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Summary. Deviations of the potentials of stellar systems from integrability cause
stars to diffuse through three-dimensional orbit space. The Fokker—Planck equa-
tion that describes this diffusion takes a particularly simple form when actions are
used as orbit-space coordinates. The rate of diffusion is governed by a vector A
and a tensor KZ, which according to the circumstances of a particular problem
should be calculated either from kinetic theory or from Hamiltonian perturbation
theory. In many astrophysically interesting circumstances A is related to the
divergence of the more readily calculated tensor AZ. In addition to being computa-
tionally handy, this relationship ensures that the orbital diffusion described by the
Fokker—Planck equation causes the system’s entropy, derived from any H-func-
tion, to increase whenever the system is interacting with a hotter system of
scatterers. An investigation of the heating of stellar discs in the light of these
general results yields the following conclusions: (i) a population of stars with an
initially Maxwellian peculiar-velocity distribution will remain Maxwellian as it
diffuses through orbit space only if A%is proportional to epicycle energy and the
population’s velocity dispersion grows as Jt; (i) the self-similar distribution
functions that are the end-points in two and three dimensions of the star-cloud
scattering process proposed by Spitzer and Schwarzschild, predict neither Max-
wellian velocity distributions nor o « |t; (iii) scattering by ephemeral spiral waves
can account for the observed kinematics of the solar neighbourhood only if the
waves have wavelengths in excess of 9 kpc and constantly drifting pattern speeds.
However, even such frequency-modulated, global spirals cannot maintain o « |t
above ox>40kms™!, and they can account for the increase in the vertical disper-
sion with time only with the assistance of clouds. Only scatterers that are not
confined to the Galactic disc are capable of simultaneously increasing the vertical
and radial dispersions as Jf to dispersions in excess of 40 kms~!.

1 Introduction

The usual first step in the analysis of a large stellar system is the construction of a self-consistent
mean-field model of the system. In this model stars move through a smooth potential on orbits
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that generally have three effective isolating integrals. In the system itself, by contrast, the
potential is not absolutely smooth, and over long times the integrals of stars drift from their initial
values. Hence, if it is desired to model the long-term evolution of the system, the mean-field
model must be continually updated to take into account the effects of irregularities in the system’s
potential.

Studies of the evolution of spherical systems in response to irregular star—star interactions have
generated an extensive literature (e.g. Goodman & Hut 1985). But comparatively little attention
has been given to the study of the evolution of non-spherical systems such as flattened clusters
(Goodman 1983) and galactic discs (Wielen & Fuchs 1986), even though such studies address
questions of considerable observational interest. Two techniques have been employed in studies
of spherical systems: (i) Monte-Carlo simulation, and (ii) orbit-averaged Fokker-Planck equa-
tions. In this paper we establish a framework for the study through orbit-averaged Fokker—Planck
equations of the evolution of non-spherical systems, and illustrate the power of this framework by
studying the secular heating of stellar discs such as that of our Galaxy.

At birth, disc stars have random velocities which are typical of the molecular complexes in
which they are formed: less than 10kms~! (e.g. Wielen 1977). The fact that all components of the
velocity dispersion appear to increase along the main sequence towards later spectral types, has
long been regarded as compelling evidence that some sort of stellar acceleration mechanism
operates in the disc. A mechanism which arises naturally, indeed unavoidably, from the
inhomogeneous nature of galactic discs is stochastic scattering of stars by embedded, massive
perturbers. Both molecular cloud complexes (Spitzer & Schwarzschild 1951, 1953) and transient
spiral features (Barbanis & Woltjer 1967; Carlberg & Sellwood 1985) are likely accelerators of
Population I stars.

The suggestion that inhomogeneities in the disc accelerate stars goes back to Spitzer &
Schwarzschild (1951). The acceleration process discussed in that paper was entirely analogous
to the thermalization of a population of energetic particles embedded in a cold plasma, with
the massive molecular clouds playing the role of the energetic particles. Remarkable for its
prescience, this work suggested the existence of gaseous agglomerations of the interstellar
medium with typical masses of 5X10° M some quarter of a century before molecular cloud
complexes were appreciated to be an important component of the galactic disc. Spitzer &
Schwarzschild (1953) subsequently showed that in a differentially rotating disc, stars are acceler-
ated even by clouds that have no random motion. They used the epicyclic approximation to show
that star-cloud scattering in a razor-thin disc would cause the radial velocity dispersion to increase
with time ¢ as £, More recently, Wielen (1977) and Lacey (1984) have extended this approach to
include the vertical structure of the disc, and numerical integrations of star—cloud encounters and
N-body simulations (Icke 1982; Villumsen 1985) have been used to study the evolution of the
stellar distribution function.

A very different point of view was introduced by Barbanis & Woltjer (1967), who investigated
the possibility that discs are heated by spiral arms. They showed that only transient spiral patterns
heat the disc, and recently this idea has been taken up again by Carlberg & Sellwood (1985), who
interpret the rapid heating of numerically simulated discs such as those of Sellwood & Carlberg
(1984), as effected by transient spiral features.

In reality, the distinction between the molecular cloud scatterers of Spitzer and Schwarzschild,
and the spiral scatterers of Barbanis and Woltjer is to some extent an artificial one. Indeed, the
spirals that heat most effectively are the most ephemeral arms and, as Julian & Toomre (1966)
have shown, in a cool stellar disc just such arms grow naturally around any massive body such as a
molecular cloud. Furthermore, observations of the molecular gas contents of our and external
galaxies have shown that molecular clouds are not randomly distributed through the disc, but
tend to be organized into spiral arms (Cohen et al. 1985). Thus heating by molecular clouds is
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inevitably augmented by spiral heating, and it is natural to seek to formulate the disc-heating
problem in such a way that both heating processes can be studied simultaneously. This is a
primary goal of this paper. An additional stimulus for this work is provided by the large stellar
velocity samples that are now becoming available. Such samples enable us to determine the shape
of the stellar velocity distribution in addition to its dispersion. To interpret such distributions
theoretically, we need to follow the evolution of the entire galactic distribution function, and not
just estimate its second velocity moments, as has been customary till now.

This paper is organized as follows. In Section 2 we derive an orbit-averaged Fokker-Planck
equation that may be used to follow the secular evolution of any stellar system in which most
orbits are regular (i.e. admit at least as many isolating integrals as the dimensionality of the
orbits). This equation involves both a first-order diffusion vector A and a second-order diffusion
tensor A2, In Section 3 we show how the tensor A2 is related to the autocorrelation function of an
externally imposed stochastic perturbing potential, and in Appendix A we show that the vector A
generated by such a potential is simply the action-space divergence of A2, Appendix B describes
circumstances in which slightly more complex relations are obtained between A and A2, and in
Section 3.2 we discuss the implications of these relations for the rate of entropy generation within
the system. In Section 4 we use the epicycle approximation to show that the Schwarzschild
distribution of solar-neighbourhood stellar velocities derives from a simple self-similar solution of
the relevant Fokker—Planck equation, provided that A?is proportional to the epicycle energies,
and that in this solution the velocity dispersions increase as the square root of time. In Section 5
we use the approximations introduced by Spitzer & Schwarzschild (1953) to obtain the single
independent diffusion coefficient involved in their planar diffusion problem, and display the self-
similar form to which the solution of this problem tends at late times: in this solution the velocity
dispersions grow as ¢'? and the velocity distribution is significantly sub-Gaussian. In Appendix C
we use the Spitzer—Schwarzschild approximations to derive the diffusion coefficients of the more
realistic three-dimensional problem. From the general structure of these coefficients we show
that in the three-dimensional case the vertical and radial velocity dispersions tend rapidly to the
ratio 0,/0r=0.79 and thereafter grow as t4. We give approximate expressions for the self-similar
solution to which the distribution function tends at late times.

The approximations introduced by Spitzer and Schwarzschild are only marginally valid for
molecular clouds, and break down completely for larger scatterers such as transient spiral arms.
Therefore, in Section 6 and Appendix D we employ angle-action coordinates to calculate the
diffusion coefficients generated in a razor-thin planar disc by (i) a single transient spiral arm, and
(ii) a population of compact clouds such as those discussed, less accurately, by Spitzer and
Schwarzschild. These examples lead in Section 7 to the conclusion that neither molecular clouds
nor transient spiral arms are on their own capable of accounting for the kinematics of the solar
neighbourhood. However a combination of global frequency-modulated spiral structure and
massive molecular clouds may be able to account for the structure of the solar neighbourhood
provided (i) the radial velocity dispersion does not continue to increase as |/t above o0 =40 km s,
and (ii) the heating of the solar neighbourhood has been episodic. Alternatively, a significant
contribution to the heat of the Galactic disc may come from scattering by objects such as halo
black holes, or dwarf satellites of our Galaxy, that are on either highly inclined or highly eccentric
orbits.

2 Orbit-averaged Fokker-Planck equation

Orbits in smooth galactic potentials generally admit three effective isolating integrals. One may
show (e.g. Arnold 1978) that such orbits are closely confined to three-dimensional surfaces in six-
dimensional phase space, namely the orbital tori. These tori may be labelled by any three

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988MNRAS.230..597B

FT9BBVNRAS. Z30- “597B!

600 J. Binney and C. Lacey

independent isolating integrals, but the natural labels to use in any problem in which the potential
changes slowly are some three actions J;, since these are adiabatic invariants. Deviations of the
potential of a real galaxy from perfect integrability and time-independence cause stars to move in
phase space from one torus of constant J to another. However, if the deviations of the potential
from integrability are small, the path traced in phase space by any star will keep close to some
torus of constant J for at least several orbital times. On a longer time-scale, the effects of the
potential’s irregularities on the motion of the star are likely to accumulate, and the particular
torus around which the trajectory snakes, will change. Thus we may picture the phase point of
each starin a real galaxy as drifting slowly from one torus of constant J to another, but thoroughly
exploring the current torus on a much shorter time-scale.

One may show (e.g. Lynden-Bell 1962 or Binney & Tremaine 1987, section 4.A) that the
phase-space density of stars in a perfectly relaxed encounterless galaxy may be assumed to be a
function f(J) of the actions only. (We shall refer to this result as the strengthened Jeans theorem.)
Clearly, if regularities in the potential cause stars to move from one torus to another, f will
change. However, if the drift of stars across tori of constant J is slow compared to the time
required for a star to explore its current torus fairly thoroughly, the phase-space density of stars f
will remain at any given time a function of the actions only, though a function that changes slowly
in time. Thus f=f(J, ?).

We imagine that the steady drift of each star in phase space takes place in a series of discrete
steps in which the star moves from actions J to actions J+ A, where A is a small vector. Let
0P(J, A) be the probability that a star with actions J changes these actions by A in the time interval
ot. Then summing over all values of A we have that the total probability in the given time interval
that the star is scattered from the region of phase space associated with actions J is

jéP(J, A) d°A. 2.1)

Since the volume of phase space associated with actions in the element d°J is (277)°d*J, the
number of stars at time ¢ in d*]J is

Q2nyd*JfJ, o) (2.2)

and the number that in time 6¢ leave this volume is

QaPd*IfJ, o) f SP(J, A) d*A. (2.3)

Similarly, the number of stars that are scattered into this volume of phase space in the time
interval d¢ is

(2n)3d3ij(J—A, HOP(J—A, A)d°A. (2.4)

Equating the difference between the number (2.4) scattered in and the number (2.3) leaving

to the increase in the number in the given volume of phase space, and dividing through by
(2m)*d3J ot, we obtain

‘;—’:= f F(- A, 1) P~ A, &) d*A—£(, 1) f P(J. A) d°A. @y

Since stars change their actions gradually, the rate P(J, A) is non-negligible only for small A.
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Thus we may expand the product f(J, £) P(J, A) in a power series in the J;:
. . I(fP P(fP ‘
fA-A, ) PA—A, A =fJ) P(J, A)— A ALy +3AA, L) +... (2.6)
aJ; aJ;8J;

Substituting the first three* terms of this series into (2.5), we find

of __3UA) | PN

, 2.7
ot o, % alel, (272)
where

K,-(J)EJA,-P(J, A) d3A,

KE(J)EJA;AJ-P(J, A) d°A. (2.7b)

Equation (2.7a) is the orbit-averaged Fokker-Planck equation for the evolution of f, and we shall
call the quantities A; and K}; the first- and second-order diffusion coefficients respectively. A less
general orbit-averaged Fokker—Planck equation has been derived by Rosenbluth, MacDonald &
Judd (1957).

3 The diffusion coefficients and their properties

Clearly, if the diffusion of orbits to be described by the Fokker—Planck equation is driven by
discrete scattering events for which it is possible to calculate the probabilities P(J, A), it is
straightforward to calculate the diffusion coefficients directly from equations (2.7b). For exam-
ple, in so far as it is possible to consider the scattering of a star to occur at a point on its orbit, P
may be calculated from standard kinetic theory (Chandrasekhar 1942; Spitzer & Schwarzschild
1953; Rosenbluth et al. 1957; Section 5 of this paper). However, this approach is unable to handle
satisfactorily the scattering by spatially extended potential fluctuations. If the fluctuating gravita-
tional field may be considered to be an externally imposed stochastic field, the diffusion coeffi-
cients may be calculated by using perturbation theory to follow the continuous evolution of one
orbit into another.

We proceed by expressing the perturbing potential ®,(x, ¢) as a function of angle-action
coordinates (@, J) for the phase-space of the unperturbed potential ®y(x). We therefore write

D(x, 1) = Dy(x) + Dy(x, ) =D+ > W¥.(J, 1) exp[i(n-)]. (3.1a)

ny,ny, N3
where | ®,/®, | <1. Since @, is real, we have
v, =W (3.1b)

In the derivation of the Fokker—Planck equation (2.7a), successive changes were assumed to be
uncorrelated and the diffusion coefficients A} were defined such that for any sufficiently large
time 7', T'A%is the expectation value of the product A; A; of the changes over time T'in the actions
of a star of undetermined initial angle coordinates @,. If we write the Hamiltonian in the form

0H,

H(@,))=H(J)+®(0,)) with (J)= R (3.2)

*The second and third terms on the right of equation (2.6) have means that are of the same order because A;
alternates in sign, while A?, though smaller, is always positive. Similarly, the averages of the fourth and fifth terms in
the series are of the same order and smaller than the terms we retain.
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then the half of Hamilton’s equations which read

J__ﬁ__a_“ﬂ
R )
=—i>, n¥,(J, ) exp (in-9)), (3.3)

yield the actions as continuous functions of time. So to make the connection with our previous
picture, we have to integrate equations (3.3) from initial conditions (6, J;) for a time T
sufficiently long that changes in successive intervals of length T are uncorrelated. Since
| ®,/®,| <1, we write

JO=Jo+ A () +A(0)+. ..
0 =0y+og+6,()+..., (3.4)

where (6=60,+ oy, J=J,) is the unperturbed orbit, the first-order perturbations (#,, A,) are
obtained by integrating equations (A2) and (3.3) along this orbit, and A, is similarly obtained by
integrating equations (3.3) along the first-order orbit. Thus

A(T)=-iSn J T‘l’,,(Jo, ) exp [in- (6 + @o1)] dt. (3.5)

Squaring this equation and averaging over all initial phases #, we find that the only terms in the
resulting double sum which survive are those for which m = —n. With the aid of equation (3.1b)
we may therefore write

T
(AuAy(T)e =2 min fT dff dt’ ¥u(Jo, 1) ¥a(Jo, t') exp [in-a(t—1')], (3.6)
n 0 0

where (...), indicates an average over #,. Finally, we average over the random amplitudes ¥,.
We assume that the perturbing potential is a stationary random process, and hence that the
autocorrelation function ¢, of ¥, depends on ¢ and ¢’ only in the combination ¢ —¢':

cn(J’ t'"tl):'\Pn(J’ t) ‘P:(Ja tl)a
ca(J, v)=ci(J, v) = c,(J, —v), (3.7

where an overline denotes both a 6-average and an ensemble average. Substituting equation (3.7)
into the ensemble average of equation (3.6) and changing to new variables of integrationu=¢+1¢'
and v=t—1t', we obtain

T 2T-|v|
AuAu:%E ni”,‘j dv cy(Jo, v) exp [i(n- @) v] dv

-T [v]
=2mmea>WDmhvnmwmmwwu (38)
n -T

All the c,(J, v) are small for v greater than the autocorrelation time of ®,. Hence for T much
larger than the autocorrelation time, the right side of equation (3.8) becomes proportional to 7.

Equating the coefficient of T in this expression to AZ, we have, correct to second order

K,’%’:Eninja’n(.,, n'w), (393.)
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where T, is the Fourier transform of the autocorrelation function;

cn(J, v) —=—f ca(J, 1) exp (ive) dt. (3.9b)
Note that ¢, satisfies the relations

I, v)y=eiJ, v)=2_,J, —v). (3.9¢)

3.1 RELATIONS BETWEEN THE DIFFUSION COEFFICIENTS

The calculation of the first-order diffusion coefficients A, is harder than that of A2 because we
now have to go to second order in the perturbation in order to obtain results of equivalent
accuracy. Fortunately this labour is in general unnecessary: in Appendix A we show that any
externally applied random field generates diffusion coefficients which satisfy

ol

J

A=

ol

(3.10)

When we substitute equation (3.10) into equation (2.7a), the Fokker—Planck equation
simplifies to

of |9 _af>
T 2 (a2 3.11
ot 7aJ,-( Xy (3.11)

The relation (3.10) does not apply if the scatterers suffer significant recoil when they scatter
stars. However, we show in Appendix B that if the distribution function of such scatterers is
thermal, f o exp (— BH), then the associated diffusion coefficients satisfy

aJ;

]

_ dAZ _

A =45 - pon). (3.12)

Thus in the high-temperature limit 8 — 0, these diffusion coefficients also satisfy equation (3. 10).
A useful restriction on the second-order diffusion coefficients is that the quadratic form

Q(x)=x;Akx; =0 (3.13)

is non-negative. To prove this, we observe that some transg)rmation J—J =U-J, where U_is an
orthogonal matrix, will diagonalize the symmetric matrix A2, and that the eigenvalues A, of A? are
simply the mean-square changes in the components of J': 1, =(A))2.

3.2 ENTROPY GENERATION

Consider the rate of change of the H-function, 5% = — [ C(f) d*J, associated with some convex
function C(f) (Tremaine, Hénon & Lynden-Bell 1986):
dH of
—— —_ | ~ B
dt ) at !
(f D) aZ(K}f)]
=—|c - 41 J 4¥. 3.14
Jewn |- 1D (3.14)

Eliminating the first-order coefficients with the aid of equation (3.12) and integrating by parts,
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this becomes

dH of — [ of )

— =1 () = A=+ Bw.f) &) 3.15
= -i{end ,(ajj puf) &3 (3.15)

In the case =0 of very massive scattering structures, the non-negativity of d. 9% /dt is guaran-
teed by the condition (3.13) on the quadratic form Q and the convexity condition C”=0. If, on the
other hand, the scatterers are thermally distributed with non-zero inverse temperature § and the
scattered stars are thermally distributed with inverse temperature ', we have

d.s% — .
o 1(B'=B)B’ f C'(f) fPoAjw;d?), (3.16)
which clearly has the same sign as 8’ — 8. Thus the condition (3.13) ensures that any entropy of a

heated system increases, while that of a cooled system decreases.

4 The Schwarzschild distribution as a solution of (3.11)

K. Schwarzschild (1907) found that the number density of stars near the Sun (z = 0) with peculiar
velocities v in any velocity range d°v is well fitted by the formula

d3 2 2 g
fo(v) d3v=L——exp [— (—vi+&+ v—)], 4.1

(2n)*ogo,0, 20% 203 20?

where ny, 0z, 04 and o, are constants. Modern research (e.g. Bahcall 1984) has tended to confirm
this conclusion (although the best available data still do not narrowly constrain the shapes of the
velocity distributions of coeval stellar populations). Furthermore, Wielen (1977) presents persua-
sive evidence that the velocity dispersions o and o, of a coeval stellar population tend to grow as
J¢. In view of the strengthened Jeans theorem and the Copernican principle, it is interesting to
express Schwarzschild’s velocity distribution in terms of isolating integrals, and to see under what
circumstances it is a a self-similar solution of the Fokker-Planck equation (3.11) with the
velocities scaling as Jt.

We adopt as the three fundamental actions of orbits in an axisymmetric potential ® (R, z) the
radial action J,, the azimuthal action J,= L,, and the latitudinal action J;, which in a spherical
potential reduces to the difference L —|L,| between the total angular momentum and its
component parallel to the symmetry axis. The usual epicycle energies yield approximate expres-
sions for J, and J,.

For small excursions from the plane, the z-energy E, =3(v? + v?z?), where v2 = (3*®/9z?), is an
approximate isolating integral and we have

E, 1

Ji=— = — (v +1%2?). (4.1b)
v 2

Furthermore, if R, is the guiding-centre radius of an epicyclic orbit defined in terms of the galactic

circular frequency Q(R) by L, = R}Q(R,), then J, is approximately related to the epicycle energy
ER bY9

s= o L e R-R ) (4.2)
xR g ’

where %*=[(2Q/R) d(QR?)/dR]g, is the square of the epicycle frequency. Noting that the
tangential component of velocity with respect to the local standard of rest may be written (e.g.
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Binney & Tremaine 1987, section 7.5)
x2
vy=~- (2—9) (R-Ry), (4.3)
we may rewrite Ey to leading order in (R — R,)/R, as
Ep=3[vk+y>}],
=xJ, (4.4a)
where
2Q(R
E;éf' (4.4b)

In the epicycle approximation, 03 =0%/y?, so vk/ok+ v§/04=2Eg/0%. Substituting this
expression into equation (4.1), we see that Schwarzschild’s empirical distribution is fo(v) = fs(xo,
v), where

E E,
fs(x, v)= S — exp | — =24 —-) , (4.5)
(2m)*oro,0, 0% 02

and x, is the Sun’s position vector. By Jeans’ theorem, fs 1s a solution of the collisionless Boltzmann
equation provided the quantities 1 and o; occurring in it depend on the phase-space coordinates
only through integrals of motion. Furthermore, in a stellar disc in which 0y <], radius R s tightly
correlated with L,; at any point in the disc we have (L,— L,)*<L}. Therefore we assume
no=ny(L,) and similarly for the o;. With these assumptions, it is now straightforward to show that
the derivatives of a distribution function of the form (4.5) that generates an exponential disc of
scale-length Ry, satisfy at Ex< 0% and E, < o? the inequalities,

1 lalnfS

x .
T wRy’ aJ,

d 1nfs
aJ,

v
=~ R ~= —

d Infs
L,

, (4.6)

0% o?
and that the second derivatives of In f; satisfy similar relationships. Thus derivatives of fs with
respect to L, are smaller than those with respect to J, or J; by a factor ~ (v/v.)?, where v is the
typical epicyclic speed. If scattering occurs at points on stellar orbits and produces comparable
velocity changes Av in the different directions, then the diffusion coefficients are of order

v? - v2
By~ (BoFs B~ R(Bv)~ o (B
— Rv VU
Al = — (Av)*~— (Av). (4.7)
P Qx

Thus AT,‘,,/A‘:,",'v(vc/v)z, Kg ESvc/v, and similarly for A_,Z¢. Consequently, the terms in the
Fokker—Planck equation involving L, are smaller than the other terms by at least a factor ~v/v.,
and may be neglected. Hence we may write

of @ 5 5 5 5 8

2 of_ 3 (DRR A + Dg, —f>+ — (DRZ A + D,, —f) (4.8a)
at  JdEy, dEg oE,/ OE, dER ok,

where

Dw=#*A%; Dr.=xvA%; D, =vAj. (4.80)
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The Copernican principle suggests that Schwarzschild’s distribution (4.5) with n, and the o;
functions of t and L, only, should satisfy equation (4.8a). We write the solution of equation (4.8a)
as

f(ER’ E,, t)=ﬂRﬂz exp[_ﬂRER_ﬂzEz]’ (49)
where 8y and 3, are undetermined functions of time, since then the total number of stars per unit

angular momentum, N = (2x)* [§ dJ, [§ dJ,f, is automatically time-independent. Substituting
equation (4.9) into equation (4.8a), and cancelling through by f, we find

Br B\ . s oo (3Dre 3D\ (3D,  3Dp
2(/3R+ﬁz> 2(PrErtp:Er)= ﬁ“(aER+aEz> ﬂz(aE2+aER>

+ Bk Drr +2PrB. Dr, + B2D... (4.10)
This equation can be valid for all ¢, Ex and E, only if the first parenthesis on the left side, which
clearly neither vanishes nor depends on either E or E, can be balanced by a similar term on the
right. Furthermore, the term on the left that is linear in £ and E, must be balanced by a similar
linear term on the right. Evidently either Dgg o< Eg or Dgg o< E,, and similarly for D,,. The natural
ansatz is

DRR=KRER; DR2=M; Dzz=2KzEz’ (411)

where K, K, and M are constants. If the diffusion coefficients are of this form, we obtain on
equating the coefficients of E on each side of equation (4.10), Br/B%= — Ky, which implies

or(t) = é- = JKg(t— 1) (# is a constant), (4.12)
R

and similarly for o,(f). it is straightforward to check that the first parenthesis on the left of

equation (4.10) is correctly matched on the right only if M =0.

Thus our analysis connects the conclusion that one naturally draws from solar neighbourhood
studies and the Copernican principle, that an initially Gaussian velocity distribution will stay
Gaussian, to the observational evidence presented by Wielen (1977) that the velocity dispersion
of a coeval population grows as /. Put another way, the conclusion of this section is that in order
to explain both the excellent fit of a Gaussian distribution to the z-velocities of the K giants, and
the observed evolution of the dispersions, we only have to explain why the diffusion coefficients
are given by equations (4.11).

5 The Spitzer-Schwarzschild problem

As an illustration of the application of equation (3.11) to disc star heating, we first employ the
approximations introduced by Spitzer & Schwarzschild (1953) to follow the evolution of the
distribution function f(J,, L,) of a razor-thin disc in which are embedded a number of compact

scatterers such as molecular clouds. For a full discussion of these assumptions, see, e.g. Lacey
(1984).

5.1 DIFFUSION IN A RAZOR-THIN DISC

We consider only star-cloud encounters with impact parameters p <€a, where a is the amplitude of
the star’s radial excursions. In the epicycle approximation, we have

R—R,=acos(xt+y)=acosb,
vr = R= —xasin6,

= — 2Egsin6,, (5.1a)
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where yx is a constant and
0, =xt+y (5.1b)

is the epicycle phase. Substituting the first of equations (5.1a) into (4.3), we have that
—
Vy=— ~ 2Eg cosb,. (5.1c)
14
In the approximation that each encounter occurs at one point on the epicycle, and the cloud is

much more massive than the star, v + v is unchanged by an encounter, so the post-encounter
velocity v is simply the pre-encounter velocity v rotated by the deflection angle 4. Hence

TR = Vg COS YPaen + Vg SIN Yen
[pap— . 1 .
=— 2FEg | sin b, cos fijq+ — cOS O, SIn Paeq |- (5.2)
Y

From equations (5.1a) and (5.2) it now follows that the change in vz induced by the encounter is

Avy =% —v%
1 . . , 1
=2Eg [2— sin 26, sin2yPgeq — SIN% Pgen (sm2 6, — - cos? 0,) } (5.3)
Y Y

Since |V |2=|v|?, differencing equation (4.4a) yields
1
AJ,= — (1—7?) Avd. (5.4)
2x

Combining equations (5.3) and (5.4) we have

2
AJ,=Eg 17y [l $in26, sin 294eq — SN Yeeqn (sin2 0,— 1 cos? 0,) ] . (5.5)
x |2y y?
Notice that AJ, can have either sign depending on the phase 6, at which the encounter occurs.
Since y>1, J, diminishes when the encounter occurs near 6, = 0 and the star enters the encounter
with tangentially directed peculiar velocity.
The deflection angle . is a function of p and the speed v with which the star approaches the
scattering cloud. By equations (5.1), the approach speed is

1/2
v=Jvk+v3i=2E¢ <sin2 0,+ ylz cos? 6,) ) (5.6)

Since v is typically larger than =7 kms~! even for a freshly made star, and the characteristic
internal velocity dispersion of the clouds 0. =~10kms™!, most star—cloud encounters cause only
small deflections. We model the molecular clouds as Plummer spheres of mass M. and scale
length r., and estimate the deflection in the impulse approximation. In a small-angle deflection,
the velocity gained is almost perpendicular to the velocity of approach, so

2GM.p

. 2oMp 5.
|wdeﬂ| vz(p2+rg) ( 7)

If there are N, clouds per unit area of the disc, a star moving at speed v encounters clouds with
impact parameters in the range (p +dp, p) at a rate 2N.vdp. Hence integrating over impact
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parameters smaller than a, we have

8GZMIN. (* pidp  2aG>M2N,
f PP (5.8)
0

ANyl dp = = ,
J,, e A

v
where we have approximated the integral by its value in the limit ¢ — .
Squaring equation (5.4) and averaging over the epicycle phase 6,, we have to leading order

in ttUdeﬂ;

_ 1—y222 (> (22G2M?N,
A VN2 f <”—) cos? 6, sin?6, d, (5.9)
T Jo

%2')/2 vSrC

With equation (5.7) this becomes,

— 2G*M3N, [2A? L co0s2 6, sin?0,
rr = \/2ER .
*x2r, »? o (sin?6,+y~2 cos? §,)¥?
—— 2G*M?.N,
= BB =, (5.10)

Here A= —3}R,(dQ/dR)g =Q(1—-y?) is Oort’s constant and [Gradshteyn & Ryzhik 1965,
equations (2.584.40) and (2.584.47)]

7= (@) [(1— 2%) K(Jm)—E(JZ/—Q)], (5.11)

Fed

where K and E are the usual complete elliptic integrals. In the solar neighbourhood, A/Q =0.54,
Q/x=0.74 and 7=0.43.
We define a dimensionless time 7 and a dimensionless energy & by

4GMN.7 2E
r=————1¢ and ==* (5.12a)
U U?
where
GM,
U= . (5.12b)
rC

Notice that U is the characteristic internal velocity of the clouds, and 27GM_.N,)t is the
velocity that would be gained in time ¢ by a test particle in falling towards a uniform sheet with the
same surface density as that formed by the clouds. Substituting equation (5.10) and these
definitions into equations (4.8) and retaining only terms involving E alone, we have

gi 6(@ ) (5.13)

Equation (5.13) will henceforth be known as the Spitzer—Schwarzschild equation.
5.2 SELF-SIMILAR SOLUTIONS OF THE SPITZER—SCHWARZSCHILD EQUATION

Equation (5.13) admits self-similar solutions of the form

fu(E,1)=71F(X), where X=E¥/, (5.14)
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and a is an arbitrary constant. On integrating equation (5.14) over all & (which is proportional to
the action J,), we have that the total number of stars in the system described by f, is «<¢*2?, Thus
for a=—3%, solutions to equation (5.14) describe discs in which the stellar birth rate is propor-

tional to a power of time. Inserting equation (5.14) into equation (5.13) we find that F must satisfy
the differential equation:

d*F , . dF
XE+3'(1+3X);1}

—3aF=0. (5.15)

It is straightforward to find solutions to this equation of the form F = Z;=0a, X"+, where c =0
or4. The required solution is that linear combination of these series that has a convergent integral
J FdE for the total number of stars. At large X, this solution goes as exp (—3X) X~©@*?3_1In the
interesting special case a = —% of a constant number of stars, the required solution to equation
(5.15) is simply F < exp (—3.X); that is, the physically interesting solution employs only the power
series with ¢ =0, since this series corresponds to zero flux of stars through & = 0. Thus substituting
from equations (4.4a), (5.12a) and (5.14) we see that at late times the distribution function of a
coeval population tends to

_ (U%? + y2v2¢)3/2:|

5.16
QU*GM N Tt (5.16)

foct~exp [

Hence the velocity distribution is not Gaussian, and the dispersion grows as ¢1°.

5.3 THREE-DIMENSIONAL SPITZER—SCHWARZSCHILD DIFFUSION

In Appendix C we use the usual Spitzer—Schwarzschild approximations to derive for a disc of
finite thickness the second-order diffusion tensor D defined by equations (4.8b). We find that

D=CD(y), where #n=arctan(E,/Ey) (5.17)

and the dimensional constant Cis defined by equation (C8). The dashed curve in Fig. 1 shows for
the case y = /2 of a flat rotation curve the variation with # of the ratio A,/4, of the two eigenvalues
of D. This ratio never rises above 0.1. Thus D is extremely anisotropic, permitting rapid diffusion
along the curves that are everywhere tangent to the eigenvector of D associated with D’s larger
eigenvalue, but very slow diffusion perpendicuiar to these curves. Consequently, in a relaxed
disc, contours of constant f will approximately coincide with these curves, which are shown in Fig.
2 for y=2.

We estimate the time required to establish this state of affairs as follows. With each of the
curves shown in Fig. 2 we may associated a characteristic time for diffusion from end to end
ty=(E,/cos ¢)?/(A4,C), where E, is the curve’s intercept with the E, axis, and the quantities
¢=60° and 1,=2 may be read from Figs 1 and 2. In the solar neighbourhood
C=(25kms 1)*/10¥yr (e.g. Lacey 1984), so t3=10"Yyr for E,~(21kms™!)?, which is slightly
smaller than the value of E, to which Wielen’s (1977) age—velocity—dispersion relationship seems
to asymptote. Thus star—cloud scattering should be able to hold the isodensity contours of all but
the hottest disc populations parallel to the curves of Fig. 2 independently of what mechanism is
responsible for diffusing stars perpendicular to these curves.

The functional dependence D(7) causes the Fokker—Planck equation (4.8a) to admit self-
similar solutions of the form

E;
t°F(Xg, X,) where ,EE (5.18a)
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Figure 1. The full curves show as a function of the angle 7 defined by equation (5.17) the eigenvalues 4, and 4, of
the dimensionless diffusion tensor D generated by a thin layer of clouds in a disc with a perfectly flat rotation curve.
The dashed line shows the ratio 4,/4;.

Er or Xz

Figure 2. Curves in the (Ey, E,) plane everywhere parallel to the eigenvector of D that has the larger eigenvalue.
In a steady-state disc, scattering by clouds would tend to establish a distribution function that is constant on these

curves. Also shown are the positions of the points of a 500-particle Monte-Carlo simulation of the solution of
equation (5.18b) in the case a=—1. '

and F satisfies

9 (.~ oF
— (D, == + X,F) =2(1+a)F.
X\ " oX

J

(5.18b)

Integrating equation (5.18a) over all actions, we have that the number of stars in the system is
oct!*e, We shall concentrate on the important special case @ = —1 of a coeval population.

The points shown in Fig. 2 are the final positions of the 500 particles of a Monte-Carlo
simulation of the solution of equation (5.18b) in the case a = — 1. These particles have mean ratio
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0./0r=VX, /X =0.79£0.02. Since all the integral curves of Fig. 2 are similar to one another, the
hypothesis that these curves should coincide with isodensity contours, predicts that the square
root of the ratio E/ ET; of the mean values of E, and Ej along any such curve should be of order
0.79. Unfortunately, E,/Ey is zero along any curve of Fig. 2 because the latter asymptotes to the
E axis. In reality the isodensity contours must depart from the curves of Fig. 2 a short distance
above the Ejy axis, since otherwise an infinite density gradient would arise above this axis, parallel
to a direction in which the diffusion coefficient is non-zero. If the isodensity contours hit the Ex
axis just below the point on the corresponding curve of Fig. 2 which has coordinate =7,,,, then
we find that V E, / E, falls from 0.7888 at 7,,i,=0.05 to 0.65 at 7, =0.005. These numbers may be
compared with Lacey’s (1984) analytic estimate 0,/0z=0.78 and the value 0,/0r=0.6+0.04 from
Villumsen’s (1985) numerical experiments. Taking our cue from our Monte-Carlo simulation, we
henceforth adopt #,,, =0.05.

In the approximation that f is constant on each of the integral curves of Fig. 2, and there is
negligible diffusion into or out of the wedge 7 < in, equation (5.18b) may be solved as follows.
If X(7), 0<n<(7/2), is some curve in Fig. 2, then we may construct coordinates (&, ) for the
active portion of the X-plane by writing

X(&, n) =EX(n); (5.19)

each curve in Fig. 2is now a curve of constant £. Then settinga = —1, integrating equation (5.18b)
through the region of > #,,;, between two adjacent curves of constant £ and using the divergence
theorem, we have in conventional vector notation

f ﬁ-(l~)-VF+XF)dl—f ﬁ-(ﬁ-VF+XF)dl=O, (5.20a)
E+dE 13
where
dX
dl=§& ‘ — ldpy (5.20b)
dn

is an increment in distance along a curve of constant £, and

_1 52 v
(dX’ , - &> (5.20c)
dn dn

dX
dn

=

is the upward-pointing unit normal to the curve. Since the tensor D is diagonal in a frame aligned
with i, we obtain on dividing equation (5.20a) through by d&

d ~

d_§ [fdl (A-D-A)(H-V) F(§)+]d1(ﬁ-X) F(E)J =0. (5.21)
On substituting from equations (5.20b, c) for d/ and #, this is seen to be of the form
dF

& — + K&?F = constant, (5.22a)
dég

where the constant K is defined by

i XX, -X% md D [R] 5.22b)

= - h-D-A) s———=—=. .

K f”mn d’?( Rz z R)/’:?mi“ 77(“ n)XRXz_XzXR (
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Figure 3. Histograms of the distribution of & values predicted by equation (5.23) (full lines) and the distribution of &
values in our Monte-Carlo simulation of the solution to equation (5.18b) with a = — 1 (dotted lines). In the latter case
particles were assigned & coordinates under the assumption 7, =0.05.

By an appropriate choice of the curve X(#), and thus of a particular scaling for &, we may set
K =1; for 9y, =0.05 we then have X, =0.314 £ on Xz =0. With K =1, the appropriate solution of
equation (5.22a) is

F(§) = Fy exp (§%/2). (5.23)

Thus three-dimensional Spitzer—Schwarzschild diffusions tends to establish a distribution func-
tion that is Gaussian in the energies rather than in the velocities. Fig. 3 compares the histogram of
& values predicted by equation (5.23), N(&) < £ exp (—&?/2), with the £ values assigned to the
particles of our Monte-Carlo simulation when #,,;, =0.05. The agreement is excellent.

6 Scattering by spiral structure

In Section 4 we showed that the observed stellar velocity-distribution near the Sun requires
that the diffusion tensor P(J) scales as J, and in Section 5 we have shown that the Spitzer—
Schwarzschild process is inconsistent with such behaviour. At this point it is natural to enquire
whether this inconsistency arises from the rather marginal validity of the approximations intro-
duced by Spitzer & Schwarzschild (1953). In Appendix D we show that when one drops the
assumption that scattering occurs at a point on the orbit, one obtains for the planar problem a
diffusion coefficient A7 that scales as J, for epicycle amplitudes a <., and as J Y2 for a=r.. Thus to
obtain the desired growth of A2 for stars with random velocities ~40kms~! we would require
clouds of size r,=a=/(2v%)/x=1.5kpc. Unfortunately such extended clouds would be ripped
apart by the shear of Galactic rotation. An additional effect is that a massive cloud orbiting in the
disc will grow around itself a stellar wake in the form of a trailing spiral, which may considerably
enhance scattering by the cloud (Julian & Toomre 1966; Julian 1967). Hence we are led to
consider the possibility that the scattering objects are spiral density waves.

From equation (3.9a) it follows that a steady spiral wave heats stars only at the Lindblad
resonances (Lynden-Bell & Kalnajs 1972): in this case W,<exp(—imS,f), so the power
spectrum ¢, (v) « 6 (v — m<;) and there is no contribution to equation (3.9a) unless Q, satisfies a
Lindblad condition mQ,=I%+mQ. Since the heating of discs is clearly not localized, we
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conclude that either (i) the disc is heated by large-scale spiral features that last only a dynamical
time or so, and thus give rise to ¢, that are not strongly peaked around any particular frequency,
or (ii) an infinite number of normal modes is excited, such that every star lies at a resonance of
some mode. These two points of view would be equivalent if one were assured that the system had
a complete set of normal modes, since any dynamically possible surface density (x, ¢) could then
be represented as a superposition of normal modes. However, we adopt the picture in which the
spiral arms are ephemeral, since this picture is the more effective in practice.

6.1 THE ANGLE REPRESENTATION OF A SINGLE SPIRAL WAVE
Consider the effects of the spiral potential
@, = ¢(t) exp [i(kR+mg)]. (6.1)

We assume that the background potential ®, generates a circular speed v.(L,), and evaluate A2
for J;=0 and values of J, sufficiently small that the epicycle approximation is valid. In the epicycle
approximation, J,is related to the radial energy Er by equation (4.4a), and we have [see equations

(5.1)]

va(Eg) .

R=R,(L,)+a(Eg) cosb,; =0,+ S
g( 0) (ER) © ] ¢ Rg(L¢) 1

nb,, (6.2)
where Ry= L,/v. is the guiding-centre radius, x is the usual epicycle frequency, y is defined by
equation (4.4b) and a=2Eg/x is the epicycle amplitude. Hence

@, = ¢(t) exp (ikRy) exp (ika cos 6,) exp (im¢) exp (i n%q sin 6,) . (6.3)

g

Equation (8.511.4) of Gradshteyn & Ryzhik (1965)* enables us to rewrite ®, as the product of
two Fourier series in 6,:

@, =¢&(f) exp (ikRy) > inJ,(ka)exp (in6)x > T, <Cn§) exp (in'6,) exp (im#6,), (6.4)
n=-—0o n'=—c0 g

where the J,,, are now Bessel functions rather than actions. Replacing n’ with the new summation

variable /=n+n’, and using formula (8.530.2) of Gradshteyn & Ryzhik (1965), equation (6.4)

becomes

®©

®,= > &(t) exp [i(kR,+1a)] J,(F " a) exp [i(16,+mb,)], (6.5a)

|=—0

where

m2y2

(6.5b)
R;

o= arctan (ﬂ) and FH'=./k2+
kR, B

Comparing equation (6.5a) with equation (3.1a), we identify ¥,, as the coefficient of
exp [i(16,+ m8,)] in equation (6.5a):

¥ =¢(t) J(F'a) exp [i(kR;+la)]. (6.6)

*In the form exp (iz cos 8) = =2, irJ,(z) exp (in6). Inserting the identity sin 8 = cos [(6 — (7r/2)] into this formula, we
have exp (izsin8) = 2%, J,(z) exp (in6).
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When we substitute this expression for ¥, and the corresponding result for the complex
conjugate potential ®; into equation (3.9a) and approximate w, with the circular frequency
Q(L,), we find that the diffusion coefficient generated by the real spiral potential ®; + ®f is

A=2 > PJHF'a)T(x+mQ), (6.7)
l=—c

where ¢ (v) is the Fourier transform of the autocorrelation of £() and we have taken advantage of
the identity J,(z) = (=)'J_,(2).

6.2 EFFECTIVENESS OF SPIRAL HEATING

By formula (8.536.2) of Gradshteyn & Ryzhik (1965) we have
> PI¥z) =422 (6.8)
1=1

Hence if the power spectrum T (v) of (¢) were independent of v we would have ALoc (F' apcl],
in accordance with observation; i.e. a white-noise power spectrum generates a diffusion tensor of
the required form

In practice we do not require that ¢ be absolutely independent of v: | J,(z) | declines steeply for
I>z, so the first z terms in the series of equation (6.8) already sum to =}z2. Hence a power
spectrum which falls off for | v —mQ|> 1, » yields A_E,oc J. fora=sl,,/ %' .

A spiral wave is likely to have a significant amplitude only in the radius range where the
condition Q —x/m<Q,<Q+x/m is satisfied. Fig. 4 illustrates this situation. The width T
of the peak in the power spectrum results from two effects: individual spiral patterns have
finite growth and decay times, and successive spiral patterns may have different pattern speeds.
It is hard to imagine any density perturbation forming or dispersing in less than the local
epicycle period, so I'<x seems a reasonable limit. In this case, illustrated in Fig. 4, we have
lnax=1, and so A% o« [J,(F " 'a)]*. The desired behaviour A2« ], is obtained only if #'a<1

2(v)

+x mQ+2« mQ+3x

Figure 4. The power spectrum of a typical transient spiral perturbation.
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(Carlberg & Sellwood 1985); by z=1.1, dJ}(z)/d(z?) has fallen to half its value at the origin, and
by z=1.85, J;(z) has started to decrease as a function of z.

For a typical solar neighbourhood star, with rms radial velocity v3"?=40kms~!, we have
a=1.5kpc, so that ' a=<1 requires an effective wavelength A=2x/%"' =9 kpc. Equivalently,
m must be small (m <4) and/or the spiral pitch angle large (i = 20° for m =2 and i = 40° for m = 3).

A consideration which we have neglected is that the rms amplitude £2(£)"2 of the spiral structure
may vary secularly as the disc evolves. This possibility is discussed in detail by Carlberg &
Sellwood (1985). The effect may be either to boost or depress the velocity dispersion of old stars
relative to the case that £? is constant at its present value. However, with a suitable decline in the
value of €2t is possible to reproduce the observed relation o o< t2 with A2/J, a decreasing function
of J, — but even in this case the velocity distribution would in general be non-Gaussian.

6.3 VERTICAL HEATING BY SPIRALS

The previous discussion can be generalized to include the vertical motions of stars. The perturb-
ing potential (6.1) is multiplied by a factor {(z) which gives its dependence on z. We assume that g
is symmetric in z: {(—2) =£(z). The Fourier coefficient of the potential ¥, is given by (6.6)
multiplied by a factor F,, where

F,(J)= 2—1; f” tlz(J;, 6)] exp (—in6) de,. (6.9)

It follows from the symmetry of {(z) and of the z-motion that F, is non-vanishing only for even n.
The expressions for the diffusion coefficients are now of the form

Aj=2 2 2 n U F' a)| F,|%¢ (Ix+nv,+ mQ). (6.10)
|=—~0 p=—w
We consider the case of harmonic z-motion: z=b sin6,, ,=v,t+¢; J,;=E,/v, =lv,b%. We
further restrict ourselves to the case in which the thickness # of the spirals is small compared to
their wavelength: k;h <1, where k,=/k?+ m?/R?. Then &(z) has the limiting behaviours

‘) { ~1—-(kyz?/2h)  k,|z|<kh

) 6.11
<exp (—ki|z|) kh<k|z|<1 6.11)

where we have adopted the normalization £(0) =1. Evaluating F, for k;b <1, we find that ALis
still given by equation (6.7), independent of E,, while A2 and A} are both proportional to E? when
b<h, and proportional to E, when b> h. If, in addition, 5% "'a<1, then A% and A2 are propor-
tional to Ex and Ajis independent of Ex. The amplitudes of the diffusion coefficients depend on
the power spectrum ¢ (v). The largest contributions to A2 and A} come from the terms with
n=12, and involve factors ¢ (mQ+2v,*x) and ¢ (mQ 2v,), respectively. For stars in the solar
neighbourhood, v,/x =2-3, so by the argument given in Section 6.2 regarding the local and width
of the peak in ¢(v), these factors are expected to be very much smaller than & (mQ+x).
Therefore we expect that A}, A2 < A2 and conclude that vertical heating by large-scale spirals is
negligible — a conclusion similar to that already reached by Carlberg (1984, 1987).

This conclusion may be somewhat mitigated if one includes higher harmonic components in the
spiral potential, at multiples =2, 3, . .. of the fundamental wavenumbers (k, m), as might for
instance result from the non-linear response of the interstellar gas to the spiral potential. These
would produce subsidiary peaks in the power spectrum centred at frequencies gm Q, with widths
T, which could overlap the frequencies gmQ+2v, for q of a few. The subsidiary peaks would
however have amplitudes suppressed by several powers of g relative to the main peak, so the
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effect from any one such peak should be small. If the spiral patterns contain structure down to
very small scales, then the cumulative effects of many harmonics might be significant for vertical
heating, but then one is closer to the picture of scattering by small-scale ‘clouds’ than one
involving large-scale ‘arms’.

7 Conclusion

Lumps and bumps in the potentials of stellar systems cause the orbits of stars to evolve on time-
scales that greatly exceed the orbital times. If, as is frequently the case, orbits in the potential of
the underlying smooth stellar system may be coordinated into three-dimensional orbit space, this
slow evolution of orbits manifests itself as a diffusion of stars through orbit space. In Section 2 we
have shown that when actions are used as the coordinates of orbit space, the Fokker-Planck
equation that governs this diffusion takes a particularly simple form.

The diffusion coefficients A and A2 of the general Fokker—Planck equation may be obtained
either from kinetic theory — that is by supposing that stars move freely along mean-field orbits
between abrupt scattering events — or via Hamiltonian perturbation theory from the Fourier
transform ¢ ,(v) of the autocorrelation function of the scattering potential.. In Section 3 we used
first-order perturbation theory to obtain a general relation between ¢ ,(v) and the diffusion tensor
A2 In general, derivation by Hamiltonian perturbation theory of the corresponding relation
between &, and the first-order diffusion vector A requires a second-order calculation. However in
Appendices A and B we derive relationships between A and A? that under many astronomically
interesting circumstances permit one to calculated A from A? without recourse to a tedious
second-order calculation. Furthermore, in Section 3.1 we showed that these relationships
together with the non-negativity of the quadratic form associated with A?, ensure that any
H-function yields a non-decreasing entropy for the system.

Two natural fields for the application of the results of Sections 2 and 3 are (i) the evolution of
globular clusters, and (ii) the evolution of stellar discs. In Sections 4—6 we used our results to
study the secular heating of stellar discs. In Section 4 we show, independently of any hypothesis as
to what is responsible for heating of the discs of spiral galaxies, that a population of disc stars will
retain a Gaussian distribution of peculiar velocities as it ages and heats if, and only if, the random
velocities grow as the square root of time and the diffusion tensor A? scales with epicycle energy
E ..qas A2 E e

In Section 5 we investigated how a stellar disc heats in consequence of the scattering of stars off
molecular clouds on circular orbits. For a razor-thin disc we recover the classical result that the
velocities grow as ¢1?, and we display the self-similar form to which the distribution function of a
coeval stellar population in a two-dimensional disc would settle at late times. This proves to be
exponential in the cubes of the velocities. In Section 5.3 and Appendix C we extend this analysis
to discs of finite thickness. The diffusion tensor is in this case extremely anisotropic, with the
consequence that the action-space density of stars rapidly becomes almost uniform along curves
that are everywhere tangent to the direction of largest diffusivity. Once this regime is established,
the velocity dispersions in a disc with a flat rotation curve satisfy 0,/0x=0.79. On a time-scale
considerably longer than that required to establish this velocity dispersion ratio, the distribution
function of a coeval stellar population tends to a self-similar form in which the phase-space
density falls off as a Gaussian in the energies, and the velocity dispersions grow as ¢4,

Since the results of Section 5 accord very ill with observations of the solar neighbourhood,
it is natural to enquire to what degree this conflict between theory and observation arises
because clouds do not, in fact, scatter stars at a single point on the stellar epicycle, as is
assumed in the picture introduced by Spitzer & Schwarzschild (1953). In Appendix D we have
used the perturbation-theory results of Section 3 to calculate the diffusion coefficients for cloud
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scattering in a razor thin disc without making any locality assumption. For values of E such that
the epicyclic amplitude a=1.503/(40 km s~!) kpc is larger than the typical cloud size r., there is
excellent agreement between our new results and those obtained by the method of Spitzer and
Schwarzschild. For smaller epicycle amplitudes, however, the two calculations do give materially
different answers. Indeed for values of Ex such that a<r., Appendix D yields a diffusion tensor A2
that has exactly the scaling A%oc E which observation seems to require for all values of Ej.
However, for a scattering object with scale size r,=1.5 kpc one cannot justify the assumption of
Appendix D that the scatterer is spherically symmetric, since an initially spherical object of this
size would soon shear out into a spiral arm. Hence from Appendix D we conclude with Lacey
(1984) that the Spitzer—Schwarzschild process cannot, unaided, account for the age-velocity—
dispersion relationship in the solar neighbourhood, but that there is a prima facie case that
ephemeral spiral arms might be able to account for the observations.

We find that a sequence of sinusoidal spiral perturbations of effective wavenumber %"
[equation (6.5b)] and having a temporal power spectrum with width I" in angular frequency
generates a diffusion tensor that scales as Ex for % 'a<max(1, ['/x), where a is the epicycle
amplitude. It seems unlikely that spiral features can evolve on time-scales shorter than the
epicycle period, so I'<x, and we obtain the desired scaling of the diffusion tensor only if the
effective wavelengths A =21/ of the features responsible for the bulk of heating satisfy
A=2na. For the solar neighbourhood this implies that spiral structure can drive the velocity
dispersions of populations as 12 up to 40 km s™* only if the dominant features are of wavelength
A=z9kpc. In other words only global spirals could account for the observed age-velocity-
dispersion relationship below 40 kms™!. Significant amplitudes of smaller-scale features are
excluded on the hypothesis that spiral structure heats the disc, since such features would tend to
flatten a plot of o versus |t at late times.

While the functional form of ¢() is independent of T for I'<x, the rate at which o increases
depends sensitively on I'/» and the dominant pattern speed Q,,. If I < %, spiral heating is effective
only near the Lindblad resonances associated with Q. Thus spiral heating is effective over the
whole disc only if I'=2x. This could be achieved either by having I'=x for a single wave, or by
having a sequence of waves that covers a range 0Q2,=x in pattern speeds. The first case seems
implausible since one would not expect the disc regularly to stumble into a configuration that is
unstable on a dynamical time. On the other hand, a sequence of slowly growing spirals with
steadily shifting pattern speed may arise naturally: at each instant the set of the permitted pattern
speeds of global spiral patterns would be discrete and the disc would heat rapidly in narrow
resonant zones. The disc’s resonant frequencies would then shift in response to this heating, and
the spirals would start to heat different resonant zones. If these zones were to wander around the
disc sufficiently rapidly such frequency modulated global spiral structure would be capable of
accounting for the observed increase in oy near the Sun. Notice that this picture makes the
observationally testable prediction that the growth of o; at the Sun should be episodic. On
account of the long wavelengths of the spirals needed to account for solar neighbourhood
observations, it is exceedingly improbable that spiral structure alone can account for the evolu-
tion of the vertical dispersion o,.

A simple physical argument explains why neither clouds nor short wavelength spirals can
generate diffusion tensor that scales as E,4. We have A2C>C(AER)2 so our inference from
observations of the solar neighbourhood that A2oc Eg implies that v+ Avoc A Egoc JEz|v|, and
thus that Av is independent of | v|. Compact scatterers such as clouds are ruled out because they
imply Av e 1/|v|. Spiral waves are ruled out because a wave excites only those stars which are in
resonance with one of the frequencies generated by Doppler-shifting the wave to the star’s rest-
frame; for a fast-moving star these frequencies are inconveniently high, so the Av generated by a
wave is a steeply declining function of | v|. What can produce changes Av that are independent of
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|v| is any potential perturbation that lasts significantly less than an epicycle period: for such a
short-lived perturbation, the impulse approximation is valid and Av is automatically independent
of | v|. The structures that give rise to these potential perturbations must move so fast that they
are unlikely to be confined to the disc. Two possible candidates are (i) a massive halo object
(Lacey & Ostriker 1985) and (ii) dwarf galaxies in the process of tidal disruption by our Galaxy
(Rogers, Harding & Sadler 1981; Lance 1986). The existence of numerous high-velocity star
streams near the Sun (Eggen 1977) strongly suggests that a significant proportion of the hottest
portion of the disc has been contributed by now defunct satellites, rather than built up by
accelerating stars formed at rest in the plane. However, it is not immediately apparent that this
picture can account either for the approximately radius-independent scale heights observed in
external galaxies (van der Kruit & Searle 1981, 1982) or the ratio 0,/ 0z =0.6 measured for several
solar neighbourhood populations. None the less, whatever agency is responsible for increasing
the velocity dispersions in discs, the work of Section 5.3 suggests that scattering by clouds should
be able to enforce a ratio 0,/0z=0.8 at least up to dispersions 0,~20 kms™?.
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Appendix A: first-order diffusion coefficients

The second-order change in the actions A, is the difference between the integral of Hamilton’s
equations (3.3) along the first-order and the zeroth-order trajectories. Thus

' 9 d\od
Az(t)=—f l:(Al'—+0l'_>—_l] ar'
0 aJ 00/ 00 (0=8y+wyt,J=1Jp)

! oY,
=—iSn| dar|a -2
% fo [ ' aJo

The first-order perturbation in @ occurring in this equation may be calculated by observing that

+i(n-6,) ¥.(Jo, t’)] exp [in- (6 + ayt")). (A1)

t

. H Y,
0= Z—J = (o(J)+§ aa_J exp (in-6). (A2)

t

Subtracting the unperturbed equation of motion and integrating with respect to time, we have

0,(0) = f {Al-a—“’ 43 D

0 aJO n aJO

exp [in-(00+w0t’)]} dt’

t

9 t t’
=—iyn s f dt’ f dt" W,(Jo, t") exp [in- (6y+@,t")]
n aJO 0 0

' oW,
+ R
s [

Substituting equations (3.5) and (A3) into equation (A1) and averaging over the initial phase,
we find

exp [in- (y+w,t')] dt'. (A3)

¢

T
Ba(Thy = 3 dr{

jt &' [¥a (o, ) ¥3(Jo, 1)] exp [in- @t —1")]
0 aJ

0

d ©o [
+n: c’)_J_ (in-w) j dt'f dr"¥,(Jo, 1) ¥x(Jo, t") exp [in-mo(t—t”)]}. (A4)
0 0 0

When we interchange the order of the ¢’ and ¢’ integrations in the second term and perform
the ¢’ integral, we find that we can combine both terms to obtain

5 T
(As(T))y = 5 > n;n; f dt j dt’ ¥u(Jo, ) ¥i(Jo, t') exp [in-ay(t—1"). (AS)
i n 0 0
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We carry the summation over n inside the integrals, and observe that the integrand is then
manifestly invariant under the interchange n — — n. However, with equation (3.1b) we have that
the effect of this interchange is to exchange the roles of f and ¢’ in the integrand. Consequently the
specified integral over the portion of the (¢, t') plane with 0 <¢' <t, 0 << T'is equal to half the
value of the integral of the same integrand over the entire square 0<¢<T, 0<¢'<T. But
equation (3.6) shows that this integral is equal to (A;;A;;(T)). Hence to second-order accuracy
19

> 6_], (A A (T =A% (T))e ={A(T))s, (A6)

where the second equality follows because from equation (3.5) we have that
(A =0. (A7)

Taking the ensemble average of both sides, and letting T become large, equation (3.10) now
follows.

Appendix B: diffusion coefficients generated by recoiling scatterers

As Chandrasekhar (1942) has shown, the first- and second-order diffusion coefficients associated
with a stellar population in thermal equilibrium are related in such a way that the stochastic
acceleration of members of the population that is described by A2 is balanced by the dynamical
friction drag associated with A. It is interesting to derive this relationship from equation (2.7a).

Equation (2.7a) states that the rate of growth of fis equal to minus the divergence of the action-
space flux

15fA

EAAY)

(B1)
Now if the scattering objects have reached non-rotating thermal equilibrium, the equilibrium
distribution function of the scattered stars will be of Gibbs’ form

fo<exp (=BH), (B2)

where f is the inverse temperature of the scattering objects and H is the Hamiltonian governing
the motions of individual stars and, by the principle of detailed balance, the flux S in equation
(B1) will vanish. Substituting equation (B2) into equation (B1) with S =0, using equations (3.2)
and dividing through by f;, one obtains equation (3.12). Since the diffusion coefficients depend
only on the distribution of scatterers, equation (3.12) must be satisfied independently of whether
the scattered stars are, in fact, in thermal equilibrium with the scatterers.

In practical applications the scatterers may be neither thermally distributed nor so massive that
it is obvious that their gravitational field may be assumed to be independent of the motion of the
scattered stars, as was assumed in Section 3.1. A derivation of equation (3.10) from time-
reversibility and kinetic theory will elucidate whether equation (3.10) is satisfied in such a case.

Let the phase-space coordinates (xi, . . . , Xy, V; . . . , Uy), Where N is three times the number of
particles in the system of scatterers, completely define the dynamical state of the system before it
scatters a particular star in a given way from actions J to actions J + A, andlet : x{,...,xp, v1, .. .,
vy) define the state of the scattering system after the star has been scattered. Then in a time-
reversed model of the entire stellar system, each such scattering will be associated with a
scattering (J+ A, x', —v')— (J, x, —v). Of course the time-reversed system is distinguishable
from its original because it will counter-rotate. However, if the original system has a symmetry
plane containing its spin axis (and thus bears no spiral pattern), it will be statistically
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indistinguishable from a mirror image of the time-reversed system, although every transition
(J, x, )= (J+A, x’, v') that occurs in the original will be accompanied by a transition
J+A,-x",v')> (J, —x, v')its time-reversed and mirrored double. Thus we may assert that the
probabilities per unit time per unit volume of 2N-dimensional phase space that a given star will
take part in such transitions in either system are equal:

PJ+A, —A, —x', v/, —x, v)=pJ, A, x,v,x', v'). (B3)

Now the rates Pentering equation (2.7b) are related to these rates by

P(J, A) = f F(x,v) p(J, A, x, v, x', v') dV"x d¥vdNx'dNv',

P(J+A, —A) = fF(—x’, v)pJ+A, —A, —x', v, =x, v) dVx'd v’ dVxdNy, (B4)

where F(x, v)d"¥xd"v is the probability that the scattering system will have coordinates in
d"xd"v. Now if the scattering system is very massive, its coordinates (x, v) will be little changed
by the scattering event, so unless the system is very cold in the sense that its phase-space density F
is an extremely rapidly varying function of the phase-space coordinates, we have for massive
scatterers F(x, v)=F(x’, v'), and in such a case it follows from equation (B4) that

P(J,A)=P(J+A, —A), (BS)

which allows (2.7b) to be rewritten

EEinP(J, A) d°A = fAiP(J+A, —A) &°A

. P

)

— A2

dA; —
=—A+ —aJ—’+O(A,3). (B6)

]

This is equivalent to equation (3.10).

Appendix C: three-dimensional Spitzer—Schwarzschild diffusion

Since Eg=3(vk+y*v3) and E, =}(v2+1222), we have

AEg=vgrAvg+3(Avg)* + v [v,Av, +3(Av,)?]

AE,=v,Av,+3}(Av,). (C1)
Hence

(AER)?=vk(Avg)* +2y20R0s Avg A v, + 703 (Av)2 + O[(AV)Y)

AERAE, =vgv, Avg Av, + 70,0, Av, Av, + O[(Av)?]

(AE,)*=vi(Av,)*+ O[(Av)*]. (€2)

Let a4 be a unit vector parallel to v, and let b and ¢ be any two mutually perpendicular unit
vectors in the plane normal to 4. We write

Av=Avja+Av,,b+Av, ¢ (C3)
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We have to leading order in In A, for clouds at rest in the LSR.

Ay Av) =(yAv, )= (Av,Av.)=0,

47G*n M3 ln A
(A1) = (Ao ) = (A ) = ===,
((A’Uu)z) =(), (C4)
Thus
(Av; Avj) = ((Av”)z) 4,4, + (A vJ.)2>(i3iBj +66)). (C5)

But d,’&j"i‘b,‘bj"f‘é,’éj = 6,] and d,' = 'D,'/'U, SO

(A v =(Av?) "2 +4(Av, ) (a - —”)

=x(Av,)) ( i vv—?) : (C6)
Substituting from equation (C6) into equations (C2), we obtain
(@B =3 |G rtug - L a0y
AEAE) =~ BRI (4,
'UZ
(AE.)) = -v (1— —> ((Av.)D). (C7)

We assume that all encounters occur as stars cross the plane z = 0; at such moments, v, = @
The fraction of each orbital period spent in a cloud layer of half-thickness A, is then 2vh. /(2 E,),
so defining

N.=2h.n; C=-G>NMv InA, (C8)

Qoo

the z-averaged diffusion coefficients are

nC 4E%
AE?), = 2 4 pdp2) — ——
((AER): 22E.v [(UR rivg) 02 ]

nC 4EzER

AERAE) = — ————
(AERAE.) 22E, v 02

aC 2E
AE,)?), = 2E, 2.
(AE.))= >PEv ( v2) (C9)

Since vg = —2Eg sin 6, and Uy =— (Jﬁ;/y) cos 8,, stars cross the plane with speed v given by,

=vk+v3+v2=2(Ex+E,)(1- k2 cos?6,), (C10a)
where
1-y-2
k= —t
1+ E,/Eqg (1)
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Substituting these expressions into equations (C9) and averaging over 6,, we obtain, finally, the
independent elements of the diffusion tensor Dgg = ((AEg)*). etc. as

Ex k 712 14 (y2—1) cos?6, o[
Da=C| =2 [ j Gi-Deost o 46,
E, J1-y2 J1—k? cos?6, 1—y2 (1—k? cos?6,)*?

0 0

ER k ')/2_1 k2 E(k)
=CH|— K(k)+ K(k)—-E -
V2 ko B ww -~ 5 (ct1a)
E, k3 /2 de,
DRZ=—C P
Ex (1—y2%2 ), (1-k?cos?6,)¥
[E. Kk  E®)
=_C==
ER (l_y—2)3/2 1_k2 (Cllb)
oo Bk [ fvﬂ do, E, Kk (" de,
2z Exi-y2|Jo 1-k?cos6, Egl—y2J), (1—k?cos?6,)
E. Ex k* E(k)
=Cyf 22 - K- =2 =22
ERJl—y-Z[ O E1-e (Clic)

Appendix D: scattering by clouds in action-angle coordinates

We calculate the diffusion tensor for a star with guiding-centre radius R, and epicyclic amplitude
a. Let ¢ be the usual azimuthal coordinate, and define the locally Cartesian coordinates

x=R~-Ry;; y=Ry0. (D1)
The clouds are on circular orbits, whose coordinates [x.(f), y.(¢)] satisfy
Xc=X0; Ye=Yo+t (R Q—2Ax0)t, (D2)

where x,, v, Q and A are all constants. Let the Fourier transform of the potential of a cloud
centred on the origin be

o L (" .
o= f J ®O(x, y) exp [~ iHo(px+qy)] dx dy, (D3)

where % is an arbitrary constant and %,=2x/%. Then for convenience we work with the
potential

®(x,y, )= E @,,(¢) exp [iFo(px + q)l, (D4a)
P-4

where the sum is over integer values of p and q and
@, (1) = B, exp {~iFo[ pxe(t) + qy(1)]
= @, exp [—iF{ pro+qlyo + (RQ — 2Ax0) ]}, (D4b)

This is the potential of a periodic array of clouds with centres at (x.+iZ, y.+ j£), with
i and j integers. We choose % such that

2nR,
F

M

(D5)
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is an integer. The potential (D4a) is a sum of spirals of the form (6.1) with k=.%p and
m=Z,R,q=Mgq. Thus, if we rewrite it in terms of the star’s action-angle coordinates, the
coefficient of exp [i(16, + m6,)] is

Pigm(t) = 2 ®,,(1) exp (ila) J(F" a), (D6)
p
where a and %" are defined by equations (6.5b).

Equation (3.9a) relates the desired diffusion coefficients to the temporal power spectrum of the
Wiym)- The Fourier transform with respect to time of ®,,(¢) is

®,,(v) = 2205, 6[v — g H (R, Q — 2Ax0)) exp [—iF5o(pxo+ qyo)]- (D7)
Thus
Y (2n)? e (c) ¥
®,,(v) B (v )=2A|q|% LD 6(v—v')
v—-qMQ
<0 (x0+ IZ) e -ion(o—p] (0 0) 08)

Averaging over all possible initial cloud positions (xo, yo), with |x,| and | y,| in the interval
(0, %), this yields

= 1 . v gMQ
i+ L asugn [z
—gMQ
ex [i(p—p’) v—q_] 2r6(v—v"), (q#0). (D9)
2Aq
Therefore
@) Bl (v')
E';”(‘IM)(JH L¢, 'V) = l(q;;a(v i(q:i,))
2“6(1’ v') o 2700 =) 2 T B )

x exp {il[a(p) ~a(p")]} J[F" (p) a] I (p') a]

N
2A|q|

v—gMQ )
2nAq

2

> @) exp [ip (%) ] exp (ila) J(F' a) (g#0). (D10a)

Similarly

Cu(v) =270(v) 2 | @R > JH(FH"a). (D10b)
p
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The spatial Fourier transform of the potential of a spherical cloud of mass M, and scale length
r. is

2 ®©
(lef,) = é . DE(r) Jo(Fr) r dr
_ GM. fi(Fr)

, D11
£ T/ F (D11a)

where the form factor f,(x)—>1 as x— 0 and f.(x)— 0 for x- . For example, the Plummer
potential, ®C)(r) = — GM./r*+ r2, yields f.(x) = exp (~x).

The power spectrum of N..%? randomly distributed clouds per cell is simply N..%? times
that of a single cloud. Hence the power spectrum of such an ensemble is

G2M:N, | P,|? ( 1 %)
o (et aMO) = Pl g #0), D12a
where
- 3 B2 ) cos (1) 1% ),
v T
v=—2 _arctan (L) and %" = pT+yiq Fo. (D12b)
2A g vq

Since |P_; ;| =[P _,|=|Py|, we have &_; =€/ _ou= T s Substituting equations (D10)
and (D12) into equation (3.9) and using these identities to simplify the summations, we have

AL= D X 1PE u(lx+qMQ)

|=— g=—

* 2 04
25 ; 12$Phl2

q=1 I=1

G2M2Nc

A= > 3 l(gM) &1 gu(lx +qMQ)

l=— g=—x

=0 (D13a)

A= D 2 (M) T, u(lx+gMQ)

l=—-ooq=—oo
GZMZN
" WRZEq 3 | P2,
q=1 I=-nq
where
2nA )
nET. (D13b)

In Fig. 21 we _m_ot for Plummer-model clouds and v, = constant numerical estimates of the
values of A7 and A3, in the limit %, — 0 together with estimates of their asymptotic behaviour
in the limits a— 0 and a— . The asymptotes for the limit a— o have been calculated using
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Figure D1. (a) Diffusion coefficient AZ as a function of epicyclic amplitude a for two-dimensional Spitzer—
Schwarzschild diffusion. Solid curve: equation (D13a). Dashed line: the same quantity calculated with the approx-
imations of Spitzer & Schwarzschild. Dotted line: asymptote for small a calculated by the method of Julian & Toomre
(1966). (b) The corresponding curves for A—ﬁ,;.

the approach of Spitzer & Schwarzschild (1953): A2, follows from equation (5.10) and we have

— 2G?M2N, (R/r) 2Q

= T s T KGATR) - B(ATR)) (D14)

Both curves are seen to approach these asymptotes as expected. The asymptotes for the limit
a— 0 have been calculated by using first-order perturbation theory to follow individual orbits in
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the (x, y) plane (c¢f. Julian & Toomre 1966). We have
- IO (1)
mr— A . ILVg
—  2G?M32N, [RN\? (a\*? 2
A= ——— %) |- G_\(y), D15
* A (t) (r) G- (b132)
where

©°  xp N1+x2> 2
G,(y)= F dx
O v L e
F(y)=y[Kip)+(?=1) yKo(y)]- (D15b)

Here the K; are modified Bessel functions. Fig. D1 shows that while the value of —A_Z: obtained from
equations (D14a) rapidly approaches the corresponding asymptote of equations (D15a), for
small a/r. the curves for A—EM, do not agree. The origin of this discrepancy lies in the singularity of
the angular momentum exchange for encounters at impact parameter x, as xo— 0. The (x, y)
plane calculation proceeds by calculating A L, for complete encounters, and then averaging its
square over x,. Unfortunately, encounters at x, = 0 are never completed, so strictly speaking, the
point xo =0 should be excluded from the averaging integral and these encounters treated
separately. Of course, a separate treatment would be unnecessary if AL, were finite at x,=0.
However, the angular momentum exchange between the star and a cloud on an orbit with x,=0
diverges as the integration time T as T— . When this divergent quantity is squared, averaged
over x;, divided by T'and T'is taken to infinity, a finite contribution to Avg,d, arises, which the action-
angle calculation automatically includes. However this contribution is of little consequence since
the angular momentum exchange calculated with perturbation theory is unreliable for all suffi-
ciently small x,: at late times along such orbits the angular coordinate y differs by an arbitrarily
large amount from that along the unperturbed trajectory (e.g. Icke 1982), and thus no convergent
perturbation series for y(¢) is possible. Fortunately this phenomenon does not materially affect
the reliability of the calculation of E
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