
PHYSICAL REVIEW D 73, 014006 (2006)
Mass terms in the Skyrme model
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We consider various forms of the mass term that can be used in the Skyrme model and their
implications on the properties of baryonic states. It is shown that modifications of the mass term, without
changing the asymptotic behavior of the profile function at large r, can considerably alter the mass term
contribution to the classical mass of the soliton. We find that, for some choices of this mass term,
multibaryon configurations can be classically bound at large baryon numbers. It is pointed out that some
restrictions on the possible form of the mass term can follow from studies of multimeson interactions.

DOI: 10.1103/PhysRevD.73.014006 PACS numbers: 12.39.Dc, 11.10.Lm, 21.10.Dr
1In [1], the masses of the nucleon and the ��1232� isobar were
fitted using an SU�2� quantization procedure and, as a result, the
authors obtained F� � 108 MeV, e � 4:84, but these values did
not allow one to describe the mass splittings within SU�3�
multiplets of baryons. The approach of [1] has been revised
and another set of parameters is widely accepted now. The
I. INTRODUCTION

The Skyrme model has enjoyed a lot of interest ever
since it was realized that, although it is a nonlinear theory
of pions, it is also an effective theory of low-energy nu-
cleon interactions. In fact, it may also provide a new
approach to nuclear physics; as the lowest states of the
model, corresponding to higher baryon numbers, are ex-
pected to provide a classical description of nuclei. In the
Skyrme model approach the baryon number is identified
with the soliton number.

Multi-Skyrmions are the stationary points of the static
energy functional which, in natural units of the model,
3�2F�=e, is given by
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where U� ~x� 2 SU�2� and x is in units of 2=�F�e�.
Most of the phenomenological applications of the

Skyrme model, especially to the study of the nucleon or
hyperon properties, included also the pion (or kaon, or
D-meson) mass term in the Lagrangian chosen in the
simplest possible form (see e.g. Adkins and Nappi [1]).
In particular, the kaon mass term has to be added to
describe the mass splittings within the SU�3� multiplets
of baryons: octet, decuplet, antidecuplet, etc. [2]. However,
the role of the mass terms in multi-Skyrmion configura-
tions, especially at large baryon numbers, has not been
investigated in much detail; the theoretical work performed
so far has involved mostly the Skyrme model in which
pions are massless (i.e. given by the Lagrangian above). It
is only very recently that some attention has been paid also
to the effects associated with the pion mass for large B
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configurations [3,4]; one of the effects being the exponen-
tial localization of multi-Skyrmions. In particular, it was
stressed that the contribution of the mass term can change
the binding properties of large B classical configurations
and, in particular, their decay properties into configurations
with smaller B-numbers [4].

In most of these approaches the pion mass term has been
introduced via the addition to (1) of the following term:

1

12�2

Z
R3
m2 Tr�1�U�d3 ~x; (2)

where m is related to physical pion mass �� ’ 138 MeV
by the relation m � 2��=�F�e�, where F� ’ 186 MeV is
the pion decay constant, taken usually from the experi-
ment, and e is the Skyrme constant.1 The appearance of the
mass term in effective field theories was discussed, e.g. in
[6]. Although the effects associated with the pion mass are
small for small values of this mass, they increase if either
the baryon number or the pion mass are larger. For mass-
less pions all the known minimal energy multi-Skyrmion
configurations have a shell-like structure. These field con-
figurations were obtained in both numerical simulations
and in studies involving the so-called ‘‘rational map an-
satz.’’ In the rational map ansatz, one approximates the full
multi-Skyrmion field by assuming that its angular depen-
dence is approximately described by a rational map be-
tween Riemann spheres. This approximation was, first of
all, shown to be very good in a theory with massless pions
baryon mass splittings are described with the experimental
values of F�, FK and e ’ 4:1. For these parameters the absolute
values of the baryon masses are not fitted because they are
controlled by the loop corrections, or the so-called Casimir
energy which, for the baryon number 1, was estimated in [5].
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and it was later extended also to massive pions—where the
agreement was again shown to be quite good.

Given these observations it is extremely important to
have the right (correct) mass term. The problem, however,
is that the mass term is nonunique and the expression (2) is
only one of many that can be used. Indeed, the origin of the
chiral symmetry conserving and chiral symmetry breaking,
or the mass terms considered2 in [6], may be very different
in nature. Possible modifications of the mass term had been
considered in [7], where consequences of these modifica-
tions were studied, for the case of baryon number B � 1.
Here we have decided to reexamine this issue further and to
look at mass terms other than (2), and to see what effects
they have on the properties of multi-Skyrmion configura-
tions with large values of B.

Initially introduced as a model to describe nucleons
from pion fields, the Skyrme model has since then been
shown [8] to be an effective theory for the low-energy
regime of QCD. In that context one can view the Skyrme
model as an effective theory to describe nucleons and try to
modify the model to better fit experimental data. The
addition of the standard mass term complements this pic-
ture and the introduction of a generalized mass term, as we
do in the paper, constitutes a natural generalization of the
Skyrme model. We would like to point out at this stage that
the usual mass term not only gives the pion fields a mass,
but it also introduces some extra interactions between the
pions. This is obvious when one describes the Skyrme
model using the S4 valued pion field ~� � ��;�1; �2; �3�
where �1, �2 and �3 are the pion fields, � is an auxiliary
field, and j ~�j2 � 1. In that formulation, the standard mass
term reads, up to an overall constant, VM � 1� � � 1�

�1� �2
1 � �

2
2 � �

2
3�

1=2, while the generalized mass term
is given, up to an overall constant, by VMg

� 1� �p when
p � 2 or VMg

� �2
1 � �

2
2 � �

2
3 (see next section). From a

pion point of view, this mass term thus looks definitely
more natural than the usual one [though the case of p � 1
might be more suitable for the phenomenological descrip-
tion of mass splittings within SU�3� multiplets of baryons]
and it is certainly worth studying the differences between
these different models.

Although we present our discussion in terms of mesons
and baryons, the results we have obtained may be of more
general interest and can be applied not only for �3�
1�-dimensional, but also for �2� 1�-dimensional models.
It is quite general and a first priority problem for any kind
of soliton models to find configurations of lowest energy.
Since the modified mass term discussed here can lead to a
considerable decrease or increase of the classical configu-
rations energy, depending on the type of mass term one
chooses, especially for large topological (baryon) numbers,
2We were not initially aware of this work and we thank
Marleau for bringing [7] to our attention.
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they could find applications in different fields of physics,
including condensed matter physics, astrophysics and cos-
mology. At the same time, the Skyrme model has received
a lot of attention from a purely mathematical point of view
[9], and our modified model has several properties that are
definitely worth studying in detail.

In the particular case of baryons or nuclei, some restric-
tions on the possible form of the mass term may follow
from the existing and nonexisting data on multipion inter-
actions and also from symmetry considerations of effective
chiral Lagrangians. This point is discussed in the next
section where we discuss various choices of the mass
term, pointing out what is fixed and what can be changed.
In the following sections we look at some simple examples
of such mass terms. Expressions for the static energy of
Skyrmions and some definitions necessary for the descrip-
tion of multi-Skyrmion within the rational map approxi-
mation are presented in Secs. III and IV. Our numerical
results are presented in Sec. Vand the analytical discussion
useful to establish asymptotic behavior is presented in
Sec. VI. We finish with a short section discussing our
conclusions and ideas for further work.
II. MASS TERMS

To consider the mass term, we first note that the pion
fields ~� � ��1; �2; �3� are given by U � �� i ~� 	 ~�,
where ~� denotes the triplet of Pauli matrices and � is
determined by the constraint �2 � ~� 	 ~� � 1.

Then the square of the pion mass is the coefficient of the
expansion of the mass term in powers of ~� 	 ~�; in fact it is
the coefficient of the lowest term, i.e. ~� 	 ~�, in this expan-
sion. In the case above we have

m2 Tr�1�U� � m22�1� �� 
m2 ~� 	 ~�� 	 	 	 ; (3)

where �	 	 	 stands for further powers of ~� 	 ~� to be
interpreted as pion interaction terms shortly discussed
below. So the mass of the pion field is proportional to m,
since the canonical mass term in the Lagrangian is��2

� ~� 	
~�=2.

However, (2) is not the only term we can use as the pion
mass term. It is clear that we can multiply �1�U� in (2) by
any function of U which in the limit U ! 1 reduces to 1.
Thus we could multiply it by, say, �U�1�

2 .
In fact, a little thought shows that, instead ofU in (2), we

can take Z 1
�1

g�p�Updp (4)

whereZ 1
�1

g�p�dp � 1 and
Z 1
�1

g�p�p2dp � 1: (5)

The usual choice then corresponds to

g�p� � ��p� 1�: (6)
-2
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As the second condition in (5) can be eliminated by
redefining the coefficient m2 in (2), we see that a more
general mass term is given by

1

12�2
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Z
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Tr
�

1�
Z 1
�1

g�p�Updp
�
d3 ~x; (7)

where

A�1 �
Z 1
�1

g�p�p2dp: (8)

For a single integer value of p, A � 1=p2, and the mass
term takes the simple form

EM �
m2

12�2p2

Z
R3

Tr�1�Up�d3 ~x: (9)

In fact, it is the simplest and natural modification of the
mass term which does not change the value of meson mass.
When we consider applications of our model to elementary
particle physics, then certain restrictions on the possible
forms of the mass term can follow from the data on multi-
pion interactions. Indeed, when the chiral field is small,
and this corresponds to the case of large distances from the
center of the soliton, then the expansion of the matrixUp in
(9) in powers of ~�2 can be made leading to the Lagrangian
density

LM � �
m2

12�2

�
~�2 �

p2

12
~�4 �

p4

360
~�6 � 	 	 	

�
: (10)

Here we have made the substitution f2 ! ~�2, introducing
the quantized pion field, to obtain pion contributions to
amplitudes of various physical processes (some numerical
coefficients still have to be inserted but their values are not
essential for the qualitative discussion here). The second
term in this expansion, proportional to p2 ~�4, gives a con-
tribution to the low-energy pion-pion scattering amplitude,
usually extracted from the data on the reactions involving
the two-pion production on nucleons, �N ! 2�N [10], or
from heavy meson decays to final states containing two or
more pions, see e.g. [11]. The next term, proportional to
p4 ~�6, gives a contribution to e.g. the process 2�! 4�,
which could be studied in a similar reaction, e.g. �N !
4�N, etc. The data on the pion-pion scattering are known
not to be in contradiction with the usual value p � 1,
although they have a considerable uncertainty, see e.g.
[12] and references therein. The data on the reactions
2�! 4� or 2�! 6� do not seem to be available yet.
A phenomenological analysis of the existing data aimed at
providing restrictions on possible values of the power p
would be of interest, although it is behind the scope of the
present paper. Anyway, it is clear that the power p cannot
be arbitrarily large to fit the data on multipion interactions.

Another class of restrictions can follow from the invari-
ance properties imposed on the modified mass term. It is
well known that the Lagrangian of the model depending on
the chiral derivatives (1) is invariant under chiral trans-
014006
formations, left L or right R: U ! LURy with L 2 SU�2�
and R 2 SU�2� being arbitrary constant unitary matrices,
see e.g. [1,6] and references therein. The mass term, in
general, violates this invariance, but is invariant under such
a transformation when L � R.

In the particle physics context, the mass term of the
underlying QCD Lagrangian

LM 
 � RM L � � LMy R (11)

is invariant under simultaneous transformations  L !
L L,  R ! R R and M! LMRy, see e.g. [7].
According to this, the mass term in the Lagrangian density
of the chiral soliton model, which can be written as

LM 
 Tr�MU�UyMy �MU0 �U
y
0M

y�; (12)

is invariant under the transformation U ! LURy, M !
RMLy, which we may call the UM transformation; here
the meson mass matrix M
M.

The commonly made assumption in particle physics
[1,13] is that after such a transformation the vacuum value
of the matrix U can be made equal to the unit matrix, U0 �
1. Simultaneously, the mass matrix M takes a diagonal
form and is proportional to the unit matrix Mdiag 

�2 diag�1; 1�, since, phenomenologically, we can neglect
the isospin violation in the mass matrix (i.e. the difference
of masses of u and d quarks, or �� and �0 mesons).

In our case of the generalized mass term we also assume
that it can be written in an analogous way:

LM 
 Tr��MpU�p � �UyM
y
p�p � �MpU0�

p � �Uy0M
y
p�p�

(13)

and so is invariant under the transformations U ! LURy,
Mp ! RMpLy. Clearly, the terms like (13) with p �
2; 3 . . . do arise when we consider second, third,
etc. order contributions in the quark masses or meson
masses squared; in this caseMp 
M. For pions such terms
are expected to be very small, but they become important
for heavier quarks/mesons—the case we are studying here.

More interesting is a possibility to have the terms (13) in
the lowest order in the quark/meson masses; i.e. instead of
the usual mass term with p � 1, as we discussed above. In
this case, by dimensional arguments, �Mp�

p 
M. After an

appropriate transformation we have U0 � 1, Mdiag
p 


diag�1; 1�, with the relation �Mdiag
p �p � Mdiag, and we

obtain

LM 
 Tr�Mdiag
p �p�Up � �Uy�p � 2�

� 2 TrMdiag�Up � 1�; (14)

and so we see that the mass term takes the form (9).
It would be important to determine the form of the mass

term from the underlying QCD Lagrangian, or to show that
(9) is possible, at least for some values of power p. Strictly
speaking, this is an unresolved problem, which deserves
-3
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further study. In this context we can mention here the
recent work of Battye, Krusch and Sutcliffe [14], who
modified the model by changing its potential term, in
analogy to our modifications of the potential term. Of
course, in concrete physical applications one should con-
sider also the Casimir energy contribution related to loop
corrections, but one can look at their work as a study of a
classical problem.

In this paper we shall consider several reasonable values
of the parameter p, and study its effects, in spite of possible
restrictions on its range in particle physics applications,
bearing in mind applications in wider classes of models,
not only connected to QCD or to effective chiral
Lagrangians. One particular case of interest has already
been studied in the so-called �2� 1�-dimensional ‘‘new
baby Skyrme model’’ [15–17] describing anisotropic sys-
tems, where the mass term corresponds to the value p � 2,
see (9). As it was shown in [17], this variant of the model
can be especially well approximated analytically.
III. B � 1 SKYRMION

Consider first the case of one Skyrmion. The single
Skyrmion has the hedgehog form

U � exp�if�r� ~̂r 	 ~��; (15)

where ~̂r is the unit vector in the ~r direction and f�r� is the
radial profile function which is required to satisfy the
boundary conditions f�0� � � and f�1� � 0:

Putting (15) into the energy functional we find that the
energy of the field is given by

E �
1

3�

Z 1
0

�
r2 _f2 � 2� _f2 � 1�sin2f�

sin4f

r2

� 2Am2r2

�
1�

Z 1
�1

g�k� cos�kf�dk
��
dr; (16)

where A is given by (8).
Thus, for the minimal field, f�r� satisfies the equation

�f�r2 � 2sin2f� � 2r _f� 2� _f2 � 1� sinf cosf

�
2sin3f cosf

r2 �m2r2

R
1
�1 g�k� sin�kf�kdkR
1
�1 g�k�k

2dk
� 0: (17)

We have investigated several classes of such functions:

(i) g
�k� � ��k� p� for several values of p.

The cases of even or odd integer values for p have
also been investigated analytically. Moreover, it is
easy to notice that the mass term for p > 1 is
smaller than that for p � 1, since �1�
cos�pf��=p2 � 2sin2�pf=2�=p2 and
sin2�pf=2�=p2 < sin2�f=2� for p > 1.
(ii) g
 given by a Gaussian centered around p � 1, or
around p � 0.
In the latter two cases we have taken
014006-4
g�p� �

����
�
p����
�
p exp����p� 1�2� and

g�p� �

����
�
p����
�
p exp���p2�:

(18)

The corresponding expressions for the energy are
given by (for the case with p � 1)

E �
1

3�

Z 1
0

�
r2 _f2 � 2� _f2 � 1�sin2f�

sin4f

r2

� 2m2r2 1
2�����
��
p � 1� 1

2�

�

�
1� cosf exp

�
�
f2

4�

���
dr; (19)

with a similarly looking expression for the other
case.
IV. MULTI-SKYRMIONS

For multi-Skyrmion fields we use the rational map an-
satz of Houghton et al. [18]. The ansatz involves the
introduction of the spherical coordinates in R3, so that a
point x 2 R3 is given by a pair �r; ��, where r � jxj is the
distance from the origin, and � is a Riemann sphere
coordinate giving the point on the unit two-sphere which
intersects the half line through the origin and the point x,
i.e., � � tan�	2�e

i’, where 	 and ’ are the usual spherical
coordinates on the unit sphere.

Then one observes [19] that a general SU�2� matrix, U,
can always be written in the form

U � exp�if�2P� I�� (20)

where f is real and P is a 2� 2 Hermitian projector i.e.,
P � P2 � Py. The rational map ansatz assumes that the
Skyrme field has the above form and, in addition, that f
depends only on the radial coordinate, i.e., f � f�r�, and
that the projector depends only on the angular coordinates,
i.e., P��; ���:

The projector is then taken in the form

P �
f  fy

jfj2
(21)

where f��� is a 2-component vector, each entry of which is
a degree k polynomial in �: Incidentally, given the projec-
tive nature of f, one can also use the parametrization f �
�1; R�t, where R��� is the ratio of R � f1=f2.

For B � 1 this ansatz reproduces the one Skyrmion field
configuration discussed in the last section, while for B> 1
the ansatz (20) is not compatible with the equations which
come from (1), so the ansatz cannot produce any exact
multi-Skyrmion configurations. However, as was shown in
many papers, see e.g. [18,20], it gives approximate field
configurations which turn out to be very close to the
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numerically computed minimal energy states. To do this,
one selects a specific map f and puts it into the Skyrme
energy functional (1). Performing the integration over the
angular coordinates results in a one-dimensional energy
functional for f�r� which has then to be solved
numerically.

Hence, if we write f � �1; R�t, then the Skyrme energy is

E �
1

3�

Z �
r2f02 � 2B�f02 � 1�sin2f� I

sin4f

r2

� 2Am2r2

�
1�

Z 1
�1

g�k� cos�kf�dk
��
dr; (22)

where I denotes the integral

I �
1

4�

Z �1� j�j2

1� jRj2

��������dRd�
��������
�

4 2id�d ��

�1� j�j2�2
: (23)

The values of I have already been calculated; in what
follows we take our values from [20]. The equation for
the profile function f is very similar to the equation (17) of
the last section except that the coefficients of terms involv-
ing sinf cosf are multiplied by B in the first term and I in
the second.
1

2

3

B
100 200 300 400 500

b

FIG. 1. Normalized energy (24) (a) and radius (25) (b) of
multi-Skyrmion configurations for m � 4:131, E�1� � 2:056.
V. NUMERICAL RESULTS

We have looked at the values of various quantities for
different choices of p [taking g�k� � ��k� p�], and also at
some Gaussians. The Gaussian cases were not particularly
illuminating so here we discuss only the cases of fixed
values of p.

Note that when p! 0 we have a nontrivial contribution
of the mass term. This involves taking the limit p! 0 of
the expression in (22) and then its last line becomes
m2r2f2. We can also consider the limit whenm! 0 which
corresponds to the massless Skyrme model.

We present our numerical results in Figs. 1–3 in which
we plot the normalized energy

En �
E�B�
BE�1�

(24)

and the shell radius, as a function of B, for several values of
the mass3 and for p from 0 to 5.

The normalized energy (24) is a dimensionless energy
which describes the binding of the configuration by com-
paring it to that of the B � 1 solution. Note that when
En > 1 the B multi-Skyrmion configuration has an energy
larger than the energy of B single Skyrmions thus showing
that this configuration is unstable. The jagged curve near
the origin is caused by the value of I which varies a lot
3In our numerical calculations we take for pions m � m� �
0:361 92, for kaons mst � 1:299 96 and for the charmed mass
scale mch � 4:130 964. In what follows, in the text and in the
captions, we refer to those values as m � 0:362, 1.300 and 4:131
respectively.

014006
when B is small. When B> 22, we have taken I � 1:28B2

(see [20]) and so the curves are smooth.
We also present the radius of the solutions defined as

follows:

R �

R
rE�r�r2drR
E�r�r2dr

; (25)

where E�r� is the radial energy density.
Looking at the figures we see that, as B gets very large,

the normalized energy converges to a finite value when p is
even, but that it slowly diverges when p is odd. This was
also observed by Battye and Sutcliffe [4] in the case of p �
1. When m � 4:131 (Fig. 1) the curve for p � 3 crosses
the value of En � 1 at B � 365. For a smaller value of m,
the curves cross this bound state threshold for much larger
values of B. This is not surprising, as for odd p the mass
term adds a nonvanishing contribution to the energy den-
sity from the region where f � � and so to make a large
shell configuration one needs to put an increasing amount
of energy inside the shell. When B is large, this becomes
energetically too expensive and the configuration is not a
bound state anymore.
-5
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FIG. 3. Normalized energy (24) (a) and radius (25) (b) of multi-Skyrmion configurations for m � 0:362, E�1� � 1:274.
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FIG. 2. Normalized energy (24) (a) and radius (25) (b) of multi-Skyrmion configurations for m � 1:300, E�1� � 1:486.
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for m � 0:362 and p � 1.
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We also see that, for a given parity of p, the energy at a
given value of B decreases as we increase p by a multiple
of 2, i.e. Enp�B�>Enp�2�B�.

The plots of the radius also show that when p is odd the
shell is smaller, but otherwise, for a given parity of p, the
radius increases with p. On the other hand, for fixed values
of p and B, the radius decreases when the mass m in-
creases. This is exactly what one expects for odd values of
p as the energy density inside the shell is nonzero, but it is
also true for even p, i.e. the radius of the shell decreases
with the increase of the mass.

One property worth investigating for these low-energy
configurations is their ability to decay into two or more
shells of smaller baryon charges. To do this we have
computed the derivative of the energy with respect to B
and compared the obtained values with the energy per
baryon of some small B configurations of low energy
(typically B � 2, B � 4, B � 7 and B � 17). When the
value of the derivative is larger than the energy per baryon
of other configurations, it implies that the larger configu-
ration can decay into two shells. In Fig. 4 we see that, when
014006-6
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FIG. 5. Normalized energy En as a function of m for various valu

TABLE I. Decay of low-energy configurations into subshells.
Each column corresponds to a decay mode and the baryon
charge given corresponds to the threshold from which the decay
is always possible.

m � 0:362

p B � 1 B � 2 B � 4 B � 7 B � 17

0 >95 >70 � 26 � 18 � 20
1 >380 >250 � 50 � 28 � 27
3 	 	 	 	 	 	 	 	 	 >410 >100
5 	 	 	 	 	 	 	 	 	 	 	 	 >390

m � 1:300

p B � 1 B � 2 B � 4 B � 7 B � 17

0 � 18 � 18 � 8 � 7 � 17
1 � 27 � 25 � 14 � 8 � 18
3 	 	 	 >480 >120 � 45 � 34
5 	 	 	 	 	 	 >350 >110 � 33

m � 4:131

p B � 1 B � 2 B � 4 B � 7 B � 17

0 � 18 � 18 � 8 � 8 � 18
1 � 18 � 18 � 8 � 8 � 18
3 >160 >110 � 38 � 24 � 24
5 >390 >240 >75 � 36 � 29
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m � 0:362 and p � 1, all large shells (B> 50) can decay
into shells with B � 17, B � 7 and B � 4 but can only
decay into a B � 2 if B> 250 and B � 1 if B> 380.
When p is even but nonzero, the normalized energy de-
creases as B increases implying that the binding energy of
the configurations increases with B. This in turn implies
that the configurations never decay into smaller shells.

We summarize our observation in Table I where we have
given the threshold value corresponding to several decay
modes. The threshold values are the values of B above
which the decay is always possible, but sometimes some
configurations with lower values of B (smaller than 32) can
decay in such a mode, too (but only for very special values
of B). The values given with a ‘‘�’’ refer to the values
obtained by comparing the energy of the configuration
directly (low B) instead of using the derivative of the
energy.

In Fig. 5, we present the normalized energy (24) as a
function ofm for various values ofB. We see that for p � 0
and p � 1 the energy increases rapidly with m and that
very quickly the configurations become unstable. When
p > 1, the normalized energy decreases for small m when
m increases, then it reaches a minimum and finally it
increases with m. The value of the mass for which the
p=0
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es of p for B � 4 (a), B � 17 (b), B � 40 (c) and B � 100 (d).
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solution is the most bound depends on p and on the baryon
number.

In the next section we present an analytical description
of the multi-Skyrmion configurations which will explain
some of the features we have observed numerically.
VI. APPROXIMATE ANALYTICAL TREATMENT

It was shown in [3] that many properties of multi-
Skyrmions, including their classical mass, spatial distribu-
tion, moments of inertia, etc., can be described with a good
accuracy using a relatively simple power step (or ‘‘in-
clined’’ step) approximation of the profile function. A
similar approach was also used successfully to describe
‘‘baby’’-Skyrmions in the 2� 1 dimensional Skyrme
model [15–17,21]. This approximation also turns out to
be useful for the study of the asymptotics of our massive
multi-Skyrmion field configurations for large values of the
baryon number B.

Let us consider first the large r asymptotics of the profile
function. Clearly, this asymptotic behavior is governed by
the second derivative term and the mass term in the
Lagrangian. The Euler-Lagrange equation then becomes
asymptotically

�r2f0�0 � �2B�m2r2�f; (26)

and so, if m2r2 � 2B, we have 2rf0 � r2f00 � m2r2f,
which has the asymptotics f
 exp��mr�.

For the values of B in the region of r where m2r2 < 2B,
the profile f has a power behavior, and it is in this region
that most of the mass and most of the baryon density of the
multi-Skyrmion is concentrated [3], while the exponential
tail of the profile function gives only a small correction to
all such quantities and so can be neglected. Thus if we can
neglect the 
m2 term on the right side of (26), we obtain
the power law f
 r�

�����
2B
p

. As we shall see, the dominant
range of r is always such that we can make this approxi-
mation, at least for pions and kaons.

Denoting � � cosf and taking for g�k� � ��k� p�
where p is an integer, the energy of the multi-Skyrmion
can be written as

M �
1

3�

Z � 1

�1��2�
�r2�02 � 2B�1��2�2� �

�
2B�02

� I
�1��2�2

r2

�
� 2m2�p���r2

�
dr; (27)

with � changing from�1 at r � 0 to 1 at r! 1. The first
part of (27) is the second order term contribution while the
second term is due to the Skyrme term. Note that at fixed
r � r0 the fourth order term is exactly proportional to a
one-dimensional domain wall energy widely discussed in
the literature, see e.g. [22]. The function �p��� � �1�
cos�pf��=p2 can be written explicitly for each p: �1 �
1��, �3 � �1����1� 2��2=9 � �1, �2 �
�1��2�=2 � �1, �4 � �2�1��2�=2 � �2, etc. Also
014006
it can be shown that �3 � �2, �4 � �3, and it follows
immediately, for any p, that �4p � �3p � �2p � �p,
etc. The functions �p and the whole mass term have
different properties for odd and even p and so, for this
reason, these two cases will be considered separately.

It is possible to rewrite the second order term contribu-
tion in (27) as

M�2� �
1

3�

Z � r2

�1��2�
��0 �

������
2B
p
�1��2�=r�2

� 2r
������
2B
p

�0
�
dr; (28)

and similarly for the fourth order Skyrme term. Next we
observe that, if � satisfies �0 �

������
2B
p
�1��2�=r, a large

part of the integrand in M�2� vanishes. Therefore, it is
natural to consider a function � which satisfies the follow-
ing differential equation [3]:

�0 �
b
2r
�1��2�; (29)

where b is a constant. A solution of this equation, which
satisfies the boundary conditions ��0� � �1 and ��1� �
1, is given by

��r; r0; b� �
�r=r0�

b � 1

�r=r0�
b � 1

(30)

where r0 is the distance from the origin to the point where
� � 0 and at which the profile f � �=2. r0 can be con-
sidered as the radius of the multi-Skyrmion. Both b and r0

are arbitrary at this stage; they will be determined later by
means of the mass minimization procedure. Note that the
radii of distributions of baryon number and of the mass of
the multi-Skyrmion are close to r0. Let us point out that our
parametrization (30) is very accurate as, in the Skyrme
model with the usual mass term, as shown in [3], the
masses and other characteristics of multi-Skyrmions are
described by such a parametrization to within a few
percent.

A. Odd powers, p � 1; 3; . . .

Consider first the case of p � 1. Then, using (22) and
(30) we find that the soliton mass is given by

M�B; b� �
1

3�

Z ��b2

4
� 2B

�
�1��2� �

�
I �

Bb2

2

�

�
�1��2�2

r2 � 2r2m2�1���
�
dr; (31)

where � is given by (30) and where we should take m �
0:362 for the pion case and m � 1:30 for kaons, etc.

Given the form of � the integration over r can now be
performed using the well-known expressions for the Euler-
type integrals, e.g.
-8
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Z 1
0

dr

1� �r=r0�
b �

�r0

b sin��=b�
; (32)

if b > 1, and, more generally [3],

Z 1
0

�r=r0�
cdr


� �r=r0�
b � 
�1�c�b�=b

�r0

b sin���1� c�=b�
; (33)

with 
> 0. b > 1� c, c >�1. Differentiating with re-
spect to 
 allows us to get the integrals with any power of
1� �r=r0�

b in the denominator. Thus we can derive the
following expressions for the integrals of � given by (30):Z

�1��2�dr �
4�r0

b2 sin��=b�
;

Z �1��2�2

r2 dr �
8��1� 1=b2�

3r0b2 sin��=b�
;

(34)

and other examples useful for the calculation of the mass
term,

Z
�1���r2dr �

2�r3
0

b sin�3�=b�
;

Z
�2�1��2�r2dr �

4�r3
0�1� 18=b2�

b2 sin�3�=b�
:

(35)

The expressions (34) and (35) allow us to obtain the mass
of the multi-Skyrmion field in a simple analytical form as a
function of the parameters b and r0 (in units 3�2F�=e):

M�B; r0; b� � ��B; b�r0 � 
�B; b�=r0 � ��b�r
3
o: (36)

where

� � �b2 � 8B�=�3b2 sin��=b��;


 � 4�Bb2 � 2I��1� 1=b2�=�9b2 sin��=b��;

� � 4m2=�3b sin�3�=b��:

(37)

The mass term contribution is proportional to the volume
of the multi-Skyrmion, 
r3

0, as expected on general
grounds, multiplied by the corresponding flavor content
of the Skyrmion.4 Next we minimize (36) with respect to r0

and obtain, in a simple form, the precise minimal value of
the mass

M�B; b� �
2rmin

0

3
�
������������������������
�2 � 12�


q
� 2�� (38)

where the value of r0 is given by
4There is a difference of principle between the pion and kaon
(or other flavored meson) fields included in the Lagrangian. The
mass of flavored mesons enters into the classical soliton mass
multiplied by a corresponding flavor content which is always
smaller than 1 and even smaller than 0:5 for a rigid or soft rotator
quantization scheme. So, when we take the masses m ’ 1:30 for
the strangeness or m ’ 4:13 for the charm, we establish the scale
of the mass for these flavors, not more than that.
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rmin
0 �B; b� �

� ������������������������
�2 � 12
�

p
� �

6�

�
1=2
: (39)

Equations (36) and (38) give the upper bounds for the mass
of the multi-Skyrmion state, because they are calculated
for the profile (30) which is different from the true profile
to be obtained by the true minimization of the energy
functional (16) with the mass term included. At large
values of B the power b is also large, b


����
B
p

, as we shall
see, and � ’ �b� 8B=b�=�3��, 
 ’ 4�Bb� 2I=b�=�9��,
� ’ 4m2=�9��.

The structure of (36) remains the same for values of p
different from 1, except for the case of even p which will
be considered separately. For p � 3, 5, etc. one must
perform the substitution �! �=p2, and the volume con-
tribution is reduced by a factor 1=p2. The energy (38) can
be simplified and analyzed in two different cases, small m
or �, when 12�
� �2 (which we will call in what
follows the small mass approximation, or SMA), and in
the case of largem or large Bwhen 12�
� �2, which we
will call the large mass approximation, or LMA. Note that,
at large B-numbers, �


����
B
p

and 

 B
����
B
p

; therefore,
when B is large enough, the latter inequality can always
be satisfied: it reads then, approximately, m2

����
B
p
� 1.

Let us consider first the latter case of large
� (the LMA
case). Now we can neglect the term
�2 in the square root
of (38) and (39), and obtain

M�B; b� ’
4

33=4
�
3��1=4

�
1�

�
4

�
3


�

�
1=2
�

(40)

and

rmin
0 ’

�


3�

�
1=4
�

1�
�
4

�
1

3
�

�
1=2
�
: (41)

It is clear that the minimum value of the mass is reached at
the minimum of
 (� does not depend on bwhen b is large,
and the correction term in the square bracket has little
influence on the position of the minimum), which is equal
to 
min � 8

����������
2BI
p

=�9�� at b �
������������
2I=B

p
. Then

M�B� ’
16

9�

�
2

3

�
3=4
m1=2�2BI�3=8

�
1�

3
���
3
p
�I � 4B2�

8
���
2
p
m�2IB�3=4

�
(42)

Since I 
 B2 (strictly, I � B2 [18]), we establish the
following scaling law at large B:M�B� 
 B9=8m1=2, r�B� 

B3=8=m1=2. Numerically, we have for p � 1 (I � 1:28B2

in these estimates)

M
B
�p � 1� ’ 0:593 95

����
m
p

B1=8

�
1�

1:1982

mB1=4

�
: (43)

For other odd p, dividing the volume contribution to the
-9



TABLE II. Energy per baryon for m � m� � 0:362. The ana-
lytical calculations are made in the small mass approximation
(SMA) according to (46).

B p � 1 (num.) p � 1 (SMA) p � 3 (num.) p � 3 (SMA)

1 1.2740 	 	 	 1.2576 	 	 	

40 1.1519 1.1497 1.0990 1.0935
100 1.1734 1.1760 1.0991 1.0982
200 1.1973 1.1956 1.1023 1.1034
300 1.2144 1.2037 1.1053 1.1073
400 1.2279 1.2057 1.1080 1.1106
500 1.2392 1.2038 1.1104 1.1133
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mass term by p2, we obtain

M
B
�p� ’

0:593 95����
p
p

����
m
p

B1=8

�
1� p

1:1982

mB1=4

�
: (44)

The absolute lower bound for the energy which follows
from (44) obviously does not depend on p. These estimates
can be improved further: the O��2� terms in the expansion
of the square root in (38) can be included; the surface
contributions to the mass term, besides the volumelike
one, can be calculated (this may be important for higher
p since the volume contribution decreases like
1=p2); the
shift in the position of bmin could also be taken into
account.

As the ratio M�B�=B
 B1=8, we conclude that, for large
B, the shell configurations will not form a bound state. This
confirms what we have observed numerically. The second
order term of the initial Lagrangian makes a small contri-
bution in the large mass regime; thus the Skyrme term and
the mass term approximately balance each other, and the
mass term gives 
1=4 of the total mass, by the Derrick
theorem. The difference between the cases p � 3; 5; . . .
etc. and p � 1 resides in the fact that for larger p this
‘‘large mass term regime’’ is reached at higher values of
the baryon number. One of the properties of multi-
Skyrmions in this regime is that the average energy density
does not depend on B, �M 
m2, or, in ordinary units,
�M 
�2

�F2
� (which does not depend on the Skyrme pa-

rameter e). The energy density in the shell can be estimated
as well; we get �shell 


����
B
p

�2
�F

2
� which grows when the

baryon number increases. And, as it has been previously
discussed in the literature, the transition to other types of
classical configurations, like the Skyrmion crystals, may
become possible at high values of B.

When the mass m is small enough, as for the pion, the
expansion in 12
�=�2 can be made, and one obtains the
reduction of the multi-Skyrmion size r0:

r0 ! r0 �
3�
2�

�


�

�
3=2
’

���
2

3

s
I1=4

�
1�

2m2

3
I1=4B

�
; (45)

and the increase of its mass

�M � Mm�0

�

2�2

�
1�

9
�

8�2

�

’ Mm�0
2m2

9
I1=4B

�
1�

m2

2
I1=4B

�
; (46)

B �
����
I
p

=�2B�
����
I
p
�, Mm�0 ’ 4B

��������
2=3

p
�2� �B�=�3��

[3], and at large B, Mm�0=B ’ 1:0851, B ’ 0:3613 if

we take �B �
������������
I=B2

p
’ 1:131 37—constant value, ac-

cording to [20]. Here, we have used also the observation
that, at large B, bmin � 2I1=4 [3] and
014006
� ’
2

3�I1=4
�2B�

����
I
p
� 


����
B
p

;


 ’
4I1=4

9�
�2B�

����
I
p
� 
 B3=2:

As expected, the size of the multi-Skyrmion state decreases
with increasing m while its mass increases, and these
changes become very large for very large B and/or m.

For p different from 1 the substitution m2 ! m2=p2

should be made in (45) and (46) and the following relation
can then be obtained for any pair of odd p’s, p1 and p2:

MB�p1� �MB�p2�

MB
’

2m2

9

�
1

p2
1

�
1

p2
2

�
I1=4B: (47)

Numerically this works well for p � 1 and p � 3, see
Tables II, III, and IV; for larger p0s the agreement is less
good but then, apparently, other contributions to the mass
term, besides the volumelike one, should be included.

In Tables II, III, and IV, we present several values of the
energy per baryon obtained from (46) (Table II) and (43)
and (44) (Tables III and IV), and compare them with the
values obtained numerically. We see that our analytical
approximation works very well when the mass is small and
B-numbers not too large (pions case, Table II), or when it is
large, as for the charm, but it does not work so well for
intermediate values of the mass. It also works better for
p � 1 than for p � 3. The case p � 3, presented in
Table III, is of special interest: the LMA improves when
increasing the baryon number but is still not as good as for
p � 1, whereas SMA becomes worst whenB increases and
also is not perfect at small values of B. To improve it, the
following terms in the expansion (46) should be included.

For not very large values of m the structure of the multi-
Skyrmion at large B remains the same: it is given by the
chiral symmetry broken phase inside a spherical wall
where (on this spherical shell) the main contribution to
the mass and topological charge is concentrated [3,20].
The value of the mass density inside this wall is defined
completely by the mass term with 1�� � 2 and de-
creases with increasing B while the mass density of the
shell itself is constant [3]. The baryon number density
-10



TABLE III. Energy per baryon for m � ms � 1:300. The analytical estimates are made
according to (44) (LMA) and, for p � 3, also in SMA.

B p � 1 (num.) p � 1 (LMA) p � 3 (num.) p � 3 (LMA) p � 3 (SMA)

1 1.4860 	 	 	 1.3842 	 	 	 	 	 	

40 1.4525 1.4675 1.1893 1.3018 1.1701
100 1.5375 1.5553 1.2097 1.3032 1.1968
200 1.6181 1.6351 1.2360 1.3157 1.2056
300 1.6714 1.6875 1.2554 1.3276 1.1982
400 1.7120 1.7273 1.2710 1.3381 1.1820
500 1.7450 1.7596 1.2841 1.3474 1.1603
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distribution is quite similar, the only difference being that
inside the spherical wall it vanishes.

If, for some physical reasons, we would use a distribu-
tion over p in the Lagrangian, as discussed in Secs. II and
III, the analytical expression for the multi-Skyrmion en-
ergy can be obtained quite analogously. Let us put p �
p0 � �p, where p0 � 1; 3, etc., and �p is assumed to be
small. Then, taking into account the changes in the volume
contribution to the mass term, we get instead of (44):

M
B
�p� ’

0:593 95������
p0
p

����
m
p

B1=8

�
1�

�p
2p0
�
��p�2

16

�
�2 �

6

p2
0

��

�

�
1� p0

�
1�

�p
p0
�
��p�2�2

8

�
1:1982

mB1=4

�
; (48)

and the averaging over any distribution g�p�, as suggested
by (4), (5), and (18) can be easily performed.

It is also possible to consider, in a similar way, the case
of small values of p, near p � 0. In this case we have �1�
cos�pf��=p2 ’ f2�1� p2f2=12�=2, and f ’ � inside the
multi-Skyrmions. Evaluations similar to those at the begin-
ning of this section show that the energy per unit
B-number, in the large mass regime, is given by

M
B
’ 0:744 41

����
m
p

B1=8

�
1�

p2�2

48

��
1�

0:7628

mB1=4

�

�
1�

p2�2

24

��
: (49)

Obviously, at large enough value of the mass, this is some-
TABLE IV. Energy per baryon for m � mch � 4:131. The
analytical estimates are made in the large mass approximation,
(43) and (44).

B p � 1 (num.) p � 1 (LMA) p � 3 (num.) p � 3 (LMA)

1 2.0558 	 	 	 1.7370 	 	 	

40 2.1778 2.1352 1.5160 1.4877
100 2.3619 2.3436 1.5839 1.5805
200 2.5304 2.5216 1.6589 1.6643
300 2.6398 2.6344 1.7111 1.7191
400 2.7222 2.7185 1.7516 1.7607
500 2.7888 2.7861 1.7850 1.7945
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what greater than the energy given by (43). The expression
(48) can be compared with our numerical results for p � 0
presented in Figs. 1 and 2. We note the agreement to within
an accuracy of about �5–8�% for the largest values ofm and
B. The integration over any distribution in p; g�p�, near
p � 0, as presented in (4) and (5), can also be easily made.

B. Even power p � 2; 4; . . .

In the case of even p i.e., p � 2; 4 . . . the volume con-
tribution to the energy density is reduced because 1�
cos�pf� ’ 0 inside the multi-Skyrmion where the profile
f ’ �. Because of the dependence of the mass term on the
parameter b and due to the connection between r0 and b,
this case is very different from the case of p � 1; 3; . . . .
However, we can still write

M�B; r0; b� ’ ��B; b�r0 �

�B; b�
r0

�
�0�b�r3

0

b
: (50)

This expression coincides with (36), except for the mass
term where an additional factor 1=b appears and �0 is
different from �. For p � 2 we have �0�p � 2� �
4m2=�b sin�3�=b�� ’ 4m2=�3�� at large b while for p �
4 an additional small factor appears as �0�p � 4� �
4m2�1� 18=b2�=�3b sin�3�=b�� ’ 4m2=�9��. It is not
easy to find the general expression for larger p; i.e., the
expression for �0 which decreases with increasing p [see
the discussion after (27)].

In general, we proceed as for odd values of p and after
minimizing with respect to r0 we obtain

M�B; b� �
2rmin

0

3
�
�������������������������������
�2 � 12�0
=b

q
� 2�� (51)

and the value of r0

rmin
0 �B; b� �

� �������������������������������
�2 � 12�0
=b

p
� �

6�0=b

�
1=2
: (52)

The main difference from the previous case is that, at large
values of B, the quantities �2 
 B and �0
=b
 B, i.e.,
they are of the same order of magnitude, since b


����
B
p

. At
large enough b or B we have 12
�0=�b�2� ’ 0:35 for
pions, 4:5 for kaons and 
46 for charm.
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TABLE V. Asymptotic values of the energy per baryon for p � 2 and p � 4. The analytical
calculations correspond to (59), SMA, and (56) and (57) in LMA.

m p � 2 (num. B � 500) p � 2 (approx.) p � 4 (num. B � 500) p � 4 (approx.)

0.362 1.0879 1.1016 (SMA) 1.0881 1.0908 (SMA)

1.300 1.2186 1.2048 (SMA) 1.1362 1.1475 (SMA)
1.2781 (LMA) 1.2596 (LMA)

4.131 1.6236 1.6448 (LMA) 1.3519 1.4116 (LMA)

5In this respect there is a direct analogy with the �2� 1� �D
model [16,17,21], where the surface energy density of the rings,
representing states of lowest energy, and their width, do not
depend on the topological number when this number is large.
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Let us discuss first the large mass case when we can take�������������������������������
�2 � 12�0
=b

q
’ 2

����������������
3�0
=b

q
(53)

and

M�B; b� ’
4

33=4

�

3�0

b

�
1=4
�

1�
�
4

�
3b

�0

�
1=2
�
: (54)

The minimum is reached at b ’ 2
����������
I=B

p
and we have,

recalling that at large B and p � 2, �0 ’ 4m2=�3��,

M�B; p � 2� ’ Bm1=2 16�1=2
B

3
���
3
p
�61=4

�
1�

3
���
3
p
��B � 2=�B�

4
���
2
p
m

�
;

(55)

at r0 

����������
B=m

p
. Note that �B �

������������
I=B2

p
and, at large B, it is

constant within the rational map approximation.
Numerically, for p � 2, we obtain from (55)

M
B
�p � 2� ’ 0:666 12

����
m
p

�
1�

0:8877

m

�
(56)

and for p � 4

M
B
�p � 4� ’ 0:506 14

����
m
p

�
1�

1:5375

m

�
: (57)

In Table V, we present a few values of the asymptotic
energy obtained from (59), SMA, and from (56) and (57) in
LMA and compare them with the values obtained numeri-
cally for B � 500. In our calculations, for large B, we have
again used the value �B � 1:131 37, [20], and �0 ’
4m2=�9�� for p � 4. There is a good agreement between
our numerical results and our analytical approximation
values when the mass is small (pions), or large (charm
scale), and not so good for the intermediate value m � mst
where we give both the SMA and LMA results. Our
approximation also works better for p � 2 than for p �
4. Nevertheless, analytical approximations work better for
odd p at largem and B than for the even ones. It is possible
to improve the analytical estimates although, for even p,
the estimate of the preasymptotic contributions to the
energy appears to be technically harder to obtain than for
odd p.

So, for p � 2; 4; . . . etc. and for large meson masses the
multi-Skyrmion mass is proportional to the baryon num-
ber, and the average (volume) mass density decreases as
014006

1=
����
B
p

. At large B the thickness or width of the shell is
given by W 
 1=

����
m
p

—i.e., it does not depend on the
B-number and the mass density in the shell is constant,
�shell 
�2

�F2
�, in contradistinction to the case of odd p

where it grows with B.5

When the meson mass is small, as for pions, we can
perform the following expansion:�������������������������������

�2 � 12�0
=b
q

’ �� 6�0
=�b�� � 	 	 	 : (58)

The main contribution to the mass is then M0 � 2
��������
�

p

at
r0 �

����������

=�

p
, and the minimum is reached at bmin ’ 2I1=4,

as in the massless case [3].
As a result we obtain the following expression for the

mass of the multi-Skyrmion, given the mass term in the
Lagrangian, to first order in �0:

M�B� ’ Mm�0

�
1�

�0


2b�2

�

’
4B
3�

���
2

3

s
�2�

������������
I=B2

q
�

�

�
1�

��0

4
B

�
1�

9��0

16
B

��
: (59)

At large values of B the relative contribution of the m2

correction is constant (since �0 is constant at large B and
I=B2 ! const, B ! const � 0:3613), in contradistinc-
tion to the case of odd values of p, and the value of
M�B�=B from (59) is independent of B. Note that the
difference of the multi-Skyrmion masses, between the p �
2 and p � 4 cases, is given by

M�B; p � 2� �M�B; p � 4�

M�B;m � 0�
’

2m2

9
B�1�m

2B�:

(60)

For the pion mass m2 ’ 0:13, and (60) gives the value

0:01, as shown in Table VI, in agreement with the
numerical data, for greater m the agreement is not so
-12



TABLE VI. �M�B;p � 2� �M�B;p � 4��=M�B;m � 0� for
numerical solutions (column 2 and 3) and according to SMA
(59) and LMA (56) and (57), column 4.

m B � 100 B � 400 (approx.)

0:362 0:009 89 0:009 87 0:0100 (SMA)
1:300 0:076 02 0:076 15 0:0528 (SMA)
4:131 0:250 53 0:250 89 0:2149 (LMA)
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good, since the case of p � 4 is more difficult to describe
analytically.

For any even p the mass term gives a contribution to the
multi-Skyrmion mass which is constant at large baryon
numbers (relatively), and which decreases with increasing
p, as then �0 decreases. This is in agreement with the
numerical results presented in the previous section.

The radius of the multi-Skyrmion state, to first order in
the mass term, can also be rewritten as

r0 ’ r0;m�0

�
1� �0

3


2�2b

�
’ r0;m�0

�
1�

3�
4
�0B

�
: (61)

Since �0 decreases with increasing p, the radius of the
multi-Skyrmion increases, in good agreement with the
numerical results of the previous section. From (59) and
(61) we have also that

rB�p2� � rB�p1�

rB�p1�
’ �3

MB�p2� �MB�p1�

MB�p1�
(62)

which is verified to a good accuracy for B larger than
10.
To summarize, in the case of even p, i.e., p � 2; 4 . . . ,

the multi-Skyrmions have the structure of empty shells; the
mass and B-number densities are concentrated in the enve-
lopes of these shells and the energy per unit B decreases
with increasing B, asymptotically approaching a constant
value.

C. Even p; ‘‘the inclined step approximation’’

A natural question then arises: to what extent the struc-
ture of multi-Skyrmions and their properties depend on the
parametrization we have used. Of course, we have to
satisfy the boundary conditions on the profile function:
f�0� � � and f�1� � 0 and the function should minimize
the value of the mass (27). However, the profile f could
have been decreasing according to a law which is different
from (30), thus giving us different mass and B-number
distributions. But it is just the property of the Lagrangian
(27) that produces the above-mentioned bubble structure as
this structure leads to a low value of the mass. Another,
perhaps the simplest, example of a description that we can
make is provided by the ‘‘toy‘‘ model of ‘‘the inclined
step’’ type [3]. Such an approximation is cruder than ‘‘the
power step’’ considered previously. However, it has the
advantage that the calculations can be made for arbitrary p.
014006
Hence, we shall mention it here and compare its results
with what we have obtained before.

Let W be the width of the step, and r0 —the radius of the
multi-Skyrmion state, defined by the value of r at which the
profile f � �=2. Then we can approximate the profile
function by f � �=2� �r� ro��=W for ro �W=2 �
r � ro �W=2. This approximation describes the usual
domain wall energy (see, e.g., [22]) to within an accuracy
of 
9:5%.

Next, we write the energy in terms of W; r0 (recall that
W 
 r0=b in terms of the previous parametrization) and
minimize it with respect to both these parameters thus
finding the approximate value of the energy. The case of
p � 1 was considered previously [3], and since the case of
other odd p is similar, we restrict our attention here to the
case of even p’s.

Thus for an arbitrary even p we have

1

p2

Z r0�W=2

r0�W=2
�1� cos�pf��r2dr �

r2
0

p2 W �
W3

12p2 �
2W3

p4�2 :

(63)

The volume term
r3
0 is absent, and since W � r0 at large

B, we retain the term 
r2
0W on the right-hand side of (63)

and omit other terms. Then, for the classical mass of the
multi-Skyrmion, we have (the second and fourth order
terms were presented in [3])

M�B;r0;W�’
1

3�

�
�2

W
�r2

0�B��W
�
B�

3I

8r2
0

�
�m2 2r2

0W

p2

�
:

(64)

The minimization with respect of r0 is straightforward and
it gives us

M�B;W� ’
1

3�

� ������
3I
p �

m2W2

p2 �
�2

2

�
1=2
� B

�
�2

W
�W

��
(65)

while �rmin
0 �

2 � p
������
3I
p

=�4m
�����������������������������������������
1� p2�2=�2m2W2�

p
�.

We can now consider the two opposite cases. In the case
of a large mass, when 2m2W2 � p2�2, we can expand
�m2W2=p2 � �2=2�1=2 ’ mW=p� �2p=�4mW� and ob-
tain

M�B;W� ’
1

3�

�
W�B�

������
3I
p

m=p� �
�2

W

�
B�

p
������
3I
p

4m

��
:

(66)

This gives us

M�B� ’
2B
3

�
1�

���
3
p
�B
m
p

�
1=2
�
1�

���
3
p
p�B

4m

�
1=2

(67)

for Wmin � ���1�
���
3
p
�Bp=�4m��=�1�m

���
3
p
�B=�2p���

1=2

where �B �
������������
I=B2

p
. At large m the simple formula (67)

provides an asymptotic (at large B) value of the static
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energy per unit B which, as is easily seen, is in a good
agreement with our numerical results, i.e., for m ’ 4:13 it
givesM=B ’ 1:666 for p � 2 andM=B ’ 1:408 for p � 4
which agree with the numbers in Table V to within �3–4�%.

On the other hand, the large mass limit cannot be as-
sumed when p is large and so we can consider only the
small mass limit: 2m2W2 � p2�2. In this case we can
consider the m2 dependent term in (65) as a perturbation,
as it was done in [3] and in the section above. NowWmin �
� and

M�B� ’
1

3

�
2B�

�����������
3I=2

p
�
m2

p2

�����������
3I=2

p �
: (68)

The radius r0 is now given by [3]

r2
0 ’ �3I=8�1=2 (69)

and so, r0 

����
B
p

, and the corrections to r0 can be easily
found, following the steps similar to those of [3]. The
difference of masses of the p � 2 and p � 4 cases is
reproduced well; however, this approximation is too crude
at higher values of p.

To conclude, we see that the results obtained within ‘‘the
inclined step’’ approximation reproduce well the results of
the preceding subsection for even p and describe well the
transition to higher values of p where the small mass limit
can be applied. Further refinements and improvements of
this analytical discussion are possible, e.g. subasymptotics
of the B-number dependence can be calculated, but we
shall not do this here since our results are already in a good
agreement with the numerical data of Sec. V, and as the
asymptotic behavior of the solitons mass also is well
understood, (43), (44), and (56), etc.
VII. CONCLUSIONS

We have investigated different possible forms of the
mass term in the SU�2� Skyrme model, concentrating our
attention on a class of terms involving a parameter p. We
have found that the case of even p, but p � 0, in the
parametrization of the mass term, 
�1� cos�pf��=p2 is
of special interest. In this case the contribution to the static
mass proportional to the volume of multi-Skyrmion is
absent, and the multi-Skyrmion states, at any value of the
chiral meson mass m in the Lagrangian, are the spherical
bubbles empty inside, their energy and baryon number
being concentrated on the surface of the bubble. The
energy per B-number decreases with increasing B and
approaches a constant value, which is proportional to

����
m
p

when m is large. Thus as B increases the shell configura-
tions become more bound.

For odd values of p and p � 0, there is a volumelike
contribution to the static mass of multi-Skyrmions, within
014006
the rational map approximation, which grows faster than B.
Thus it is responsible for the asymptotic behavior of the
multi-Skyrmion mass 
B9=8

����
m
p

and makes the multi-
Skyrmions unstable with respect to the decay into
Skyrmions of smaller values of B. These unbound configu-
rations have recently been observed by Battye and Sutcliffe
[4], for p � 1, for relatively low values of B even for the
pion mass. We have also observed them for the other odd
values of p: p � 3 and p � 5. When the mass m is small,
the configurations decay is into a B � 17 or B � 7 shell
only for very large values of B. As the mass increases, the
decay becomes possible for smaller values of B. When p is
even but non-null, the configuration cannot decay into
smaller shells. Thus if we want our states to be bound
states we should consider p even, or a combination of
terms with p even.

Note that the fact that some rational map configurations
do not form classically bound states suggests that the states
of minimal energy for those values of p and B can be of a
different form. They might correspond to embedded shells,
or not have any shell structure at all. This needs to be
investigated further but this can be done only by solving
the full equations of the model.

The configurations we obtained for p > 1 have lower
energy than those considered within the standard mass
term and, for this reason, they have a good chance to find
realization in nature, not only in elementary particle and
nuclear physics, but also in astrophysics and cosmology.
Of course, what really happens for physical nuclei is un-
clear as our results are classical; i.e., to compare them with
physical nuclei we would have had to compute quantum
corrections, and this has not yet been done for nonzero
modes.

Investigations of multi-Skyrmions could be extended
also to variants of the model where the higher derivative
terms (sixth order, eighth order, etc.) are included into the
effective Lagrangian. The studies performed in [23] for the
case of the sixth order term and recently in [24] for some
generalizations of the Skyrme model including an eighth
order term in the chiral derivatives, have shown that topo-
logical structures of minimal energy configurations are the
same for these model extensions as in the original variant
of the model, for values of baryon numbers not too large.
Therefore, most probably, the observations of bound large
B states made in the present paper for certain modifications
of the mass term will be confirmed in such generalizations
of the model, although this requires detailed studies.
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