the easy to handle. Rather, in Deleuze’s hands 

monism is about the elevation of the singular—the singular that is difference itself. 

Deleuze’s philosophy of difference is singular precisely because it positions 

difference as internal to the object, rather than between (categorically different) 

things. Deleuze follows Simondon’s drive to free individuation from any organising 

principle of the individual.xxxii Deleuze’s aim is to compose a philosophy of 

difference—rather than of diversity—in the singular, where what differs is not one 

thing from another, but the thing from itself. This repetition of the singular, what 

Deleuze calls the production of singularities, imbues within objects, things, 

substances and bodies a dynamic sense of action. For Deleuze this spontaneity goes 

‘all the way down’ and is not computable by law or assumptions of predictability. It is 

by following Simondon that Deleuze enables a dynamic theory of technology on par 

with the technical possibilities of nanoscience, in which the singular, the atomic and 

the molecular are energised in the creative production of difference. Repetition, for 

Deleuze, is the essence of creativity or – in Bergson’s terminology – creative 

evolution. It is this monistic ontology of singularity (rather than unity) that imbues 

matter with a sense of unstable movement because the repetition of this monistic 

substance is not simply a matter of the production of equivalences, but repetition is 

the production of difference, the movement and creative evolution of the thing: 

 

Repetition is a condition of action before it is a concept of reflection. We 
produce something new only on condition that we repeat—once in the mode 
which constitutes the past, and once more in the present of 
metamorphosis.xxxiii

 

Though Deleuze does not have what might be termed a ‘philosophy of technology’ – 

in the manner of Heidegger or even Derrida – one would imagine a Deleuzian stance 
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or ethic toward technology that, following Simondon and von Uexküll, allows for the 

creative individuation of technology. Deleuze’s stance toward technology is 

fundamentally a political engagement with powers of invention and creation. His 

basic concern is to free individuation, and the singularity, from the unifying project of 

‘total control’. Whereas in nanotechnology – as in other contemporary technologies – 

it is imagined that internal deviance, evolution and spontaneous self-organisation may 

either be mastered or technically harnessed, Deleuze imagines a technology that is 

radically open to evolution ‘all the way down’. Indeed, the problem for Deleuze with 

philosophies of technology (either the sceptical, Heideggarian versions of technology 

as threatxxxiv or the more positive endorsements of the social-evolutionistsxxxv) is that 

they treat technology as a distinct ontological category. Deleuze’s philosophy is more 

an attitude or stance toward technologies that is open to the internal flux of 

technology, down to the molecular level.  

 

This stance toward technology imbues Deleuze’s attitude towared the ‘total control’ 

imagined control societies. For Deleuze, control is not symptomatic, but rather 

emblematic. It does not emanate from a particular technology, or the 

‘technologisation’ of all forms life itself, but is rather a kind of contemporary 

epistemic moment. The kind of control that Deleuze speaks of is the perpetual control 

of noise, variation and flux – the same modes of control over the internal 

differentiation of matter imagined in nanotechnology. However, this control is 

expressed in specific modes of control. Because, for Deleuze, control is about the 

minute control of flux and variation, it is itself perpetually changing and never 

complete. For example, he states: 

 

Control is short-term and rapidly shifting, but at the same time continuous and 
unbounded (p. 181) 

 
Nanotechnology and the Mastery of Evolution 
Drexler’s vision of nanotechnology is inherently mechanical. He seeks to both control 

and harness the movement, variation and digression of matter at atomic and molecular 

scales. Drexler’s vision is largely mechanistic – suggesting that nanotechnologies can 

be produced through the hylomorphic imposition of an external design on material 

substrate, through the precise manipulation of matter ‘atom-by-atom’.xxxvi His basic 
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premise, following Feynman, is that there is no physical impediment to conceiving 

manufacturing technologies on the atomic scale. He represents this vision as a 

miniaturisation of existing mechanical techniques to the atomic scale. Indeed this 

mechanical bias of his thesis has been the source of a number of significant criticisms 

– primarily that the precise mechanical precision required is simply impossiblexxxvii. 

Despite the extensive criticism of Drexler, both his goal of ‘bottom-up molecular 

project’ and the broad project of gaining ‘control over the structure of matter’ 

maintain an important rhetoric in the field. In the extensive criticism of Drexler by 

Richard Smalley (2001; 2003a; 2003b) and latterly Richard Jones (2004), this notion 

of control is actually intensified. What is at issue for Smalley is whether the precise 

control of atomic structures, necessitated by Drexler’s vision of nano-scale 

manufacture, is technically possible. 

 

Due in part to the repudiation of the vision of ‘molecular manufacture’, Drexler’s 

radically mechanistic version of nanotechnology has been substituted by a more 

conservative and pragmatic set of nanoscale possibilitiesxxxviii. At issue is the sheer 

physical possibility of autonomous nanoscale machines and the precision necessary to 

‘create’ them. Recent scholarship has, however, revived the radical possibility of 

nanoscale machinic autonomy by rethinking the very way in which such machines 

might be created. In this biomimetic model, such machines are grown using existing 

biological systems as working examples.  

 

In the words of Bernadette Bensaude-Vincent there are ‘two cultures of 

nanotechnology’.xxxix Both present different understandings of the relationship 

between design and matter. One version of nanotechnology is implicitly mechanical. 

The material world is completely atomised as simply an aggregate of particles. It is in 

this sense that it is suggested that it will be possible to create anything ´from the 

bottom-up’ simply by arranging atoms and molecules in certain (desired) ways. 

Alternatively, Richard Jones imagines a different form of nano-scale control in which 

technical interventions harness rather than master the chaotic interactions at the 

nanoscale. He re-presents these same goals, but changes the route through which they 

will be achieved. He suggests that nano-scale machines will be achieved through a 

more bio-mimetic, or emulatory, nanotechnology which both takes its inspiration 

from, and actively utilises, existing biological systems.xl Rather than imagine 
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nanotechnology as a set of mechanical interventions at the nanoscale, Jones presents a 

vision of nanotechnology that is modelled on naturally occurring biological systems. 

For Jones naturally occurring ‘molecular assemblages’ such as protein and DNA 

represent a functional equivalent of self-assembling and self-organising molecular 

machines. Jones’ thesis is that biological systems present functioning models through 

which more purposeful nanotechnological interventions may be made. For Jones, 

bionanotechnology is a route through which applications at the nanoscale may be 

achieved. He states his basic vision as: 

 

My own view is that radical nanotechnology will be developed, but not 
necessarily along the path proposed by Drexler. I accept the force of the 
argument that biology gives us proof in principle that a radical 
nanotechnology, in which machines of molecular scale manipulate matter and 
energy with great precision, can exist. But this argument also shows that there 
may be more than one way of reaching the goal of radical nanotechnology, 
and that the path proposed by Drexler may not be the best one to follow. xli

 
Significantly for Jones, this necessitates a design process that is both open to, and able 

to harness, molecular evolution: 

 
Evolution needs some kind of selection pressure – some kind of way of 
deciding which of the many random changes in the molecular sequence should 
survive and prosper. …  We can devise experiments that drive molecules to 
evolve more complex properties …xlii

 
 

Jones maintains that nanoscale machines are both technically possible and a desirable 

route through which wide technical advances may be made, but suggests that the 

current ‘engineering approach’ may well prove unrealistic. Instead he adopts a  

bio-mimetic approach, suggesting that the creation of molecular machines, necessary 

to fulfil the radical vision of ‘bottom up’ manufacture’, may be created by copying 

nature – that is emulating existing self-replicating systems such as protein and DNA. 

Similarly, Seeman & Belcher outline this aim of ‘emulating biology’ by  

re-creating self-assembling systems: 

 
A key property of biological nanostructures is molecular recognition, leading 
to self-assembly and the templating of atomic and molecular structures. For 
example, it is well known that two complementary strands of DNA will pair to 
form a double helix. DNA illustrates two features of self-assembly. The 
molecules have a strong affinity for each other and they form a predictable 
structure when they associate. Those who wish to create defined 
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nanostructures would like to develop systems that emulate this behaviour. 
Thus, rather than milling down from the macroscopic level, using tools of 
greater and greater precision (and probably cost), they would like to build 
nanoconstructs from the bottom up, starting with chemical systems.xliii

 

 

Although there is a strong deterministic logic central to the representation of 

nanotechnologyxliv, this sense of the momentary control describes the practice of 

actually building nanostructures. For example, Elder discusses polymerisation as a 

way in which nano-scale structures may be contrasted or grown: 

 

Formation of the well-ordered nanophase occurs within concentrated droplets 
as the silica continues to polymerise, and thus it is possible to form any 
surfactant liquid crystalline phase. Particle coalescence may also occur. A 
growing body of evidence supports this phase separation mechanism. … 
Structural development from disordered spherical micelles to ordered 
hexagonal phases in phase-separated droplets has also been observed …xlv

 

This is a curious model of a kind of construction where a nano-scale architecture is 

grown rather than accomplished. The resulting form, though desired, is perhaps 

temporary. Indeed, the object of such research is to control the growth in such a 

manner that it evolves in desired ways. Similarly, take Seeman and Belcher’s 

description of the use of biological systems in building complex and functional 

systems: 

 

In natural systems, macromolecules exert exceptional control over inorganic 
nucleation, phase stabilisation assembly, and pattern formation. Biological 
systems assemble nanoscale building blocks into complex and functionally 
sophisticated structures with high perfection, controlled size, and 
compositional uniformity. … The exquisite selectivity of complementary 
biological molecules offers a possible avenue to control the formation of 
complex structures based on inorganic building blocks such as metal or 
semiconductor nanoparticles.xlvi

 

This notion of construction entails capitalising on the interactions of biological 

systems – in this case rDNA, DNA and protein – in order to create desired patterns 

and objects. The object here is also control, but a control that is both provisional and 

active. Both of these design paradigms, though designed to achieve control, are in fact 

more like specific modes of control. In each, desired constructions – shapes, 

geometries and architectures – are the product of specific and perpetual control. 
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Indeed, what is entailed is the control of interactions and processes in which we 

always sense, as Deleuze suggest, the possibility of escape. Both Drexler’s 

mechanistic vision of nanotechnology and the more biologically nuanced vision of the 

bio-mimetists create different relations with evolution. Both are ways of ‘relating to’ 

the flux caused by the internal evolution and variation of objects at the molecular 

scale and technical design paradigms in this context. Both cultures are ways of 

harnessing and (more significantly) limiting the creative force of evolution.  

 

The other version of nanotechnology is more biologically inspired and mimetic. 

Instead of imagining the possibility of simply arranging atoms mechanically, 

biomimetic nanotechnology aims to capitalise on the functionality of existing 

biological systems, particularly protein and DNA. However the distinction between 

these two versions of nanotechnology is never strictly defined as, in a sense, both are 

concerned with designing nano-scale mechanisms and controlling their operation. For 

mechanistic nanotechnology it is necessary to control the ‘wild’ Brownian 

interactions of atoms and molecules to create stable and functional objects. Similarly, 

bio-mimetic nanotechnology requires the precise control of biological systems in 

order to achieve desired and designed outcomes. Despite the hubris of complete 

design in nanotechnology, these kinds of nano-scale interventions have produced only 

temporary states of order. xlvii Whereas in mechanistic versions of nanotechnology it 

is imagined that the complex relations of atomic and molecular particles – the internal 

movement of matter that is the equivalent of Deleuze’s machinic phylum – will be 

overcome by the disciplines of design and engineering, in biomimetic nanotechnology 

it is suggests that technical objects will be created by utilising this very complexity. In 

particular it is suggests that nanotechnologies will be created by modally or by 

piggybacking on existing self-replicating systems such as protein, DNA or rDNA.  

 

At issue then is not simply a Deleuzian openness – or affirmation – of flux, variation 

and evolution. Indeed, whereas Deleuze appropriates Simondon’s understanding of 

the spontaneous individuation of technology – producing a dynamic theory of 

technologyxlviii – both ‘cultures’ of nanotechnology seek to limit this anarchic 

potential for evolution ‘all the way down’. Indeed, though biomimetic 

nanotechnology seeks to utilise existing biological machines – and the artificially 

evolve new forms of such machinery, the real work of such a design paradigm is 

 18



ensuring the stability of the resulting structures and systems. Take for example, 

Michael Conrad’s model of ‘emergent computation through self-assembly’.xlix He 

presents a framework in which the ‘self-organising capacities of biological systems 

are extended expressions of nonlinearity inherent in the time evolution of the 

universe.’l Biological systems are the emergent, and hence spontaneous, effects of 

non-linear processes. Conrad suggest that such machines are internally fluctuating, 

challenging the ways that such systems may be designed or harnessed technically. He 

states:  

 
If a collection of components is allowed to self-organise in the first place … 
then self-consistency is automatically ensured. In general such self-organised 
aggregates do not perform functions desired by the investigator observing their 
formation, unlike the totally macroscopic machines that are pasted together in 
a planned way by a designer with a definite conception in mind. However, the 
adaptivity of self-organising systems allows for moulding of the function in a 
step by step trial and error fashion, just as biological organisations adapt 
through step by step variation and selection. … Simple reverse engineering of 
existing biological organisations cannot work, according to the fluctuation 
model, since they ignore the hysteretic properties of the vacuum sea.li

 
Conrad’s model is of a moulding of the functions of biological systems, by trial and 

error. Conrad re-imagines the place of design – ‘reverse engineering cannot work’ – 

insisting on a level of artisanal intimacy in the creation of human-directed biological 

machines. The incompleteness of the technical control over the atomic scale 

necessitates, for Conrad, a more open ended conception of the technological 

possibilities at this scale.  

 
Deleuze’s evolutionary ethic  
Such inventions are provisional stabilisations of processes of chemical synthesis and 

biological interaction. This is patently not consistent with the vision of 

nanotechnology as being able to ‘create anything from the bottom up’. Rather, such 

inventions necessitate a Deleuzian sense of the temporality of control and the 

individuation of technical systems. It is in this sense that Deleuze’s understanding of 

the dynamism of control finds its material expression. Indeed, Oyama develops a 

notion the ‘emergence of control’: 

 

Control of development and behaviour may be said to emerge in at least three 
senses. First, it emerges in interaction, defined by the mutual selectivity of 
interacants. Second, it emerges through hierarchical levels, in the sense that 
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entities or processes at one level interact to give rise to the entities or 
processes at the next, while upper –level-processes can in turn be reflected in 
lower-level ones. Third, control emerges through time, sometimes being 
transferred from one process to another.lii

 

The crucial point for Oyama, and for Deleuze, is that control emerges. It emerges in 

interactions with the very processes that are (to be) controlled. This means both that 

control is partial and that design itself emerges with the object. The word emergence 

here is crucial. In Seeman and Belcher’s constructions of nano-geometries using DNA 

we might speak of the emergent self-organisation of such structures. The design, 

control and precision necessary to generate such nanoscale geometries emerges with 

the structures themselves and the processes through which they are formed.  

 

The importance, for Deleuze, of the emergence of control is that it signals the 

ontological incompleteness of design and the spontaneous variation of technology. 

This, for Deleuze, is both ontological and ethical and defines his own sense of 

particular stance in relation to evolution and variation. Deleuze draws strongly on 

Bergson’s notion of variation in developing this ethic. He finds in Bergson the idea of 

the constant repetition of the object (its simulacrum) that suggests that the object is 

opened up, repotentialised, returned as constantly differentiated, constantly multiple. 

In Deleuzian terms, repetition introduces a form of differentiation that replaces the 

term IS in the being of the object (X = X = NOT Y) with AND (…X AND Y AND Z 

AND…). ‘Substitute the AND for IS. A and B. … The multiple is no longer an 

adjective which is subordinate to the One which divides or the Being which 

encompasses it. It is a noun, a multiplicity which constantly inhabits each thing.’liii

 

Bergson offers a complex and simultaneous analysis of both the ‘thing-in-itself’ and 

the thing as an ‘aggregate of images’. Deleuze sees in Bergson a fundamental critique 

of the notion of categorical difference:  

 

If philosophy is to have a positive and direct relation with things, it is only to 
the extent that it claims to grasp the thing in itself in what it is, in its difference 
from all that it is not, which is to say in its internal difference. liv

 

Bergson’s concept of variance becomes crucial. It is a fundamental critique of the 

notion of categorical difference. Rather than posit a fundamental or essential 
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difference between objects, Bergson allows difference itself to be something. Objects 

differ from themselves—internally. This is not to obliterate distinction but to 

fundamentally reconceive the notion of natural difference. Differentiation acts, 

according to both Bergson and Deleuze, not between objects, but within objects. For 

both Bergson and Deleuze matter is anything but a boundary. Rather matter is 

internally unstable.  

 

This material waywardness is not simply metaphorical, or a kind of characterisation 

of matter. Rather it is a waywardness that is based in Deleuze’s molecular ontology – 

and the internal flux of matter at that scale. It is also inherently personal and ethical, 

defined by an openness to change and variation, all the way down to the molecular 

level. Take, for example, Deleuze and Guattari’s description ‘becoming-dog’: 

 

Your organism enter[s] into composition with something else in such a way 
that the particles emitted from the aggregate thus composed will be canine as a 
function of the relation of movement and rest, or of molecular proximity, into 
which they enter. Clearly, this something else can be quite varied, and be more 
or less directly related to the animal in question.lv

 
Becoming, in this sense (though often misrepresented) is fundamentally materialist 

ethic – characterised by an openness to variation and internal variation. In Deleuze’s 

ontology this ‘something else’ is always difference itself – the action of variation and 

flux, in an ethic that enters into a relation with difference itself. It is a kind of atomic 

flux between the object/subject (of course these terms don’t mean much) and the 

other. It is precisely these same internal variations that are the subject of both design 

and construction in nanotechnology. Deleuze suggests that, because of such self-

differentiating movement and variation, design and construction are more complex 

that admitted in the hubristic accounts of nanotechnology. For Deleuze design is not 

imposed from without, but emerges from within matter. The fundamental departure 

for Deleuze on the basis of such an ontology, is to conceive of modes of relating to 

the evolution of technology. For Deleuze and Guattari’s this ethic – or even politics –

‘is a question of arraying oneself in an open space, of holding space, of maintaining 

the possibility of springing up at any point: the movement is not from one point to 

another, but becomes perpetual, without aim or destination, without departure or 

arrival’.lvi
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Such is to adopt a similar artisanal stance as Conrad’s design by trial and error. For 

Deleuze and Guattari, it is a question of ‘arraying oneself in an open space’ in the 

same way that Conrad imagines a trial-and-error design process. Finally then this 

Deleuzian stance, or attitude, is open to the paradox of the individuating endurance of 

both science and technology, and to possibilities for spontaneous eruption in these 

temporal arrangements.  
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level control the recognition capabilities of macromolecules and through this control the 
input-output capabilities of neurons. The latter support the self-organisation of multiple 
assemblies of neuronal activity and support the selection of one or a few of these assemblies 
to control the actions of the organism at any given time. The whole process is a hierarchical 
collapse from a modal world of quantum possibilities into a classical world of actuality. … To 
exhibit itself in the form of coherent appreciation, choice and action the manifest stratum must 
accumulate intricate constraints that control and are controlled by this interplay. 
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