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We present an improved calculation of B! light vector form factors from light-cone sum rules,
including one-loop radiative corrections to twist-2 and twist-3 contributions, and leading order twist-4
corrections. The total theoretical uncertainty of our results at zero momentum transfer is typically 10%
and can be improved, at least in part, by reducing the uncertainty of hadronic input parameters. We present
our results in a way which details the dependence of the form factors on these parameters and facilitates
the incorporation of future updates of their values from, e.g., lattice calculations. We also give simple and
easy-to-implement parametrizations of the q2 dependence of the form factors which are valid in the full
kinematical regime of q2.
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I. INTRODUCTION

This paper aims to give a new and more precise deter-
mination of the decay form factors of Bd;u;s mesons into
light vector mesons, i.e., �, !, K�, and 
; it is a continu-
ation of of our previous study of B decays into pseudosca-
lar mesons [1]. The calculation uses the method of QCD
sum rules on the light cone, which in the past has been
rather successfully applied to various problems in heavy-
meson physics cf. Refs. [2]1; an outline of the method will
be given below. Our calculation improves on our previous
paper [4] by
(i) i
ncluding B! ! form factors;

(ii) i
ncluding radiative corrections to 2-particle twist-3

contributions to one-loop accuracy;

(iii) i
ncluding a new parametrization of the dominant

hadronic contributions (twist-2 distribution ampli-
tudes);
(iv) d
etailing the dependence of form factors on distri-
bution amplitudes;
(v) i
ncluding a new parametrization of the dependence
of the form factors on momentum transfer;
(vi) i
ncluding a careful analysis of the theoretical
uncertainties.
Like in Ref. [1], the motivation for this study is twofold and
relates to the overall aim of B physics to provide precision
determinations of quark flavor mixing parameters in the
standard model. Quark flavor mixing is governed by the
unitary CKM matrix which depends on four parameters:
three angles and one phase. The constraints from unitarity
can be visualized by the so-called unitarity triangles; the
one that is relevant for B physics is under intense experi-
mental study. The over-determination of the sides and
angles of this triangle from a multitude of processes will
answer the question whether there is new physics in flavor-
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changing processes and where it manifests itself. One of
the sides of the unitarity triangles is given by the ratio of
CKM matrix elements jVub=Vcbj. jVcbj is known to about
2% accuracy from both inclusive and exclusive b! c‘�
transitions [5], whereas the present error on jVubj is much
larger and around 15%. Its reduction requires an improve-
ment of experimental statistics, which is underway at the B
factories BABAR and Belle, but also and, in particular, an
improvement of the theoretical prediction for associated
semileptonic spectra and decay rates. This is one motiva-
tion for our study of the B! � semileptonic decay form
factors A1, A2, V, which, in conjunction with alternative
calculations, hopefully from lattice, will help to reduce the
uncertainty from exclusive semileptonic determinations of
jVubj. Secondly, form factors of general B! light meson
transitions also are needed as ingredients in the analysis of
nonleptonic two-body B decays, e.g., B! ��, in the
framework of QCD factorization [6]—again with the ob-
jective to extract CKM parameters. One issue calling for
particular attention in this context is the effect of SU(3)
breaking, which enters both the form factors and the K�

and 
 meson distribution amplitudes figuring in the facto-
rization analysis. We would like to point out that the
implementation of SU(3) breaking in the light-cone sum
rules approach to form factors is precisely the same as in
QCD factorization and is encoded in the difference be-
tween �, !, K�, and 
 distribution amplitudes, so that the
use of form factors calculated from light-cone sum rules
together with the corresponding meson distribution ampli-
tudes in factorization formulas allows a unified and con-
trolled approach to the assessment of SU(3) breaking
effects in nonleptonic B decays.

As we shall detail below, QCD sum rules on the light
cone allow the calculation of form factors in a kinematic
regime where the final state meson has large energy in the
rest system of the decaying B, E� �QCD. The physics
underlying B decays into light mesons at large momentum
transfer can be understood qualitatively in the framework
of hard exclusive QCD processes, pioneered by Brodsky
-1  2005 The American Physical Society
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and Lepage et al. [7]. The hard scale in B decays ismb and
one can show that to leading order in 1=mb the decay is
described by two different parton configurations: one
where all quarks have large momenta and the momentum
transfer happens via the exchange of a hard gluon, the so-
called hard-gluon exchange, and a second one where one
quark is soft and does interact with the other partons only
via soft-gluon exchange—the so-called soft or Feynman
mechanism. The consistent treatment of both effects in a
framework based on factorization, i.e., the clean separation
of perturbatively calculable hard contributions from non-
perturbative ‘‘wave functions,’’ is highly nontrivial and has
spurred the development of soft collinear effective theory
(SCET), an effective field theory which aims to separate

the two relevant large mass scales mb and
������������������
mb�QCD

q
in a

systematic way [8]. In this approach form factors can in-
deed be split into a calculable factorizable part which
roughly corresponds to the hard-gluon exchange contribu-
tions, and a nonfactorizable one, which includes the soft
contributions and cannot be calculated within the SCET
framework [9,10]. Predictions obtained in this approach
then typically aim to eliminate the soft part and take
the form of relations between two or more form factors
whose difference is expressed in terms of factorizable
contributions.

The above discussion highlights the need for a calcula-
tional method that allows numerical predictions while
treating both hard and soft contributions on the same foot-
ing. It is precisely QCD sum rules on the light cone
(LCSRs) that accomplish this task. LCSRs can be viewed
as an extension of the original method of QCD sum rules
devised by Shifman, Vainshtein, and Zakharov [11], which
was designed to determine properties of ground state had-
rons at zero or low momentum transfer, to the regime of
large momentum transfer. QCD sum rules combine the
concepts of operator product expansion, dispersive repre-
sentations of correlation functions, and quark-hadron dual-
ity in an ingenious way that allows the calculation of the
properties of nonexcited hadron states with a very reason-
able theoretical uncertainty. In the context of weak-decay
form factors, the basic quantity is the correlation function
of the weak current and a current with the quantum num-
bers of the B meson, evaluated between the vacuum and a
light meson. For large (negative) virtualities of these cur-
rents, the correlation function is, in coordinate space,
dominated by distances close to the light cone and can be
discussed in the framework of light-cone expansion. In
contrast to the short-distance expansion employed by con-
ventional QCD sum rules à la Shifman, Vainshtein, and
Zakharov where nonperturbative effects are encoded in
vacuum expectation values of local operators with vacuum
quantum numbers, the condensates, LCSRs rely on the
factorization of the underlying correlation function into
genuinely nonperturbative and universal hadron distribu-
tion amplitudes (DAs) 
 which are convoluted with
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process-dependent amplitudes T. The latter are the ana-
logues of Wilson coefficients in the short-distance expan-
sion and can be calculated in perturbation theory. The
light-cone expansion then reads, schematically:

correlation function �
X
n

T�n� �
�n�: (1)

The sum runs over contributions with increasing twist,
labeled by n, which are suppressed by increasing powers
of, roughly speaking, the virtualities of the involved cur-
rents. The same correlation function can, on the other hand,
be written as a dispersion relation, in the virtuality of the
current coupling to the B meson. Equating dispersion
representation and the light-cone expansion, and separat-
ing the B meson contribution from that of higher one- and
multi-particle states using quark-hadron duality, one ob-
tains a relation for the form factor describing the decay
B! light meson.

A crucial question is the accuracy of light-cone sum
rules. Like with most other methods, there are uncertainties
induced by external parameters like quark masses and
hadronic parameters and intrinsic uncertainties induced
by the approximations inherent in the method. As we shall
discuss in Sec. IV, the total theoretical uncertainty for the
form factors at q2 	 0 is presently around 10%, including a
7% irreducible systematic uncertainty.

Our paper is organized as follows: in Sec. II we define all
relevant quantities, in particular, the meson distribution
amplitudes. In Sec. III we outline the calculation. In
Sec. IV we derive the sum rules and present numerical
results. Section V contains a summary and conclusions.
Detailed expressions for distribution amplitudes, a break-
down of the light-cone sum rule results into different
contributions, and explicit formulas for the contributions
of 3-particle states are given in the Appendices A, B, and
C.
II. DEFINITIONS

B! V transitions, where V stands for the vector mesons
�, !, K�, and 
, can manifest themselves as semileptonic
decays B! V‘ 
�‘ or rare flavor-changing neutral current
penguin-induced decays B! V� and B! V‘
‘�. All
these decays are described by a total of seven independent
form factors which usually are defined as (q 	 pB � p)

cVhV�p�j 
q���1� �5�bjB�pB�i

	 �ie���mB 
mV�A1�q2�


 i�pB 
 p���e�q�
A2�q

2�

mB 
mV


 iq��e�q�
2mV

q2
�A3�q2� � A0�q2��


 ��������p
�
Bp

� 2V�q2�
mB 
mV

; (2)
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TABLE I. Allowed decay channels in terms of underlying
quark transitions. We assume isospin-symmetry and hence
have five different sets of form factors: Bq ! �, Bq ! !, Bq !
K�, Bs ! K�, and Bs ! 
 (with q 	 u; d).

�
 �0; ! �� K�
 K�0�d
s� K�� 
K�0�s 
d� 


B�u b! u b! d b! s

Bd b! u b! d b! s

Bs b! u b! d b! s

Bd;s ! �;!;K�; 
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with

A3�q2� 	
mB 
mV

2mV
A1�q2� �

mB �mV

2mV
A2�q2� and

A0�0� 	 A3�0�;
(3)

cVhV�p�j 
q���q��1
 �5�bjB�pB�i

	 i��������p
�
Bp

�2T1�q2� 
 T2�q2�fe���m2
B �m2

V�

� �e�q��pB 
 p��g


 T3�q2��e�q�
�
q� �

q2

m2
B �m2

V

�pB 
 p��

�
; (4)

with

T1�0� 	 T2�0�: (5)

A0 is also the form factor of the pseudoscalar current:

cVhVj@�A�jBi 	 cV�mb 
mq�hVj 
qi�5bjBi

	 2mV�e�q�A0�q2�: (6)


q in the above formulas stands for 
u, 
d, and 
s in (2) and (6)
and 
d, 
s in (4); the actual assignment of different decay
channels to underlying b! q transitions is made explicit
in Table I. In our calculation, we assume isospin symmetry
throughout, which implies that there are five different sets
of form factors: Bq ! �, Bq ! !, Bq ! K�, Bs ! K�,
and Bs ! 
 (with q 	 u; d). The factor cV accounts for
the flavor content of particles: cV 	

���
2
p

for �0,! and cV 	
1 otherwise.2

The currents in (2) and (4) contain both vector and axial-
vector components. V and T1 correspond to the vector
components of the currents, and, as the B meson is a
pseudoscalar, to the axial-vector components of the matrix
elements. A1;2 clearly correspond to the axial-vector com-
ponent of the V � A current; the term in A3 � A0 arises as
the contraction of (2) with �iq� must agree with (6). As
for the penguin current, T2;3 correspond to the axial-vector
components of the current; there is no analogon to A0, as
the current vanishes upon contraction with q�. As we shall
see in Sec. IV, for analyzing the dependence of each form
factor on q2, it is best to choose A0;1;2 as independent form
factors for the A current, and define A3 by (3), but for the
penguin current it will turn out more appropriate to choose
a different set of independent form factors: T1, T2, and eT3

with
2To be precise, cV is
���
2
p

for �0 in b! u and for !, and �
���
2
p

for �0 in b! d, with the flavor wave functions �0 � � 
uu�

dd�=

���
2
p

and !� � 
uu
 
dd�=
���
2
p

. We assume that 
 is a pure s 
s
state.
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cVhV�p�j 
q���q��1
 �5�bjB�pB�i

	 i��������p
�
Bp

�2T1�q2� 
 e���m2
B �m2

V�T2�q2�

� �pB 
 p���e
�q�eT3�q

2� 
 q��e
�q�T3�q

2�; (7)

and T3 defined as

T3�q2� 	
m2
B �m2

V

q2
�eT3�q2� � T2�q2��: (8)

As the actual calculation is done using an off shell
momentum pB with p2

B � m2
B, it is crucial to avoid any

ambiguity in the interpretation of scalar products like
2pq 	 p2

B � q2 � p2 � m2
B � q2 �m2

V that occur at in-
termediate steps of the calculation. This is particularly
relevant for the penguin form factors which are defined
in terms of a matrix element over the tensor current which
is contracted with the physical momentum q�. The prob-
lem can be avoided by extracting Ti and eT3 from sum rules
for a matrix element with no contractions:

hV�p�j 
q����5bjB�pB�i

	 A�q2�fe���pB 
 p�� � �pB 
 p��e
�
�g

� B�q2�fe��q� � q�e
�
�g

� 2C�q2�
e�q

m2
B �m2

V

fp�q� � q�p�g: (9)

A, B, and C are related to Ti and eT3 defined in (4) and (7) as

T1 	 A; T2 	 A�
q2

m2
B �m2

V

B; T3 	 B
 C;

eT3 	 A

q2

m2
B �m2

V

C;
(10)

which implies

T1�0� 	 T2�0� 	 eT3�0�: (11)

Relevant for semileptonic decays are, in the limit of
vanishing lepton mass, the form factors A1;2 and V with
q2, the invariant mass of the lepton-pair, in the range 0 �
q2 � �mB �mV�

2. B! V� depends on T1�0�, whereas
B! V‘
‘� depends on all seven form factors (see
Ref. [14] for an explicit formula). The motivation for
studying B! �‘ 
�‘ and B! !‘ 
�‘ is to extract informa-
-3
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tion on the CKM matrix element jVubj, whereas the flavor-
changing neutral current transitions B! �K�; �;!�� and
B! �K�; �;!�‘
‘� serve to constrain new physics or, in
the absence thereof, the ratio jVts=Vtdj [15], which would
complement the determination of jVts=Vtdj from Bmixing.

In the LCSR approach the form factors are extracted
from the correlation function of the relevant weak current
JW , i.e., either the semileptonic V � A current or the
penguin current of (8), and an interpolating field for the
B meson, in the presence of the vector meson:

��q2; p2
B� 	 i

Z
d4xeiqxhV�p�jTJW�x�j

y
b �0�j0i; (12)

with jb 	 mb 
q0i�5b, q0 2 fu; d; sg. For virtualities

m2
b � p2

B � O��QCDmb�; m2
b � q2 � O��QCDmb�;

(13)

the correlation function (12) is dominated by lightlike
distances and therefore accessible to an expansion around
the light cone. The above conditions can be understood by
demanding that the exponential factor in (12) vary only
slowly. The light-cone expansion is performed by integrat-
ing out the transverse and ‘‘minus’’ degrees of freedom and
leaving only the longitudinal momenta of the partons as
relevant degrees of freedom. The integration over trans-
verse momenta is done up to a cutoff, �IR, all momenta
below which are included in a so-called hadron distribution
amplitude (DA) 
, whereas larger transverse momenta are
calculated in perturbation theory. The correlation function
is hence decomposed, or factorized, into perturbative con-
tributions T and nonperturbative contributions 
, which
both depend on the longitudinal parton momenta and the
factorization scale �IR. If the vector meson is an effective
quark-antiquark bound state, as is the case to leading order
in the light-cone expansion, one can write the correspond-
ing longitudinal momenta as up and �1� u�p, where p is
the momentum of the meson and u a number between 0 and
1. The schematic relation (1) can then be written in more
explicit form as

��q2; p2
B� 	

X
n

Z 1

0
duT�n��u; q2; p2

B;�IR�

�n��u;�IR�:

(14)

As � itself is independent of the arbitrary scale �IR, the
scale dependence of T�n� and 
�n� must cancel each other.3

If 
�n� describes the meson in a 2-parton state, it is called a
2-particle DA; if it describes a 3-parton, i.e., quark-anti-
quark-gluon state, it is called 3-particle DA. In the latter
case the integration over u gets replaced by an integration
over two independent momentum fractions, say '1 and '2.
3If there is more than one contribution of a given twist, they
will mix under a change of the factorization scale �IR and it is
only in the sum of all such contributions that the residual �IR
dependence cancels.
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Equation (14) is called a ‘‘collinear’’ factorization formula,
as the momenta of the partons in the meson are collinear
with its momentum. Any such factorization formula re-
quires verification by explicit calculation; we will come
back to that issue in the next section.

Let us now define the distribution amplitudes to be used
in this paper. All definitions and formulas are well known
and can be found in Ref. [16]. In general, the distribution
amplitudes we are interested in are related to nonlocal
matrix elements of type4

h0j 
q2�0���0; x�q1�x�jV�p�i or

h0j 
q2�0��0; vx��Ga
���vx�+a=2�vx; x�q1�x�jV�p�i:

x is lightlike or close to lightlike and the light-cone expan-
sion is an expansion in x2; v is a number between 0 and 1;
and � a combination of Dirac matrices. The expressions
�0; x�, etc., denote Wilson lines that render the matrix
elements, and hence the DAs, gauge invariant. One usually
works in the convenient Fock-Schwinger gauge
x�Aa��x�+

a=2 	 0, where all Wilson lines are just 1; we
will suppress them from now on.

The DAs are formally ordered by twist, i.e., the differ-
ence between spin and dimension of the corresponding
operators. In this paper we take into account 2- and 3-
particle DAs of twist-2, 3, and 4. The classification scheme
of vector meson DAs is more involved than that for pseu-
doscalars; it has been studied in detail in Ref. [16]. One
important point is the distinction between chiral-even and
chiral-odd operators, i.e., those with an odd or even number
of �� matrices. In the limit of massless quarks the DAs
associated with these operators form two completely sepa-
rate classes that do not mix under a change of �IR. One
more important parameter is the polarization state of the
meson, longitudinal ( k ) or transverse ( ? ), which helps
to classify twist-2 and 3 DAs. Up to twist-4 accuracy, we
have the following decomposition of chiral-even 2-particle
DAs [16]:

h0j 
q2�0���q1�x�jV�P; +�i

	 fVmV

�
e�+�z
Pz

P�
Z 1

0
du e�iuPz

�

k�u� 


m2
Vx

2

16
Ak�u�


O�x4�
	





e�+�� � P�

e�+�z
Pz

�Z 1

0
du e�iuPz�g�v�? �u�


O�x2�� �
1

2
z�

e�+�z

�pz�2
m2
V

Z 1

0
du e�iupz�g3�u�



k�u� � 2g�v�? �u� 
O�x2��
�
; (15)
4The currents to use for �0 and ! are � 
u�u� 
d�d�=
���
2
p

,
respectively.
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h0j 
q2�0����5q1�x�jV�P; +�i 	 �
1

4
fVmV�

�'0
� e�+�� p'z0

Z 1

0
du e�iupz�g�a�? �u� 
O�x2��; (16)

and for the chiral-odd ones:

h0j 
q2�0����q1�x�jV�P; +�i 	 ifTV

�
�e�+�� P� � e�+�� P��

Z 1

0
du e�iuPz

�

?�u� 


m2
Vx

2

16
A?�u�

	

 �p�z� � p�z��

e�+�z

�pz�2
m2
V

Z 1

0
du e�iupz

�
h�t�
k
�u� �

1

2

?�u� �

1

2
h3�u� 
O�x2�

	



1

2
�e�+�� z� � e�+�� z��

m2
V

pz

Z 1

0
du e�iupz�h3�u� �
?�u� 
O�x2��

�
; (17)
5For a more detailed discussion we refer to the first reference
in [16] and to Ref. [17].
h0j 
q2�0�q1�x�jV�P; +�i 	
i
2
fTV�e

�+�z�m2
V

�
Z 1

0
du e�iupz�h�s�

k
�u� 
O�x2��:

(18)

The relevant 3-particle DAs are defined in Appendix B.
Note that we distinguish between lightlike vectors p; z

with p2 	 0 	 z2 and the vectors P; x with P2 	 m2
V and

x2 � 0; explicit relations between these vectors are given
in Appendix B. The DAs are dimensionless functions of u
and describe the probability amplitudes to find the vector
meson V in a state with minimal number of constituents—
quark and antiquark—which carry momentum fractions u
(quark) and 1� u (antiquark), respectively. The eight DAs

 	 f
k;?; g

�v;a�
? ; h�s;t�

k
; h3; g3g are normalized asZ 1

0
du
�u� 	 1: (19)

The nonlocal operators on the left-hand side are renormal-
ized at scale �, so that the distribution amplitudes depend
on � as well. This dependence can be calculated in per-
turbative QCD; we will come back to that point below.

The vector and tensor decay constants fV and fTV featur-
ing in Eqs. (15) and (18) are defined as

h0j 
q2�0���q1�0�jV�P; +�i 	 fVmVe
�+�
� ; (20)

h0j 
q2�0����q1�0�jV�P;+�i 	 ifTV����e
�+�
� P� � e�+�� P��:

(21)

fTV depends on the renormalization scale as

fTV�Q
2� 	 LCF=00fTV��

2�;

with L 	 's�Q2�='s��2� and 00 	 11� 2=3nf, nf being
the number of flavors involved.

The DAs as defined above do actually not all correspond
to matrix elements of operators with definite twist: 
?;k
are of twist-2, h�s;t�

k
and g�v;a�? contain a mixture of twist-2

and 3 contributions, and A?;k, h3, and g3 a mixture of
twist-2, 3, and 4 contributions. Rather than as matrix
elements of operators with definite twist, the DAs are
014029
defined as matrix elements of operators built from fields
with a fixed spin projection onto the light cone. For quark
fields, the possible spin projections are s 	 �1=2 and the
corresponding projection operators P
 	 1=�2pz�p6 z6 and
P� 	 1=�2pz�z6 p6 . Fields with fixed spin projection have a
definite conformal spin, given by j 	 1=2�s

canonical mass dimension�, and composite operators built
from such fields can be expanded in terms of increasing
conformal spin.5 The expansion of the corresponding DAs,
suitably dubbed conformal expansion, is one of the pri-
mary tools in the analysis of meson DAs, and together with
the use of the QCD equations of motion it allows one to
parametrize the plethora of 2- and 3-particle DAs in terms
of a manageable number of independent hadronic matrix
elements. DAs defined as matrix elements of operators
with definite twist, on the other hand, do not have a well-
defined conformal expansion [18], and this is the reason
why we prefer the above definitions. In an admittedly
rather sloppy way we will from now on refer to
g�v;a�? ; h�s;t�

k
as twist-3 DAs and to h3; g3;A?;k as twist-4

DAs. A more detailed discussion of the relations between
the different DAs is given in Appendix B; the upshot is that
the eighteen twist-2, 3, and 4 DAs we shall take into
account can be paramatrized, to NLO in the conformal
expansion, in terms of ten hadronic matrix elements, most
of which give only tiny contributions to the LCSRs for
form factors.

For the leading twist-2 DAs 
k;? in particular, the
conformal expansion goes in terms of Gegenbauer poly-
nomials:


�u;�2� 	 6u�1� u�

"
1


X1
n	1

an��2�C3=2
n �2u� 1�

#
:

(22)

The first term on the right-hand side 6u�1� u� is referred
to as asymptotic DA; as the anomalous dimensions of an
are positive, 
 approaches the asymptotic DA in the limit
�2 ! 1. The usefulness of this expansion manifests itself
in the fact that, to leading logarithmic accuracy, the (non-
-5
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perturbative) Gegenbauer moments an renormalize multi-
plicatively with

an�Q
2� 	 L�n=�200�an��

2�; (23)

with L 	 's�Q
2�='s��

2�. The anomalous dimensions
�k;?n are given by

�kn 	 8CF

�
 �n
 2� 
 �E �

3

4
�

1

2�n
 1��n
 2�

	
;

(24)

�?n 	 8CF� �n
 2� 
 �E � 1�; (25)

with  �n
 1� 	
Pn
k	1 1=k� �E. As the contributions

from different comformal spin do not mix under renormal-
ization, at least to leading logarithmic accuracy, one can
construct models for DAs by truncating the expansion at a
fixed order. Despite the absence of any ‘‘small parameter’’
in that expansion, the truncation is justified inasmuch as
one is interested in physical amplitudes rather than the DA
itself. If we write

amplitude 	
Z 1

0
du 
�u�T�u�;

then, assuming that T is a regular function of u, i.e., with no
(end point) singularities, the highly oscillating behavior of
the Gegenbauer-polynomials suppresses contributions
from higher orders in the conformal expansion. Even for
a function T with a mild end point singularity, for instance
T 	 lnu, we find, using the generating function of the
Gegenbauer polynomials,Z 1

0
du 
�u�T�u� 	 �

5

6
a0 


X1
n	1

��1�n�1

n�n
 3�
3an:

This result indicates that, assuming the an falloff in n,
which, as we shall see seen in Sec. IV C is indeed the
case, even a truncation after the first few terms should give
a reasonable approximation to the full amplitude. A more
thorough discussion of the convergence of the conformal
expansion for physical amplitudes can be found in
Ref. [19]. The major shortcoming of models based on the
truncation of the conformal expansion is the fact that the
information available on the actual values of the an (and, in
particular, their analogues in 3-particle DAs) is, to put it
mildly, scarce. We therefore use truncated models only for
DAs whose contribution to the LCSRs is small as is the
case for all 3-particle DAs and the twist-4 DAs; explicit
formulas are given in Appendix B. All contributions due to
or induced by twist-2 DAs, on the other hand, are treated as
described in Sec. IV C.

The major difference between the analysis of LCSRs for
B! vector meson form factors and that of B!
pseudoscalar form factors presented in [1] is probably the
identification of a suitable parameter by which to order the
relative weight of different contributions to the sum rules.
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For B! pseudoscalar form factors, the standard classifi-
cation in terms of increasing twist proved to be suitable, as
the chiral parities of the twist-2 DA and 2-particle twist-3
DAs are different, so that contribution of the latter to the
LCSRs is suppressed by a factor m2

�=�mu 
md�=mb. In
addition, the admixture of twist-2 matrix elements to twist-
3 DAs and of twist-2 and three matrix elements to twist-4
DAs is small and moreover vanishes in the chiral limit
m� ! 0. For vector mesons, the situation is more complex:
for instance, both the twist-2 DA 
? and the twist-3 DA
g�v�? contribute at the same order to the form factors A2 and

A0, in the combination 
k � g�v�? . Naive twist counting is
evidently not very appropriate for classifying the relative
size of contributions of different DAs to the form factors.
Instead, we decide to classify the relevance of contribu-
tions to the LCSRs not by twist but by a parameter 7 / mV .
The precise definition of 7 depends on the kinematics of
the process; to leading order in an expansion in 1=mb,
however, one finds 7HQL 	 mV=mb. The numerical analy-
sis of the LCSRs does indeed display a clear suppression of
terms in O�7� and higher, which suggests the following
classification of 2-particle DAs:
(i) O
-6
�70�:
?;
(ii) O
�71�:
k; g
�v;a�
? ;
(iii) O
�72�:h�s;t�
k
; h3;A?;
(iv) O
�73�:g3;Ak.

We treat 7 as expansion parameter of the light-cone ex-
pansion and shall combine it with the perturbative QCD
expansion in 's to obtain a second order expression for the
correlation functions (12); terms in 73 are dropped.
III. CALCULATION OF THE CORRELATION
FUNCTIONS

As we have seen in Sec. II, LCSRs for form factors are
extracted from the correlation function of the correspond-
ing weak current with the pseudoscalar current jb 	
mb 
q0i�5b, evaluated between the vacuum and the vector
meson. In this section we describe the calculation of these
correlation functions to second order in 's and 7.

The relevant correlation functions are defined as

i
Z
d4xeiqxhV�p�jT�V � A���x�j

y
b �0�j0i 	

	 �i�0e
�
� 
 i�
�e

�q��q
 2p�� 
 i���e
�q�q�


 �V�
'0�
� e�'q0p�; (26)

i
Z
d4xeiqxhV�p�jT� 
q����5b��x�j

y
b �0�j0i

	Afe���2p
 q�� � e���2p
 q��g �Bfe��q�

� e��q�g � 2C�e�q�fp�q� � q�p�g: (27)

The definitions of �� and C differ from those used in
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Ref. [4] by a factor pq; we shall come back to this point
below. In this section we describe the calculation of the
contributions of 2-particle DAs to the above correlation
functions; those of 3-particle DAs are calculated in
Appendix C.

In light-cone expansion and including only contributions
from 2-particle Fock states of the mesons, each of the seven
invariants �0;�;V , A;B;C can be written as a convolution
integral of type

�V 	
Z dk


2�

V
ab�k
�Tba�k
; p

2
B; q

2�; (28)

with a; b being spinor indices. p2 	 m2
V is set to 0 and k


is the longitudinal momentum of the quark in the vector
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meson V, which is related to the momentum fraction u
introduced in Sec. II by k
 	 up
.6 The above factoriza-
tion formula implies a complete decoupling of long-
distance QCD effects, encoded in the DA 
V , and short-
distance effects calculable in perturbation theory, de-
scribed by T. Factorization also makes it possible to cal-
culate T in a convenient way: if it holds, T must be
independent of the specific properties of the external had-
ron state, and one can calculate �V with a particularly
simple state that allows a straightforward extraction of
the short-distance amplitudes T.7 A convenient choice of
the external state is a free quark-antiquark pair with lon-
gitudinal momenta up and 
up and spins s and r, respec-
tively, and DA

q1 
q2
ab �k
� 	

Z
dz�e

�ik
z�hq1�up; s� 
q2� 
up; r�j� 
q1�a�z��z; 0��q2�b�0�j0i
��������z
	0;z?	0

	 2� 
uq1a �up; s�v
q2
b � 
up; r�7�k
 � up
�;
6The plus-component of a 4-vector k� is defined as k
 	
�k0 
 k3�=

���
2
p

, the minus component as k� 	 �k0 � k3�=
���
2
p

.
7This is completely analogous to the calculation of Wilson

coefficients in a local operator product expansion, which must be
independent of the external states and hence are calculated using
any convenient state.
where 
u and v are the standard fermion spinors. The T
amplitudes, to one-loop accuracy, are then given directly
by the diagrams shown in Fig. 1 with external on shell
quarks with momenta up and �1� u�p, respectively. The
projection onto a specific Dirac structure is done using the
general decomposition

� 
q1�a�q2�b 	
1

4
�1�ba� 
q1q2� �

1

4
�i�5�ba� 
q1i�5q2�



1

4
����ba� 
q1�

�q2�

�
1

4
����5�ba� 
q1���5q2�



1

8
�����ba� 
q1�

��q2�: (29)

In order to obtain the convolution integrals for vector
mesons, one has to replace the structures 
q1�q2 in (29)
by the appropriate DAs and include factors of e�z, pz, and
x2 as given in Eqs. (15)–(18). The translation of explicit
terms in z� into momentum space is given by

z� ! �i
@

@�up��
; (30)

as the outgoing q1 comes with a factor exp�iupz�. Terms in
1=�pz� can be treated by partial integration:

1

pz

�u� ! �i

Z u

0
dv 
�v�  �i(�u�: (31)

There are no surface terms, as for all the relevant structures

, e.g., 
k � g�v�? , one has (�0� 	 0 	 (�1�. A second,
approximate way to deal with factors �e�z�=�pz� is based
on the observation that �e�z� projects onto the longitudinal
polarization state of the vector meson cf. Eq. (B2), and that
in the ultrarelativistic limit EV ! 1 the longitudinal po-
larization vector is approximately collinear with the me-
son’s momentum:

��0�� 	
1

mV
�p� 
O�m2

V�� ���! e�z
pz
!

1

mV
and

1

mV
!
e�q
pq

:

Up to corrections in m2
V , this procedure yields results

identical with those from partial integration—provided
that the corresponding DA 
 is normalized to 0. That is

�
Z 1

0
du(�u�e�9

@
@�up�9

�
e�z
pz

Z 1

0
du
�u�

�
e�q
pq

�Z 1

0
du
�u� 
O�m2

V�

	
;

where the first relation is valid only if
 is normalized to 0,
i.e., (�1� 	 0. This is indeed the case for the mixed-twist
structure 
k � g�v�? but does not apply if only the pure
twist-2 DA 
k is included, as done in [4]. In this case,
unphysical singularities in p2

B 	 q2 appear in �� and C
and have to be factored out. This explains the appearance
of additional factors 1=�pq� 	 2=�p2

B � q2� in the correla-
tion functions used in [4]. In the calculation presented in
-7



FIG. 1. Diagrams for 2-particle correlation functions. � is the
weak interaction vertex. The light-quark self-energy diagrams of
type c give purely divergent contributions in 1=�IR � 1=�UV.
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this paper we use the prescriptions (30) and (31) through-
out and hence avoid unphysical singularities in p2

B. We
have checked that indeed the singularity structure of all
seven invariants �0;�;V , A;B;C is given by a cut on the
real axis for p2

B � m2
b.

The complete correlation function, including 2-particle
DAs to O�72� for the vector current V, axial-vector current
A, tensor current T, and scalar current S,8 can now be
written as
��q2; p2
B� 	

X
C	V;A;T;S

Z 1

0
duPC

ab�u;�
2�Tba�u; p2

B; q
2;�2�;

(32)
with
8The matrix elements of vector mesons over the pseudoscalar
current vanish.
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PV
ab 	

1

4
fVmV��'�ab

�
�P'e�0(�u�

@
@�up�0


 e�'g
�v�
? �u�

	
;

(33)

P A
ab 	 �

i
16
fVmV��'�5�ab�'9+0e�9P+g

�a�
? �u�

@
@�up�0

;

(34)

PT
ab 	 �

i
4
fTV��

'0�ab

�
e�'P0




?�u�

�
1

16
m2
VA?

@2

@�up�9@�up�
9

�
(35)


m2
VP'�

�
�IL�u�

@2

@�up�0@�up��
�

1

2
m2
Ve
�
'H3�u�

@
@�up�0

�
;

(36)

P S
ab 	 �

1

8
m2
Vf

T
V�e

�
'��1�abh

�s�
k
�u�

@
@�up�0

; (37)

where

(�u� 	
Z v

0
dv�
k�v� � g�v�? �v��;

IL�u� 	
Z u

0
dv

Z v

0
dw

�
h�t�
k
�w� �

1

2

?�w� �

1

2
h3�w�

	
;

H3�u� 	
Z u

0
dv�h3�v� �
?�v��:

All these three functions F�u� fulfill F�0� 	 1 	 F�1�.
Just to give an example, the tree contribution is given by

Ttree
ba 	 �i���q6 
 uP6 
mb��5�ba=��q
 uP�2 �m2

b�;

with the weak vertex �.
In order for factorization to hold, two conditions have to

be met:

(a) th
-8
e long-distance infrared sensitive parts (IR singu-
larities) in T have to cancel against those in the DAs;R
(b) th
e convolution integral du
ren�u�Tren�u� has to
converge. Otherwise factorization is violated by soft
end point singularities.
In order to check condition (a), we decompose the bare
amplitude into finite and divergent terms as

Tbare�u� 	 T�0��u� 
 's

�
T�1�;ren�u� 


1

�
T�1�;div�u�

	
:

Ultraviolet divergences, which only occur for the penguin
current, are easily subtracted using the known renormal-
ization of the corresponding current:

Tbare�u� ! Tbare�u� � 7ZpengT
�0��u�:

The remaining divergent terms have to cancel against the
divergent parts of the bare DA,



TABLE II. Contributions included in the calculation of the
correlation functions (26) and (27). 7 / mV is the effective
expansion parameter of the light-cone expansion; we include
contributions up to second order in 7 and 's; those marked by
��� are new.

DA O�'0
s � O�'s�

twist-2: 
? 70; 72 70


k 7 7

twist-3: g�a�? ; g
�v�
? 7 7���

h�s�
k
; h�t�
k

72

V ;A (3-part. DAs) 7

T (3-part. DA) 72

twist-4: h3;A? 72

chiral-odd 3-part. DAs 72
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bare�u� 	 
ren�u� 
 's
1

�

div�u�;

so thatZ 1

0
du�
ren�u�T�1�;div�u� 

div�u�T�0��u�� 	 0:


div�u� is known explicitly for the twist-2 � DA [7] and
coincides with that for 
k but to the best of our knowledge
has not yet been calculated for 
?. Alternatively, one can
check the cancellation of divergences order by order in the
conformal expansion of the DAs cf. Sec. II and
Appendix C, with9

ak;?;baren 	 ak;?n



1


's
4�

�k;?n
2

1

�

�
:

We find that all 1=� terms cancel as required.
As for condition (b), we also find that all T are regular at

the end points, so that there are no end-point singularities
in the convolution.

As an interesting by-product, we also find the following
fixed-order evolution equations of the first inverse moment
of the DAs:Z 1

0
du

k�u;�

2
2�

u
	

Z 1

0
du

k�u;�

2
1�

u

�

�
1
 as ln

�2
2

�2
1

�3
 2 lnu�
�
;

Z 1

0
du

?�u;�2

2�

u
	

Z 1

0
du

?�u;�2

1�

u

�

�
1
 2as ln

�2
2

�2
1



2


lnu
1� u

��
:

(38)

These equations allow one to calculate the change of that
inverse moment directly for a given DA without having to
calculate the Gegenbauer moments in an intermediate step.
The first of these relations also can be obtained from the
known one-loop evolution kernel of the � twist-2 DA [7],
whose anomalous dimensions coincide with those of 
k;
the relation for 
? is new.

As we shall see in the next section, the LCSRs do
actually not involve the full correlation functions but
only their imaginary parts in p2

B. As in Ref. [1] we take
the imaginary part only after calculating the convolution
integral, which results in closed and comparatively simple,
albeit lengthy expressions. The distribution amplitudes

?;k, g

�v;a�
? are given by their respective conformal expan-

sions, which we truncate at a9. As discussed in Sec. II, the
effective expansion parameter of the light-cone expansion
is 7, so that the correlation function is expanded in both 7
and 's. We combine both expansions and include terms up
to second order, i.e., O�70;1;2'0

s� and O�70;1'1
s�, but drop

O�72'1
s�.

10 A list of the included terms is given in Table II.
9We use dimensional regularization with D 	 4
 2�.
10Terms of O�70'2

s� are not included, either.
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Note that we have not calculated the radiative corrections
to the contributions from the 3-particle twist-3 DAs V ;A
as they are expected to be very small. This follows in part
from the observation thatO�'s� terms in the corresponding
twist-3 matrix elements also do show up in the O�'s�
corrections to g�v;a�? and are very small numerically.

Depending on the specific weak vertex and projection
onto the DAs, some diagrams contain traces with an odd
number of �5, which leads to ambiguities when naive
dimensional regularization with anticommuting �5 is
used. We solve this problem by using Larin’s prescription
for dealing with �5 [20] and replace, whenever necessary,
[as 	 CF's=�4��]

���5 ! �1� 4as�
i
3!
���1�2�3

��1��2��3 ;

�5 ! �1� 8as�
i
4!
��1�2�3�4

��1��2��3��4 ;

����5 ! ��1� 0as�
i
2
���'0�'0:

Note that we use the Bjorken/Drell convention for the �
tensor with �0123 	 
1. For the special case of the axial-
vector form factors and the projection onto the DA g�a�? , one
can implement Larin’s prescription by rewriting either the
weak vertex or the B vertex. We have checked that we
obtain the same result in both cases. One might also think
of ‘‘Larinizing’’ the projection operator onto the DA; the
corresponding finite renormalization will be u dependent
due to the nonlocality of the current and is yet unknown.
IV. NUMERICS

This section is the heartpiece of our paper, in which we
derive the sum rules for B! V form factors and obtain
numerical results. The section is organized as follows: in
-9



TABLE III. Values of the vector meson couplings. fV is ex-
tracted from experiment, fTV from QCD sum rules for fTV=fV cf.
Ref. [12].

V � ! K� 


fV [MeV] 205� 9 195� 3 217� 5 231� 4

fTV (1 GeV) [MeV] 160� 10 145� 10 170� 10 200� 10

fTV (2.2 GeV) [MeV] 147� 10 133� 10 156� 10 183� 10
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Sec. IVA we derive the LCSR for one of the seven form
factors, V. In Sec. IV B we give values for most of the
needed hadronic input parameters and explain how to
determine the sum rule specific parameters, i.e., the
Borel parameter M2 and the continuum threshold s0. We
also calculate fBd and fBs , which are necessary ingredients
in the LCSRs. In Sec. IV C we motivate the need for and
introduce models of the twist-2 DAs
?;k. In Sec. IV D we
calculate the form factors at q2 	 0 and discuss their
uncertainties. In Sec. IV E we present the form factors
for central input values of the parameters and provide a
simple parametrization valid in the full kinematical regime
of q2. The results for q2 	 0 and central results for arbi-
trary q2 are shown in this paper’s tables.

A. The sum rules

With explicit expressions for the correlation functions in
hand, we are now in a position to derive the LCSRs for the
form factors. Let us choose V�q2� for a Bq transition as
example. The corresponding correlation function is �V as
defined in Eq. (26). The basic idea is to express �V in two
different ways, as dispersion relation of the expression
obtained in light-cone expansion on one hand, and as
dispersion relation in hadronic contributions on the other
hand. Equating both representations one obtains a light-
cone sum rule for V. One side of the equation is hence the
light-cone expansion result

�LC
V �p

2
B; q

2� 	
Z 1

m2
b

ds
�LC
V �s; q

2�

s� p2
B

; (39)

with ��LC
V �s; q

2� 	 Im��LC
V �, which has to be compared to

the physical correlation function that also features a cut in
p2
B, starting at m2

B:

�phys
V �p2

B; q
2� 	

Z 1

m2
B

ds
�phys
V �s; q2�

s� p2
B

; (40)

the spectral density is given by hadronic contributions and
reads

�phys
V �s; q2� 	 fBqm

2
B

2V�q2�
mB 
mV

7�s�m2
B�


 �
higher-mass states

 �s; q2�: (41)

Here fBq is the Bq meson decay constant defined as

h0j 
q���5bjBi 	 ifBqp� or

�mb 
mq�h0j 
qi�5bjBi 	 m2
BfBq : (42)

To obtain a light-cone sum rule for V, one equates the two
expressions for �V and uses quark-hadron duality to ap-
proximate

�
higher-mass states
V �s; q2� ! �LC

V �s; q
2�/�s� s0�; (43)
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where s0, the so-called continuum threshold is a parameter
to be determined within the sum rule approach itself. In
principle one could now write a sum rule

�phys
V �p2

B; q
2� 	 �LC

V �p
2
B; q

2�;

and extract V. However, in order to suppress the impact of
the approximation (43), one subjects both sides of the
equation to a Borel transformation

1

s� p2
B
! B̂

1

s� p2
B

	
1

M2 exp��s=M2�;

which ensures that contributions from higher-mass states
be sufficiently suppressed and improves the convergence of
the operator product expansion. We then obtain

e�m
2
B=M

2
m2
BfBq

2V�q2�
mB 
mV

	
Z s0

m2
b

ds e�s=M
2
�LC
V �s; q

2�:

(44)

This is the final sum rule for V and explains why, as
announced in the previous section, only the imaginary
part of the correlation function is needed. Expressions for
the other form factors are obtained analogously. The task is
now to find sets of parameters M2 (the Borel parameter)
and s0 (the continuum threshold) such that the resulting
form factor does not depend too much on the precise values
of these parameters; in addition the continuum contribu-
tion, that is the part of the dispersive integral from s0 to1,
which has been subtracted from both sides of (44), should
not be too large, say less than 30% of the total dispersive
integral.

B. Hadronic input parameters

After having derived the LCSRs for the form factors, the
next step is to fix the parameters on which they depend.
These are the decay constants of the Bq and Bs meson, fBq
and fBs , the couplings f�T�V of the vector mesons, intro-
duced in Sec. II, the meson DAs, the quark masses mb and
ms, 's and the factorization scale�IR, and, finally, the sum
rule specific parameters M2 and s0.

The fV are known from experiment and are collected in
Table III. The fTV , on the other hand, are not that easily
accessible in experiment and hence have to be determined
from theory. For internal consistency, we determine these
-10



TABLE IV. Parameter sets for fBq and fBs to O�'s� accuracy.
fBq and fBs are given in MeV, s0, and M2 in GeV2. Note that the
values of fBq;s given in the table are not to be interpreted as
meaningful determinations of these quantities cf. text.

mb s0 M2 fBq s0 M2 fBs
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parameters from QCD sum rules for the ratio fTV=fV , as
explained in Ref. [12]. The results are collected in
Table III, too. fT� had already been determined earlier in
Ref. [21]; the result agrees with that in Table III. The ratios
fTV=fV also have been determined from lattice [22] and
agree with ours within errors. Meson DAs are discussed in
the next subsection.

The b quark mass entering our formulas is the one-loop
pole mass mb for which we use mb 	 �4:80� 0:05� GeV
cf. Table 6 in Ref. [3]. ms, on the other hand, is the MS
running mass, ms�2 GeV� 	 100 MeV, which is an aver-
age of two recent lattice determinations [23]; the uncer-
tainty in ms has only a minor impact on our results. As for
the strong coupling, we take 's�mZ� 	 0:118 and use NLO
evolution to evaluate it at lower scales. All scale-dependent
quantities are evaluated at the factoriszation scale �IR

which separates long- from short-distance physics. The
only exception are the form factors Ti, which also depend
on an ultraviolet scale �UV which is set to mb. We choose

�IR 	
��������������������
m2
B �m2

b

q
	 2:2 GeV as reference scale; a varia-

tion of �IR by �1 GeV has only small impact on the final
results.

The remaining parameters are fBq;s , M
2, and s0. fBq;s has

been determined from both lattice and QCD sum rule
calculations. The state of the art of the former are un-
quenched NRQCD simulations with 2
 1 light flavors,
yielding fBs 	 �260� 30� MeV [24], which is slightly
larger than the 2003 recommendation fBs 	 �240�
35� MeV [25]. For fBd , it is difficult to find any recent
numbers, the consensus being that more calculations at
smaller quark masses are needed in order to bring the
extrapolation to physical mu;d under sufficient control
[24]. As for QCD sum rules, both fBd and fBs have been
determined to O�'2

s� accuracy: fBd 	 �208� 20� MeV
and fBs 	 �224� 21� MeV [26], in agreement with lattice
determinations. The impact ofO�'2

s� corrections on fBq;s is
nonnegligible. As the diagrams responsible for these cor-
rections, for instance B vertex corrections, are precisely the
same that will enter LCSRs at O�'2

s�, we proceed from the
assumption that these corrections will tend to cancel in the
ratio (correlation function)/fB. We hence evaluate fBd;s
from a QCD sum rule to O�'s� accuracy, which reads
[27]:11

f2Bqm
2
Be
�m2

B=M
2
	

Z s0

m2
b

ds �pert�s�e�s=M
2

 C 
qqh 
qqi


 C 
qGqh 
q�gGqi

 
Z s0

m2
b

ds �tot�s�e�s=M
2
: (45)
11The contribution of the gluon condensate is not sizable and
we therefore neglect it.
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Here h 
qqi and h 
q�gGqi are the quark and mixed conden-
sate, respectively, for which we use the following numeri-
cal values at � 	 1 GeV:

h 
qqi 	 ��0:24� 0:01�3 GeV3 and

h 
q�gGqi 	 0:8 GeV2h 
qqi: (46)

The C are perturbative Wilson coefficients multiplying the
condensates. C 
qq is known to O�'s� accuracy [26,28],
C 
qGq at tree-level.

The criteria for choosing M2 and s0 in the above sum
rule are very similar to those to be used for the LCSRs.
Ideally, if the correlation function were known exactly, the
sum rule would be independent of M2. In practice it is not,
but ‘‘good’’ sum rules, plotted as function of M2, still
exhibit a flat extremum. We hence require the existence
of such an extremum in M2 and evaluate the sum rule
precisely at that point. This eliminates M2 as independent
parameter and leaves us with s0. As already mentioned
after Eq. (44), the purpose of the Borel transformation is to
enhance the contribution of the ground state to the physical
spectral function with respect to that of higher states. We
hence require that continuum contribution, that is the in-
tegral over �tot�s� for s > s0, must not be too large. To be
specific, we require"Z 1

s0
ds �tot�s�e�s=M

2

#,"Z 1

m2
b

ds �tot�s�e�s=M
2

#
< 30%:

This puts a lower bound on s0. The larger s0, the smaller
M2, the position of the minimum, and the larger nonper-
turbative contributions to (45). As the condensates are
meant to yield small nonperturbative corrections, but
blow up at small M2, requiring the nonperturbative correc-
tions to be not too large puts an upper bound on s0. For
fBq;s , we require the highest term in the condensate expan-
sion, the mixed condensate, to contribute less than 10% to
the correlation function. For LCSRs, which rely on an
expansion in higher twist rather than higher condensates,
we correspondingly require the contribution of higher
twists to the LCSR not to exceed 10%. One more require-
ment on the s0 is that they not stray away too much from
‘‘reasonable’’ values: s0 is to separate the ground state from
higher-mass contributions, and hence should be below the
next known clear resonance in that channel. Assuming an
set one 4.85 33.8 3.8 148 34.9 4.2 169
set two 4.80 34.2 4.1 161 35.4 4.4 183
set three 4.75 34.6 4.4 174 35.9 4.6 197
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TABLE V. Parameter sets for Bq ! � for V, A0, A1, A2, T1, and T3. As T1�0� 	 T2�0� the corresponding parameters are equal. s0 and
M2 in GeV2.

mb sV0 cVc sA0
0 cA0

c sA1
0 cA1

c sA2
0 cA2

c sT1
0 cT1

c sT3
0 cT3

c

set one 4.85 35.2 1.7 33.0 1.7 33.7 1.7 34.1 1.7 34.8 1.7 34.7 1.7
set two 4.80 35.8 2.1 33.6 1.6 34.2 1.8 34.7 1.8 35.3 1.9 35.2 1.8
set three 4.75 36.4 2.1 34.2 1.6 34.7 1.9 35.3 1.9 35.8 2.1 35.7 1.9

12This is due to the different power behavior of perturbative and
nonperturbative terms in n cf. Ref. [21].
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excitation energy of 0.4 to 0:8 GeV, we thus expect the s0
to lie in the interval 32 to 37 GeV2.

Applying the above criteria to (45), we obtain the sets of
�s0;M2� collected in Table IV, together with the resulting
fBq;s . We would like to stress that these values are not to be
interpreted as new independent determinations of fBq;s , but
are intermediate results to be used in the evaluation of the
LCSRs.

We proceed to determine the continuum thresholds and
Borel parameters for the LCSRs, using the same criteria as
above. In order to keep the complexity of the calculation at
a manageable level, for each form factor the corresponding
set is determined only once, at q2 	 0. To avoid confusion
between parameters entering (45) and those entering the
LCSRs, let us call the latter onesM2

LC and sF0 whereF is the
form factor. For larger q2, these parameters are expected to
change slightly. Part of this effect can be taken into account
in the following way: the tree-level LCSR to twist-2 accu-
racy reads, basically,

Z 1

u0
du

�u�
u

e��m
2
b��1�u�q

2�=�uM2
LC� with u0 	

m2
b � q2

s0 � q2
;

which implies that the expansion parameter is uM2
LC rather

than M2
LC. We hence rescale the Borel parameter as

M2
LC ! M2

LC=hui�q
2�;

with the average value of u, hui�q2�, given by

hui�q2�  

Z 1

u0
du u


�u�
u

e��m
2
b��1�u�q

2�=�uM2
LC�

�
=

Z 1

u0
du

�u�
u

e��m
2
b��1�u�q

2�=�uM2
LC�

�
;

with, approximately, hui�0 GeV2� 	 0:86 and hui�
�14 GeV2� 	 0:77. The optimum Borel parameter hence
becomes larger with increasing q2, which agrees with what
one finds when M2

LC is determined without rescaling.
Parametrizsing the relation between the Borel parameters
of local and light-cone correlation functions as

M2
LC  ccM

2=hui; (47)

we obtain, for Bq ! �, the values collected in Table V. The
sets for other transitions are similar.
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C. Models for distribution amplitudes

As mentioned in Sec. II and detailed in Appendix B, the
DAs entering the LCSRs can be modeled by a truncated
conformal expansion. It turns out that the dominant con-
tributions to the sum rules come from the twist-2 DAs

?;k, which to NLO in the conformal expansion are de-
scribed by the lowest three Gegenbauer moments: a?;k0  

1, which follows from the normalization of the DAs a?;k1 ,
which is nonzero only for K�, and a?;k2 . In Ref. [4], it was
these three parameters that were used to define the models
for 
?;k; all terms an�3 were dropped.

The numerical values of a1;2 (and higher moments) are
largely unknown. a1 has been determined from QCD sum
rules in [12,29,30]. Averaging over the determinations, we
choose

ak1�K
�; 1 GeV� 	 0:10� 0:07 	 a?1 �K

�; 1 GeV�; (48)

as our preferred values. Note that positive a1 refer to a K�

containing an s quark—for a 
K� with an 
s quark, a1
changes sign.

Predictions for a?;k2 also come from QCD sum rules
[12,16,21,29] and read

ak2��; 1 GeV� 	 0:18� 0:10;

ak2�K
�; 1 GeV� 	 0:09� 0:05;

ak2�
; 1 GeV� 	 0� 0:1;

a?2 ��; 1 GeV� 	 0:2� 0:1;

a?2 �K
�; 1 GeV� 	 0:13� 0:08;

a?2 �
; 1 GeV� 	 0� 0:1:

(49)

All these determinations have to be taken cum grano salis,
as the sum rules do not exhibit a clear Borel window and
also become increasingly unreliable for larger n.12

But even assuming a1;2 were known to sufficient accu-
racy—under what conditions is a truncation of 
 after a2
is justified? We have seen in Sec II that after the convolu-
tion with a smooth short-distance function T the contribu-
tions of higher an fall off sharply. So the actual question is
not so much how the truncated expansion compares to the
full convolution integral, but rather how the neglected
-12



TABLE VI. Values for 7�1 GeV�  7?;k�1 GeV�, a, and the
corresponding values of a?;k2;4 �1 GeV�.

7 a a?;k2 �1 GeV� a?;k4 �1 GeV�

�;! 1:15� 0:10 3� 1 0:09
0:10
�0:07 0:03� 0:02

K� 1:12� 0:10 3� 1 0:07
0:09
�0:07 0:02� 0:01


 1:10� 0:10 3� 1 0:06
0:09
�0:07 0:02
0:01

�0:02

0. 0.2 0.4 0.6 0.8 1.
0.

0.2

0.4

0.6

0.8

1.

1.2

1.4

FIG. 2. Examples for model DAs 

a as functions of u, for
7 	 1:2 and a 	 1:5; 2; 3; 4 (solid curves), as compared to the
asymptotic DA (dashed curve). For a! 1, 

a approaches the
asymptotic DA.
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terms compare to other terms, for instance originating from
3-particle DAs, which are included in the LCSR. For
instance, assuming ai � 0:05 it is necessary to include ak2
and a?2;4;6;8 in order to match the size of the contributions
from quark-quark-gluon matrix elements, and even for
ai � 0:01 one still needs ak2 and a?2;4. If, on the other
hand, one consistently neglects terms that contribute less
than 1% to the form factor, one can drop nearly all con-
tributions from quark-quark-gluon matrix elements, unless
their values as given in Appendix B are grossly under-
estimated. If ai � 0:05, one then has to keep a?2;4;6, but can

drop all akn>0. The upshot is that, in view of the lack of
information on a?;kn , it is a good idea to devise models for

?;k with a small number of parameters, possibly tied to
experimental observables, and a well-defined ‘‘tail’’ of
higher-order Gegenbauer moments. This task is under-
taken in Ref. [19].

Following Ref. [19], we introduce two-parameter mod-
els for (the symmetric part of) 
?;k which are defined by
the fall-off behavior of the Gegenbauer moments an in n
and the value of the integral

7 	
Z 1

0
du

�u�
3u

 1

X1
n	1

a2n; (50)

7 	 1 for the asymptotic DA. In particular we require 7 to
be finite, which implies that the an must fall off sufficiently
fast. The choice of 7 as characteristic parameter of
 relies
on the fact that it is directly related to an experimental
observable, at least for � and C, namely, the ��C����

transition form factor, for which experimental constraints
exist from CLEO [31]. We assume that the vector meson
DAs are not fundamentally different and take the range of
7��� extracted from CLEO as the likely range for 7���.
The second parameter characterizing our models is the fall-
off behavior of the Gegenbauer moments in n, which we
assume to be powerlike. We then can define a model DA
~

a in terms of its Gegenbauer moments

an 	
1

�n=2
 1�a
: (51)

using the generating function of the Gegenbauer-
polynomials,

f�D; t� 	
1

�1� 2Dt
 t2�3=2
	

X1
n	0

C3=2
n �D�tn;

this model can be summed to all orders in the Gegenbauer
expansion:

~

a �u� 	
3u 
u
��a�

Z 1

0
dt�� lnt�a�1�f�2u� 1;

��
t
p
�


 f�2u� 1;�
��
t
p
��: (52)

The corresponding value of 7 is 7
a 	 E�a�. In order to
obtain models for arbitrary values of 7, we split off the
014029
asymptotic DA and write



a �7� 	 6u 
u

7� 1

7
a � 1
� ~

a �u� � 6u 
u�: (53)

Evidently one recovers the asymptotic DA for 7 	 1 and
the truncated conformal expansion with a2 	 7� 1 and
an�4 	 0 for a! 1. The above formula is only valid for
a > 1, as otherwise 7
a diverges, or, equivalently,

a does
not vanish at the endpoints u 	 0; 1. In Fig. 2 we plot
several examples of 

a for a fixed value of 7.

Our preferred values for 7, a, and the corresponding
values of a?;k2;4 �1 GeV� are collected in Table VI. We
choose a 	 3� 1 in order to obtain nonnegligible effects
from higher-order an. The choice of 7��� is motivated by
the fact that all available calculations indicate a2 > 0,
hence 7> 1. We then fix the maximum 7 in such a way
that it yields a2 < 0:2, which, given the fact that the sum
rule results (49) are likely to overshoot the true value of a2,
appears as to be the likely maximum value. We then obtain
7��� 	 1:15� 0:10, with a rather conservative error. We
choose the same values for !. For K� and 
, we take into
account that the values of a2 appear to have the tendency to
decrease, which was noticed already in Ref. [29].
Assuming that the decrease is 20% from � to K�, and
another 20% from K� to 
, we arrive at the numbers
quoted in Table VI.
-13
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Evidently, DAs defined in dependence of 7 also require
a specification of the scale at which they are valid. As we
presume that 7��� will be measured, if at all, at the low
scale � 	 1 GeV, we choose this as the reference scale. 7
at higher scales can be obtained from Eq. (50), using the
leading-order renormalization group-improved expres-
sions for an���, or, if � is not too different from 1 GeV,
from the unimproved expression Eq. (38).

Models for the asymmetric part of the DA, relevant for
K�, can be constructed in a similar way as

~ 
b �u� 	
3u 
u
��b�

Z 1

0
dt�� lnt�b�1�f�2u� 1;

��
t
p
�

� f�2u� 1;�
��
t
p
��: (54)

One relevant parameter is b, and as the second one we
choose a1. Models for the asymmetric part of 
 with
arbitrary a1 can then be defined as


asym;

b 	 a1�3=2�b ~ 



b �u�: (55)

Examples for such models are shown in Fig. 3.

asym;

b also contributes to the value of 7:

7asym;
 	
Z 1

0
du

asym;

b �u�
3u

	 �a1�3=2�bE�b; 3=2�;

where E�b; s� 	
P
1
k	0 1=�k
 s�b is the Hurwitz E func-

tion. Our models for the K� DA are hence characterized by
four parameters: 7, a of the symmetric part, and a1, b of
the asymmetric part. The total value of 7 is given by

7total;
 	 7
 7asym;
:

In the actual calculation we choose a 	 b.
0. 0.2 0.4 0.6 0.8 1.

-0.1

0.

0.1

0.2

FIG. 3. Models for the asymmetric contributions to the twist-2
DA for a1 	 0:1. Solid curves: 
asym;


b as function of u for b 2
f2; 3; 5g; dashed curve: 
asym;


1 .
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D. Results for q2 	 0

Let us first analyze the form factors for q2 	 0. Using
the input parameters given in Tables V and VI, we obtain
the results collected in Table VII.

For the discussion of theoretical uncertainties, we dis-
tinguish between uncertainties that can be reduced by
future more accurate determinations of the corresponding
hadronic parameters and others that are either systematic
uncertainties, inherent to the method of LCSRs, or parame-
ter uncertainties not likely to be reduced in the near future.
The latter comprise the dependence of the form factors on
the LCSR parameters s0, M2, �IR and, via fB, the quark
and mixed condensate. Our results also depend, very
mildly, on ms and, more importantly, on the meson DAs
which are described by the 2-parameter model (53). All
these parameters induce a theoretical error of the form
factors which we determine by varying
(i) th
-14
e threshold s0 by �1:0 GeV2;

(ii) th
e Borel parameterM2 in Eq. (47) by�1:5 GeV2;��������������������q
(iii) th
e infrared factorization scale �IR 	 m2
B �m2

b
by �1 GeV;
(iv) th
e quark condensate and the mixed condensate as
indicated in Eq. (46);
(v) th
e first inverse moment of the twist-2 DAs 7 by
�0:1;
(vi) th
e power behavior of the Gegenbauer moments a
by �1;
(vii) th
e strange quark mass ms by �20%.

The largest deviation of the form factor from its central
value, in this 7-parameter space, is dubbed 77p and
amounts to typically 7% to 11%. In Fig. 4 we show the
dependence of selected form factors on 7 and a. The
uncertainty in these parameters is the most important
single source of error of the form factors and amounts to
half of the total error.

The form factors also depend, rather mildly, on mb:
varying mb by �0:05 GeV around the central value
4.8 GeV, and using s0 and M2 as given in Tables IV and
V, we obtain the error 7mb

which ranges from 1% to
5%.

One more source of uncertainty of the form factors is
due to fV and fTV , the vector and tensor coupling of the
vector mesons. This is easily understood by splitting the
generic form factor F into two terms proportional to fT and
fL  f:

F 	 fLFL 
 fTFT: (56)

As argued in Sec. II the first term is of order 7 / mV , the
second of order one and indeed, for most form factors, is
the dominant contribution. The present errors of fT , as
collected in Table III, are nonnegligible. fT is accessible to
lattice calculations and first results have been reported in
Ref. [22], which indicates that a reduction of the error of fT

seems feasible. In order to allow the adjustment of our



TABLE VII. Form factors at q2 	 0 for parameter set 2 of
Tables IV and V, i.e., mb 	 4:8 GeV. The form factors are
defined in Eqs. (2) and (4). The penguin form factors Ti are
evaluated at the UV scale � 	 mb. 7mb

is the variation of the
result with mb, i.e., the maximum deviation between the results
obtained for sets 1, 2, and 3. 77p is the maximum deviation
found by scanning the 7-parameter space discussed in the text.
7L and 7T are the uncertainties induced by the vector and tensor
couplings in Table III. The total error 7tot is obtained by adding
7�mb;7p;L;T� in quadrature. Form factors involving K� carry one
more uncertainty 7a1 induced by the Gegenbauer moment a1,
with 7a1 	 �a1�K

�; 1 GeV� � 0:1�.

F�0� 7mb
77p 7L 7T 7tot 7a1

VBq!� 0.323 0.007 0.025 0.005 0.013 0.029

A
Bq!�
0 0.303 0.004 0.026 0.009 0.006 0.028

A
Bq!�
1 0.242 0.007 0.020 0.004 0.010 0.024

A
Bq!�
2 0.221 0.008 0.018 0.002 0.011 0.023

T
Bq!�
1 0.267 0.004 0.018 0.004 0.010 0.021

T
Bq!�
3 0.176 0.001 0.013 0.001 0.009 0.016

VBs! 
K� 0.311 0.006 0.021 0.003 0.013 0.026 �0:437a1
ABs!


K�

0 0.363 0.003 0.032 0.006 0.009 0.034 �0:377a1
ABs!


K�

1 0.233 0.007 0.019 0.002 0.010 0.023 �0:327a1
ABs!


K�

2 0.181 0.008 0.021 0.001 0.010 0.025 �0:307a1
TBs!


K�

1 0.260 0.005 0.021 0.003 0.010 0.024 �0:337a1
TBs!


K�

3 0.136 0.003 0.013 0.000 0.008 0.016 �0:177a1

VBq!K
�

0.411 0.008 0.029 0.003 0.013 0.033 0:447a1
A
Bq!K

�

0 0.374 0.009 0.031 0.005 0.008 0.034 0:397a1
A
Bq!K�

1 0.292 0.009 0.025 0.002 0.009 0.028 0:337a1
A
Bq!K�

2 0.259 0.009 0.023 0.001 0.010 0.027 0:317a1
T
Bq!K�

1 0.333 0.005 0.026 0.003 0.010 0.028 0:347a1
T
Bq!K�

3 0.202 0.002 0.016 0.001 0.008 0.018 0:187a1

VBq!! 0.293 0.006 0.025 0.002 0.013 0.029

A
Bq!!
0 0.281 0.012 0.027 0.003 0.006 0.030

A
Bq!!
1 0.219 0.008 0.021 0.001 0.010 0.025

A
Bq!!
2 0.198 0.007 0.018 0.001 0.011 0.022

T
Bq!!
1 0.242 0.003 0.019 0.002 0.010 0.022

T
Bq!!
3 0.155 0.000 0.012 0.000 0.009 0.015

VBs!
 0.434 0.004 0.032 0.003 0.014 0.035

ABs!
0 0.474 0.002 0.031 0.005 0.019 0.037

ABs!
1 0.311 0.007 0.027 0.002 0.009 0.029

ABs!
2 0.234 0.011 0.024 0.001 0.009 0.028

TBs!
1 0.349 0.004 0.031 0.002 0.010 0.033

TBs!
3 0.175 0.003 0.016 0.000 0.007 0.018

Bd;s ! �;!;K�; 
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form factors to new results for fT , we give explicit results
for FL and FT in Appendix A. The uncertainties 7T;L of the
form factors due to the present values of fT;L are included
014029
in Table VII. 7T is typically of order 4%, 7L is much
smaller.

For transitions involving the K�, an additional uncer-
tainty is induced by the first Gegenbauer moment a1, and is
given by 7a1 in Table VII, where the quantity 7a1 is defined
as �a1�K�; 1 GeV� � 0:1�. Note that a1�K�� refers to a s 
q
bound state and hence a1� 
K�� 	 �a1�K��, which explains
the negative sign of the corresponding entries in Table VII.
Again we aim to make our results adjustable to any future
improvement in the determination of a1 and give explicit
results for the corresponding contributions in Appendix A.

Some important features of the results collected in
Table VII are
(i) t
-15
he form factors for Bq ! K� transition are about
20% larger than those for Bq ! �. The reason for
this is twofold: on the one hand, the K� vector and
tensor couplings are larger than those of the �. On
the other hand, the SU(3) breaking of the twist-2
DAs, parametrized by the first Gegenbauer moment
a1, gives a positive contribution to the form factors;
(ii) t
he form factors for Bs ! K� have a tendency to be
smaller than those for Bq ! �. The reason for this
is a negative contribution of a1 and the fact that fBs
is larger than fBq . On the other hand, the optimum
s0 are also larger than for Bq ! �, which partially
compensates the first two effects;
(iii) t
he Bq ! ! form factors are slightly smaller than
those for Bq ! �. This is a consequence of the fact
that the ! vector and tensor couplings are smaller
than those of the �;
(iv) t
he total theoretical error is dominated by that of
the twist-2 DAs and the sum rule parameters s0 and
M2. The former can, in principle, be reduced by
future calculations, the second is systematic and
irreducible.
The typical total uncertainty of each form factor is 10%,
ranging between 8% and 13%. Any significant reduction of
the error requires more accurate information on the twist-2
DAs. The minimum irreducible theoretical uncertainty is
set by the systematic uncertainty of the LCSR approach
and encoded in the dependence of the results on s0 andM2;
it amounts to about 6% to 7%.

Let us also compare our results to those obtained in
Ref. [4] by the same method, but with less sophistication.
The main difference between our present and our previous
analysis is the inclusion of radiative corrections to 2-
particle twist-3 contributions, the description of the twist-
2 DAs by models including all-order effects in the confor-
mal expansion, the more accurate determination of the sum
rule parameters s0 and M2, and the much more detailed
error analysis. The most striking difference between the
actual results affects the Bs ! K� transition, whose form
factors were predicted, in [4], to be between 10% and 30%
smaller than those in Table VII. The reason for this dis-
crepancy is mainly the more accurate determination of M2

and s0 we employ in the present analysis—in Ref. [4] all
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FIG. 4. The form factors V�0�, A1�0�, A2�0� for Bq ! � and T1�0� for Bq ! K� as functions of 7, the main parameter of the twist-2
DAs. Solid lines: central values of input parameters. Dashed lines: variation of the form factors with a change of a, the second
parameter of the DAs, by �1. Allowed values of 7: cf. Table VI.

13This notion comes from the analysis of electromagnetic form
factors, where the first resonance is the �. In weak decays,
however, the lowest resonance is, in general, not a vector meson,
so that the notion VMD is, strictly speaking, obsolete.
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form factors were determined for the same values of M2

and s0. All other form factors quoted in [4] agree, within
�15%, with those of Table VII, which is within the theo-
retical uncertainty stated in [4]. The only exception is
T3�0�, which deviates by between 15% and 45% from the
numbers obtained in [4]. The reason for this discrepancy
lies in the (correct) treatment of factors 1=�pz� in our
present paper cf. Sec. III.

E. Results for q2 � 0, fits and extrapolations

In this subsection we discuss the q2 dependence of the
form factors. The results of the LCSR calculation are
plotted in Figs. 5 and 6. They can be parametrized in terms
of simple formulas with two or three parameters, which are
valid in the full kinematical regime in q2. The correspond-
ing parameters are collected in Table VIII.

As mentioned in Sec. II, the LCSR method is valid for
large energies of the final state vector meson EV � �QCD,
which implies, via the relation q2 	 m2

B � 2mBEV , a re-
striction to not too large q2. We include values in the
regime

0 � q2 � q2LCSR;max 	 14 GeV2; (57)

which has to be compared with the maximum physical
q2phys;max 	 �mB �mV�

2 of 20:3 GeV2 for Bq ! ��;!�,
19:2 GeV2 for Bq ! K�, 20:0 GeV2 for Bs ! 
K�, and
18:2 GeV2 for Bs ! 
. The main aim of this subsection
is to provide fits for the LCSR results, which are valid in
014029
the full physical regime of q2. We will comment below on
the dependence of the fit results on the actual value used for
q2LCSR;max.

We closely follow the procedure we used in our previous
paper on B! pseudoscalar form factors, Ref. [1].
Generically, barring the occurrence of anomalous thresh-
olds, any form factor F�q2� has singularities (poles and
cuts) for positive real q2, starting at the position of the
lightest resonance coupling to the relevant current and
hence can be written as a dispersion integral in q2.
Splitting off the lowest-lying resonance with mass mR,
one has

F�q2� 	
r1

1� q2=m2
R



Z 1

t0
ds

��s�

s� q2
; (58)

where t0 is the threshold for multi-particle contributions,
which can be above or below m2

R. Keeping only the first
term and neglecting the integral altogether one obtains the
vector meson dominance (VMD) approximation.13 Even
though this approximation is expected to work very well
close to the pole, it certainly will not work far away from
it, e.g., at q2 	 0. For B! � transitions it was argued
-16



FIG. 5. Form factors for Bq decays as functions of q2, for central values of input parameters.
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in Ref. [32] that the integral can be modeled by a second
pole at larger q2, which is unrelated to any physical reso-
nance:

F�q2� 	
r1

1� q2=m2
R



r2

1� q2=m2
fit

; (59)

with the three independent parameters r1;2 and mfit.
The dominant poles at q2 	 m2

R correspond to reso-
nances with quantum numbers JP 	 1� for V and T1, 0�

for A0, and 1
 for A1;2;3 and T2;3, eT3. As discussed in
Sec. II, not all these form factors are independent, and
the question arises which ones to fit to the above equa-
tion—or any similar formula—and which ones to define
in terms of the others. As Eq. (59) contains two explicit
poles, we decide the above question in favor of the form
014029
factors with the steepest increase in q2, which means that
the independent form factors are V, A0;1;2, and T1;2, ~T3,
whereas T3 and A3 are the dependent ones, defined as in
Eqs. (3) and (8).

The values of the resonance masses mR in (59) are
known from experiment for 0� and 1� in the Bq channel
and 0� in the Bs channel; the other masses are obtained
using heavy quark symmetry relations [13], the numerical
values are collected in Table IX.

We shall use fits to Eq. (59) for the form factors V, A0,
and T1, where the lowest polem2

R lies well below the multi-
particle threshold �mBq;s 
m�;K�

2.
If, on the other hand, the lowest physical pole lies

sufficiently close to the multi-particle threshold t0 or
even above it, then it may be impossible to ‘‘resolve’’ the
poles from a low-q2 ‘‘perspective.’’ In this case it is more
-17



FIG. 6. Form factors for Bs decays as functions of q2, for central values of input parameters.
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appropriate to expand the form factor to second order
around the pole, yielding

F�q2� 	
r1

1� q2=m2
fit



r2

�1� q2=m2
fit�

2 ; (60)

with the three parameters r1;2 and mfit. This is the fit
formula we shall use for the axial-vector form factors, in
particular A2 and ~T3. For A1 and T2, on the other hand, the
residue of the double pole in mfit turns out to be extremely
small, so that it can be dropped and one is back to the VMD
formula

F�q2� 	
r2

1� q2=m2
fit

; (61)

albeit with an effective pole mass mfit unrelated to any
resonance.

The fits of the LCSR results to the above formulas are
collected in Table VIII; they differ from the LCSR results
obtained for q2 � 14 GeV2, by no more than 2.5%. In
Table VIII we indicate the ‘‘quality’’ of the fit by 7, which
is the maximum deviation of the fit relative to the mean
value of the form factor in percent and defined as

7 	 100

P
t
jf�t� � ffit�t�jP

t
jf�t�j

; (62)

where the sum runs over t 2 f0; 0:5; 1; . . . ; 14g.
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We also have tried fits to the two pole ansatz (59)
without fixing one of the masses. In this case the lowest
pole is fitted to lie below the actual resonance pole, by up to
1:5 GeV2. Given the fact that LCSRs are valid for small q2

far away from the pole, one cannot expect them to resolve
its position with perfect accuracy. Nonetheless we take it as
an indication for the consistency of our approach that the
double pole formula with unrestricted pole positions gives
results that agree qualitatively with those from the re-
stricted fits. We also have checked the dependence of the
fits on the maximum value of q2max;LCSR up to which LCSR
results are included into the fit. It turns out that the fits are
very robust against lowering q2max;LCSR; lowering it from
14 GeV2 to 7 GeV2 changes the fitted values at 20 GeV2

by at most 8%, T2 being the odd one sticking out. In Fig. 7
we show the effects of a change of q2max;LCSR on TB!�1 and
AB!�1 .

Let us now turn to a consistency check of our fits. One
can express the residues of V, T1, and A0 for B! � in
terms of decay constants and strong couplings as follows:

rV1 	
mB 
mV

2mB
fB�gBB��; rT1

1 	
fTB�
2
gBB��;

rA0
1 	

fB
2mV

gBB�;
(63)

where fTB� is the tensor coupling of the B� meson defined in
the same way as light vector tensor couplings, Eq. (21). fB
has been discussed in Sec. IV B; its value is about 200 MeV
-18



TABLE VIII. Fits for the form factors valid for general q2. Columns 2–4 give the results of Table VII for q2 	 0, including the
errors 7tot and 7a1 . The remaining columns give the fit parameters. Note that we fit the form factor ~T3, defined in Eq. (10), instead of
T3. The fit formulas to use are given in the last column, the masses mR are given in Table IX. The penultimate column gives the fit error
7 as defined in Eq. (62).

F�0� 7tot 7a1 r1 m2
R r2 m2

fit 7 fit eq.

VBq!� 0.323 0.030 1.045 m2
1� �0:721 38.34 0.1 (59)

A
Bq!�
0 0.303 0.029 1.527 m2

0� �1:220 33.36 0.1 (59)

A
Bq!�
1 0.242 0.023 0.240 37.51 1.0 (61)

A
Bq!�
2 0.221 0.023 0.009 0.212 40.82 0.1 (60)

T
Bq!�
1 0.267 0.023 0.897 m2

1� �0:629 38.04 0.1 (59)

T
Bq!�
2 0.267 0.023 0.267 38.59 2.3 (61)
~T
Bq!�
3 0.267 0.023 0.022 0.246 40.88 0.1 (60)

VBs! 
K� 0.311 0.026 �0:437a1 2.351 m2
1� �2:039 33.10 0.1 (59)

ABs!

K�

0 0.360 0.034 �0:377a1 2.813 m2
0� �2:509 31.58 0.1 (59)

ABs!

K�

1 0.233 0.022 �0:327a1 0.231 32.94 0.8 (61)

ABs!

K�

2 0.181 0.025 �0:307a1 �0:011 0.192 40.14 0.1 (60)

TBs!

K�

1 0.260 0.024 �0:337a1 2.047 m2
1� �1:787 32.83 0.1 (59)

TBs!

K�

2 0.260 0.024 �0:337a1 0.260 33.01 1.9 (61)
~TBs!


K�

3 0.260 0.024 �0:337a1 0.043 0.217 39.38 0.1 (60)

VBq!K
�

0.411 0.033 0:447a1 0.923 m2
1� �0:511 49.40 0.0 (61)

A
Bq!K

�

0 0.374 0.033 0:397a1 1.364 m2
0� �0:990 36.78 0.1 (61)

A
Bq!K�

1 0.292 0.028 0:337a1 0.290 40.38 1.0 (63)

A
Bq!K�

2 0.259 0.027 0:317a1 �0:084 0.342 52.00 0.2 (62)

T
Bq!K�

1 0.333 0.028 0:347a1 0.823 m2
1� �0:491 46.31 0.0 (61)

T
Bq!K�

2 0.333 0.028 0:347a1 0.333 41.41 2.5 (63)
~T
Bq!K

�

3 0.333 0.028 0:347a1 �0:036 0.368 48.10 0.1 (62)

VBq!! 0.293 0.029 1.006 m2
1� �0:713 37.45 0.1 (59)

A
Bq!!
0 0.281 0.030 1.321 m2

0� �1:040 34.47 0.1 (59)

A
Bq!!
1 0.219 0.024 �0:217 37.01 1.1 (61)

A
Bq!!
2 0.198 0.023 0.006 0.192 41.24 0.1 (60)

T
Bq!!
1 0.242 0.021 0.865 m2

1� �0:622 37.19 0.1 (59)

T
Bq!!
2 0.242 0.021 0.242 37.95 2.1 (61)
~T
Bq!!
3 0.242 0.021 0.023 0.220 40.87 0.1 (60)

VBs!
 0.434 0.035 1.484 m2
1� �1:049 39.52 0.1 (59)

ABs!
0 0.474 0.033 3.310 m2
0� �2:835 31.57 0.1 (59)

ABs!
1 0.311 0.030 0.308 36.54 1.0 (61)

ABs!
2 0.234 0.028 � 0:054 0.288 48.94 0.2 (60)

TBs!
1 0.349 0.033 1.303 m2
1� �0:954 38.28 0.1 (59)

TBs!
2 0.349 0.033 0.349 37.21 2.4 (61)
~TBs!
3 0.349 0.033 0.027 0.321 45.56 0.1 (60)

Bd;s ! �;!;K�; 
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and we expect fB� and fTB� to be of about the same size. The
values of the strong couplings gBB� and gBB�� are more
controversial as discussed below. As a first check, consider
the g-independent ratio
014029
'  
rV1
rT1
1

	
mB 
mV

mB�

fB�

fTB�
� 1:14: (64)

The fitted values of r1 are collected in Table X and yield
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TABLE X. Residues of the lowest-lying pole for VBq!�,
T
Bq!�
1 , and A

Bq!�
0 obtained from our fits as compared to

Eq. (65) with input values from LCSR and CQM determinations.

our fit LCSR [33] CQM [34]

rV1 1.05 0.65 1.14

rT1
1 0.90 0.57 1.00

rA0
1 1.53 0.70 0.94

0. 5. 10. 15. 20.
0.

0.5

1.

1.5

2.
T1(q2)

0. 5. 10. 15. 20.
0.25

0.3

0.35

0.4

0.45

0.5
A1(q2)

FIG. 7. Comparison of the consistency of fits of T
Bq!�
1 and

A
Bq!�
1 obtained for different values of q2LCSR;max. Dots: LCSR

results for q2 � 14 GeV2. Lines: fits according to Eqs. (59) for
T1 and (61) for A1, for q2LCSR;max between 7 and 14 GeV2. The
maximum discrepancy between the fit results at q2 	 20 GeV2

is 2% for T1 and 5% for A1.

TABLE IX. B meson masses in units GeV, taken from
Ref. [13].

0� 0
 1� 1


Bq 5.28 5.63 5.32 5.68

Bs 5.37 5.72 5.42 5.77
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'fit 	 1:16—very close to (64). For r1 fitted using pa-
rameter sets 1 and 3 we find ' 	 1:16 and 1.17, respec-
tively. Any further check of the fitted r1 requires
information on the couplings gBB����, which have been
calculated from both LCSRs [33] and within the constitu-
ent quark meson (CQM) model [34]—with significantly
different results. The situation resembles that for gDD��,
where LCSR determinations are typically by a factor two
smaller than lattice and CQM calculations [35]. For this
coupling there actually exists an experimental measure-
ment by CLEO [36], which agrees with the lattice and
CQM determinations, but disagrees with LCSRs. For the
corresponding B coupling gBB�� there is no experimental
measurement, as the decay B� ! B� is forbidden by phase
space, but one can use heavy quark scaling to obtain gBB��
from the measured gDD�� and compare it with the corre-
sponding theoretical predictions. It turns out that again
lattice and CQM calculations are favored, whereas the
LCSR calculation gives a too small result, which can be
understood following the discussion in Ref. [37]. The
recent LCSR determination [33] has up-to-date input pa-
rameters and they get from a tree-level analysis

gBB� 	 5:37; gBB�� 	 5:70 GeV�1: (65)

For pseudoscalar mesons, NLO calculations have consis-
tently yielded smaller values than tree-level determinations
cf. Ref. [38], which, if true also for the �, would widen the
gap between the results from different methods even fur-
ther. The CQM-model predictions are [34]

gBB� 	 �
���
2
p
0
m�

f�
	 7:2 with 0 	 �0:86; (66)

gBB�� 	
���
8
p
+

��������
mB�

mB

s
m�

f�
	 10:0 GeV�1 with

+ 	 0:6 GeV�1: (67)

It is hard for us to judge on the validity of this approach, but
as far as we understand the model is further based on
empirical success. In Table X we compare the residues
for the B! � transition as obtained from our fits, Table IV,
to their values given in Eq. (63), using the couplings (65)–
(67). For V and T1 with a 1� pole the CQM residues are
about 10% larger and the LCSR about 40% lower than the
fitted values. As discussed above, the LCSR results are
expected to fall short of the real values, so this is an
excellent confirmation of our results. The A0 form factor
014029
shows some discrepancy which may indicate that either the
estimate of the gBB� coupling is too low or that the second
pole in the fit m2

fit ! 33 GeV2 is too close to the resonance
pole to allow a clean determination of its residue. Taken
altogether, however, the agreement of our fitted results to
that of independent calculations is an excellent confirma-
tion of our results.

V. SUMMARY AND CONCLUSIONS

In this paper we present a thorough and careful exami-
nation of the predictions of QCD sum rules on the light
cone for the form factors of Bq and Bs transitions to �, !,
K�, and 
. Our main results for zero momentum transfer
q2 	 0 are collected in Table VII, those for general q2 in
Table VIII.

The present analysis is a sequel of our work on B!
pseudoscalar form factors, Ref. [1], and an extension of the
-20
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previous work of one of us on B! vector form factors,
Ref. [4]. It improves upon the latter by
(i) in
cluding predictions for all form factors of Bq;s
transitions to O�'s� accuracy for twist-2 and 3 2-
particle contributions;
(ii) in
cluding a more sophisticated method for fixing
sum rule specific parameters cf. Sec. IV B;
(iii) im
plementing recently developed new models for
the dominant nonperturbative vector meson con-
tributions, the twist-2 vector meson distribution
amplitudes cf. Ref. [19];
(iv) a
llowing the possibility to implement future up-
dates of some hadronic parameters in a straightfor-
ward way cf. Appendix A;
(v) g
iving a careful assessment of uncertainties at zero
momentum transfer cf. Sec. IV D;
(vi) in
cluding a parametrization of the q2 dependence
of form factors valid in the full physical regime of
momentum transfer cf. Sec. IV E;
(vii) g
iving a variety of consistency checks for the
robustness of the q2 fits and their numerical results.
The accuracy of our results is limited, on the one hand,
by the uncertainty of hadronic input parameters and, on the
other hand, by the systematic uncertainty induced by the
fact that QCD sum rules on the light cone are an approx-
imative method. The uncertainty due to the variation of
only the sum rule specific parameters is about 7%, which
cannot be reduced any further and hence sets the minimum
theoretical uncertainty that can be achieved within this
method. An equally large theoretical uncertainty is induced
by hadronic parameters and can, in principle, be improved
upon. We quote, in particular, the tensor couplings fTV of
vector mesons, which presently come with the rather large
error quoted in Table III. Improvement should be possible
by dedicated lattice calculations, a first example of which
is Ref. [22]. Another relevant hadronic parameter is 7, the
first inverse moment of the twist-2 vector meson distribu-
tion amplitudes, as defined in Sec. IV C. We have inferred a
likely range for this parameter for � and ! mesons from
the known experimental constraints on 7���, and further
determined a range for 7�K�� and 7�
� from the observed
decrease, within QCD sum rule calculations, of the second
Gegenbauer moment a2 with increasing meson mass.
Comparing the theoretical errors collected in Table VII
with the global theoretical uncertainty �15% quoted in
our previous publication [4], we have achieved a reduction
to about 10%. This is partially due to a reduction of the
uncertainties of the hadronic input parameters, in particular
mb, and partially due to a refinement of the assessment of
sum rule specific uncertainties as discussed in Sec. IV B.
Any future reduction of the total uncertainty will depend
on more accurate determinations of 7, which are abso-
lutely essential not only for light-cone sum rule calcula-
tions but also for exploiting the full potential of QCD
factorization formulas for nonleptonic exclusive B decays
[6]. We take this occasion to urge lattice practitioners to
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take up the challenge and develop new and ingenious
methods to tackle this problem—or just give us an accu-
rate value of a2, which would already be a big step
forward.

The prospects for future direct determinations of B! V
form factors from lattice calculations do appear a bit
clouded. On the one hand, there are two recent studies,
by the SPQcdR and UKQCD collaborations, Ref. [39],
using an improved Wilson action and the quenched ap-
proximation. The b quarks are fully relativistic and have
typical masses of about 2–3 GeV, so they need to be
extrapolated to the physical b quark mass. On the other
hand, we conclude from [40] that an unquenched calcula-
tion in NRQCD is not really on the menu, which, as far as
we understand, is due to an improvement in the treatment
of light-quark masses on the lattice, causing the � and
other vector mesons to become instable particles without
a pronounced plateau in the falloff of the correlation func-
tion and essentially prevents a precise determination of
their properties from lattice. We do not pretend to be
sufficient experts in LQCD to be able to meaningfully
comment on these issues but remain hopeful that the
situation will be clarified in due course.

We have calculated all form factors for 0 � q2 �
14 GeV2; the upper bound on q2 is due to the limitations
of the light-cone expansion which requires the final state
meson to have energies E� �QCD: for q2max 	 14 GeV2

the meson energy is E 	 1:3 GeV. In order to facilitate the
use of our results we have given, in Sec. IV E, Eqs. (59)–
(61), simple parametrizations that include the main fea-
tures of the analytical properties of the form factors and are
valid in the full physical regime 0 � q2 � �mB �mV�

2.
The corresponding results for our preferred set of input
parameters are given in Table VIII. We have checked that
the fit results are fairly insensitive to the maximum value of
q2 included and that reducing the latter to, e.g., 7 GeV2

changes the extrapolated values of the form factors at q2 	
20 GeV2 by typically only 1% to 2%, and by 8% at most
(for T2).

In Sec. I we mentioned factorization formulas for form
factors derived in SCET, Ref. [8–10], which, in particular,
imply certain (heavy quark) symmetry relations. Since the
objective of this paper was to provide numerical results,
ready for use in phenomenological applications, we did not
discuss the question whether and to what extent our results
fulfill these relations, nor the size of symmetry-breaking
corrections. A previous study of the corresponding effect in
B! pseudoscalar decays has indicated that such correc-
tions are likely to be nonnegligible [41]. We plan to come
back to these points in a future publication.
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APPENDIX A: FORM FACTORS FOR DIFFERENT
f �T�V AND a1�K

��

The form factors can be written as sum of two contribu-
tions which are proportional to the vector meson’s vector
coupling fV  fL and the tensor coupling fTV  fT , re-
spectively. The uncertainties of these parameters as tabled
in Table III are nonnegligible but amenable to future
improvement by, e.g., lattice calculations cf. Ref. [22].
The same applies to a1�K

�� which also comes with a
considerable uncertainty cf. Eq. (48). In order to allow
the adjustment of our results to improved determinations
of these parameters, we write the generic form factor F as

F 	 f̂L�FL 
 âL1F
L;a1� 
 f̂T�FT 
 âT1F

T;a1�; (A1)

where the hatted quantities are normalized to the central
TABLE XII. Contributions of a1 to the form factors at q2 	 0.
Parameters like in Table XI.

F�0� FL;a1 FT;a1 F�0� FL;a1 FT;a1

VBs! 
K� �0:0057 �0:0396 ABs!

K�

0 �0:0398 0.0024

ABs!

K�

1 �0:0057 �0:0276 ABs!

K�

2 0.0079 �0:0394

TBs!

K�

1 �0:0056 �0:0297 TBs!

K�

3 0.0104 �0:0293

VBq!K
�

0.0060 0.0403 A
Bq!K�

0 0.0403 �0:0001

A
Bq!K�

1 0.0059 0.0281 A
Bq!K�

2 �0:0080 0.0395

T
Bq!K�

1 0.0059 0.0303 T
Bq!K�

3 �0:0103 0.0299

TABLE XI. Contributions in fL and fT to the form factors at
q2 	 0. The numbers correspond to the central values of pa-
rameter set 2, i.e. mb 	 4:8 GeV. T2�0� follows from T1�0� 	
T2�0�.

F�0� FL FT F�0� FL FT

VBq!� 0.1092 0.2139 A
Bq!�
0 0.2036 0.0990

A
Bq!�
1 0.0867 0.1552 A

Bq!�
2 0.0467 0.1743

T
Bq!�
1 0.1034 0.1641 T

Bq!�
3 0.0303 0.1455

VBs! 
K� 0.1275 0.2289 ABs!

K�

0 0.2469 0.1532

ABs!

K�

1 0.1022 0.1641 ABs!

K�

2 0.0445 0.1684

TBs!

K�

1 0.1215 0.1737 TBs!

K�

3 0.0211 0.1339

VBq!K
�

0.1415 0.2234 A
Bq!K

�

0 0.2071 0.1269

A
Bq!K�

1 0.1034 0.1545 A
Bq!K�

2 0.0614 0.1658

T
Bq!K�

1 0.1301 0.1665 T
Bq!K�

3 0.0436 0.1386

VBq!! 0.1048 0.1884 A
Bq!!
0 0.1967 0.0838

A
Bq!!
1 0.0834 0.1357 A

Bq!!
2 0.0443 0.1536

T
Bq!!
1 0.0984 0.1440 T

Bq!!
3 0.0288 0.1264

VBs!
 0.1594 0.2748 ABs!
0 0.2647 0.2098

ABs!
1 0.1226 0.1884 ABs!
2 0.0558 0.1784

TBs!
1 0.1469 0.2019 TBs!
3 0.0316 0.1433
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values used in our calculation, i.e., the couplings of
Table III and aT1  a?1 , aL1  ak1 as given in (48). For
instance f̂L� 	 f�=�205 MeV�. Note that â1�K

��  

â1� 
K
�� and that hatted quantities are trivially invariant

under LO scaling. FL and FT are collected for q2 	 0 in
Table XI and Fa1 in Table XII. To give an example, for

ABs!

K�

0 we obtain

ABs!

K�

0 �0� 	
fK�

217 MeV



0:2469�

aK
�

1 �1 GeV�

0:1
0:0398

�


fTK� �1 GeV�

170 MeV



0:1532



aK

�

1 �1 GeV�

0:1
0:0024

�
;

which, choosing the central values of the couplings and a1,
yields 0.3627, in agreement with Table VII.
APPENDIX B: DISTRIBUTION AMPLITUDES

In this appendix we collect explicit expressions for some
of the twist-3 and 4 DAs that enter the LCSRs. These
expressions are well known and have been taken from
Ref. [16]. The twist-2 DAs have already been discussed
in Sec. IV C. We also motivate and justify the use of
models for DAs based on a truncated conformal expansion.

Before defining the DAs, we introduce the lightlike
vectors in which they are expressed. We denote the meson
momentum by P� (with P2 	 m2

V) and the separation
between fields in a nonlocal operator by x� (with x2 close
to 0) and introduce lightlike vectors p and z such that

p� 	 P� �
1

2
z�
m2
V

pz
;

z� 	 x� � P�

�
xP�

�����������������������������
�xP�2 � x2m2

V

q 	
=m2

V:
(B1)

The meson polarization vector e�+�� is decomposed into
projections onto the two lightlike vectors and the orthogo-
nal plane as

e�+�� 	
�e�+�z�
pz



p� �

m2
V

2pz
z�

�

 e�+�?�: (B2)

We also need the projector onto the directions orthogonal
to p and z:

g?�� 	 g�� �
1

pz
�p�z� 
 p�z��: (B3)

The dual gluon field strength tensor is defined as eG�� 	
1
2 �����G

��. We use the standard Bjorken-Drell convention
[42] for the metric tensor and the Dirac matrices; in par-
ticular �5 	 i�0�1�2�3, and the Levi-Civita tensor ���+�
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is defined as the totally antisymmetric tensor with �0123 	
1. This convention differs in sign by the one of Itzykson/
Zuber [43] used in some programming packages, e.g.,
FEYNCALC. We use a sign convention for the strong cou-
pling g where the covariant derivative is defined as D� 	

@� � igA� and hence the Feynman rule for qqg vertices is

ig��.

Let us also clarify the treatment of SU(3)-breaking
effects in DAs. SU(3) breaking occurs in three different
ways:
(i) t
he contribution of odd Gegenbauer-moments
a1;3;... to the DAs of the K�;
(ii) a
 difference in the values of the couplings f�T�V , the
even Gegenbauer moments a�2 � aK

�

2 and 3-
particle matrix elements;
(iii) t
he modification of relations between DAs by terms
in mq1 �mq2 .
014029
We will take into account the first effect wherever it occurs,
except for terms in O�72�, the reason being that the struc-
ture of 72 terms is very involved and there are yet unknown
contributions in m2

Va
?
1 induced by 3-particle twist-4 DAs.

The second effect is taken into account for the decay
constants and parametrized by the dependence of the
form factors on the parameters 7, as discussed in
Sec. IV C; we do not include SU(3) breaking for the 3-
particle matrix elements as information on these effects is
virtually nonexistant. The third effect is taken into account
at O�7'0

s ; 7's�, i.e., for the chiral-even DAs g�a;v�? . It does
not occur at O�70� and the corresponding terms are un-
known at O�72�.

The 2-particle DAs have been defined in Eqs. (15)–(18).
Up to twist-4 and O�72�, there are seven chiral-odd 3-
particle DAs which can be defined as [16]
h0j 
q2�z��'0gG���vz�q1��z�jV�p; +�i

	 fTVm
2
V
e�+�z
2�pz�

�p'p�g
?
0� � p0p�g

?
'� � p'p�g

?
0� 
 p0p�g

?
'��T �v; pz� 
 fTVm

2
V�p'e

�+�
?�g

?
0� � p0e

�+�
?�g

?
'�

� p'e
�+�
?�g

?
0� 
 p0e

�+�
?�g

?
'��T

�4�
1 �v; pz� 
 fTVm

2
V�p�e

�+�
?'g

?
0� � p�e

�+�
?0g

?
'� � p�e

�+�
?'g

?
0� 
 p�e

�+�
?0g

?
'��T

�4�
2 �v; pz�



fTVm

2
V

pz
�p'p�e

�+�
?0z� � p0p�e

�+�
?'z� � p'p�e

�+�
?0z� 
 p0p�e

�+�
?'z��T

�4�
3 �v; pz�



fTVm

2
V

pz
�p'p�e

�+�
?�z0 � p0p�e

�+�
?�z' � p'p�e

�+�
?�z0 
 p0p�e

�+�
?�z'�T

�4�
4 �v; pz�; (B4)
h0j 
q2�z�gG���vz�q1��z�jV�p; +�i

	 ifTVm
2
V�e

�+�
?�p� � e�+�?�p��S�v; pz�;

h0j 
q2�z�ig eG���vz��5q1��z�jV�p; +�i

	 ifTVm
2
V�e

�+�
?�p� � e�+�?�p��

eS�v; pz�:
(B5)

Of these seven amplitudes, T is of twist-3 and the other six
of twist-4; higher twist terms are suppressed. In the above
equations, we use

T �v; pz� 	
Z

D'e�ipz�'2�'1
v'3�T �'�; (B6)

etc., and ' is the set of three momentum fractions ' 	
f'1; '2; '3g. The integration measure is defined as

Z
D'  

Z 1

0
d'1

Z 1

0
d'2

Z 1

0
d'37



1�

X
'i

�
: (B7)

As for chiral-even DAs, to order O�72� only the twist-3
DAs contribute, which we define as
h0j 
q2�z�g eG���vz��'�5q1��z�jV�p; +�i

	 fVmVp'�p�e
�+�
?� � p�e

�+�
?��A�v; pz� 
O�m3

V�;

(B8)

h0j 
q2�z�gG���vz�i�'q1��z�jV�p�i

	 fVmVp'�p�e
�+�
?� � p�e

�+�
?��V �v; pz� 
O�m3

V�:

(B9)

At first glance, the sheer number of different DAs, two of
twist-2, seven of twist-3, and nine of twist-4, seems to
preclude any predictivity of the LCSRs. Appearances are
deceiving, though: not all these DAs are independent of
each other, and one can disentangle their mutual interde-
pendencies using the QCD equations of motion, which
results in integral relations between different DAs, e.g.,
the chiral-odd DAs 
k, g

�a;v�
? , g3, etc. We shall see ex-

amples of such relations below. The other important or-
ganizing principle for DAs is conformal expansion, i.e., a
partial wave expansion of DAs in terms of contributions of
increasing conformal spin. Conformal expansion relies on
-23



TABLE XIII. 3-particle parameters of chiral-even distribution
amplitudes.

� E3 !A
3 !V

3
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the fact that massless QCD displays conformal symmetry14

which allows one to organize the DAs in terms of irreduc-
ible representations of the corresponding symmetry group
SL�2;R�. The coefficients of these different partial waves
renormalize multiplicatively to LO in QCD, but mix at
NLO, the reason being that the symmetry is anomalous.

As mentioned above, the plethora of vector meson DAs
is not mutually independent, but related by the QCD
equations of motion. These relations are discussed at
length in Ref. [16], whose formulas we adapt to the present
case. The chiral-even twist-3 DAs are of order 7, so we
keep the full dependence on terms induced by 
k, but use
conformal expansion for the admixture of 3-particle DAs:

�1� 7
�g
�a�
? 	 
u

Z u

0
dv

:�v�

v

 u

Z 1

u
dv

:�v�
v


 10E3



1�

3

16
!A

3 

9

16
!V

3

�
f5�2u� 1�2

� 1g; (B10)

g�v�? 	
1

4

"Z u

0
dv

:�v�

v



Z 1

u
dv

:�v�
v

#

 5E3f3�2u� 1�2

� 1g 

15

64
E3�3!

V
3 �!A

3 ��3� 30�2u� 1�2


 35�2u� 1�4�; (B11)

with :�u� 	 2
k�u� 
 7
�2u� 1�
0?�u� 
 7�
0?�u�,
7� 	 �f

T
V=fV��mq2 �mq1�=mV . The dimensionless cou-

pling E3 is defined by the (local) matrix element

h0j 
q2g ~G���'�5q1jV�P; +�i

	 fVmVE3

�
e�+��



P'P� �

1

3
m2
Vg'�

�
� e�+��



P'P� �

1

3
m2
Vg'�

�	



1

3
fVm

3
VE4

�
e�+�� g'� � e�+�� g'�

	
; (B12)

where E4 is a matrix element of twist-4. !A;V;T
3 are matrix

elements of quark-quark-gluon operators involving deriva-
tives and defined in the second reference of [16].

The chiral-odd twist-3 DAs, on the other hand, are
O�72�, so we model them in conformal expansion trun-
cated after the first non-leading-order:

h�s�
k
�u� 	 6u 
u

�
1




1

4
a?2 


5

8
E3!

T
3

�
�5�2u� 1�2 � 1�

	
;

(B13)
14See Ref. [17] for a review on the use of conformal symmetry
in QCD.
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h�t�
k
�u� 	 3�2u� 1�2 


3

2
a?2 �2u� 1�2�5�2u� 1�2 � 3�



15

16
E3!T

3 �3� 30�2u� 1�2 
 35�2u� 1�4�:

(B14)

As mentioned above, we drop contributions in the odd
Gegenbauer moment a?1 , as not allm2

Va
?
1 terms are known.

As for the 3-particle twist-3 DAs, we have, quoting from
Ref. [16]:

V �'� 	 540E3!
V
3 �'1 � '2�'1'2'

2
3; (B15)

A �'� 	 360E3'1'2'
2
3

�
1
!A

3

1

2
�7'3 � 3�

	
; (B16)

T �'� 	 540E3!T
3 �'1 � '2�'1'2'2

3: (B17)

These expressions are valid to NLO in the conformal
expansion.

The chiral-even 2-particle DAs of twist-4, g3 and Ak in
Eq. (15), are O�73�, so we drop them. For the chiral-odd
twist-4 DAs h3 and A? we use NLO conformal expansion
(with a?1 ! 0):

h3�u� 	 1

�
3

7
a?2 � 1� 10�ET4 
 eET4 ��C1=2

2 �2u� 1�




�
�

3

7
a?2 �

15

8
E3!

T
3

�
C1=2

4 �2u� 1�; (B18)

A?�u� 	 30u2 
u2
�
2

5



1


2

7
a?2 


10

3
ET4 �

20

3
eET4�






3

35
a?2 


1

40
E3!T

3

�
C5=2

2 �2u� 1�
�

�



18

11
a?2 �

3

2
E3!

T
3 


126

55
hhQ�1�ii



70

11
hhQ�3�ii

�
�u 
u�2
 13u 
u� 
 2u3�10� 15u


 6u2� lnu
 2 
u3�10� 15 
u
 6 
u2� ln 
u�: (B19)

The formulas for chiral-odd 3-particle DAs of twist-4
are rather lengthy and we refrain from reproducing
them here. They can be found in the second reference of
[16].

The numerical values of 3-particle matrix elements are
given in Tables XIII and XIV for the scales 1 GeV and
1 GeV 0:032� 0:010 �2:1� 1:0 3:8� 1:8
2.2 GeV 0:018� 0:006 �1:7� 0:9 3:6� 1:7
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TABLE XIV. 3-particle parameters of chiral-odd distribution amplitudes. Terms in a?2 are treated as described in Sec. IV C.

� !T
3 ET4 ~ET4 hhQ�1�ii hhQ�3�ii

1 GeV 7:0� 7:0 0:10� 0:05 �0:10� 0:05 �0:15� 0:15 0
2.2 GeV 7:2� 7:2 0:06� 0:03 �0:06� 0:03 �0:07� 0:07 0
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��������������������
m2
B �m2

b

q
	 2:2 GeV. The corresponding one-loop

anomalous dimensions are also given in [16]. The numeri-
cal values for the decays constants f�T�V are collected in
Table III.

APPENDIX C: 3-PARTICLE CONTRIBUTIONS TO
THE LCSRS

In this paper we include contributions of 3-particle
DAs to the correlation function (12) at tree level.
This appendix contains explicit formulas for these
contributions.
15Note that S�2��x; 0� � S�2��0;�x� as the Fock-Schwinger gauge b
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The 3-particle DAs of twist-3 have been defined in
Appendix B; the definitions for twist-4 DAs can be found
in Ref. [16]. Their contributions to the correlation func-
tions are most easily calculated in the external field method
proposed in Ref. [44]. The light-cone b quark propagator in
an external field reads, in the Fock-Schwinger gauge
x�A��x� 	 0:

h0jTb�x� 
b�0�j0iA 	 iS�0�b �x� 
 iS�2�b �x; 0�; (C1)

with
S�2�b �x; 0� 	 �
Z d4k

�2��4
e�ik"x

Z 1

0
dv

1

2
� 
vS2�k;m����G

���vx� 
 v���G
���vx�S2�k;m��; (C2)

where Sn�k;m� 	 �k6 
m�=7n�k� with 7�k�  1=�k2 �m2�.15 This expression is equivalent to Eq. 2.25 in Ref. [4]. The
decomposition (29) selects the chiral-odd DAs (B4) and (B5), and the chiral-even DAs (B8) and (B9). Terms in e�'x0=px
are treated by partial integration; we have checked that all boundary terms vanish. Upon partial integration, we hence have

e�'x0
px

Z
'
eix"�k�l�f�'1; '3�S2�k;m� !

Z
'
eix"�k�l�f�~'1; '3��4S3�k;m�e

�
'k0 � e�'�07�k�

2�;

with l 	 q
 �'1 
 v'3�p, f�~x; y� 	
R
x daf�a; y�, and

R
' 	

R
1
0 d'3

R1�'3
0 d'1.

The contribution of 3-particle DAs to the correlation function (12) then reads:

i
4
fVmV

Z 1

0
dv

Z
D'7�l�2�pq��V �'� 
A�'��2vtr��e6 �p6 �5� 
O�m3

V�



i
4
fTVm

2
V


Z 1

0
dv

Z
D'7�l�2S�'�� 
vtr���q6 
m�e6 �p6 �5� 
 vtr��e6 �p6 �q6 
m��5��

�
Z 1

0
dv

Z
D'7�l�2 ~S�'�� 
vtr���q6 
m�e6 �p6 �5� 
 vtr��e6 �p6 ��q6 
m��5��



Z 1

0
dv

Z
D'7�l�2 
vtr���q6 
m�e6 �p6 �5�T

�4�
3 �'1; '3� 


Z 1

0
dv

Z
D'7�l�34v�pq�tr����q6 
m�e6 �p6 �5�T

�4�
3 �~'1; '3�

�
Z 1

0
dv

Z
D'7�l�2 
vtr���q6 
m�e6 �p6 �5�T

�4�
4 �'1; '3�

�
Z 1

0
dv

Z
D'7�l�34v�pq�tr��e6 �p6 ��q6 
m��5�T

�4�
4 �~'1; '3�



Z 1

0
dv

Z
D'��16 
vfp�e�q�g 
 4vfe�pqg � 4vmfe�pg��pq�7�l�3T�4�1 �~'1; '3�
reaks translational invariance.
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 �� 
v� v�fqe�pg � 4vfe��pq�g 
 vfe�pqg 
m� 
v
 2v�fe�pg�7�l�2T�4�1 �'1; '3�� 

Z 1

0
dv

Z
D'

�
��16 
vfp�e�q�g

� 4vfqe�pg � 4vmfe�pg��pq�7�l�3T�4�2 �~'1; '3� 
 �� 
v
 v�fqe�pg � 4vfe��pq�g


 vfe�pqg 
m� 
v
 2v�fe�pg�7�l�2T�4�2 �'1; '3�

	�
:

In the above formula, we use fabcg 	 tr��a6 b6 c6 �5� and fa�bc�g 	 b " c tr��a6 �5�.
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