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Abstract

We explore the description of bulk causal structure in a dual field theory. We

observe that in the spacetime dual to a spacelike non-commutative field theory, the

causal structure in the boundary directions is modified asymptotically. We propose

that this modification is described in the dual theory by a modification of the micro-

causal light cone. Previous studies of this micro-causal light cone for spacelike non-

commutativite field theories agree with the expectations from the bulk spacetime. We

describe the spacetime dual to field theories with lightlike non-commutativity, and

show that they generically have a drastic modification of the light cone in the bulk:

the spacetime is non-distinguishing. This means that the spacetime while being devoid

of closed timelike or null curves, has causal curves that are “almost closed”. We go on

to show that the micro-causal light cone in the field theory agrees with this prediction

from the bulk.
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1. Introduction

The advent of the AdS/CFT correspondence [1] has revolutionised our understanding of

quantum gravity, and has led to important insights into both gravity and strongly coupled

gauge dynamics. However, a considerable number of important conceptual questions remain

open, especially those pertaining to a detailed understanding of gravitational dynamics. In

particular, we still lack full understanding of how field theory on a fixed background can be

approximated by a local theory with dynamical metric in the bulk.

One major issue is that the bulk spacetime has some dynamically determined causal

structure, whereas the dual field theory lives in flat space, with the usual fixed light cone.

The description of the bulk causal structure from the dual point of view has been the sub-

ject of a number of investigations in the AdS/CFT correspondence. Bulk causality in global

AdS spacetime is consistent with boundary causality [2]; for example, propagation through

the bulk is never faster than propagation along the boundary (this was extended to asymp-

totically AdS spacetimes satisfying the weak energy condition in [3]). When we restrict to

Poincaré-invariant states, the light cone in the boundary directions will automatically agree

in the bulk and boundary, and the focus is on understanding the causal structure in the

bulk radial direction. In [4], Kabat and Lifschytz proposed a scale/radius description, where

causality in the radial direction is enforced by a speed limit on varying scale size in the field

theory. If we violate Poincaré invariance, for example by considering a black hole space-

time in the bulk (corresponding to finite temperature in the field theory), the bulk causal

structure will not in general agree with the field theory one even in the boundary directions.

The extension of Kabat & Lifschytz’s analysis to such cases was considered in [5]. However,

for asymptotically AdS spacetimes, the causal structure changes only in the interior of the

spacetime, which makes it difficult to pose sharp questions about the interpretation of these

changes in the field theory.

In this paper, we will consider extreme examples of changes in the bulk causal structure:

spacetimes dual to non-commutative field theories. Since the non-commutativity changes

the structure of the field theory even in the ultraviolet, the bulk spacetime is no longer

asymptotically AdS. The point of interest to us is that the causal structure of the bulk

spacetime is drastically modified: in the limit as we approach the boundary, the light cone

in the boundary directions ceases to depend on the directions in which non-commutativity is

turned on. Thus, propagation through the bulk can take us outside the flat space light cone

in these directions. We want to understand how this is described from the field theory point

of view. One would expect that the non-locality of the non-commutative field theory plays

a crucial role, and we will argue that this is indeed the case. In [6–8], it was argued that the

non-locality leads to modifications of the micro-causal light cone: in particular, it does not

agree with the naive causal structure of the background flat space the field theory is defined

in. We will show in a simple toy example, scalar non-commutative field theory, that these

modifications agree with the light cone in the boundary directions of the bulk spacetime.
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Extending this result to non-commutative gauge theories is somewhat tricky owing to issues

related to absence of local gauge invariant observables. Nevertheless, we will argue based on

the known properties of correlation functions of gauge invariant operators, that we indeed

expect to see a modified causal structure in the field theory.

We study the modifications of the causal structure for both the spacelike non-commutativity,

previously studied in [7, 8], and for lightlike non-commutativity. The lightlike case is espe-

cially interesting because the corresponding spacetime geometry has a very radical modi-

fication of its causal structure. The spacetime becomes non-distinguishing, meaning that

distinct points of the spacetime have the same causal future and past. Such a spacetime

‘almost has’ closed timelike curves (CTCs); it is in the borderline area between being clearly

causally well-behaved and clearly pathological. Since the discovery of supersymmetric space-

times with CTCs [9], there has been a lot of discussion of whether spacetimes with CTCs

are admissible backgrounds in string theory. Most of the discussion has centered on some

string version of chronology protection; for example [10] related chronology violation in

AdS/CFT to unitarity loss, while [11] argue for a holographic chronology protection mech-

anism. In light of the latter proposal that holography could ‘cut off’ the region of CTCs,

it is remarkable to observe that lightlike non-commutativity provides an example where a

non-distinguishing spacetime has a well-behaved holographic dual description. We will sug-

gest that the non-distinguishing character of this spacetime is reflected in the micro-causal

structure of the lightlike non-commutative field theory. Understanding this case may also

be helpful for understanding the dual description of plane wave spacetimes, as they are also

on the borderline (although they are distinguishing, they are not globally hyperbolic, and

do not have Cauchy surfaces). Non-distinguishing examples of pp-waves have also recently

been constructed [12–14].

In the next section, we will review the construction of the dual spacetime for a spacelike

non-commutative deformation of N = 4 SYM [15, 16], and discuss the features of the bulk

light cone. In Section 3, we consider the micro-causality in spacelike non-commutative field

theory. We review the argument of [7,8] that the micro-causality condition for spacelike non-

commutative field theories is to be imposed inside a ‘light wedge’. In [7,17] it was argued that

for a non-commutative field theory on R3,1 with θ23 6= 0, the breaking of Lorentz symmetry

by non-commutativity would enlarge the region where the commutator of fields is non-

vanishing from the usual light cone to a light wedge respecting the unbroken SO(1, 1)×SO(2)

symmetry. As discussed in [8], the non-local character of the field theory plays an essential

role in this enlargement. We show that this light wedge agrees with the bulk results and

suggest a framework for exploring these issues in non-commutative gauge theories.

We then turn to the consideration of lightlike non-commutativity. In Section 4 we con-

struct the bulk spacetime by applying the “Null Melvin Twist”, a solution-generating tech-

nique discussed in [18, 19]. We get our solution by applying this twist to the extremal

D3-brane, and then taking a decoupling limit. We demonstrate that the spacetime is non-
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distinguishing using the arguments of [12, 13], and briefly sketched in the appendix. We

then show in Section 5 that this spacetime is the holographic dual description of a theory

with lightlike non-commutativity. (This solution and its dual description were previously

obtained in [20].) It was shown in [21] that theories with lightlike non-commutativity are

well-defined quantum field theories, albeit with non-local interactions. We thus have an

example where a non-distinguishing spacetime has a non-perturbative quantum descrip-

tion. We go on to show that any spacetime dual to a generic theory with lightlike non-

commutativity will be non-distinguishing. Extending our arguments from the spacelike case,

we are able to demonstrate that the micro-causal structure in a simple scalar field theory

with lightlike non-commutativity reproduces the predicted causal structure inferred from

these non-distinguishing spacetimes. Commutators of local operators can be shown to van-

ish only at equal light cone time, respecting the unbroken Galilean subgroup of the Lorentz

group (in the presence of lightlike non-commutativity). We further argue that subtleties

relating to gauge invariance will not change the result significantly in the case of lightlike

non-commutative gauge theories and conclude with a brief discussion. Some details of the

field theory calculations and more general solutions obtained by the null Melvin twist are

described in the appendices. A short summary of the essential physical ideas can be found

in [22].

2. Spacelike non-commutativity: bulk light cone

We begin by discussing the situation in the case of spacelike non-commutative field the-

ories. In this section, we explore the causal properties of the dual spacetime, and note that

it has a deformed light cone even in the asymptotic region. We consider geodesics which

remain at large radius to study the features of this light cone.

The string frame metric for the spacetime dual to spacelike non-commutative N = 4

SYM is [15, 16]

ds2 =
r2

R2

(

−dt2 + dx2
1

)

+
R2 r2

R4 + γ2 r4

(

dx2
2 + dx2

3

)

+
R2

r2
dr2 +R2 dΩ2

5 . (2.1)

There are non-trivial 3-form and 5-form fluxes in the above background and a varying dilaton,

but these are not going to be relevant to our present discussion. R as usual denotes the AdS

radius and γ is related to the non-commutative parameter in the field theory as θ23 = γ.

This dual geometry is obtained by thinking of the spacelike non-commutative Yang-Mills

theory as arising as the low-energy limit of the theory on D3-branes in a constant background

B-field. The supergravity configuration sourced by these D3-branes can be obtained by

introducing the B-field through a twisting operation. To twist, start from the D3-branes in

empty space, T-dualize to D2-branes, and then consider instead the compactification of the

D2-brane solution on a tilted torus. T-dualizing along this tilted direction will give D3-branes
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in a B-field background. Applying this twisting operation to the D3-brane metric, and then

taking the decoupling limit to focus on the near-horizon geometry, gives the spacetime (2.1).

While the geometry (2.1) is close to AdS5 ×S5 for small r, it has vastly different asymp-

totics. In particular, gxixi
→ 0 as r → ∞ for i = 2, 3, which will give rise to the deformation

of the light cone we are interested in. This makes it hard to define a boundary for the space-

time, but we will show later that the deformation of the light cone is nonetheless reflected

in field theory micro-causality behaviour.

Suppose we look at the metric induced on a fixed r = r0 surface with r0 ≫ R, i.e., we

think of the bulk defining an UV regulated version of the non-commutative field theory. In

this case, the induced metric on the surface (ignoring the S5 part) reads:

ds2 ≈ r2
0

R2

(

−dt2 + dx2
1 +

R4

γ2 r4
0

(

dx2
2 + dx2

3

)

)

. (2.2)

At any fixed value of r0, we can rescale the coordinates (t, xi) to convert (2.2) into a flat

metric on R3,1. However, the scaling is non-homogeneous, and in particular, as we remove the

cutoff we will have to scale the shrinking directions (x2, x3) by a diverging amount, whereas

we would expect the field theory background to be defined by a homogeneous rescaling

of coordinates, as in the usual commutative case. This would lead us to conclude that

the relevant light cone for the field theory is independent of the non-commuting directions

{x2, x3}. Alternately, as is apparent from the full metric (2.1), the metric factor in front of

the non-commuting directions falls off faster than that in front of the S5 part, and therefore

should not contribute to the light cone asymptotically.

We would like to argue that this change in the bulk light cone is reflected in observable

quantities in the dual field theory. One approach would be to study the two-point function

in the boundary, which should be determined, by the usual logic, by the bulk-to-bulk propa-

gator for the appropriate supergravity field in the background (2.1) in the limit r → ∞. By

examining the behaviour of the bulk Greens functions we should be able to extract the de-

tailed properties of the bulk light cone, and in particular its asymptotic behaviour. However,

the Klein-Gordon equation is rather formidable (it is related to the Mathieu equation [16]),

and so explicit determination of the propagator is difficult. Nevertheless, we can approximate

it by studying the geodesics in the bulk spacetime. We will now show that the bulk light

cone indeed degenerates into a light wedge asymptotically in the geodesic approximation.

Ignoring motion on the S5 part of the geometry and setting R = 1 for simplicity, we have

the equation for timelike geodesics

−1 = r2
(

−ṫ2 + ẋ2
1

)

+
r2

1 + γ2 r4

(

ẋ2
2 + ẋ2

3

)

+
ṙ2

r2
, (2.3)

where . ≡ d
dτ

, with τ the affine parameter along the geodesics. The Killing symmetries
(

∂
∂t

)a

and
(

∂
∂xi

)a
determine the conserved energy and momenta (pt, pi), respectively. The geodesic
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motion reduces to a classical problem for the zero energy trajectories of a particle in an

effective potential Veff(r):

ṙ2 + Veff(r) = 0,

ṫ =
pt

r2
, ẋ1 =

p1

r2
, ẋi =

1 + γ2 r4

r2
pi,

Veff(r) = r2+
[

−p2
t + p2

1 +
(

1 + γ2 r4
) (

p2
2 + p2

3

)]

.

(2.4)

Let us consider geodesics that travel an infinitesimal distance in the radial direction.

Choose r = r0 (1 − ε) with ε≪ 1 such that Veff(r0) = 0. Then we have

r2
0 ε̇

2 ≈ 2 r2
0 ε
(

1 + 2 γ2 r2
0

(

p2
2 + p2

3

))

≡ 2 ε α. (2.5)

This allows us to approximately integrate the geodesic equations to obtain, for instance,

∆t =
∫

dτ
pt

r2
≈ pt

r2
0

∫

dτ =
pt

r0
√
α

√
2 ε (2.6)

and

∆x2 ≈
p2

r0
√
α

(

1 + γ2 r4
0

) √
2 ε. (2.7)

One can clearly make the distance travelled by the geodesics in individual directions large, by

choosing appropriate values for the momenta. However, the motion is confined to the region

in the immediate vicinity of the classical bulk light cone, as the proper interval remains

small:

−∆t2 + ∆x2
1 +

∆x2
2 + ∆x2

3

1 + γ2 r4
0

≈ 2 ε

α r2
0

(−p2
t + p2

1 + (1 + γ2 r4
0)(p

2
2 + p2

3))

≈ −2 ε

α
,

(2.8)

where we made use of the fact that Veff(r0) = 0.

Thus, bulk geodesics can relate points inside the light cone given by

−∆t2 + ∆x2
1 +

∆x2
2 + ∆x2

3

1 + γ2 r4
0

= 0, (2.9)

and as we remove the cutoff by taking r0 → ∞, the light cone in the boundary directions

will approach a ‘light wedge’:

−∆t2 + ∆x2
1 = 0 . (2.10)

This is the advertised modification of the bulk causal structure. Although we have restricted

our attention to bulk geodesics, we will have essentially obtained the same answer by looking

at say the free scalar propagator for (2.1). Having obtained a prediction from the bulk

perspective, we now turn to looking for signs of this change in the causal structure in the

field theory.
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3. Micro-causality in non-commutative field theories

The field theory dual to the geometry (2.1) is N = 4 SYM theory in flat four-dimensional

spacetime, with a constant non-commutativity parameter θ23 = γ. We want to show that

the above ‘light wedge’ structure is also naturally reflected in this field theory. As we are

dealing with a Lorentz non-invariant non-local field theory, it is not a priori obvious what

the causal relations in the field theory are. We will see that if we define the light cone of

the field theory to be the micro-causal light cone, that is, the boundary of the region where

the commutator of elementary fields is non-vanishing, then it will agree with the light wedge

predicted from the bulk.

3.1. Non-commutative scalar field dynamics: a toy model

The micro-causal light cone for spacelike non-commutative field theories was studied

in [7], and further clarified recently in [8]. In [7], a heuristic argument was given for a

modification of the micro-causality condition. The non-commutativity in a spatial R2 ⊂ R3,1,

θ23 6= 0, breaks Lorentz invariance in the field theory from SO(3, 1) → SO(1, 1) × SO(2).

As a result it was suggested that one should not demand causal behaviour with respect to

the full SO(3, 1) invariance, but rather only with respect to the smaller symmetry SO(1, 1).

This corresponds to the invariance of the light wedge obtained above (although the reduced

symmetry is not sufficient to fix the form of the light cone).

That is, the authors of [7] propose that instead of requiring that the fields (labeled

collectively as Φ(x)) commute (or anti-commute for fermions) across spacelike separated

points,

〈 [Φ(x),Φ(y)]± 〉 = 0 for (x− y)2 > 0 . (3.1)

the appropriate micro-causality condition for non-commutative field theories would be to

only impose

〈 [Φ(x),Φ(y)]± 〉 = 0 for (x− y)2
c > 0 . (3.2)

where (x− y)2
c is the separation in the commuting directions,

(x− y)2
c = −(x0 − y0)2 +

∑

i∈C

(xi − yi)2 , where C = {i : θik = 0 ∀ k} . (3.3)

For example with θ23 6= 0 we have (x− y)2
c = −(x0 − y0)2 + (x1 − y1)2.

This argument has two weaknesses: since it appeals to the violation of Lorentz invariance,

it would appear to apply whenever we have Lorentz violating interactions, and not only in

non-commutative field theories. Also, the SO(1, 1) symmetry does not really determine a

light cone; while the light wedge used in (3.2) respects SO(1, 1), so does the original light

cone of (3.1). In [8], these weaknesses were addressed by performing an explicit perturbative
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calculation of the commutator for non-commutative field theory, showing that the micro-

causality condition (3.2) is correct for spacelike non-commutative field theories, whereas

(3.1) remains correct for theories with local Lorentz violating interactions. This shows that

the non-local character of the non-commutative interactions is important.

We will give a brief derivation of this result [8]. The authors consider spacelike non-

commutative ϕ3 theory in R5,1 for simplicity,

S =
∫

d6x
(

−1

2
∂µϕ ⋆ ∂

µϕ− 1

2
m2 ϕ ⋆ ϕ+

1

3!
g ϕ ⋆ ϕ ⋆ ϕ

)

. (3.4)

The strategy is to calculate the expectation value of the Heisenberg picture field operator

between two states | α 〉 and | β 〉, obtained by time-evolution of the perturbative vacuum

|0 〉,
M = 〈α | [ϕH(x1), ϕH(x2)] |β 〉 . (3.5)

Given a perturbation expansion of

M =
∑

n

gn M(n) , (3.6)

one can study M(n)(x) to determine the domains where it is guaranteed to vanish. We have

used translational invariance to write x = x1 − x2. This will provide us with the definition

of the micro-causal light cone in field theory.

The calculation of M(n)(x) proceeds in the standard fashion and some of the details

can be found in Appendix A. The main point is that we can write M(n)(x) in an integral

representation as

M(n)(x) = Nn

[

∫

∏

i

dℓiGn(ℓi, x) −
∫

∏

i

dℓiGn(ℓi,−x)
]

, (3.7)

where the integrand Gn(ℓi, x) generically takes the form

Gn(ℓi, x) = exp

(

i
x2

2ux

∑

i

ℓi − i
m2ux

2

∑

i

1

ℓi

)

Hn(ℓi, x) . (3.8)

The integration variables ℓi are the independent light cone momenta after imposition of

momentum conservation and Nn are constants. The details of the interaction are contained

in the kernel Hn(ℓi, x). In writing (3.7), we have rewritten various amplitudes in terms of

light cone variables for ease of computation: x2 = −2 ux vx + ~x2.

The behaviour of the integrand Gn(ℓi, x) in the complex space parameterised by ℓi is

crucial in determining the convergence properties of the integral. For instance, at tree-level

in perturbation theory we have

G0(ℓ, x) =
1

4 π ℓ

(

i ℓ

2 π x

)2

exp

(

i ℓ
x2

2 ux

− i
m2 ux

2 ℓ

)

(3.9)
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Given this, the usual contour deformation arguments can be used to show that

M(0)(x) = 0 ⇐⇒ x2 = (x1 − x2)
2 > 0 , (3.10)

which is the expected result for the free field theory (recall that the non-commutative de-

formation affects quadratic terms only by the presence of irrelevant phase factors). To be

precise, assuming ux > 0 without loss of generality, for x2 > 0 we can rotate the contour of

integration for the ℓ integral as ℓ→ i ℓ in integrating G0(ℓ, x) (and ℓ→ −i ℓ for G0(ℓ,−x)).
The two integrals then are convergent and moreover the finite answers cancel in the differ-

ence; hence the commutator vanishes. For timelike separation x2 < 0, there is no deformation

of the contour that gives a convergent integral; hence generically the difference of the two

integrals is non-vanishing and we are led to (3.10).

For non-commutative field theories, we intuitively expect to see the first sign of interesting

effects at one-loop, i.e., in M(2), for we have qualitatively new feature in perturbation theory

in the form of non-planar Feynman graphs. We should expect that the phase factors involved

in the non-commutative ϕ3 interaction modify the properties of G2(ℓi, x) and thereby deform

the nature of the light cone. Detailed calculations [8] show that this expectation is indeed

borne out. We in fact find that (see Appendix A for details)

G2(ℓ1, ℓ2, x) ∼ exp

(

i (ℓ1 + ℓ2)
x2

c

2 ux

)

, (3.11)

implying that

M(2)(x) = 0 ⇐⇒ x2
c = (x1 − x2)

2
c > 0 , (3.12)

with x2
c is as defined in (3.3). This follows by repeating the argument for the convergence of

the integrals with the modified integrand (3.11). So we see that the micro-causality condition

in spacelike non-commutative field theories is modified at one-loop. In particular, note that

the presence of the non-commutative interactions demand that the expectation value of the

field commutator vanish only outside a light-wedge as surmised earlier1.

This micro-causal light wedge agrees with the prediction of the spacetime in the previous

section. This agreement should be considered as qualitative evidence that the micro-causal

structure in the field theory is indeed related to the light cone determined by the bulk

spacetime.

1As an interesting aside, it should be possible to show the modification of the micro-causality condition

using the 1PI effective action derived for non-commutative φ3 theory in [23]. The inverse propagator (in

momentum space) for this theory is p2 + m2 + g2 h/p ◦ p, with p ◦ q = pµ (θ2)µν qν . This propagator has

extra poles in the complex momentum plane at p ◦ p = −h g2/(p2
c

+ m2), where pc is the restriction of the

momentum to the commutative sub-space. The presence of these poles induces a delta function for the

momentum along the non-commutative directions. This ultra localization in momentum space is the origin

of the light-wedge (3.3).
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3.2. Micro-causality in non-commutative gauge theories

We have shown that the micro-causality in a scalar non-commutative field theory agrees

with the bulk light cone. However, this scalar field theory is only a toy model, and there

are important differences which make it unclear if this behaviour will generalize to the non-

commutative gauge theory which is actually dual to the bulk spacetime (2.1). We will now

review the salient differences, and argue that we nevertheless still expect to see a reflection

of the bulk light cone in the micro-causality of the non-commutative gauge theory.

The first difference has to do with the structure of UV divergences in gauge theories. As

remarked in the footnote above, the modification of the micro-causality condition is related

to the IR divergences seen in perturbation theory for non-commutative dynamics. Although

explicit calculation confirms the presence of such IR poles in a general non-commutative

gauge theory [24], they will be absent for the N = 4 non-commutative SYM theory we’re

interested in because of the supersymmetry. Thus, the modification of the micro-causality

condition for gauge theories can’t arise in the same way as it did in the scalar theory studied

above.

There is however another important difference, which we will argue can lead to a similar

modification of the micro-causality condition by a more subtle route. In non-commutative

gauge theories there are no gauge invariant local operators (essentially because translation in

the non-commutative directions is equivalent to a gauge transformation), so it is unclear why

we should even consider the micro-causal structure based on local fields. An over-complete

set of non-local gauge invariant observables was constructed in [25–27]. The idea was to string

a local operator such as Tr(Fµν F
µν) (which is of course gauge invariant in the commutative

limit) with an open Wilson line and take its Fourier transform. This defines a local gauge

invariant operator in momentum space O(k). They calculated correlation functions of the

operators O(k) and showed that the correlation functions grow exponentially in momenta

〈O(k)O(−k)〉 ∼ exp





√

g2
Y M N

4 π
|k θ| |k|



 . (3.13)

This exponential growth of correlation functions may also be seen from the supergravity

dual [26]. In writing the above we have dropped some regularization dependent terms which

will be unimportant for properly renormalised correlators. We want to suggest that the

exponential growth of the correlation functions signals a modification of the micro-causality

conditions for these operators.

The clue comes from studies of a similar behaviour in another non-local quantum field

theory discovered in the past decade, little string theory, which is a Poincaré invariant theory

in six dimensions with a mass scale l−1
s , living on the world-volume of NS5-branes. These

theories admit gauge invariant local operators in momentum space and their correlation

functions also grow exponentially in momenta [28]. This fact was used in [29] to argue that

little string theories are quasi-local theories, and that a modified notion of micro-causality
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could be defined for such theories.

In local quantum field theories, correlation functions in position space, the Wightman

functions, are to be smeared with suitable test functions to generate observables. We would

therefore normally define a micro-causality condition by smearing the Wightman function

with test functions of spacelike separated support. However, to do so, the Wightman func-

tions need to be tempered distributions, so that we can use the usual Schwartz space of test

functions. Physically this amounts to the correlation functions in momentum space growing

at most polynomially.

In the non-local theory, where momentum space correlators grow exponentially, the

Wightman functions are rather singular distributions and the allowed space of test func-

tions is restricted. In this case test functions are required to be real analytic in position

space, which precludes local observables (cf. [29] for references and rigorous arguments).

This prevents us from defining a micro-causality condition in the usual way, as we cannot

smear with test functions of spacelike separated support.

In [29], it was proposed that we can still study micro-causality in these cases, by consid-

ering the analytic structure of the Wightman functions at points where they make sense as

functions. Usually micro-causality implies permutation symmetry of Wightman functions:

for example, W (x1, x2) = W (x2, x1) for spacelike separated points x1 and x2. However, for

the more singular Wightman functions in a non-local theory, the region of analytic behaviour

is restricted. In the case of little string theories, [29] observed that the Wightman function

is analytic only for (x1 − x2)
2 > l2s , and proposed that the micro-causality condition be

replaced by requiring permutation symmetry of Wightman functions in this restricted re-

gion. The usual commutativity condition is modified by the presence of poles in the region

0 < (x1 − x2)
2 < l2s .

While a detailed analysis of the analyticity properties of the non-commutative gauge

theory Wightman functions is beyond the scope of the current paper, we believe that it

should be possible to construct an analogous argument to determine the micro-causality

properties associated with the gauge-invariant operators O(k), relating the restriction to the

light-wedge (3.12) seen from the spacetime point of view to the fact that the momentum space

correlator (3.13) is growing only along the non-commutative directions. Recent discussions

of microcausality conditions in non-commutative theories can be found in [30–32].

It is also useful to note that agreement is expected: the micro-causality conditions for an

interacting theory on the boundary ought to be captured by a free-field theory in the bulk in

the large N limit (where the supergravity approximation is expected to valid), because the

correct micro-causality conditions in the field theory stem from the quantum 1PI propagator.

This might seem a bit puzzling in the context of the previous discussion of non-commutative

scalar field theories, as we see (in appendix A) that the effect of non-commutativity arose

from non-planar diagrams in the field theory. However, these non-planar contributions are

associated with the non-commutative interactions, and are not suppressed by large N power
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counting; in their absence, the spacetime dual for non-commutative N = 4 SYM would have

been just AdS5 × S5, rather than the spacetime (2.1) with its complicated asymptotics.

4. Generating spacetimes by null Melvin twist

We next want to extend the discussion to the spacetimes dual to lightlike non-commutative

field theories. We will begin by presenting the derivation of these solutions, using a particu-

lar solution generating technique in supergravity, called the null Melvin twist [18, 19]. This

is slightly more complicated than the twist used to obtain the geometry in the spacelike

case, and will add a B-field oriented along a lightlike direction. While some of the solutions

we are interested in have been obtained previously in the literature [20], re-deriving them

in this way will simplify the discussion of generalisations. A nice summary of the solution

generating scheme we use and some classifications of solutions can be found in [33].

4.1. The null Melvin twist

The solution generating scheme is:

1. Start with a solution of IIA/IIB supergravity, with a non-compact translationally invari-

ant direction; the corresponding Killing vector will be taken to be
(

∂
∂y

)a
.

2. Boost the geometry in the y direction by an amount γ. Note that this is just a coordinate

change, which effectively adds momentum charge to the solution we start with.

3. Now perform a T-duality along y, to get to a solution of IIB/IIA supergravity.

The above steps will typically add a fundamental string charge to the solution we start

with. However, if the Killing field
(

∂
∂y

)a
can be paired with a timelike Killing field

(

∂
∂t

)a
(so

that our starting solution has SO(1, 1) isometry), then no charge is added. Instead Step 2

is trivial as the geometry is boost invariant. Step 3 is then just a diagonal T-duality.

4. The Twist: Assume that we have in addition to the Killing field
(

∂
∂y

)a
, some other

rotational or translational isometries. We would like to perform a non-diagonal T-duality by

combining these isometries with that generated by
(

∂
∂y

)a
. Schematically, denoting the one-

forms dual to the additional isometries by σ, we perform a twist (a coordinate transformation)

by replacing

σ → σ + 2αdy . (4.1)

Here α parameterises the amount of twisting.

5. We now T-dualize the geometry back to IIA/IIB along y. The twist followed by the

T-duality is effectively a non-diagonal T-duality.

6. Boost the solution by −γ along y. The purpose of this boost is in part to undo the

original boost performed.

11



7. Now, we perform a double scaling limit, wherein the boost γ is scaled to infinity and the

twist α to zero keeping

β =
1

2
α eγ = fixed . (4.2)

The null Melvin twist transformations in steps 4 through 7 can be thought of as converting

the string solution into a fluxbrane, followed by a boost and scaling to end up with a null

isometry.

4.2. Null Melvin twist of the D3-brane solution

Let us apply this transformation to the D3-brane geometry. The extremal D3-brane

geometry is a solution of Type IIB supergravity with metric:

ds2 =
1

√

H(r)
(−dt2 + dy2 + dx2

1 + dx2
2) +

√

H(r)
(

dr2 + r2 dΩ2
5

)

, (4.3)

with

H(r) = 1 +
R4

r4
. (4.4)

The metric (4.3) is supported by a five-form flux. Since the flux turns out to be insensitive

to the null Melvin twist we will not write it explicitly.

The geometry (4.3) has a SO(1, 1) Lorentz symmetry along the world-volume directions

(t, y), and so we will not have any charge added during the first two steps. The twisted T-

duality implemented in steps 4 and 5 requires us to pick a direction to do the twisting. The

simplest choice turns out to be the translationally invariant directions
(

∂
∂x1

)a
and

(

∂
∂x2

)a
.

Performing the twist as

dx1 → dx1 + α dy , dx2 → dx2 + α dy , (4.5)

we obtain the following geometry:

ds2 = −β2H− 3

2 (dt+ dy)2 +
1√
H

(

−dt2 + dy2 + dx2
1 + dx2

2

)

+
√
H
(

dr2 + r2 dΩ2
5

)

,

B = β
1

H
(dt+ dy) ∧ (dx1 + dx2) .

(4.6)

Apart from the NS-NS 3-form flux written above the metric is in addition supported by a

five-form flux (which is the same as for the original D3-brane solution (4.3)). The sequence

of operations 1 to 7 maps a constant dilaton solution back to a constant dilaton solution for

this particular case. Note that the solution (4.6) is asymptotically flat.

In deriving (4.6) we have used the translational isometries
(

∂
∂xi

)a
to perform the twisted

T-duality. We could just as well have used some angular isometries, such as the rotation

isometry in the (x1, x2) plane, or isometries of the S5. In such cases, we would generate
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asymptotically plane wave, rather than asymptotically flat, spacetime; however, since this

asymptotic region will be lost once we take the decoupling limit, the interesting causal

features of the plane wave (such as 1-dimensional boundary or non-global hyperbolicity)

would not enter our story. These cases are briefly discussed in Appendix C, although the

essential physical point of interest is exemplified adequately by (4.6).

4.3. Near-horizon geometry of null Melvin twisted D3-brane

Our main interest is to identify interesting generalisations of the AdS/CFT correspon-

dence, so we now consider an appropriate decoupling limit of the geometry (4.6), to obtain

a new duality relating the low energy degrees of freedom on the twisted D3-brane to a su-

pergravity geometry. For the D3-brane geometry (4.3), we know that the near horizon limit

corresponding to decoupling the closed string modes from the open string modes on the D3-

brane is obtained by dropping the 1 in the harmonic function H(r) given in (4.4) [34]. For the

solution (4.6), we want to ensure that the effect of the twist survives in the decoupling limit.

Thus the appropriate limit is analogous to the Seiberg-Witten scaling for non-commutative

field theories [35]. This again amounts to dropping the 1 from the harmonic function H(r)

(4.4), now in the new metric (4.6). The resulting geometry is given by

ds2 = −β2 r
6

R6
du2 +

r2

R2

(

−2 du dv + dx2
1 + dx2

2

)

+
R2

r2

(

dr2 + r2 dΩ2
5

)

,

B = β
r4

R4
du ∧ (dx1 + dx2) ,

(4.7)

where we have introduced light cone coordinates u = t + y and v = t − y. In addition to

the NS-NS B-flux there is also a five-form flux, which is identical to that supporting the

AdS5 × S5 solution. The metric only differs from the AdS5 × S5 metric written in Poincaré

coordinates by the term proportional to β2. This solution was previously derived in [20].

They considered the solution to Type IIB supergravity that was known to be dual to N = 4

SYM deformed by spacelike non-commutativity [15,16], and boosted it to derive (4.7). As in

the case of spacelike non-commutativity, it is difficult to define a conformal boundary for this

spacetime. The correspondence to the field theory is derived by thinking of the field theory

as living on the D3-branes that source the full geometry (4.6), and taking the low-energy

limit.

We now show that this solution is non-singular, and non-distinguishing. We show that

it is non-singular by observing that all the curvature invariants for (4.7) are the same as for

AdS5 ×S5, and that the spacetime is geodesically complete. The additional contributions to

the curvature from the term proportional to β2 will involve
(

∂
∂u

)a
, so they will not change

the curvature invariants. Geodesic completeness can be shown either by observing that the
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metric is conformal to a pp-wave,

ds2 = r2

(

−2 du dv − β2 r4 du2 + dx2
1 + dx2

2 +
dr2

r4
+

1

r2
dΩ2

5

)

,

=
1

z2

(

−2 du dv − β2

z4
du2 + dx2

1 + dx2
2 + dz2 + z2 dΩ2

5

) (4.8)

(where we have set R = 1 and in the second line used r = 1/z), and appealing to the

results of [36], or by explicitly studying the geodesics. We will discuss timelike geodesics

in the geometry (4.8) in Section 6. The essential point is that the motion in the radial

direction is confined to a finite range and inertial observers are unable to escape towards

the asymptotic region (cf., (6.3), where it is clear that geodesics cannot access the region

z = 0, or equivalently r = ∞, due to a potential barrier). Thus, though we have diverging

curvatures in the large r region, the spacetime is non-singular.

To show that the spacetime is non-distinguishing, it is easiest to use the representa-

tion (4.8) of the metric as conformal to a pp-wave, and use the results of [12, 13]. Since

causal properties are invariant under conformal transformations, the causal character of our

spacetime is determined by that of the pp-wave spacetime within the parenthesis in (4.8).

In [12,13] it was shown that these pp-wave spacetimes are non-distinguishing. Causal curves

that connect a point P = (u0, v0, x
i
0, z0) in the spacetime to any point Q = (u0 +ε, v1, x

i
1, z1),

with ε > 0 and arbitrary values of (v1, x
i
1, z1) were explicitly constructed. This shows that

the causal future of P is the entire region u ≥ u0, as depicted in Fig 1. In the terminology

of [12], the metric (4.8) written in the r coordinate is conformal to a super-quadratic pp-

wave, as guu grows faster than a quadratic for large r. We give an explicit construction of

the causal curve from P to Q (in the r coordinates) in Appendix B.

5. The holographic dual field theory

As can be seen either from the lightlike nature of the B-field in the spacetime geometry

(4.6) or from the alternative derivation2 of this geometry in [20], the dual field theory descrip-

tion of the geometry (4.8) is a d = 4, N = 4 non-commutative Super Yang-Mills (NCYM)

on R3,1 with a constant lightlike non-commutativity parameter θv i = β for i = 1, 2.

5.1. Well behavedness of observables in the field theory

Such lightlike non-commutativity was first discussed in [21], where it was shown that the-

ories with lightlike non-commutativity behave like field theories with non-local interactions.

2In [20], the solution was obtained by starting from the holographic dual to NCYM with spacelike non-

commutativity and then boosting.
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v

P
Q

R
u

r

Figure 1: Light cone structure in the non-distinguishing spacetime (4.8). From point P we can

reach point R by a usual causal curve. To reach point Q which is spacelike separated in the

Minkowski light cone, we need to use the asymptotic structure of the spacetime. By using curves

that venture out further in r we can arrange for the causal curve to return arbitrarily close to the

starting point. As a result the future of the point P is the part of the spacetime above the constant

u plane shown above.
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This is in contradistinction with the case of timelike non-commutativity, where we have a

string theoretic behaviour due to the non-decoupling of excited open string oscillators. The

crucial difference between the two cases is the following [21]: in the case of timelike non-

commutativity, we start from a D-brane background and turn on electric fields on the brane

world-volume [37]. There is however a critical limit to the electric field (T-dual to there be-

ing a maximum velocity – speed of light), and at the critical point the open strings become

effectively tensionless. The timelike theory is defined by zooming in on this critical region,

and as a result one ends up with a finite effective string tension. In the case of lightlike

non-commutativity, we turn on both electric and magnetic fields, and it is easy to see that

this combination doesn’t lead to a critical electric field. Alternatively, one can think of the

lightlike theory as a boosted version of the spacelike theory, where there is clearly no critical

behaviour. Thus, this dual is a well behaved field theory with non-local interactions. Hence

it is quite surprising that the dual geometry (4.8) exhibits some causal pathology.

To understand better the physics of lightlike non-commutative field theories we can con-

sider observables in these theories, such as the correlation function of local operators O(p).

These can be calculated at strong ’t Hooft coupling using the using the usual bulk-boundary

correspondence. It transpires that massless minimally coupled scalar fields in the bulk ge-

ometry (4.8) satisfy a Mathieu equation which is very similar to that obtained in [16] for the

geometry (2.1). Of course the parameters appearing in the equation have a different depen-

dence on momenta, as should be expected given the different symmetries of the geometries.

This implies that the correlation functions are schematically similar to the spacelike case.

Likewise, one can consider gauge invariant observables built with open Wilson lines as dis-

cussed in [26] and check that these are also well behaved and in fact will be exponential in

the momenta. In summary, there is no reason from a field theory perspective that light-

like non-commutative field theories should be pathological, which makes the bizarre causal

structure of the dual spacetime geometry all the more interesting.

5.2. Genericity of non-distinguishingness for lightlike non-commutative field theories

We have shown above that the supergravity background dual to lightlike non-commutative

N = 4 SYM is a non-distinguishing spacetime. We will now show that any well defined field

theory will produce a non-distinguishing holographic dual when we deform it by adding some

lightlike non-commutativity.

Consider any field theory defined in the usual Wilsonian sense, by its ultraviolet modes.

From the UV/IR correspondence for gauge/gravity duality [38], we know that the field theory

ultra-violet corresponds to the infra-red region of the supergravity dual. For field theories

on R3,1 one can without loss of generality assume that the holographic dual geometry is of

the following warped product form:

ds2 = A(r)2
(

−dt2 + dy2 + dx2
1 + dx2

2

)

+ dy2
6 , (5.1)
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where r is an effective radial coordinate on the transverse space with metric dy2
6. If the

field theory approaches a conformal fixed point in the UV, the large r behaviour will be

asymptotically AdS5 × X5 for some compact Einstein manifold X5. Our argument will

however be general enough to include more exotic field theories which do not arise from nice

conformal fixed points in the UV, such as the Klebanov-Strassler cascade [39].

We would like to turn on lightlike non-commutativity in the field theory. We have seen

above that this is achieved by a Null Melvin Twist on the dual geometry (5.1). The Poincaré

invariance of the field theories on R3,1 implies that there are no fluxes that prevent us from

carrying through the steps involved in the duality chain. A null Melvin twist of (5.1) will

lead to the following geometry:

ds2 = A(r)2
(

−2 du dv − β2A(r)4 du2 + dx2
1 + dx2

2

)

+ dy2
6 . (5.2)

The question is then what the effect of the additional du2 term is on the causal structure;

this depends on the particular form of A(r). For field theories with a conformally invariant

fixed point in the UV, the large r behaviour of A(r) is A(r) ∼ ear, giving the same kind of

asymptotics as in the particular case we studied, and hence implying that for such cases,

the metric (5.2) is non-distinguishing. The same is true for the A(r) appropriate to the

Klebanov-Strassler geometry [39], so non-commutative deformations of this theory also have

non-distinguishing duals, see Appendix C for the explicit metric.

Thus, we see that the UV behaviour of the field theory is responsible for the dual super-

gravity background being causally ill-behaved. It follows that infrared modifications of the

field theory will not remove the causal pathologies, as they do not change the asymptotics of

the dual spacetimes. For example, the thermal version of the non-commutative theory will

be dual to a spacetime with a black hole in it, but this will still be non-distinguishing. For

completeness, we present the metric for the thermal version of the lightlike non-commutative

N = 4 SYM in Appendix C.

6. Causality in lightlike non-commutative theories

We now attempt to understand the origin of the non-distinguishing character of the space-

time (4.8) from the field theory perspective. As with the case of spacelike non-commutativity,

it will be instructive to first understand the behaviour of the bulk light cone in the asymp-

totic region. We will then proceed to look at the micro-causality condition in field theory

and show that the perturbative micro-causal light cone is modified so as to be consistent

with the characteristics of the bulk spacetime. As in section 3, we consider a simple scalar

field theory as a model, but it seems reasonable to expect that this micro-causal structure

will be independent of the details of the particular field theory we consider.
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6.1. Lightlike non-commutativity: bulk light cone

Our derivation of the bulk light cone for the lightlike non-commutative field theories will

proceed in a fashion analogous to the spacelike case discussed in Section 2. We will focus

once again on the properties of the bulk light cone in the asymptotic region of the spacetime,

which for (4.8) will be the region r → ∞ or z → 0.

Let us consider the induced metric on a surface of fixed r = r0, so as to discern the causal

properties in the cut-off lightlike non-commutative field theory. This induced metric is (in

what follows we will ignore the S5 directions)

ds2 ≈ r2
0

(

−2 du dv − β2 r4
0 du

2 + dx2
1 + dx2

2

)

, (6.1)

which of course is the metric on flat R3,1 once we rescale the coordinates appropriately. How-

ever, if we restrict to homogeneous rescaling of the coordinates, the metric (6.1) degenerates

to a one dimensional metric due to the dominance of guu for large r0. We then expect the

bulk light cone to degenerate to a Galilean causal structure, in which any two points are

causally related unless ∆u = 0.

The above argument for the asymptotic bulk light cone can be made precise by consid-

ering the two-point function. For the metric (4.8), the free scalar wave equation is still the

Mathieu equation, making explicit determination of the propagator tricky. We will there-

fore concentrate again on a geodesic approximation to the propagator. Let us begin by

considering timelike geodesics in the geometry (4.8),

−1 =
1

z2

(

−2 u̇ v̇ − β2

z4
u̇2 + ẋ2

1 + ẋ2
2 + ż2

)

, (6.2)

where . ≡ d
dτ

, with τ the affine parameter along the geodesics. The Killing symmetries
(

∂
∂u

)a
,

(

∂
∂v

)a
and

(

∂
∂xi

)a
determine conserved energies and momenta (pu, pv, pi), respectively. The

geodesic motion reduces to a classical problem for the zero energy trajectories of a particle

in an effective potential3 Veff(z):

ż2 + Veff(z) = 0,

u̇ = −pv z
2 , v̇ = −pu z

2 +
β2 pv

z2
, ẋi = pi z

2 ,

Veff(z) = z2+
(

p2
1 + p2

2 − 2 pu pv

)

z4 + p2
v β

2.

(6.3)

Let us consider geodesics that travel an infinitesimal distance in the radial (z) direction.

Choose z = z0 (1 + ε) with ε ≪ 1 such that Veff(z0) = 0. Then we have

z2
0 ε̇

2 ≈ 2 z2
0 ε

(

1 + 2
β2 p2

v

z2
0

)

≡ 2 ε α. (6.4)

3From the form of Veff(z) it is clear that geodesics never reach z = 0 for pv 6= 0, thereby preventing

inertial observers from being subject to large tidal forces resulting from the diverging curvatures in that

region. This is the hitherto alluded to characteristic that demonstrates geodesic completeness of (4.8).
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This allows us to approximately integrate the geodesic equations to obtain,

∆u = pv z
3
0

√
2 ε√
α

, ∆v =

(

pu −
β2 pv

z4
0

)

z3
0

√
2 ε√
α

, ∆xi = pi z
3
0

√
2 ε√
α

, (6.5)

It is obvious from (6.5) that one can make the distance travelled by the geodesics in individual

directions large by choosing appropriate momenta. However, the motion is confined to the

region in the immediate vicinity of the classical bulk light cone, as

−2 ∆u∆v − β2

z4
0

∆u2 + ∆x2
1 + ∆x2

2 ≈ −2 ε

α
z4
0 ≪ 1 . (6.6)

Thus, bulk geodesics can relate points inside the effective light cone given by

−2 ∆u∆v − β2

z4
0

∆u2 + ∆x2
1 + ∆x2

2 = 0, (6.7)

which limits as z0 → 0 to the Galilean invariant light wedge. Causal properties are then

determined by just the value of u coordinate. We see that the point P = (u0, v0, x
i
0) is in

the past of Q = (u1, v1, x
i
1) if u0 < u1 irrespective of the other coordinates.

6.2. Micro-causality in lightlike non-commutative field theories

Let us now study the micro-causal light cone for this case of lightlike non-commutativity,

following the discussion of the spacelike case given earlier. First of all, we can use the simpler

argument of [7] to suggest the appropriate micro-causality condition for this case. Suppose

we have a field theory in Rd,1 with θui 6= 0, where we use lightcone coordinates (u, v, xi) for

i = 1, 2, · · · , d−1. This non-commutative deformation will break the Lorentz group SO(d, 1)

down to a Galilean group. The natural Galilean invariant micro-causal relation to consider

is

〈 [Φ(x),Φ(y)]± 〉 = 0 for ux = uy . (6.8)

We can use the argument of [8] as briefly reviewed in Section 3 to show that the lightlike

non-commutative field theory in fact has such a micro-causality condition, while a local

quantum field theory with Galilean invariance will still have the usual commutation relations

(3.1).

For sake of simplicity we consider the non-commutative ϕ3 theory introduced in (3.4);

we will calculate the perturbative behaviour of the field commutator expectation value to

probe the micro-causality condition. In fact, the calculation proceeds in a manner similar to

the spacelike non-commutative case, but for a few essential differences in the details of the

kernels. As in that case there is no difference from commutative ϕ3 theory at the tree level

i.e., for M(0). Once again interesting effects show up at the one-loop contribution to the

commutator, thanks to the contribution from the non-planar diagrams. The calculation is
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outlined in Appendix A. We find that the non-planar graphs give us one-loop contribution

G
(np)
2 (ℓ1, ℓ2, x) ∼

∫ ∞

0
dℓ1 dℓ2 exp



i
~θ · ~θ
2 ux

ℓ1 ℓ2 (ℓ1 + ℓ2) − i
m2 ux

2

(

1

ℓ1
+

1

ℓ2

)



 . (6.9)

In writing the above we have retained only the dominant contribution at large momentum

(for this is the part that determines the convergence properties) and ~θ is a vector with

components θui. We have furthermore

M(2)
np (x) ∼

∫ ∞

0
dℓ1

∫ ∞

0
dℓ2G

(np)
2 (ℓ1, ℓ2, x) −

∫ ∞

0
dℓ1

∫ ∞

0
dℓ2G

(np)
2 (ℓ1, ℓ2,−x) , (6.10)

and as usual, M(2)
planar(x) is the same as in the commutative field theory.

In order to ascertain the micro-causality condition, we need to figure out the domain

where M(2)
np is guaranteed to vanish. This can be done by looking at the analytic properties

of G
(np)
2 (ℓ1, ℓ2, x). Assuming without loss of generality ux > 0, we see that G

(np)
2 (ℓ1, ℓ2, x)

will be convergent only for ℓ1,2 → −i∞. However, for ℓ1,2 → −i 0 we encounter a divergence

from the term proportional to m2 in the exponential. Hence we are forced to conclude

that there is no domain in the complex ℓ1,2 plane where the integral of G
(np)
2 (ℓ1, ℓ2, x) is

absolutely convergent. This in particular implies that we are generically going to encounter

a non-vanishing value of M(2). The only special case is when ux = 0 when we expect M(2)

will indeed vanish. This is not apparent from (6.9) and (6.10), since these are written in a

light cone quantization scheme. Intuitively, one expects this to arise simply from the fact

that this is indeed the ‘equal time’ commutation relation for light cone quantization. To

summarise, the micro-causality condition for this lightlike non-commutative field theory is

indeed as given by (6.8).

As we have emphasized in the spacelike non-commutative case, it would be challenging to

extend this computation to the non-commutative Yang-Mills theory which is actually dual to

the bulk spacetime. Once again, the appropriate framework for exploring these ideas would

be to look at the details of the analytic behaviour of the Wightman functions. However, as

argued in the spacelike case, the micro-causal light cone for the field theory ought to be in

agreement with the causal properties of the supergravity dual. So, it is again encouraging

to find that the results in the scalar field theory exhibit qualitative agreement with the bulk

spacetime. Since the bulk behaviour was intimately associated with the non-distinguishing

character of this spacetime, we might even say that this non-distinguishing character is not

only consistent in string theory, but in fact necessary to reproduce this behaviour in the dual

field theory.

7. Discussion
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We have studied modifications of the causal structure of the bulk spacetime in the

AdS/CFT correspondence, by considering the changes in the geometry dual to a non-

commutative deformation of the field theory. We pointed out that these deformations cause

radical changes in the bulk causal structure. For spacelike non-commutativity, the light cone

in the boundary directions asymptotically becomes independent of the non-commutative di-

rections. For lightlike non-commutativity, the modification is even stronger, producing a

non-distinguishing spacetime, in which points are always connected by a causal curve unless

they have the same value of ‘light-cone time’.

We compared the asymptotic bulk light cone to the micro-causal light cone in a scalar

non-commutative field theory, following [7,8]. In this toy example we were able to show that

the micro-causal light cone was in complete agreement with the bulk predictions. As we

have already remarked, we think it reasonable to expect this agreement to extend to N = 4

non-commutative gauge theory, and have suggested a possible way to infer this rigorously.

The essential issue in considering non-commutative gauge dynamics is the absence of local

gauge invariant observables in position space. However, any bulk calculation of correlation

function in strongly coupled non-commutative gauge theory will exhibit the deformed light

cone structure. From the point of AdS/CFT correspondence it is imperative that this struc-

ture be reproduced from the field theory side as well. In fact, as discussed in [26,40] there is

an excellent agreement between the result for the correlation function of gauge invariant open

Wilson loop operators in the field theory (obtained by summing up ladder diagrams) and

the bulk prediction. Furthermore, given the nature of observables in the non-commutative

gauge theory, this agreement is expected to be universal. Since the bulk two point function

is sensitive to the deformation of the light cone, it seems quite natural to expect the same

in the field theory.

These results provide a new connection between the causal structure in the bulk and

in the boundary. However, the full encoding of the bulk causal structure in the dual field

theory description remains an important open problem. In particular, we have not addressed

the very interesting question of how the bulk causal structure is encoded when the Poincaré

invariance in broken only in the interior (as in black hole solutions).

The discovery that a non-distinguishing spacetime is related via the AdS/CFT duality

to a well-defined quantum field theory is of interest in its own right. It suggests that such

geometries may be more respectable as string theory backgrounds than one might have

expected. The usual objection to non-distinguishing backgrounds, that a small deformation

can convert them into a solution with closed timelike curves, is here circumvented by the fact

that the non-distinguishing character is a consequence of the behaviour of the light-cone in

the asymptotic region, where corrections are suppressed. That is, although there are almost

closed timelike curves, they do not remain within a compact region of the spacetime. These

solutions deserve further investigation.
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Appendix A: Derivation of light-wedge

We present in this appendix a short derivation of the micro-causality condition in non-

commutative field theories. Further details can be found in [8].

As discussed in Section 3, we are interested in calculating the matrix element of the field

commutator in perturbation theory. The field theory we consider will be non-commutative

ϕ3 theory in R5,1 with Lagrangian (3.4). In what follows bold face letters will denote spatial

vectors {p,x} etc., in R5 ⊂ R5,1. We will also have use for light cone coordinates and the

vectors transverse to the light cone directions will be denoted as {~p, ~x}.
Working within the framework of canonical quantization, one can write the interaction

picture field ϕ(x) as

ϕ(x) =
∫

d5p

(2 π)5

1√
2ωp

(

ap e
−i p.x + a†p e

i p.x
)

, (A.1)

where ωp =
√

p2 +m2.

As usual it is possible to pass between the interaction and Heisenberg pictures:

ϕH(x) = U †(t, t0)ϕ(x)U(t, t0) , U(t1, t2) = T exp
(

i
g

3!

∫ t2

t1
dt
∫

d5xϕ ⋆ ϕ ⋆ ϕ
)

.

(A.2)

We will make use of this to evaluate the matrix element (3.5) and consider the states |α 〉 and

|β 〉 obtained by evolving the perturbative vacuum |0 〉 by the evolutions operator U †(t1, t0).

For the ϕ3
⋆ theory the quantities of interest are the tree-level term M(0) and the one-

loop term M(2). The former is just the usual free field propagator; the presence of non-

commutative interactions play no interesting role for the quadratic terms in the Lagrangian

(3.4). In fact, we have

M(0)(x = x1 − x2) =
∫

d5p

(2 π5)

1

2ωp
e−i p.x −

∫

d5p

(2 π5)

1

2ωp
e+i p.x , (A.3)

which may be written in the form (3.7), using the identity

∫ d5p

ωp
=
∫ ∞

0

dp+

p+
d4~p |

p−= ~p2+m2

2 p+
.

(A.4)
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In writing the above we have passed over to light cone representation of momenta for con-

venience. Hence we obtain
∫

d5p

(2 π5)

1

2ωp

e−i p.x = 2 (2 π)5
∫ ∞

0

dp+

p+
d4~p exp

(

i p+ vx +
~p2 +m2

2 p+
ux − i ~p.~x

)

(A.5)

Completing the Gaussian integrals over ~p in (A.5) we find the integral representation of M(0)

with the kernel G0(p
+ = ℓ, x) as given in (3.9).

From this representation of M(0)(x) one can ascertain the domains where the commutator

is required to vanish. As discussed in Section 3 the strategy is to ascertain the possible

contour rotations for the p+ = ℓ integral. Depending on the convergence of the integrals of

G0(ℓ,±x), the two terms contributing to M(0)(x) mutually cancel. This is where we see the

origin of the micro-causality condition in the field theory. The contour rotations that lead to

cancellation of the two integrals work only for spacelike separated points and not for points

xµ
1,2 which are in causal contact.

p
1

p
1

p
2

p
2

(b) Non−planar(a)  Planar

Figure 2: Feynman diagrams contributing to M(2). Due to the non-commutative interaction we

have both planar and non-planar graphs.

The calculation of M(2) proceeds in a similar fashion. We get contributions for the non-

commutative ϕ3 theory from two kinds of one-loop diagrams: planar and non-planar. The

planar diagrams are very similar to those of the commutative theory and do not change

the micro-causal structure. The non-planar diagrams introduce extra momentum dependent

phase factors through the ϕ3
⋆ term. These phase factors play an important role in modifying

the properties of G2(ℓi, x). The relevant Feynman diagrams are shown in Fig 2.

We will concentrate exclusively on the non-planar contribution to the commutator. The

phase factor originating from the ϕ3
⋆ interaction for the non-planar graph is

P (p1, p2) = ei pµ
1

θµν pν
2 , (A.6)

Ignoring numerical coefficients we can write

M(2)
np ∼

∫ ∞

0
dℓ1

∫ ∞

0
dℓ2

[

G
(np)
2 (ℓ1, ℓ2, x) −G

(np)
2 (ℓ1, ℓ2,−x)

]

, (A.7)
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where

G
(np)
2 (ℓ1, ℓ2, x) = exp

(

i
x2

2ux

(ℓ1 + ℓ2) − i
m2ux

2

(

1

ℓ1
+

1

ℓ2

)

)

H2(ℓ1, ℓ2, x) , (A.8)

is of the general form described in (3.8), and the kernel H2(ℓ1, ℓ2, x) is

H2(ℓ1, ℓ2, x) =
∫ d4~p1 d

4~p2

(2 π)10
e
−i ux

2 ℓ1
(~p1−ℓ1

~x
ux

)
2
−i ux

2 ℓ2
(~p2−ℓ2

~x
ux

)
2

P (p1, p2) Q . (A.9)

Q is a function of the momenta that grows like a polynomial and hence doesn’t play any

role in our discussions. Readers interested in its precise form can consult [8]. In deriving

the above we have made use of the identity (A.4) given above to convert the momentum

integrals over d5p1,2 to integrals over d4~p1,2 and over the light cone component labeled here

as ℓ1,2 respectively. Note that while we have lumped a lot of the details of the interaction in

the factor Q, we are keeping the phase factor P (p1, p2) explicitly, since it is an exponential

function of the momenta.

We now analyze the large momentum behaviour of (A.9) by completing the squares

and performing the resulting integral (setting Q = 1). So far our discussion has been

independent of the precise nature of the non-commutative interaction. We will see that

there is a distinction between the spacelike non-commutative and lightlike non-commutative

cases. The essential point is that the large momentum behaviour of (A.9) depends on the

nature of the non-commutative interaction, and so we will treat these two cases separately.

A.1. Spacelike non-commmutativity

For spacelike non-commutative theories we will choose θµν 6= 0 only along the spatial

directions transverse to our light cone coordinates, thus having θij 6= 0. So we can write

(A.9) as

H2(ℓ1, ℓ2, x) ∼
∫

d4~p1 d
4~p2 e

−i ux
2 ℓ1

(~p1−ℓ1
~x

ux
)
2
−i ux

2 ℓ2
(~p2−ℓ2

~x
ux

)
2
+i pi

1
θij pj

2 ,

∼ e−i 1

ux
~x2

nc (ℓ1+ℓ2) .
(A.10)

One interesting aspect is that the large momentum behaviour of H2(ℓ1, ℓ2, x) is independent

of the non-commutative parameter θ. Using the expressions for G
(np)
2 we find at the end of

the day,

M(2)
np ∼

∫ ∞

0
dℓ1 dℓ2

(

ei (ℓ1+ℓ2)
x2

c
2 ux − e−i (ℓ1+ℓ2)

x2
c

2 ux

)

. (A.11)

In contrast to the tree-level result, we see that the convergence properties at one-loop (for

non-planar contributions) depend only on the light cone defined with respect to the commut-

ing directions in spacetime. Once again going through the possible contour rotations leads

us to conclude that the commutator is required in this case to vanish outside the light-wedge

as in (3.12).
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A.2. Lightlike non-commutativity

Here we choose the non zero components of θµν to be those with θvi = θi 6= 0, with i

denoting the spatial directions in R4 ⊂ R5,1. This in particular implies that the phase factor

will be

P (~p1, ~p2) = ei ~θ·(ℓ1 ~p2+ℓ2 ~p1) . (A.12)

Hence calculating the kernel H2(ℓ1, ℓ2, x) reduces to

H2(ℓ1, ℓ2, x) ∼
∫

d4~p1 d
4~p2 e

−i ux
2 ℓ1

(~p1−ℓ1
~x

ux
)
2
−i ux

2 ℓ2
(~p2−ℓ2

~x
ux

)
2
+i ~θ.(ℓ1~p2+ℓ2~p1) ,

=
∫

d4~p1 exp



−i ux

2 ℓ1

(

~p1 −
ℓ1
ux

~x− ℓ1 ℓ2
ux

~θ

)2

+ i
ux

2 ℓ1

(

ℓ1
ux

~x− ℓ1 ℓ2
ux

~θ

)2

− i
ℓ1

2 ux

~x2





× d4~p2 exp



−i ux

2 ℓ2

(

~p2 −
ℓ2
ux

~x− ℓ1 ℓ2
ux

~θ

)2

+ i
ux

2 ℓ2

(

ℓ2
ux

~x− ℓ1 ℓ2
ux

~θ

)2

− i
ℓ2

2 ux

~x2



 ,

(A.13)

The integrals over d4~p1,2 are easily done, but unlike the case of spacelike non-commutativity

discussed previously we find that the dominant term for large ℓi depends explicitly on θ. In

fact, we have

G
(np)
2 (ℓ1, ℓ2, x) ∼

∫ ∞

0
dℓ1 dℓ2 exp



i
~θ · ~θ
2 ux

ℓ1 ℓ2 (ℓ1 + ℓ2) − i
m2 ux

2

(

1

ℓ1
+

1

ℓ2

)



 . (A.14)

In writing the above we have retained only the dominant contribution at large momentum

(for it is the part that determines the convergence properties). If we consider the contour

rotations for the ℓ1,2 integrals, continuing ℓ1,2 → i ℓ1,2 leaves us with a divergent integral

(assuming without loss of generality ux > 0) for G
(np)
2 (ℓ1, ℓ2, x). One might wonder about

continuing into the lower half-plane i.e., ℓ1,2 → −i ℓ1,2; this doesn’t help because the integral

then diverges at small ℓi. Hence there is no contour rotation that will allow us to obtain a

finite answer, so we are led to conclude that the correct micro-causality condition is as given

in (6.8).

Appendix B: Non-distinguishing property the spacetime

In this appendix, we demonstrate directly that the spacetime (4.8),

ds2 = r2

(

−2 du dv − β2 r4 du2 + dx2
1 + dx2

2 +
dr2

r4
+

1

r2
dΩ2

5

)

, (B.1)

is non-distinguishing. In particular, we exhibit a causal curve connecting a point P =

(u0, v0, r0, x0,Ω0) in the spacetime to any point Q = (u0 + ε, v1, r1, x1,Ω1), with ε > 0 arbi-

trarily small, and arbitrary values of (v1, r1, x1,Ω1), where x and Ω capture the 2 transverse

directions (x1, x2) and the 5 angular directions of the S5, respectively.
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Since along any future directed causal curve the coordinate u must increase, we can

parameterise our curve by u, so that

γ(u) = (u, v(u), r(u), x(u),Ω(u)) (B.2)

Then the causality condition implies that for all u,

2 v̇ + β2 r4 ≥ ẋ2 +
ṙ2

r4
+

Ω̇2

r2
(B.3)

where we define ˙≡ d
du

. For simplicity, we break up the curve into five components; the first

and last being null curves in the (r, v) plane, while the middle three move in the x, Ω, and v

directions, respectively. Letting each component take equal u interval, these curves, γi with

i = 1, . . . , 5, join the points

P = (u0, v0, r0, x0,Ω0)

p1 = (u0 +
ε

5
, v2, R, x0,Ω0)

p2 = (u0 +
2 ε

5
, v2, R, x1,Ω0)

p3 = (u0 +
3 ε

5
, v2, R, x1,Ω1)

p4 = (u0 +
4 ε

5
, v3, R, x1,Ω1)

Q = (u0 + ε, v1, r1, x1,Ω1)

(B.4)

with the quantities v2, v3 and R as defined below. Choosing this joining to be linear, we can

write the component curves explicitly as

γ1(u) = (u, va(u), ra(u), x0,Ω0)

γ2(u) =



u, v2, R,
x1 − x0

ε/5
u+

x0

(

u0 + 2ε
5

)

− x1

(

u0 + ε
5

)

ε/5
,Ω0





γ3(u) =



u, v2, R, x1,
Ω1 − Ω0

ε/5
u+

Ω0

(

u0 + 3ε
5

)

− Ω1

(

u0 + 2ε
5

)

ε/5





γ4(u) =



u,
v3 − v2

ε/5
u+

v2

(

u0 + 4ε
5

)

− v3

(

u0 + 3ε
5

)

ε/5
, R, x1,Ω1





γ5(u) = (u, vb(u), rb(u), x1,Ω1)

(B.5)

with
ra(u) ≡ ρa u+ µa

va(u) ≡ v0 +
ρa

6

(

1

r3
0

− 1

ra(u)3

)

− β2

10ρa

(

ra(u)
5 − r5

0

)

rb(u) ≡ ρb u+ µb

vb(u) ≡ v3 +
ρb

6

(

1

R3
− 1

rb(u)3

)

− β2

10ρb

(

rb(u)
5 −R5

)

,

(B.6)
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where we define the constants

ρa =
R− r0
ε/5

, µa =
r0
(

u0 + ε
5

)

− Ru0

ε/5

ρb = −R− r1
ε/5

, µb =
R (u0 + ε) − r1

(

u0 + 4ε
5

)

ε/5

v2 = v0 +
ρa

6

(

1

r3
0

− 1

R3

)

− β2

10ρa

(

R5 − r5
0

)

v3 = v1 +
ρb

6

(

1

r3
1

− 1

R3

)

− β2

10ρb

(

R5 − r5
1

)

(B.7)

These ensure that the curve is connected, joining the points (B.4), and (B.6) ensure that γ1

and γ5 are null. Finally, to guarantee causality of γ2, γ3 and γ4, we must choose R bounded

from below by

R ≥ max







(

x1 − x0

β ε/5

)1/2

,

(

Ω1 − Ω0

β ε/5

)1/3

,

(

v2 − v3

β2 ε/10

)1/4






. (B.8)

Physically, we want to take advantage of the large-r region, where the −β2 r4 du2 term in

the metric (B.1) allows causality for large changes in the other coordinates. A schematic

representation of such a causal curve in {u, v, r} space is sketched in Fig 1. Note that this

is only possible for nonzero β.

Hence, a crucial feature of our construction of the causal curve γ is that it involves

arbitrarily large radii, scaling as inverse positive power of ∆u = ε. In other words, it is exactly

due to the asymptotic region that the spacetime is non-distinguishing. As commented above,

this bears two important consequences: it lets us extract this causal property directly from

the dual boundary theory, and it pacifies possible causality-violating quantum fluctuations.

Likewise, in the tamer case of the spacetime (2.1), the holographic dual to the N = 4 SYM

with spacelike non-commutativity, it is important that the light wedge structure appears only

asymptotically. For otherwise, if the spacetime exhibited a light-wedge structure even in the

interior, then any two points separated only in the non-commutative directions (along the

wedge) would have identical past/future sets—the spacetime would be non-distinguishing.

But we know that this is not the case, as (2.1) admits a time function: it is stably causal

and therefore distinguishing.

Appendix C: Other solutions generated by null Melvin twist

In this appendix we write down metrics generated by applying the null Melvin twist

transformations on other geometries.
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C.1. Twisting along angular isometries

Instead of performing the null Melvin twist on the planar directions (x1, x2) we could

instead have used some angular directions. The most general such configuration can be

generated by starting with the D3-brane solution written as (4.3), with

dx2
1 + dx2

2 = dρ2 + ρ2 dφ2
1

dΩ2
5 = dχ2 + cos2 χ dφ2

2 +
1

4
sin2 χ

(

dθ2 + dφ2
3 + dψ2 + 2 cos θ dφ3 dψ

) (C.1)

We can in this case perform the null Melvin twist by

dφi → dφi + dy , for i = 1, 2, 3 . (C.2)

This leads to the metric

ds2 = −H− 3

2 β2
(

ρ2 + r2H
)

(dt+ dy)2 +
1√
H

(

−dt2 + dy2 + dρ2 + ρ2 dφ2
1

)

+
√
H
(

dr2 + r2
[

dχ2 + cos2 χ dφ2
2 +

1

4
sin2 χ

(

dθ2 + dφ2
3 + dψ2 + 2 cos θ dφ3 dψ

)

])

B = β (dt+ dy) ∧
(

ρ2

H
dφ1 + r2 cos2 χ dφ2 +

r2

4
sin2 χ (dφ3 + cos θ dψ)

)

(C.3)

While the metric (C.3) is interesting in its own right, we will mostly focus on the simpler

case presented in (4.6).

C.2. Non-extremal null Melvin twisted D3-brane geometry

To obtain the supergravity dual to thermal lightlike non-commutative N = 4 SYM, we

need to start with a non-extremal D3-brane geometry and carry out the null Melvin twist

duality transformation. Recall that the metric for the non-extremal D3-brane takes the form

ds2 =
1

√

H(r)

(

−f(r) dt2 + dy2 + dx2
1 + dx2

2

)

+
√

H(r)

(

dr2

f(r)
+ r2 dΩ2

5

)

, (C.4)

with

f(r) = 1 − r4
0

r4
. (C.5)

In this case the non-extremality of the solution implies that we no longer have the SO(1, 1)

symmetry along the D3-brane world-volume. However,
(

∂
∂y

)a
is still a good spacelike Killing

vector and we have the requisite symmetries to proceed with the duality chain.

Carrying out Steps 1 through 7 outlined in Section 2.1, we obtain the metric for the null

Melvin twisted non-extremal D3-brane:

ds2 =
H (−fdt2 + dy2 + dx2

1 + dx2
2) − β2 f (dt+ dy)2 + 1

2
β2 (1 − f)(dx1 − dx2)

2

√
H (H + β2 (1 − f))

+
√
H

(

dr2

f(r)
+ r2 dΩ2

5

) (C.6)
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Here as in (4.6), we have twisted along the non-compact directions (x1, x2) for simplicity. We

have also refrained from writing down the explicit expressions for the p-form fields supporting

the solution. This solution was also discussed in [41].

The metric is a bit more complicated than (4.6), but it is easy to check that in the

decoupling limit (replacing H(r) → R4/r4) the asymptotic form of the metric coincides with

that of (4.8). Since it is the asymptotic region that is responsible for the non-distinguishing

character of the spacetime, we conclude that (C.6) is also a non-distinguishing spacetime.

That is, since the decoupling limit of (C.6) and (4.8) have a similar large r behaviour, two

points which are sufficiently far away from the black hole ought to have the same causal

future/past, implying that the spacetime is non-distinguishing.

C.3. Null Melvin twist of Klebanov-Strassler

The Klebanov-Strassler solution is given by the metric

ds2 = h(r)−1/2
(

−dt2 + dy2 + dx2
1 + dx2

2

)

+ h(r)1/2 ds2
6 , (C.7)

where ds2
6 denotes the metric of the deformed conifold and r is a radial coordinate that

measures the size of the base. The solution for the warp factor h(r) is given as an integral

expression

h(r) = C
∫ ∞

r
dz

z coth z − 1

sinh2 z
(sinh(2z) − 2 z)

1

3 , (C.8)

and the metric is supported by both five-form and three-form fluxes. Asymptotically, this

metric approaches the Klebanov-Tseytlin (KT) geometry [42] with

h(r) =
R4

r4
log

(

r

rs

)

, (C.9)

where R is the length scale set by the number of fractional branes and rs the IR scale where

we should revert to the original solution (C.8).

For our purposes it will suffice to note that we have a flat metric on R3,1 which is

non-trivially warped. Thus we can carry out the null Melvin twist along the translational

isometries. Carrying out the steps in the duality chain we will end up with a metric that

is analogous to (4.8). Apart from the fact that we have to replace the S5 by the base of

the deformed conifold we have no new change. In the large r limit, where we have the KT

solution, the base is the Einstein space T 1,1. The astute reader will have realized that we

have already taken the near horizon limit in writing the metric (C.7). So the spacetime dual

to lightlike non-commutative deformed N = 1 cascade theory is

ds2 = −β2 h(r)−
3

2 (dt+ dy)2 +
1

√

h(r)

(

−dt2 + dy2 + dx2
1 + dx2

2

)

+
√

h(r) ds2
6 , (C.10)
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which asymptotically looks like

ds2 = − r2

R2
√

log(r/rs)

(

−2 du dv + dx2
1 + dx2

2 − β2 r4

R4 log(r/rs)
du2 +

R4

r4
log(r/rs)

(

dr2 + r2 dΩ2
5

)

)

.

(C.11)

The only difference from the non-distinguishing spacetime (4.8) is the logarithmic pieces.

However, it is easy to check that these do not affect the causal structure of the spacetime in

an essential manner.
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