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ABSTRACT

The gravitational collapse of a gas cloud (such as a protogalaxy or proto-star cluster) is likely to be both
inhomogeneous and nonspherical, with anisotropic tidal forces and velocity fields. This anisotropy significantly
affects the growth of perturbations in the flow which may cause fragmentation. The local evolution of small-
scale, small amplitude perturbations in the inhomogeneous shearing flow of a self-gravitating fluid with baro-
tropic pressure is found to be the same as that in a homogeneous anisotropic flow having the same local
velocity field. General features of the evolution are identified. The method of local analysis is applied to the
study of perturbations in inhomogeneous, nearly pressure-free background collapses starting from cosmo-
logical initial conditions (as is appropriate for galaxy formation) and having (i) spherical symmetry or (ii)
planar symmetry. Results of numerical integrations and asymptotic analyses are presented. In both cases (i)
and (ii), perturbation growth during later stages of collapse is found to be driven mainly by the kinematics of
the background flow, with self-gravity playing a negligible role (perturbation behavior for a homogeneous
spherical collapse is completely atypical in this regard). It is suggested that this behavior is likely to be a fairly
general feature of low-pressure, nonrotating collapses. Perturbation growth due to the kinematic effect is in
general anisotropic, and in the nonlinear regime is likely to lead to collapse to planar configurations which are
not self-gravitating. It is found that if gas in such planar sheets can cool sufficiently, then these sheets will be
susceptible to self-gravitating instabilities on small scales, leading to fragmentation into bound objects. These
results also apply to the collapse of a collisionless fluid having negligible velocity dispersion, up to the point

when perturbations go non-linear and particle trajectories cross.
Subject headings: galaxies: formation — hydrodynamics — instabilities — stars: formation

I. INTRODUCTION

An important problem in astrophysics is the study of the
growth of small-scale fluctuations in the density and velocity
inside a fluid body which is itself undergoing gravitational
collapse. This is important for understanding the fragmenta-
tion of a cloud into gravitationally bound subunits, for
instance in the problem of star formation inside a larger gas
cloud, or the formation of substructure such as stars or star
clusters inside a collapsing protogalaxy. One would like to
know whether, given some initial level of fluctuations, it is
possible for fragmentation to occur at all during the collapse,
where we interpret fragmentation to mean the attainment of
order unity fluctuations in the density, and, if so, what are the
morphologies and preferred mass scales of the fragments. This
subject has been reviewed in the context of star formation by,
for instance, Tohline (1982). The development of fluctuations
during collapse is also important in the study of dynamical
relaxation of collisionless systems, where the growth of pecu-
liar velocities on small scales is at least partially responsible for
the phenomenon of “violent relaxation” (Lynden-Bell 1967).
These ideas have recently been applied by Ryden and Gunn
(1987) to the formation of galaxy halos by secondary infall, and
by Aarseth, Lin, and Papaloizou (1988) to the collapse of pro-
toglobular clusters.

Previous studies of this problem have been restricted either
to background collapses having uniform density or to situ-
ations where both the background flow and the perturbations
have some special (generally spherical) symmetry. The best
understood case is where the background flow is both uniform
and isotropic: Lifschitz (1946) first analyzed perturbations in a
homogeneous isotropic cosmological model, while Hunter
(1962, 1964) investigated perturbations in a uniform density
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collapsing spherical cloud. These flows have the common
feature that the local velocity field expanded around any point
comoving with the fluid is isotropic, as is the tidal component
of the gravitational field, so that the latter depends only on the
local mass density, and there are no tidal forces due to distant
matter. Therefore the dynamics of the background flow are
determined entirely locally, and the local velocity field is
closely coupled to the local density throughout the collapse.
These features are, however, not at all typical of a generic
collapse, which tends to be both inhomogeneous and
nonspherical—inhomogeneous because any slight degree of
central concentration in the initial density causes the central
parts to collapse on a shorter time scale than the outer parts,
which increases the degree of central concentration; non-
spherical because any slight degree of flattening initially
present also tends to be amplified so long as the collapsing
body is roughly homogeneous and the pressure is small (Lin,
Mestel, and Shu 1965; Goodman and Binney 1983). In either
case, the local gravitational field develops an anisotropic, tidal
component, which in turn causes the local velocity field to
become anisotropic, and to become decoupled from the local
density. This can radically alter the evolution of perturbations,
as compared to the homogeneous isotropic case. Work on
perturbation behavior in such cases has been fairly restricted.
Perturbations in inhomogeneous spherical collapses have been
analyzed by McNally and Settle (1980), Ryden and Gunn
(1987), and Silk and Suto (1988), but only for perturbations
which are spherically symmetric. Perturbation evolution in the
nonspherical collapse of a uniform density spheroid has been
investigated by Falle (1972) and Silk (1982). In addition, there
have been some calculations by Arny (1966, 1967) using an
approximate particle method.
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The purpose of this paper is to extend these previous
analyses to more general background flows and perturbation
geometries, in order to gain a better understanding of the
effects of large-scale density gradients and anisotropic velocity
fields on perturbation growth. The fundamental simplifying
assumption made is to restrict the analysis to perturbations
having wavelengths which are small compared to the charac-
teristic scale of the background flow. I consider flows of col-
lisional fluids in which the only forces acting are gravity and
pressure, and in which the pressure depends only on the
density, which excludes from consideration thermal and con-
vective instabilities. The analysis for the case of zero pressure
also applies to a collisionless fluid having negligible velocity
dispersion, provided particle trajectories do not cross. In § I, I
derive local evolution equations for perturbations to an arbi-
trary flow, in the linear regime and the short-wavelength limit.
Local perturbation behavior in an inhomogeneous flow is
found to be the same as that in a homogeneous anisotropic
flow having the same local velocity field, this equivalent homo-
geneous flow being described by a matrix of scale factors A;2).
In this paper I make the further assumption that the back-
ground flow is a pure shear flow, having zero vorticity. (The
effects of rotation will be investigated in a future paper.) This
allows some simplification of the perturbation equations; in
particular, one can separate out the effects of perturbations in
the vorticity (which need not be zero). In § III, I consider back-
ground flows in which the scale factors vary as power laws in
time. This case provides a simple illustration of the relative
effects of self-gravity, pressure, and kinematics of the back-
ground flow on the evolution of density perturbations. Sec-
tions IV and V present perturbation analyses for more realistic
background flows. In order to have an analytical solution to
perturb around, it is necessary to make some further simplify-
ing assumptions; here I assume that the background flow has
either spherical symmetry (§ IV) or planar symmetry (§ V), and
that it is governed by gravity alone. The specific background
flows considered, which are inhomogeneous, arise from the
evolution into the non-linear regime of initially small density
perturbations in an isotropically expanding cosmological
model, as might be appropriate if the collapsing cloud rep-
resents a protogalaxy, for instance. However, similar results
would be obtained for any other low-pressure background col-
lapse having the same symmetry but different initial condi-
tions, for instance, collapse from rest, as might be more
appropriate for present-day star formation from gas clouds.
The special symmetries assumed do not apply to the pertur-
bations; further, the effects of pressure may be important for
short-wavelength perturbations despite being unimportant on

the scale of the background flow. Section VI compares the '

results obtained here with those of previous authors and tries
to extract general qualitative features which should apply to a
generic background flow. The most important result is that for
low-pressure, inhomogeneous collapses, kinematic effects tend
to come to dominate over self-gravity in driving perturbation
growth as the collapse proceeds; this is in contrast to homoge-
neous, isotropic collapses, for which the effects of self-gravity
and kinematics on perturbation growth are at all stages com-
parable. As a consequence, in a general flow, growth rates for
plane wave perturbations develop a strong dependence on the
direction of the wavevector, and the nonlinear evolution of
perturbations is likely to take the form of collapse to planar
structures or “pancakes.” This idea motivates § VII, which is
an analysis of perturbation evolution in a thin fluid sheet

which is anisotropically expanding or contracting in its own
plane. This is the two-dimensional analog of the three-
dimensional analysis presented in the previous sections of the
paper, but shows some distinct features, especially in relation
to the effects of self-gravity. Section VIII summarizes the main
results.

The analysis in this paper assumes that perturbations on
small scales are in the linear regime of growth, while the larger
scale background flow in which they are situated is in general
nonlinear. As applied to galaxy formation, this analysis is
therefore most applicable to “top-down” scenarios, in which
large-scale structures collapse first and small-scale structures
later. In this case, the development of structure on small scales
is profoundly affected by that on large scales. On the other
hand, in “bottom-up ” or hierarchical scenarios, perturbations
on small scales go nonlinear first, so the influence of large-scale
perturbations on small-scale collapse is correspondingly
weaker. Specifically, suppose that there is a spectrum of per-
turbations, such that the rms density fluctuation averaged
over spherical regions of mass M has the dependence
{(8p/p)*>1? oc M* over some mass range. Then for a = 0, per-
turbations on all scales collapse simultaneously, while o > 0
and « < 0 correspond to top-down and bottom-up scenarios,
respectively. The more negative o is, the weaker the effects of
large scales on small scales. For the currently popular cold
dark matter scenario (e.g., Blumenthal ez al. 1984), the effective
value of « is only slightly negative on galactic and subgalactic
scales, so even though small-scale structures collapse first, one
expects the influence on them of larger scale structure to be
significant, although probably not as extreme as discussed in
the body of this paper.

A matter of notation: in this paper, the symbol “ ~” is
reserved for asymptotic equality, and “ ~” for equality to
order of magnitude.

II. GENERAL EQUATIONS
a) Fluid Equations

We consider a fluid flow with density p and velocity #, with
forces derived from a gravitational potential ® and a pressure
p. We assume a barotropic equation of state, p = p(p), so that
one can define an enthalpy h(p) = [ dp/p = | ¢ dp/p, where
¢, = (dp/dp)"'? is the sound speed. All buoyancy effects there-
fore vanish (see Balbus 1988b). The flow can be described in
terms either of inertial coordinates x, or in terms of coordinates
X that comove with the fluid. We define the comoving coordi-
nates such that X = x at some initial time ¢t = ¢;. The equations
of motion in inertial coordinates are

Dp
L _ oV -u, 2.1
Dt pY="H @1)
\%
Du_ _vo_2_ v@+hn=-V¥, @2
Dt p
V2® = 4nGp , 23)
where
D 0
—_—=— 'V = 2.4
Dt atx+u =2, (249

is the usual comoving derivative, and ¥ = ® + h is the effec-
tive potential. The quantity V, denotes the gradient operator
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with respect to coordinates x, and 6/dt|, the time derivative
taken at constant x.

A consequence of the barotropic equation of state assumed
is that Kelvin’s circulation theorem applies to the flow. The
differential form of this, an evolution equation for the vorticity
© =V, A u,can be derived by taking the curl of equation 2.2
and using the continuity equation (2.1):

D (o o
i (3)(3) v =

b) Local Behavior of Background Flow

We begin with a local analysis of the background flow in the
neighborhood of a fluid particle having coordinates X = Xo,
x = x,(t) (see Peebles 1980, § 22). We define new coordinates
relative to this particle: X = X — X,, x' = x — xo(t). The tra-
jectory of any fluid particle can be expressed as x = x(X, 1);
expanding this around X = X,, we obtain :

X = A{OX) + 0(X"?) (2.62)
where
A= (2.6b)
TP 0% :

and A;{t}) = J;;. In these expressions, the summation conven-
tion is assumed, so that repeated indices are summed over. We
define &' = u — u(t), where u = Dx/Dt = (0x/0t)|x and u, =
X,(t). Differentiating equation (2.6a) then gives

;= A ()X} + O(X?) = Hf)x) + 0%, (27a)

where

Ou;
Ht)=—
0=52)
The fluid density is given by p(X, t) = p(X, t;)/Det (0x;/0X )
(this is equivalent to eq. [2.1]). Expanding around X = Xo
gives

= dp At (2.7b)

P = polt) + 0(X), (2.82)

where

po(t) = p(X, 1)/ | A], (2.8b)
and | 4| is the determinant of 4;;. An equation of motion for
A;ft) can be derived by differentiating equation (2.2) with
respect to X:

. oy
Ay=——| 4, 29)

Equation (2.9), together with equations (2.8) and (2.3) evalu-
ated at x =x,, constrains the evolution of the expansion
factors A;{t), but in general does not suffice to determine them
completely, even when given appropriate initial conditions: the
A;; determine the local density p,, and p, determines hy =
h(p,) and the trace of the tidal tensor (9>®/dx; 0x;)o. However,
A;; depends on the components of (92h/0x, dx o, determined by
the spatial derivatives of p, and on the various components of
(0°®/0x; 0x,), independently. In general, the trace-free part of
the tidal tensor depends on the distribution of matter distant
from the point under consideration. Thus, the local behavior
can be determined only after a global solution has been found.
For the special case of a homogeneous flow with spherical
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symmetry, for which A,(t) = a(t)d;;, equation (2.9) reduces
to the Friedmann equation familiar in cosmology, &/a =
—(4n/3)Gp, and the local evolution is determined entirely in
terms of local quantities.

¢) Evolution Equations for Perturbations in a Shear Flow

We consider perturbations with characteristic wavelength A
small compared to the scale L on which the background flow
varies, 4 < L. We also assume that the perturbations have
small amplitude. Define perturbed quantities

p=pl+e, W=u+v,
Y=Y¥+y, ®=0,+7y,

The subscript b denotes the unperturbed background solution.
These quantities are considered as functions of coordinates x’
measured relative to the unperturbed position of the reference
particle, or of coordinates X" comoving with the unperturbed
flow. The expansions (2.7) and (2.8) now describe only the
unperturbed quantities u, and p,. Substituting the perturbed
solution in equation (2.1), and subtracting off the unperturbed
equation, one obtains

(2.10)

Apy€)
ot

e Velpye) =

—Pp€Vye tuy — Vo - [p(1 + €] . (2.11)

The quantity on the left-hand side is a time derivative 0/0t |
comoving with the unperturbed flow. Making use again of the
unperturbed continuity equation, one derives -

43
ot
The evolution of ' follows from Du'/Dt = Du/Dt — y(t), with
Du/Dt given by equation (2.2) and &, = V¥, |,. Substituting

the perturbed solution, and subtracting off the unperturbed
equation, one obtains

2.12)

V.
= V. [(I+eo]— (1 +ep- =P
x Py

ot
Equation (2.3) gives for the perturbed gravitational potential
(2.14)

The preceding equations for the perturbation are exact. We
now make two simplifying approximations: we assume that
the perturbation amplitude is small, so that terms which are
quadratic in the perturbation can be discarded. We also
assume that distances and wavelengths are small compared to
the background scale, x'/L < 1, A/L < 1, so that terms of order
x'/L, A/L can be neglected. Substituting the expansions (2.6),
(2.7), and (2.8) for x', u}, and p, in terms of X' into equations
(2.12), (2.13) and (2.14) respectively, one obtains

+o- Vol +v)= -V ¢, (2.13)

X’

V2 =4nGp,e .

Oe L Oy
—| = —A4;!'— 2.15
at x Ji aX; b ( )
Ov; _, Oy
= .= —A;1 2.16
2 |, + H;;v; Aj; ox; , (2.16)
%y
tagt =4 . 2.17
ij Akt 6X;6X§( ”Gpof ( )

With the same approximations, the perturbation in the enth-
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alpy is 6h = c2 €, with c(p) evaluated at p = po = pyo- Thus the awv . 2
perturbation in the effective potential is a ig(x + cs€) » (2.25)
= 2¢. . 47G
Y=yx+cie (2.18) ‘= nGpo € (2.26)

The effect of the short-wavelength assumption is thus to reduce
the perturbation equations to the same form as they would
have in a homogeneous background flow having the same
scale factors 4,(r) and density p(t) at all points. In such a flow,
the velocity law uj; = H;;x; would be exact. The inhomoge-
neity of the true background flow thus enters only through the
effect it has on the behavior of the scale factors A;(t).

The preceding equations are valid for an arbitrary back-
ground flow. We now specialize to a background flow having
zero vorticity (V, A u, = 0), i.e, a pure shear flow. For such a
flow, H;; = H;, and the perturbation equations can be simpli-
fied by defining a new velocity variable, the peculiar
momentum” V:

V= Ajv;. (2.19)

Substituting this definition and equation (2.18) for ¥ in equa-
tion (2.16), and using the definition (2.7b) for H;;, we obtain

oV

ot

We see that if the perturbed force were zero, ¥ would be con-

stant with time, ¥ = V(X'). Another useful result that can be

derived from equation (2.20) concerns vorticity. Define

“comoving vorticity” by 2 =Vy. A V. Taking the curl of
equation (2.20) gives

= —Vylx + cZe).
X

(2.20)

2
ot
from which follows 2 = 2(X). This result could alternatively
be derived from the vorticity equation (2.5), noting that the

vorticity of the background flow is zero. The components of ®
and Q are related by Q; = | 4| 4;; ' ;.

=0,

X’

@21

d) Plane Wave Perturbations in a Shear Flow

Fourier transforming the linearized perturbation equations
with respect to X, one finds that the different Fourier com-
ponents of the perturbation evolve independently. Therefore
an arbitrary solution can be represented as a superposition of
plane waves, each having spatial dependence of the form
exp (ig - X') = exp (ik - x). For a single plane wave, we have

(X', t) = €(t) exp (iq * X') ,
VX', t) = V() exp (ig * X'),

XX, t) = x(t) exp (ig - X') .

We use the same symbol for a quantity and for its Fourier
amplitude, since it should be clear from the context which is
meant. The comoving wavevector ¢ has components which are
constant with time, while the proper wavevector k evolves in
time as the wave is sheared by the background flow:

kit) = Aj;'(t)q; - (2.23)

Substituting equation (2.22) in equations (2.15), (2.20), and
(2.17), respectively, one obtains
de

T = i AR

(2.22)

(2.24)

CApAGtga
It is convenient to decompose V into components parallel
and perpendicular to ¢:
V=V qg+V., (2.27a)
where
Vi=q¢-V, ¢V, =0, (2.27b)
and § =g/q. Vorticity conservation (eq. [2.21]) gives
Q =ig A V = constant; thus
(2.28)
Substituting equation (2.27) into equation (2.24) gives an evolu-
tion equation for €:
de . V
7 —lPijqi<qj _‘_Iu + VJ_j) s

and substituting equations (2.26) and (2.27) into equation (2.25)
gives an evolution equation for ¥}

V, = constant .

(2.29)

dv, 4nGp
= (——" - c§>e ) (2.30)
dt 1 Pi;q:q;
We have defined
Pit) = Ax 1(t)Aﬁf(t) . (2.31)

Eliminating ¥, between equations (2.29) and (2.30), one obtains
a single equation for the relative density perturbation €:

d*¢ [ P;q:q;) de
dtz (Pktqkql dt (cs Uqlqj T Po)f

| Pudidi

= —-lI:P,-j — (m P;ila: V.- (2.32a)

Noting that k? = k;k; = P, q; 4y allows us to rewrite this as

d%e k de [ k

i 2 % dt + (c2k?* — 4nGpole = —1<P,-j -2 % Pij>q,» V-
(2.32b)

e) Shear Flow with Fixed Principal Axes

A shear flow is particularly simple if the principal axes of the
shear are fixed in inertial space. The flows analyzed in later
sections of this paper all have this property. In this case, the
matrix A;; is diagonal in the nonrotating coordinate system
defined by the principal axes, so we can write

A;; = diag (ay, a3, a3) , V = (a0, a, 05, azvs) ,
k =(g,/ay, 42/a5, q3/a3) » Py = diag (1/a3, 1/a3, l/ag) .
(2.33)

Hereafter the summation convention will not apply, and all
summations will be indicated explicitly. The evolution equa-
tion (2.32a) for € reduces to

d? i (gi/a)*(@/a) | d A%
R i [ () o

i Vi i \4; iz.' i Vi
-afy el [t | s 08 e

i i
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We notice several things from the above equation (similar
remarks can be made about the more general equations
[2.32a] or [2.32b]): (1) The effects of the perturbed gravity and
perturbed pressure are contained entirely in a term 4rGp,
— ¢; k?)e. The effects of gravity and pressure exactly balance at
the Jeans wavenumber k, = (4nGp,)!/*/c,. This is the same
result as one derives for perturbations in a static medium. For
k < k,, gravity dominates, and this term tends to drive growth
of €; for k > k,, pressure dominates and tends to drive oscil-
lations of € (i.e., sound waves). (2) The expansion/contraction of
the background flow results in the appearance in equation
(2.34) of a de/dt term with coefficient depending on a;/a;, as in
the analysis of perturbations to a homogeneous isotropic
cosmological model (e.g., Weinberg, 1972, § 15.9), although the
coefficient has a more complicated form because the expansion
factors are different along different directions. In the cosmo-
logical case, one considers an expanding background (a,/
a; > 0), so that this term tends to cause decay of €, but for a
background flow which is collapsing (a;/a; < 0), this term can
drive a growth of €. This turns out to be an important effect, as
we will see later. (3) Unlike the homogeneous isotropic case,
perturbations in vorticity (V, # 0) in general drive pertur-
bations in density, and hence also perturbations in v, (eq.
[2.30]). Physically, this density growth occurs because even if k
and v are initially perpendicular, both vectors are sheared
toward the principal axis having the largest expansion factor,
so that V, - » = ik - v develops a nonzero value. Thus, a per-
turbation which initially has ¥ perpendicular to ¢ develops a
component of V parallel to ¢. The converse is not true; if ¥ is
initially parallel to g, then V remains parallel to g, and v
remains parallel to k, as a result of vorticity conservation.
Thus, there are pure density perturbations (¢ # 0, ¥, = 0), but
in general no pure vorticity perturbations (¢ = 0, ¥, # 0).

The analysis simplifies further if we consider perturbations
having wavevector parallel to one of the principal axes.
Suppose g = (q;, 0, 0) so that k = (k,/a,, 0, 0). Then equation
(2.34) reduces to

d? 1, d 2
d_tj +2 % d_: + [4(%) ~ 47'poo:|e =0. (235
1 1

Notice that the vorticity term has disappeared, so that for this
special case, vorticity perturbations completely decouple from
density perturbations. The evolution is controlled by the com-
petition between the kinematic term 2(a,/a,)de/dt, the pressure
term cZ(q,/a,)%, and the self-gravity term —4nGpge. The
above equation is exactly the same as one derived for an iso-
tropic cosmological model having expansion factor a,(t). This
is not surprising, because if the expansion is isotropic, any
direction may be taken as the principal direction. Equation
(2.35), in fact, has wider applicability than it might at first
appear. At the initial time, the scale factors are all equal, by
definition. Suppose that as the evolution proceeds, one of the
scale factors, say a,, becomes much smaller than the other two.
Then, for generic ¢ and ¥V, the proper wavevector tends to
align with the 1-axis, k ~ (q,/a,, 0, 0), and the i = 1 term tends
to dominate in the various sums Y, in equation (2.34). In this
limit, equation (2.34) approaches the form (2.35), and the form
of the density evolution becomes independent of whether or
not the perturbation has vorticity.

III. POWER-LAW SCALE FACTORS

In this section, we consider the evolution of perturbations
when the principal axes are fixed, 4,(t) = diag (a,, a,, a3), and
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the scale factors have a power-law dependence on time: aft) oc
|t —t. |* This case serves to demonstrate some general quali-
tative features in a simple way, and also correctly describes the
limiting behaviors (as ¢ —t,) in certain more realistic back-
ground solutions. We mainly have in mind the case that the
background flow represents a collapse, so that at least one of
the a; has the behavior a; > 0 as t — ¢, but the analysis will
apply equally well to the case of expansion from an initial
singularity.

The scale factors are normalized to unity at time z;: at;) = 1.
The equation of state is assumed to be of the form p o p?,
so that the sound speed has the dependence c2 oc p”~ 1. The
astrophysically interesting range for y is 1 <y <5/3. It is
convenient to - define a dimensionless time variable 7 =
(4nGp)'? |t — 1., where p, = p(t;). Substituting these defini-
tions into equation (2.35) for the evolution of a density pertur-
bation with ¢ = (g, 0, 0), we derive

d’e N 2<da1/dr> de p [1 3 (g)"z (ql/qlli)z:le _o.

do? a dt  p; P ai
(3.1)

We have defined a comoving Jeans wavenumber along the
1-axis:

4nGp)'?
(4nGp) a

s

(477:Gpi)”2 p 2-y/2 p 2-y)/2
=T ; a; = {4y ;‘ a;, (32

so that the factor in brackets in equation (3.1) may be written
[1 — (41/41)*]- Note that q,;; = k;;. We now assume that the
scale factors have the dependence afr) = (1/7,)*%. Define B=
@y + o, + a3, then p/p; =1/a,a,a; = (t/r)"%. (We assume
B > 0.) Equation (3.1) becomes

2 -8 2 2-98-2a1
Te 2ude (N (4 )(z =0
dt T dt \71 d15:) \7;

(3.3)

We now examine the limiting behavior of the solutions of
equation (3.3) as 7 — 0. This depends on the behavior of the
comoving Jeans wavenumber q,y(t) = q,,(t/t)? P+ 2«2 |f
0 =28 +2a, <0, ie, y <21 — /) = 2a; + a)f(y + o,
+ ), then q,; > oo as T — 0, so that for any initial wavenum-
ber q,, the self-gravity of the perturbation eventually comes to
dominate over its pressure. In the opposite case, (y — 2)B
+ 20y > 0, g;; = 0 as 7 > 0, so that pressure eventually domi-
nates self-gravity. We consider these cases in turn. (The results
for the special case (y — 2)f + 2«, = 0 do not differ essentially
from the other two cases, so we do not list them here.)

a (y—2)p+2a, <0
In this case, q,/g,, >0 as 1 — 0, so in this limit, equation
(3.3) approximates to
d’ | 21, de_ Be
di? " 1t dt f

qu(t) = a1k, = 1

=0, (34)

where B = 7£. (Alternatively, if the pressure is identically zero,
this is valid for all 7.) The leading order behavior as © — 0 of the
solutions to equation (3.4) may be found by standard methods
(e.g, Bender and Orszag 1978, chapt. [3]). There are several
cases.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989ApJ...336..612L

No. 2, 1989

i) <2
The €/« term becomes negligible compared to the others as
7 — 0, assuming that a; # 0. The independent solutions have
the form

e~cT' 7, e~c,. (3.5)
i) p=2
Equation (3.4) has exact solutions of the form
e=c,?t, e=c,"7, (3.6a)
where
ps = [ = 20y) + /(1 — 2a,)* + 4B] . (3.6b)

The roots p.. are always real.
iii) p>2
The rapid divergence of the €/t* term as 7 — 0 results in
solutions having WK B-like behavior:
Bl/2—®12-1)
B2-1) ]
However, this case seems unlikely to occur in practice: it

requires the local density to diverge faster than p oc (t. — )2
ast— 1.

€~cy 1 @17 exp [i 3.7

b) (y —2)f +2a, >0
In this case, ¢,/q,; — o as T — 0, so in this limit, equation
(3.3) approximates to
d*¢ 2a,de De
2 Zu s +5,=0,
dr T dt ™
where we have defined 8, = (y — 1)B + 20y, D = (41/915)°7}".
The leading order behaviors in the various cases are as follows,
o, <2
The €/% term becomes negligible compared to the others as
70, for o, # 0, so that this case is equivalent to case (a[i]),
the solutions being

(3.8)

e~citlT® | e~c,. (39
ii) 8, =2
Equation (3.8) has exact solutions
e=c P, e=cy7, (3.10a)
where
ps =11 —20y) + /(1 — 2a,)> — 4D] . (3.10b)

The roots p, are real for D < (1 — 2«,)?, and complex for
D > (1 — 2a,)*

iii) 8, > 2
The rapid divergence of the €/t term results in solutions
with WK B-like behavior:

} /b [ DI/ZT—(61/2—1)]
€~Cyt @M exp|l +i———|. (311
* (6:/2—1)

The competition between the kinematic, self-gravity, and
pressure terms in equation (3.3) thus results in the following
behavior for € as T — 0. In cases (a[i]) and (b[i]), the kinematic
term dominates over the other two. The solutions are of
power-law form. One solution is constant, and the other is
growing (as - 0) if a, > %, and decaying if a; < 3. Thus,

GRAVITATIONAL INSTABILITY

617

growing solutions are possible even if k > k;, so that pressure
dominates over self-gravity. In case (a[iii]), the self-gravity
term dominates, and there are growing and decaying solutions
dominated by an exponential of a power of T which grows as
7 — 0. These solutions are WKB modifications of the solutions
€ oc exp [ +(4nGp)'/%t] which arise in the static Jeans problem
for k < k;. The expansion/contraction of the background has
the effect of making the growth rate (4nGp)'/> a function of
time, resulting in the somewhat more complicated form (3.7)
(see Zel'dovich and Novikov 1983, chapt. [10]). In case (b[iii)),
the pressure term dominates, and the solutions are oscillatory
in time. The phase of the oscillation grows as a power of 7 as
7 — 0. These solutions are the WKB modifications of the solu-
tions € oc exp (+ikc,t) which arise in the static Jeans problem
for k > k,. The expansion/contraction of the background flow
makes the wavenumber and sound speed functions of time, so
that the phase is no longer linear in t. The expansion also
causes the amplitude of the oscillation to vary with time. The
solution (3.11) has amplitude increasing as t — 0 if a; > 6,/4.

IV. SPHERICAL BACKGROUND FLOW

a) Background Flow

In this section, we consider perturbations in a background
flow which has spherical symmetry. The gravitational field is
assumed to arise solely from the fluid itself. To simplify the
analysis, we assume that the effects of pressure may be
neglected on the scale of the background flow, and that the
orbits of spherical mass shells do not cross. Formally, we con-
tinue the analysis up to when a shell has collapsed to zero
radius. In practice, one or other of the preceding assumptions
may break down before this point is reached. If the fluid is
collisionless, then spherical shells can reexpand after collapsing
to zero radius, passing through other infalling shells. If the fluid
is collisional, and the equation of state is stiff enough
(barotropic exponent y > 4/3), then the pressure will eventually
build up to a large enough value at the center to halt the
collapse there, even if the pressure is very small initially
(Zerdovich and Kazhdan 1970). This may involve formation of
a shock front at the junction between freely infalling matter
and a pressure supported core. The analysis which follows is
valid only up to the point when shell crossing or pressure
become important.

For a spherical flow, the fluid velocity is radial, so that the
principal axes at any comoving point are fixed in time, and are
aligned along the outward radial (r) direction and along two
perpendicular tangential (¢) directions, all tangential directions
being equivalent. Thus, 4;(t) = diag (a, b, b) where a = a,,
b = a,. We can write the radius of a spherical shell as r = (r;, t),
where r; is the radius at time ¢;. Then the scale factors are given
by equations (2.6b) as

b(r;, t) = i ) , (4.1a)
or b
a(r;, t)_a_r',-,—b+ri6_ri E (4.1b)

The equations of motion for a and b may be derived either
from equation (2.9) with ® =®(r,t) and h=0, or from
equation (4.1) and the equation of motion for r(r;, 1). Defin-
ing M(r, t) to be the total mass within radius r and p(r, t) =
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M(r, t)/(4nr*/3) the mean density within radius r, we have

b GM 4r _

E— .__r3 = _.? Gp’ (4.23.)
G

§= — 47Gp + 2r3M = 4—3”- GBp—2p), (4.2b)

where b = 0b/ot |,.» etc. Clearly, b/b < 0 always, so that gravita-
tional forces tend to cause compression in the tangential direc-
tion, but d/a may have either sign. For a density distribution
that monotonically decreases with radius, dp/dr <0, p < p, so
that d/a > b/b, and radial separations tend to be stretched rela-
tive to tangential separations. The extreme cases are a homoge-
neous density distribution, for which p = p, and 4/a = b/b < 0,
and a very centrally concentrated mass distribution, for which
p/p—0,and d/a = —2b/b > 0.

Assuming that there is no shell crossing, the total mass
inside any comoving spherical shell is constant, so that the
time dependence of p and p at fixed r; is p = p;/ab?, p = p,/b>,
where p(r;) = p(r;, t;)), etc. It is convenient to define a dimen-
sionless time-variable for each spherical shell

o(r;, t) = (4nGp;/3) %t . 4.3)
Equations (4.2a) and (4.2b) then become
o*b 1
-61;_2 3 = ? s (4.43)
Oa (pi/P) a
o2, = -3 b2 +2 5 (4.4b)
Equation (4.4a) for b(r;, 7) has a first integral
1/db\> 1 1/[ob\? 1
a(ar) ‘57(5),. =y @Y

partial derivatives being taken at constant r,, We assume that
all shells are gravitationally bound, so that b,(r,) > 0. Then
equation (4.5) has the parametric solution

b(r;, 0) = (%’")(1 —cos ), (4.6)
b 1/2
iy 0) — 4r) = <?’"> [0 —sin 6 — (8, —sin 8], (4.6b)
where t(r;) = (r;, t;), and
6, = {2 sin~1 ‘,l/}@ , (@b/d7), > 0, @so
2n —2sin~! (1/,/b,), (9b/dr); <0,

where sin~! x denotes the principal value. Combined with
equation (4.3), equation (4.6) gives b(r;, t). The evolution of the
tangential scale factor b for fixed r; depends on the initial con-
ditions only through p(r) and (db/dt); = (#/r) lr=rie=r; With
b(r;, t) known, the solution for a(r;, t) could be determined
using equation (4.4b), but it is simpler to differentiate the solu-
tion for b and use the second form of equation (4.1b). Expand-

ing the derivative gives
ot
-— . @47
ri<6r i 9) :I @7

Substituting in the parametric solution for b, together with the

o
0 06

L9
. 00

ot

a=>b+ t—a—ri

r; b
(0t/00)|,, | _or;
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definitions of z(r;, t), 6(r;), and b,(r;), one obtains

a(ry, 6) = bir,, 6) + [a—hm]f(ﬂ, 6) + (" n p ‘>g(0, 6) .

dlnr, dlnr;
(4.8a
where )
1 sin 0
f0,6) =3 bm(T_m)(brn )
X {—3[9 —sin @ — (0; — sin 6))]
(1 —cos 6)*> (1 — cos 6,)?
+2l: sin 6 sin 6, - (4.80)
1 sin 6
9(6, 0) = b»(m)

. {G_ b — 1)[0 — sin 0 — (6, — sin 6)]

(b — 1)I:(l —cos 6 (1 —cos Bi)z]} . @489)

sin 6 sin 6,

We see that the evolution of the radial scale factor a at given r,
depends on the initial conditions only through p; and (Ob/ar);
and their first derivatives with respect to r;. The initial condi-
tions are assumed to be chosen so that shell crossing does not
occur, which requires a > 0 at all times. In the special case that
the initial conditions have p, and (8b/dt); independent of , (i.e.,
a uniform density sphere in uniform expansion or contraction),
a(6) = b(0) at all later times, so that the collapse remains
uniform. However, the generic case in which p; and (0b/ar);
have nonvanishing gradients has very different behavior at late
stages. A shell collapses to zero radius at § = 27, correspond-
ing to a time 7. Defining n = 2n — 6, and expanding equations
(4.6) and (4.8) for n < 1, one obtains

bocn?oc(t, — )3,
accntoc(z,—7)713,

(Tc—f)ocﬂs,

4.9
focgocn™toc(c, —7)713, @)

where in the last line, we assume that the coefficients of fand/or
g are nonvanishing. Thus, in the generic case, a - o as 7 — T,
b — 0, which is completely different from the special case of a
uniform collapse, for which a —» 0 as t - 7., b —» 0. The ratio of
the local density to the mean density within a shell evolves as
p/p = bja o (t, — 1) as T — 1, in the generic case, so that the
mean interior density comes to dominate over the local density
as the collapse proceeds, and the local dynamics approach
those of a “vacuum” solution, in which all of the gravitating
mass is concentrated atr = 0.

The above analysis can be applied to an arbitrary spherical
collapse. We now specialize to the case of interest to galaxy
formation, where the background flow consists initially of a
small perturbation on top of a homogeneous, isotropic,
expanding cosmological model. Thus, we express the density of
the background flow as p(r, f) = [1 + 8(r, t)]py(t), and the
mean density inside a sphere of radius r as p(r, t) = [1 +
o(r, )]p,(t), where p,(t) is the density of the homogeneous
cosmological model, and § and § are related by &(r) =
(3/r3) [ 8(r')r'* dr'. The perturbation grows until it reaches an
amplitude 6 ~ 1, when it separate out from the expanding
background and collapses. For spherical symmetry, the evolu-
tion of the perturbation can be calculated analytically into the
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nonlinear regime by the method already described. Initial con-
ditions are specified at a cosmic time t; (measured from the big
bang), assumed to be chosen such that6 <land|Q;—1| <1,
where Q = 8nGp,/3H? is the cosmologrcal density parameter
Then at t = t;, the cosmological background has density p,; ~
(1 + 8,;)/6nGt? and Hubble parameter H; ~ (1 — 15,,)2/3t)),
where J,; = 3(Q; — 1) (e.g., Peebles 1980, § 19). The back-
ground perturbation is assumed to consist of a pure growing
density mode, so that p; = [1+ 6{r)1psi (6b/6t)|,
[a- lé,(r,)]H for §; < 1. (We consider only the growing
density mode for the background density perturbation because
even if a decaying density mode or a vorticity mode are present
with comparable amplitudes at time ¢;, they will become negli-
gible compared to the growing mode for ¢ > t;.) Using equa-
tions (4.6), (4.5), and (4.3), the parametric solution for the
evolution of the overdense region is given, to lowest order in J;,
d,; as

3

b= '_‘.. = I:—_IO((S o) (4.10a)

:I(l —cos 0),

t 3 3 32

Applying equation (4.1b) then gives

3
<[ mraf -

dIn (9 +d.) 3 sin 6 (6 —sin 6)
X {1 + |: d1n r; ][2 (1 — cos 0)2 - 1]} . (411)

Expressions (4.10) and (4.11) have fractional errors 0(3;), 0(3,;),
which, however, can be made as small as desired by reducing ;.
We assume (J; + 6,;) > 0, and that d §,/dr; < 0, so that the col-

lapse time increases with initial radius. This solution is valid -

into the nonlinear regime up to shell crossing.

Henceforth, we assume that the background cosmology has
Q =1, so that §,; = 0 (the results can easily be generalized to
other values of Q). A given spherical shell expands from radius
r=0at 8 =0, t =0, reaches a maximum radius r,, = (3/50,)r;
atf =, t = t,, = (3n/4)3/55;)**t;, and collapses back tor = 0
at0 =2n,t =t, = 2t,,. For Q = 1, the background cosmology
has density p, = 1 /67rGt2 so that the mean overdensity within
a shell evolves as

p6) 1= 9 (6 —sin 6)?

0 = —1. 4.12
56 = ps(0) 2 (1 —cos 6)3 “12)
In the linear regime 0 < 1, this reduces to
< 3 [0V [\
o~ 2 0* ~ 5,-<oi> ~ 5i<ti> , (4.13)

which is the usual result for a growing density mode in an
Q = 1 cosmology.

b) Perturbation Equations

We now consider the growth of “subperturbations” on top
of a spherical overdense region which is collapsing to form
(say) a galaxy. Thus, the total density is expressed as p(r, t) =
oL + O(r, t)][(1 + e(r, £)], with an analogous equation for
the velocity. We assume that € < 1, and that the scale of the
perturbation associated with € is much smaller than that
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associated with 6. When 6 < 1, the density can be expressed as
p = p(1 + 6 + €), and the € and & perturbations evolve inde-
pendently according to the usual laws for the growth of linear
perturbations in a cosmological model. However, for é 2 1, the
evolution of J significantly affects that of €, because the small-
scale € perturbation sees a local background flow determined
by 6.

The comoving and the proper wavevectors for the € pertur-
bation may be written as

g =g(cos a, sina, 0), k= q<COS o su; o

, 0> , 414

where cos o = ¢ * F, and we have used the symmetry of the
background flow around the radial direction to set one of the
tangential components of ¢ equal to zero. Defining cos f =
k - 7, the instantaneous orientation of the proper wavevector is
given by tan f = (a/b) tan a. For_a generic spherical collapse,
we have dd;/dr; < 0 so that §,/6; < 1, and thus a/b —» oo as
t - t.. Therefore for generic initial conditions (« # 0, 7/2) the
wavevector tends to become aligned with the tangential direc-
tion as the background collapse proceeds, and B — /2 as
t—t,.

The peculiar momentum ¥V = (U, V, W) is related to the
peculiar velocity v = (u, v, w) by (eq. [2.33])

V = (au, bv, bw) . (4.15)

Then, by equation (2.27), ¥ can be decomposed into mutually
orthogonal pieces as

V=Vg+V, +W, (4.16a)
where
Vi=Ucosa+ Vsina,
V,=V(sina, —cosa,0), V,=Usina—V cosa,
W=(0,0W). (4.16b)

The time evolution of the components of ¥ perpendicular to ¢
is ¥V, = constant, W = constant. The evolution of w is com-
pletely decoupled from that of €, u, and v. With these defini-
tions, and assuming an equation of state of the form p oc p?, the
evolution equations for perturbations (2.29) and (2.30) become

de [/cos? & sin? «
dt _l[< a? + )(qV")
1
— sin a cos o [ERme (qu) , (4.17a)
dqvy) _ 4nGp; €

dt ' ab?[(cos® a)ja® + (sin® a)/b?]

(@/95)* (cos? a sin® «

X [1 (ab?y 2 ( p + B2 ):I (4.17b)

The second term in the brackets in equation (4.17b) is just

(k/k))* = (q/q;)>, where gy(t) is the instantaneous comoving

Jeans wavenumber. One sees that for g < q,(4 > 4)), q, V), and

V, enter the evolution equations only through the com-
binations gV and gV, .

In the form derived above, the perturbation equations

depend implicitly on the time ¢; at which initial conditions for

the background perturbation are specified. This dependence
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can be removed by defining a new set of variables:

3 3
a= < 103 )A(O) ( 105 )B(H)F o), (4.18a)
3
b= < 103 )B(O) (4.18b)
3(3)\%
t=7 <§5=;) £, TO), (4.18¢)
where
B@)=(1—cos 0), (4.18d)
_ 3 sin 6(0 — sin 6)
FO) =1+ 3A[1 -3 ———(1 ~—cos O ] ,  (4.18e)
T(@O) =0 —sin ), (4.18f)
5,
A=1 —5—-i; (4.18g)

F(0) is a direct measure of the anisotropy of the scale factors.
With these variables, tan f = F(f) tan . We also define
dimensionless velocity variables and wavevectors:

(U, W, W = —i(156)'qU, V, W),  (4.19%)
omo(0 W
@, o, w) = <A "B B) s (4.19b)
qg=qr;, (4.19¢)
105\ %( q\?
2 | == 1
o=(5) @ e

For a given physical Perturbatlon on a given background solu-
tion, the values of U, ¥, W, g, and Q are independent of t;,
assuming that t; has been chosen such that §; < 1. The quan-
tities 6;/0; and a are also independent of t; under the same
conditions. The peculiar velocity in physical units can be
derived from the relation

(u, v, W)= [3 (5;;) t~] p @, v, w)
<72t: ) @, o, w) .

Since A ~ B ~ 1 at turnaround, Q ~ ¢/q,,,, where g,,, is the
comoving Jeans wavenumber at turnaround. The short-
wavelength assumption requires that § < 1, while the assump-
tion that pressure has a negligible effect on on the background
flow requires g, > 1.

In terms of the dimensionless variables defined above the
evolution equations for perturbations (4.17a) and (4.17b)
become

(4.20)

de 1 . -
- FB [(cos? a + F? sin” o),

—sin a cos a(F2 — 1)7,], (4.21a)
d_VLL 3Fe

d0 ~ (cos® a + F? sin® a)

2
x[l - }% (cos? a + F? sin? ex):| . (421b)
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Solution of these equations gives four independent modes. One
mode has W = W/B and € = it = § = 0. Since the evolution of
this mode is trivial, it will not be further discussed. Below we
consider the evolution of the remaining modes having W=0
ande, U,V #0.

¢) Evolution of Perturbations with Zero Pressure:
Asymptotic Analyses

We consider first the evolution of perturbations for which
pressure is completely negligible; i.e., we assume that 1 > A; at
all stages of the collapse. This corresponds to setting Q = 0 in
equations (4.21a), (4.21b). Since we are assuming W = 0, there
are three independent modes, two of which may be taken to
have zero vorticity (¥, = 0). The evolution of these modes in
the generic case 6;/0; < 1, a # 0, /2 is qualitatively as follows:
In the limit 6 — 0 (t — 0), the anisotropy factor F — 1, and the
expansion is isotropic: a = b oc 6% oc t?/*. The vorticity-free
modes asymptotically have the same behavior asinan Q = 1
cosmology (e.g., Weinberg 1972, § 15.9): there are a growing
and a decaying density mode. The vorticity mode becomes
purely transverse in this limit. The evolution of zero-vorticity
perturbations in this regime is independent of the orientation
of the wavevector, which remains constant, § = a. At 0 =,
the radial expansion of a spherical shell turns around, as does
the local expansion in the tangential direction. In general, the
initially decaying density mode begins to grow again at around
this time. The anisotropy factor F grows monotonically, and
becomes significantly greater than 1 for 6 > 0,(A) 2 1, where
Or increases with decreasing A. More precisely, if we define 65
by F(0z) = 2, then 0 =~ 2.2 for A = 1, and 0, =~ 21 — (367A)'/3
for A <1 (recall that A>0). Once the local expansion
becomes anisotropic, with a > b, the wavevector of the pertur-
bation begins to be sheared around toward the tangential
direction. Furthermore, the density perturbation associated
with the vorticity mode becomes significant. For 6 — 2=z
(t—1t), F— o0, and any perturbation with a # 0 is sheared
around to have its wavevector tangential, § = n/2. In this limit,
€ - oo and %/ - 0 in the generic case, and the evolution of
(€, D) for a vorticity mode becomes indistinguishable from that
for a vorticity-free mode [although the ratio V,/V| remains
different for the two types, and thus # is different for given
(e, D)]. With the exception of certain special (and atypical) cases
discussed below, the full evolution of the perturbations over
the range 0 < 0 < 27 can be determined only by integrating
the equations numerically. However, the asymptotic behavior
in the limits § —» 0 and 6 —» 27 may be calculated analytically,
as we now discuss.

i) Behavior for 6 -0

In this limit we have, expanding equations (4.18d)4.18f) in
powers of 6:

tc T ~60%6, (4.22a)
B~ 62 cct??, (4.22b)
~ 1+ FA0?, (4.22¢)

The behavior of perturbations may be found by combining
equations (4.21a) and (4.21b) into a single second-order differ-
ential equation for € analogous to equation (2.34), expanding
the coefficients in this equation in powers of 6, and then
looking for power series solutions. For the zero-vorticity

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1989ApJ...336..612L

L

o

3 IITIeI

ol
(={]
o

]|
L

No. 2, 1989

modes (¥, = 0), one finds a growing solution

i il \n2 i i i1 1n3
€~ 2o<5)9 i~ 20(5)0

4.23)
. 3 [en . 3 (e
i~ 10<5>900sa b~ 10<6>0s1na
and a decaying solution
20\32
€~ (?) ( 1253/2) 03 s
- 3/20\ . 1
Vi~ — 5 (‘3—> (€2 5?/2) 53 s
20 32 ) ) (4.24)
it~ — 3(3) (€:2 637 g8 cos @,

0 3/2
b~ —3<2?> (€i 5“5/2) sin a,

where €;; and ¢;, are the amplitudes of these modes at the time
0;, when the background perturbation has amplitude §; ~
(3/20)0%. The vorticity mode can be taken to have the depen-
dence

3 . .
6~R)-AsmoccosaVl0,

~ ~

A

u~Fsma u~—Fcosa
We note that for A =0 or a = 0 or & = /2, we havee = ¥ =
0 for this mode.

We define “growing density,” “decaying density,” and
“vorticity ” modes as being those solutions of the exact linear-
ized perturbation equations having the asymptotic behaviors
given by equations (4.23), (4.24), and (4.25), respectively. The
asymptotic behavior of the zero vorticity modes is the same as
one obtains from the analysis of § III for a mode with wave-
vector along a principal axis. For t —» 0, we have a ~ b oc t23,
corresponding to case (a[ii]) (with a; = £, B = 2), so that self-
gravity and kinematics are of comparable importance.

ii) Behavior for 8 — 2 (5,/5; < 1, # 0)

We expand equations (4.18d)(4.18f) in powers of
n = 2n — 6, obtaining

~ 9 ~
v, ~ % A sin a cos « Vlzés)

t.—t)oc@n — T) ~ /6, (4.26a)
B~n*2c(t, — )23, (4.26b)
F~36nA/mdoc(t, —t)" !, (4.26¢)

This scaling of the expansion factors with time applies to the
endpoint of spherical collapse from any generic initial condi-
tions (see eqgs. [4.9]), so the results derived below are valid for
any such collapse. One can again find three independent power
series solutions. These, however, do not correspond in a
one-to-one way with the three solutions for 8 — 0 listed above.
Of the two zero-vorticity solutions, one is a density pertur-
bation which grows as n — 0:

c ~ 1
€~;1, V||~§c1csczoz,
@.27)
- csc a cot a -
u~ClTnA‘—r[, v~cyCsCa—,
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and the other is a density perturbation which is neutral as
n—0:

~ CSC o
€~ Vi~ —ca gyt
4.28)
ft —c CsC a cot a 5 5 —c CSC a 2
27g(127A2 T 2247

There is a third independent solution having nonzero vorticity:

cot a 7, ~ ~
“Tosaap T Vi~ eotat,
- (4.29)
csc a ¥, . cscacotaV, .
187A 30(187A)°

The behavior of the zero-vorticity solutions in this limit is the
same as one derives from the analysis of § III for a purely
tangentlal perturbation (8 = n/2), with a oc (t, — ) "'/, b o (t,

£)*®. We have case (a[i]) (¢; = %, f = 1), in which density
evolutlon is determined by the background kinematics, the
self-gravity of the perturbation being negligible. The back-
ground flow corresponds to contraction along the direction of
the wavevector, resulting in the existence of a solution with
growing density.

The modes defined by the 6 — 0 behavior specified in § IVc(i)
can in the limit # - 0 each be represented as linear com-
binations of the asymptotic solutions (4.27), (4.28), and (4.29).
The two zero-vorticity modes map to linear combinations of
the two zero-vorticity asymptotic solutions, while the vorticity
mode maps to a linear combination of all three asymptotic
solutions. As 5 — 0, the ¢, solution dominates in € and 7, so
that all three modes defined in § IVc(i) generically have the
same (€, D) behavior, up to scale factors. The reason why zero-
vorticity and vorticity modes show this convergence in behav-
ior is that any initial velocity component gets sheared around
to being tangential, and density growth in this limit results
entirely from the kinematic effect of the tangential velocity. The
(linear) relations between c,, c,, and €4, €;,, ¥, can be deter-
mined only by integrating the full equations over the range
0 < 0 < 2n. However, this analysis does demonstrate that for
generic initial conditions at ¢ — 0, one ends up with a growing
density perturbation as t —t,, with e oc(t, — )" /3 and the
wavevector tangential.

iii) Behavior for 0 — 2n(3,/5; < 1,0 = 0)

For the special case that the wavevector is initially exactly
radial, it remains radial at all later times (8 = 0), so that the
perturbed solution is a function only of (r, t). Therefore vor-
ticity perturbations completely decouple from density pertur-
bations. Ryden and Gunn (1987) have derived an exact
analytic solution for this case (eq. [28] of their paper), corre-
sponding to growing mode initial conditions (eq. [4.23]). Here
we derive the asymptotic behaviors of the solutions as 6 — 2n
by expanding in powers of 5. Of the zero-vorticity solutions,
one has neutral density behavior as n — 0:

€~C, I’7" ~ (547IA)C1/7]2 H
i~3e/n, 5=0, 430
while the other has decaying density asn — 0;
e~c,n°, 7, ~ —10(18nA)%c, , 431)
it~ —10(187A)c,n, 5=0. '
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The zero-vorticity modes map to linear combinations of solu-
tions (4.30) and (4.31). The vorticity mode has asymptotic
behavior:

e=0, ¥ =0,
- 4.32
B=0, B~20. (4.32)
The behavior of the zero-vorticity modes is the same as one
derives from the analysis of § IIL, case (a[ii]) (x; = —3%, B = 1),

so that again the kinematic effect dominates over self-grav1ty
In this case, however, the background kinematics correspond
to expansion along the direction of the wavevector, which
causes the growth of any density perturbation to freeze out to a
constant value as t — ¢, which is completely different from the
behavior in the generic case a # 0. Thus, contrary to the
assumption made by Ryden and Gunn, the results for radial
perturbations are not representative of the general case.

For the other special case that the wavevector is initially
exactly tangential (x = 7/2), we have B = /2, and again there
is decoupling of vorticity and density perturbations. In this
case, however, the limiting behavior for 6 — 2 is given correct-
ly by setting a = 7/2 in the expressions derived in § IVc(ii) for
the generic case.

iv) Behavior for 0 — 2n(5,/5, = 1)

If 6;/6; = 1 exactly (A = 0), then F = 1(a = b) at all times.
This background solution corresponds to collapse of a uniform
density sphere, which remains uniform at all times. The behav-
ior of perturbations is exactly the same as for a cosmological
model with Q > 1. Exact solutions for this case are given by
Weinberg (1972, § 15.9), for instance. Since the expansion is
isotropic, vorticity perturbations are decoupled from density
perturbations, and the evolution is independent of the orienta-
tion angle o. The limiting behavior of the solutions is as

follows: of the zero-vorticity solutions, one has growing
density asn — 0:
€~ 3 Vi~ @) /n?,
€ ¢/ K L| (2)61/:.7 ‘ (4.33)
t~3c;/m*cosa, ~3c/n*sina,
and the other has decaying density as n — 0:
~ 2 s r/ ~ o= 3 s
f C2n E can . (4.34)
i~ —2c,npcosa, D~—2c,psina.
The vorticity mode has the dependence
e=0, V,=0,
2 i - (4.35)

~ 2VJ_
b~ ——5cosa.
n

o~ % sin a,
The limiting behavior of the scale factors is a = b oc (t, — £)?/3,
so the evolution of the density perturbations can be obtained
from the analysis of § IIL, case (a[iii]) (¢, = %, B = 2), so that
self-gravity and the kinematics make comparable contribu-
tions to the growth of density perturbations, in contrast to the
case §;/0; < 1, where the behavior at late stages is given entirely
by the kinematic effect. As a result, the growth of density per-
turbations as t — ¢, is much faster in the special case §,/0; = 1,
which has € oc (f, — t)™! for the growing mode, than in the
generic case 6;/0; < 1, which has € oc (¢, — t) ™ !/3.

d) Evolution of Perturbations with Zero Pressure:
Numerical Integrations

The complete behavior of the perturbations for zero pres-
sure is found by numerical integration of equations (4.21a) and
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(4.21b) with Q = 0. The initial conditions can_be specified in
terms of the amplitudes «;,/5;, €;;63/> and V, of the three
modes having the dependences given by equations (4.23), (4.24),
and (4.25) as 6 — 0. If whatever mechanism generates the initial
perturbations operates at a time long before the background
perturbation goes nonlinear, as is generally assumed to be the
case for galaxy formation, then only the perturbations
developing from growing-mode initial conditions are likely to
be important for formation of substructure during the collapse
of a protogalaxy. For suppose that at 6; < 1 all three modes
are generated with equal values of the peculiar velocity
(#* + ©%)!/2. Then at some later 6 < 1, the density amplitudes of
the three modes are in the ratio (growing: decaying: vorticity)
= 1:(3)0,/0)3:(3/10)A sin « cos «83/f. Therefore for sin a ~
cos o ~ 1, when the background perturbation becomes nonlin-
ear at 0 ~ 1, the density amplitudes of the decaying and vor-
ticity modes are suppressed relative to that of the growing
mode by factors of the order 67 and AG?, respectively. Numeri-
cal integrations show that these bounds on the relative density
amplitudes remain correct to order of magnitude during the
nonlinear collapse of the background perturbation. Therefore,
only results for growing mode initial conditions will be pre-
sented here. In this case, the amplitude of the perturbation
scales linearly with €,/9;, so that the only parameters which
need to be specified in a numerical calculation are
A=(1-6;/6;)and a.

Figure 1 shows the evolution of the scale factors 4 and B as
a function of 8 for 4,/6; = (1, 0.9, 0.7, 0, —2)[A = (0, 0.1, 0.3,
1, 3)], and Figures 2-6 show the evolution of the density
amplitude € and the peculiar velocity components i, 7 for the
same values of 8,;/5; and for a = (0°, 10°, 30°, 90°), the curves
being normalized to €;/5; = 1. The figures also show the § — 0
asymptote to €() given by equation (4.23), which is the same
as the perturbation behavior in a homogeneous Q =1
background. Values §,/5; < 0 represent an underdense region
(8; < 0) surrounding an overdense region (J; > 0). For com-
parison purposes, it is convenient to take the behavior for
9;/0; = 1(A=0)asa standard case. For §,/3; = 1, perturbation
growth is independent of . For 8,/6; < 1, perturbation growth
follows that for 6,/0; = 1 at small 6, and then falls below when

4 1T T 1 | T 1T 1 | T T 11 | 17 11
B -2.0
R 0.0
i 0.7
T T Y
= |
S 0+ 0.99
B 1.0
-2
| . . | 1 1 1 1 I | I .| | I . |
0 11 2n

F1G. 1.—Evolution of local scale factors for spherical background flow.
Curves show radial scale factor A(f) and are labeled with value of 8,/5;.
Tangential scale factor B() is same for all 6,/5,, and equal to A(6) for 8,/6,=1.
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F1G. 2—Evolution of perturbations in spherical background flow for 8,/5; = 1 and inclination angle « = (0°, 10°, 30°, 90°). (@) Density perturbation € and
longitudinal peculiar momentum Vll' Curves are idential for all values of a. Also shown is the evolution of € in an Q = 1 cosmology (dash-dotted curve). (b) Radial
peculiar velocity # and tangential peculiar velocity o. Curves are labeled by value of a. (Labeling on # curves suppressed for clarity; it runs in the opposite sense

vertically to that on ? curves).

F 2 2. Two factors cause the perturbation amplitude at a given
value of 0 to be suppressed relative to the standard case (see eq.
[2.34]): (i) the local background density is smaller than in the
standard case (since p oc 1/ab?), so the self-gravity of the per-
turbation is smaller; (ii) the scale factor along the direction of
the wavevector is larger than in the standard case for any
perturbation which is not tangential, so growth due to the
kinematic effect is smaller. For exactly tangential perturbations
(o = m/2), only effect (i) operates, while the kinematics still
favor growth, so that as 8 — 2n (when kinematic effects domi-
nate over self-gravity), the perturbation amplitude € diverges
(but less rapidly than for §,/0; = 1). For exactly radial pertur-
bations (¢ = 0), both suppression effects operate, so that the
amplitude for such perturbations is less than in the tangential
case, and at late stages the growth of € is halted completely.
Intermediate values of « give intermediate behavior. Fora < 1,
perturbation growth at first approximates that for a = 0, until
the wavevector is sheared around to being nearly tangential,
which occurs for F tan a ~ 1, after which the growth tracks
that for a = m/2.

e) Evolution of Perturbations with Pressure

We now consider the effects on perturbation evolution of
including the pressure. To simplify the discussion, assume zero

perturbed vorticity. The background evolution is assumed to
follow the pressure-free solution as before; a rough criterion
for pressure forces to be negligible compared to gravity for the
background solution is c¢Z/4nGpr* < 1. The pressure is
assumed to vary as p oc p’. In practice, we are most interested
in values in the range 1 <y < 5/3. For the case of galaxy for-
mation, the thermal evolution of the gas at early times is
actually more complicated than this simple polytropic behav-
ior because of the interaction of the matter with the radiation.
We do not attempt to treat this in detail, but instead simply
assume that evolution at constant y is valid at least for the later
stages (0 2 w, say). The effects of pressure are then entirely
parametrized in terms of Q. We recall that Q ~ 4;/4 at turn-
around (0 = =), so that a perturbation with Q > 1 will oscillate
at this time, while one with Q <1 will tend to grow. The
detailed behavior can only be found by numerical integration,
but as 6 — 2z it must match onto the asymptotic dependence
which we now derive.

The evolution of density perturbations in the limit
t = t(6 — 27) can be determined analytically using the analysis
of § IIL. (i) for the generic case (6;/0; < 1, a # 0), any pertur-
bation becomes tangential in this limit, so we have «, = %,
p =1 in the notation of that section. For 2/3 <y < 5/3 (case
ITIb[i]), pressure dominates self-gravity in this limit, but the
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FiG. 3—Evolution of perturbations in spherical background flow for 8,/5; = 0.9. Coding to curves is same as in Fig. 2. (Labeling of I7H curves by value of a

suppressed for clarity; it runs in the opposite sense vertically to that on € curves).

kinematic effect dominates both, so the asymptotic behavior is
the same as for p =0, with the density growing as € c
(t. — 1)~ /3. For y > 5/3 (case IIIb[iii]), the effects of pressure
dominate over kinematics and self-gravity, and the pertur-
bation density € rapidly oscillates, with oscillation amplitude
varying as (t, — £)~ " 73"12_ For the special case y = 5/3 (case
ITIb[ii]), a more detailed analysis based on equations (4.21a)
and (4.21b) shows that € has power-law behavior in ¢, — ¢ in
this limit, with the exponents being real or complex, depending
on whether 0 <Q, or Q> Q., respectively, where Q, =
[(/37A)/16]*>. In either case, € grows more slowly than for
y < 5/3. (ii) For the special case of radial perturbations (5,/6; <
1, « # 0), we have a; = —1/3, B = 1. Provided y < 8/3, pres-
sure becomes negligible compared to self-gravity in this limit
(case IIIa[i]), and the behavior is the same as for p = 0, with
€ — constant. (iii) For the special case of a uniform collapse
(6;/6; = 1, a arbitrary), we have o, =2/3, B =2. Thus for
y < 4/3 (case I1Ial[ii]), pressure becomes negligible in this limit,
so the asymptotic behavior is the same as for p = 0, with € oc
(¢, — 1)~ *. For y > 4/3 (case IIIh(iii]), pressure dominates self-
gravity and kinematics, and € rapidly oscillates, with oscil-
lation amplitude varying as (¢, — t)~© ~37/6,

V. PLANAR BACKGROUND FLOW

a) Background Flow

Another case for which one can derive an exact solution for
the evolution of a cosmological perturbation into the nonlin-
ear regime is that in which the perturbation has planar sym-
metry, with zero pressure and no crossing of planes of matter
(e.g., Zel'dovich and Novikov 1983, § 14.2). The analogous
problem for a finite system is the collapse of a homogeneous
spheroid, for which the solution is found by integrating a set of
ordinary differential equations (e.g., Peebles 1980, § 20). In
either case, the final stages of the collapse are characterized by
a “pancake” singularity, in which particle separations shrink
to zero along the direction perpendicular to the plane of the
pancake, but remain finite along the two perpendicular
(“tangential ”) directions. We consider only the cosmological
case in detail.

We first derive the form of the background flow. Take the
symmetry plane to be x = 0, so that collapse occurs parallel to
the x-direction. The principal axes of the flow are along the
collapse (x) direction and along any two orthogonal tangential
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FiG. 4—Evolution of perturbations in spherical background flow for §,/5; = 0.7. Coding curves is same as in Fig. 2.

(y, z) directions. Then 4,(t) = diag (a, b, b), where

0x

a= 6_x, , s (513)
dy 0z

b=7, =l (5.1b)

The exact equations of motion of a fluid particle, including the
background perturbation, are

D? 4

D—t; = —?” Gpy(O)r — 416G do(x, D)% , (5.2)
where

So(x, 1) = Lx[”("" 1) — py(0)]dx’

is the perturbation in the surface density within distance x of
the symmetry plane. For the transverse (y, z) directions equa-
tion (5.2) reduces to the unperturbed Friedmann equation, so
that b(t) is the same as the scale factor for the background
cosmological model, and py(t) = p,:/b3(t). The remaining com-
ponent of equation (5.2) can be solved by defining the Lagrang-
ian coordinate s = o/p,(t)b(t), where

a(x, t) = jxp(x’, tydx’'
0

is the exact surface density, and writing x(s, t) = b(t)s + dx(s, t).

4 L | T 177 T T 1 LR
: b |
3 6,/6, = 0.7
B 1
- .
- 4
2 4
- 4
- !
/
- /A
& 1 —
B0 = _
o N _
/{ - Oo -3
g [ .
g,) 0 o\\_
i \\
\
i \T]
-1
-—- q
-2 — ¥
_3 111 I 11 1 1 l 1 111 I 1 11 1
0 o 2n
(]
This gives
0%6x 8n
=— . 53
o | =73 OP% (53)

This equation has a growing solution and a decaying solu-
tion. Write the growing solution as D(t), with normalization
D(t;) = 1; assuming that only this solution is present, we have

x(s, t) = b(t)s + D()Y(s) , (5.9

where (—s) = —y(s). The function (s) may be related to the
initial density perturbation J,(s) by noting that p;/p,; = (0s/0x).
This gives, for §; < 1,

dy/ds = —5(s) ,
and

Uis) ~ — Jiﬁ,{s’)ds = —sd(s) .
o

Therefore we have, correct to O(6;),

250 _ ) — @) (552
al,, 1) = b) — D) (550
8(x;, 1) D©)d(x) (5.50)

~ b() — D)éx)’
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FiG. 5—Evolution of perturbations in spherical background flow for §,/6; = 0. Coding to curves is same as in Fig. 2.

where we have used the definition (5.1a) and the relation

p/py = b(t)/(0x/0s)|,.
We now specialize to an Q = 1 cosmology, for which p,(t) =
1/67Gt* and

b(t) = (t/t)*3 . (5.6a)
Then D(t) = (¢/t;)*3, and equations (5.5a)5.5c) become
x/x; = (¢/t)*P[1 — 64t/t)*>] (5.6b)
a(t) = (t/t)**[1 — 8t/t)**], (5.6¢)
2
5(0) = ™" (5.6d)

L—oe/t)**”

In the linear regime (6 < 1), equation (5.6d) reduces to the
standard expression & & §(t/t;)*’*. The above equations show
that particle separations in the y- and z-directions increase
monotonically, while recollapse occurs in the x-direction.
There are two different collapse times: x-separations of neigh-
boring particles collapse to zero at time t, = t;/63/* given by
equation (5.6c), while a given mass plane passes through the
symmetry plane x = 0 at time t, = t;/5>/> given by equation
(5.6b). The solution derived above assumes no crossing of mass
planes, and so is valid up to time ¢, at the latest. The condition
that ¢, increase with increasing s is dd;/ds < 0, which implies
d; < 0;,and thust, > t,.

b) Perturbation Equations

As in the case of spherical flow, we have two degenerate
principal axes. Defining (u, v, w) to be the peculiar velocity
components parallel to the (x, y, z) axes, the perturbation
equations in the planar case are the same as equations (4.14)-
(4.17) for the spherical case. We now convert to dimensionless
variables analogous to those used in the spherical case. Define
a new time variable 6 by

== 7).

- 5?/2 - 5:‘3/2

(5.7a)
The scale factors (eq. [5.6a], [5.6c]) can then be written as

1 1

a=—0%(1—-6%=— A0, (5.7b)
1
0;
In terms of these new variables, the local expansion starts at
6 = 0, reaches a maximum in x at § = 1/2/2 and recollapses in
x at 8 = 1. However, the above local behavior can only apply
up to the time when the mass sheet passes through x =0,
which occurs at 6, = 8}/%(t,/t)'® = (6,/5)** < 1. As in the
spherical case, we define an anisotropy factor

F(6) = A(6)/B(O) = 1 — 6* .

_ % 92 =21 o). (5.7¢)

(5.7d)
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Fi1G. 6—Evolution of perturbations in spherical background flow for 8,/6; = —2. Coding to curves is same as in Fig. 2.
The inclination of a perturbation evolves according to tions become
tan B = F(f) tan a. F - 0 as 6 — 1, so that perturbations tend
to align with their wavevectors parallel to the x-direction as de 3 2 F2 sin? o)
the collapse proceeds. We also define d0 ~ F?B [(cos® o + F* sin® @)V
(O, 7, W)= —id}2qtU, V, W), (5.8a) + sin o cos a(l — F3)7,], (5.10a)
. . g v w v, 2Fe Q%(cos? a + F? sin? a)
(u, v, W) El~s %o n ) (5'8b) ' 7 2 2 in2 - yR3y—4 .
A’B’ B dd (cos? a + F* sin” o) F'B
2 5.10b
0= 5?7-4<i) , (5.8¢) (5.100)
B Note that in this form the perturbation equations are indepen-
q=qx;, (5.8d) dent of the initial amplitude J; of the background perturbation.
There are four independent modes: three of these may be taken
so that the peculiar velocity in physical units is to have W—:- 0; the evolution of the fourth, having e = U =
" . 7 = 0and W s 0is trivial and will not be discussed further.
(u, v, W) = 8ix; i @, 5, W) (5.9) In general, complete solutions of the perturbation equations
Ty g7 ) can be found only by numerical integration. However, for the

Thus 8}/2x,/t; is a characteristic velocity scale. The validity of
the short-wavelength approximation requires g > 1. In terms
of these new variables, the evolution equations for pertuba-

special case that the perturbation has the same symmetry as
the background solution (i.e., « = 0) and pressure is negligible,
one can derive an analytic solution. In this case, the density
field is p/p, = (1 4+ 8)(1 + €), and its evolution is given by equa-
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tion (5.5¢), with ¢, replaced by 6; + €;, assuming §;, €; < 1. Sub-
stituting these definitions, and expanding to first order in €, one

finds
e DOBO (). (&) 6
ST s \s,)0 ~\5) 1T G
where the last is for an Q = 1 cosmology.

¢) Evolution of Perturbations with Zero Pressure:
Asymptotic Analyses

We consider first the evolution of perturbations in the
simple case that the effects of pressure can be neglected. The
evolution of perturbations in the generic case o 3 0, /2 is
qualitatively as follows: as 6 — 0, the expansion becomes iso-
tropic, and there are growing, decaying, and vorticity modes
whose form approaches that for the modes in an Q = 1 cos-
mology. The anisotropy of the local velocity field becomes
significant for 6 2 1/2'/2 (corresponding to F < %), causing the
wavevector to be sheared toward the x-direction, and the
density perturbation associated with the vorticity mode to
become significant. For 6 — 1, § — 0 for any perturbation with
a # m/2, and in the generic case, € — co and /i — 0.

i) Behavior for 6 — 0
In the limit ¢ — 0, the scale factors have the dependence
tcT=60, B=6>, F~1. (5.12)

There are two zero-vorticity modes, one growing and the other
decaying. The growing mode has the behavior

€; = 2(€
Gl G

5 ) (5.13)
72 (s o2 (€
u~3<5i>9cosa, ) 3<5i)9s1na,
while the decaying mode has behavior
€~ (e (5.3/2)l Vy ~ —(e; 5;/2)i
i2 0i 93’ II i2% 9%’
(5.14)

1 . .
i~ —(€; 677 geosa, i~ —(e 537 gasin o,

where €;; and €;, are the amplitudes of these modes at the
time 6; < 1 when the background perturbation has amplitude
d; ~ 0%. The vorticity mode may be taken to have the form

€~ -3V, sinacosaf, ¥~ — 37, sin a cos 0 6?2,

un~

V, sin a V, cosa
D~ ———

6* 6?
The asymptotic behavior of the density modes is the same as
one derives for an Q = 1 cosmology.

ii) Behavior for 0 — 1 («x # m/2)
Expanding in powers of # = 1 — 6, we find that in the limit
t > 1., the scale factors have asymptotic dependence

B~1, (5.16)

so that the background density has the dependence p oc 7! oc
(t. — t)~*. This limiting behavior of the expansion factors with
time is the same as one finds for any gravitational collapse in
which one axis contracts to zero while the other two axes

t,—tocl—T~3n, F~2poct,—t,

(5.15)
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remain finite (for instance, generic collapse of a homogeneous
spheroid gives the same result). There are two independent
zero-vorticity solutions, one growing as 5 — 0:

~ 4
e~%, V,,~§clsecza,
(5.17)
. 1 . 4
u~—=c¢cyseco—, V~—=cCp;secatan a,
3 n 3
and the other neutral as § — 0:
~Cy, V, ~ —2c, sec? an?,
€ Cy 1 C, S an , (518)

it~ —c,secan, b~ —2c, sec a tan an? .
There is a third independent solution having nonzero vorticity:
V)~ -V tana,

b~ -V, seca.

e~3V tanap,

~ 5.19
i~ —2V, sec atan an?, (5.19)

The behavior of the zero-vorticity solutions is exactly the same
as one derives from the analysis of § III for a purely radial
perturbation (case [a(i)], a; = f = 1), with density growth
being driven by kinematics rather than self-gravity. We see that
a generic perturbation has density growing as € oc (¢, — t)~!as
the singularity is approached.

iii) Behavior as — 1 (a = n/2)

For the special case that the wavevector is initially exactly
tangential, it remains tangential, and the perturbation behav-
ior as t — ¢, is different from the generic case. Of the two zero-
vorticity modes, one is neutral as 7 — 0:

e~c;, Vy~—c,Inp,
5.2
u=0, b~ —cylny, (520)
while the other is decaying:
€~y I7|,~—%c2,
5.21
17 = 0 Py E ~ —%'Cz . ( )
The vorticity mode has dependence:
=0 V, =0,
€ o (5.22)
~ _J_ ~ —
o e v=0.

The behavior of the zero-vorticity modes cannot be derived
directly from the analysis of § III, because «, = 0, B = 1 for a
purely tangential perturbation (see case [a(i)]). A careful
analysis shows that density growth in this case is driven by

~ self-gravity.

d) Perturbation Evolution with Zero Pressure:
Numerical Integrations

Complete solutions for perturbation growth with zero pres-
sure in the general case are obtained by numerical integration
of the equations, with initial conditions given by one of the
6 — 0 asymptotic solutions (5.13), (5.14), (5.15). In the cosmo-
logical case, growing mode initial conditions are of the most
interest, so we give numerical results only for this case, normal-
ized to €;/6; = 1. Figure 7 gives ¢, 17”, i1, and ¥ as functions of
for & = (0°, 60°, 80°, 90°), together with the § — 0 asymptote to
€ given by equation (5.13). Note that the 6 — 0 asymptote is
exactly the same as the behavior in an unperturbed Q = 1
background, so that it is convenient to take this as a standard
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FiG. 7—Evolution of perturbations in planar background flow, for inclination angle o = (0%, 60°, 80°, 90°). (a) € and 17" , together with evolution of einan Q =1
cosmological model (dot-dash curve). (b) it and 3. Curves are labeled by value of «. (Labeling on ¥ curves suppressed for clarity; it runs in the opposite sense vertically

to that on € curves.)

case for comparison purposes. The perturbation growth begins
to exceed the standard case once the local expansion differs
significantly from that of an Q = 1 cosmology, which occurs
for §=1/22, For an exactly tangential perturbation
(o = m/2), the growth rate at given 0 is larger only because the
local density is larger (by a factor b/a = 1/F). For a radial
perturbation (« = 0), the growth is boosted also because the
local velocity field changes from expansion to contraction
along the direction of the wavevector, and this is the dominant
effect as § — 1. Perturbations with intermediate inclinations
have intermediate behavior. For o = 1, the perturbation
growth at first approximates that for « = n/2, until the wave-
vector is sheared around to being nearly radial, which occurs
for F tan a < 1, after which the growth tracks that for a = 0.

e) Perturbation Evolution with Pressure

One can obtain the effects of pressure on the limiting evolu-
tion of density perturbations as t —t, using the analysis of
§ III. For the generic case « # /2, a perturbation becomes
radial in this limit, and we have o, = 1, § = 1. Then we have
case (b), in which pressure dominates self-gravity in the limit,
provided y > 0. For 0 <y < 1 (case [b(i)]), kinematics domi-
nates pressure as t — f,, so that perturbations have the same
limiting behavior (with a growing and a neutral solution) as for
p =0. For y > 1 (case [b(iii)]), pressure dominates over kine-

matics, leading to rapid oscillations in €, with oscillation ampli-
tude varying as € oc (t, — )" @74 y =1 (case [b(i})]) is an
intermediate case. Analysis based on equations (5.10a) and
(5.10b) shows that for Q < 1/6'/2, there are two power-law
solutions, both growing more slowly than for p = 0, while for
Q > 1/6'2, there are oscillatory solutions with oscillation
amplitude growing as e oc (¢, — ) /2. For the special case

= 7/2 of an exactly tangential perturbation, pressure is negli-
gible compared to self-gravity as t — ¢, for y < 2 (case [a]), so
that the limiting evolution is the same as for p = 0.

The full evolution including pressure can be found only by
integrating the equations numerically. Pressure will cause the
perturbation to have oscillatory or growing behavior around
the time when the background perturbation turns around at
6 = 1/2'2 according as Q 2 1 or Q < 1. At later times, the
relative importance of pressure increases or decreases depend-
ing on the value of y and the orientation a, as described above.

VI. DISCUSSION OF RESULTS FOR THRE-DIMENSIONAL FLOWS

a) Comparison with Previous Work

There has been some previous work on perturbation growth
in inhomogeneous flows having spherical symmetry. McNally
and Settle (1980) investigated the evolution in the linear regime
of radial perturbations in inhomogeneous pressure-free spher-
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ical flows, without making any short-wavelength assumption.
They show how the general solution for the evolution of
pressure-free perturbations in any such flow may be obtained
by quadratures, and derive analytical expressions for two par-
ticular cases, although not for the case of cosmological initial
conditions. The limiting behavior of perturbations they find as
collapse is approached is identical to that found here.
However, they go on to draw conclusions about the evolution
of perturbations in general that are not justified, since, as we
have shown, the radial case is very special. As already men-
tioned, Ryden and Gunn (1987) derived an expression for the
growing mode for radial perturbations of a pressure-free back-
ground collapse corresponding to cosmological initial condi-
tions, effectively in the short-wavelength limit, which agrees
with the results of this paper. The growth of density pertur-
bations in inhomogeneous spherical collapse has also been
investigated by Arny (1966) using a particle method whose
precise validity is difficult to judge. He considers small-scale
ellipsoidal perturbations, but does not study the effects of per-
turbation orientation. The results he obtains on the effects of
central concentration on perturbation growth agree qualitat-
ively with those found here, but he gives too few details of his
calculations for a quantitative comparison to be possible.

A paper on a somewhat related subject has recently been
published by Aarseth, Lin, and Papaloizou (1988). They
present a new derivation of the results of Hunter (1962, 1964)
for perturbations in a pressure-free, homogeneous spherical
collapse. Their results for “internal modes” are equivalent to
those given in § IVc(iv). They also show how the same results
apply to the homogeneous core of an inhomogeneous spherical
collapse, but give no analysis of how perturbations evolve in
the regions of the flow where density gradients are significant.
They apply these results to an analysis of the collapse and
violent relaxation of a protoglobular cluster, represented by a
system of point particles. Their N-body results demonstrate
the importance of the growth of density perturbations for the
generation of random velocities which eventually halts the col-
lapse. In their paper, Aarseth et al. distinguish between “local ”
fluctuations due to discrete particle effects, and “global ” fluc-
tuations on scales involving many particles. In the present
paper, the fluid is treated as a continuum, so there are only
“global” fluctuations. Aarseth et al. concentrate on the case
that the initial rms density fluctuations vary with mass M as
{(bp/p)*>*? c M~'2, but this is fairly arbitrary, and one
could equally well consider different perturbation spectra.

There has also been some work on growth of density pertur-
bations in collapsing uniform density spheroids, for which the
behavior is analogous to that in the plane-symmetric collapses
considered in this paper. Falle (1972) derived an equation for
perturbations in a nonrotating oblate spheroid of the same
form as equation (2.34). He incorrectly argued from this that
density perturbations which are prolate relative to the back-
ground flow would grow fastest. Silk (1982) investigated evolu-
tion of ellipsoidal perturbations concentric with a nonrotating
oblate ellipsoidal background flow and found that the fastest
growing perturbations are those which are oblate relative to
the background flow, in agreement with the results found here.
He also derives expressions for the limiting behavior of pertur-
bations as the pancake collapse is approached; he finds the
correct growing mode solution for the case that the wavevector
is perpendicular to the pancake plane, but finds only the decay-
ing mode for case that it is parallel. There has also been some
work on perturbations in rotating oblate spheroids by Arny
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(1967), but he does not consider the nonrotating limit, so his
results cannot be directly compared with those found here.
Equations (8) and (9) of his paper imply that evolution is inde-
pendent of the orientation of the perturbation, but contain an
error: the factor I/m should be I/mK2, where the separation
constant K, contains the information about the orientation.

b) Implications for Nonlinear Evolution

A common feature of the pressure-free inhomogeneous
spherically symmetric and plane symmetric background col-
lapses studied in the previous sections is that at late stages of
the collapse, when the local velocity field around any point has
become significantly anisotropic, growth of density pertur-
bations is dominated by the kinematic effects of the back-
ground flow rather than by the self-gravity of the perturbation.
Homogeneous spherical background collapses, in which the
effects on perturbation growth of self-gravity and kinematics
are at all stages comparable, are completely atypical in this
regard. As a consequence, perturbation growth during the later
stages of these more general collapses is significantly aniso-
tropic: if a perturbation is decomposed into plane waves,
growth is fastest for those Fourier components having wave-
vectors aligned with that principal axis of the local velocity
field along which contraction is the fastest (most negative a,/a;).
It seems likely that these conclusions will also apply to a
generic inhomogeneous low-pressure collapse having no
special symmetry, in which the scale factors along all three
principal axes of the local flow are different. The importance of
kinematic effects for perturbation growth in anisotropic flows
was earlier noted by Zel’dovich and Novikov (1978, § 20.4) in
the context of homogeneous anisotropic cosmological models.
For such models, the global dynamics are given by general
relativity, but the local dynamics of short-wavelength pertur-
bations can be analyzed using Newtonian mechanics.

These ideas have important implications for the nonlinear
evolution of density perturbations in a generic collapse. Con-
sider the general case, for which the local flow has a unique
fastest contracting principal axis. Assuming that the initial
conditions on the perturbations on the average define no pre-
ferred directions (Fourier components drawn from a distribu-
tion which is statistically isotropic), then in the linear regime
perturbation velocities will tend to become largest parallel to
this principal axis, and the density field will develop peaks and
troughs which are flattened perpendicular to this axis. It seems
clear that the nonlinear evolution will consist of collapse down
to planar configurations (“pancakes ) aligned perpendicular
to the fastest contracting axis. The evolution subsequent to the
initial collapse depends on whether the matter involved is col-
lisional or collisionless. For a collisional fluid, oppositely
moving gas streams will collide (and presumably form shocks)
at the midplane, resulting in a dense sheet of gas at that loca-
tion. For a collisionless, fluid, the opposing streams of particles
will pass through each other at the midplane, and the entire
pancake may only have a fairly transient existence before the
structure is erased by free streaming. In either case, the
pancake when it forms should still be approximately comoving
with the background flow in the transverse directions, since the
Fourier components in the lateral directions having the same
comoving wavelength 2n/q as the components along the col-
lapse axis which are just going nonlinear should still be in the
linear regime.

The above discussion may require modification if the back-
ground flow has some special symmetry, so that the scale

0y
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factors are equal along two degenerate principal axes. If the
third, nondegenerate axis has the fastest contraction rate, as in
the planar background collapses analyzed in § V, then there is
a unique collapse axis for perturbations as before. However, if
the nondegenerate axis has the slowest contraction rate, as for
the spherical background collapses discussed in § IV, pertur-
bation growth favors equally any Fourier component with
wavevector in the plane containing the two degenerate axes.
Even for statistically isotropic initial conditions on the pertur-
bations, any given density peak will not be exactly spherical, so
it is likely to collapse first along some particular axis lying in
this degenerate plane, as determined by the peak’s shape.
However, the planar nature of the collapse will be less than for
the case of a unique fastest contracting principal axis, and the
collapse axes of different peaks will point in different (random)
directions within the degenerate plane. The pancakes thus
formed may subsequently collapse in one transverse direction
to give filaments aligned along the slowest contracting prin-
cipal axis.

It is worthwhile at this point to discuss the relation between
this analysis and that of Zel’'dovich (1970), which is also
marked by the importance of kinematic effects and likewise
predicts the formation of “pancakes.” Zel'dovich takes the
expression for the Lagrangian displacement of a particle
derived from linear perturbation theory in a homogeneous,
isotropic, expanding background, and extrapolates it into the
nonlinear regime. This predicts that the initial stages of collapse
for density perturbations with isotropic Gaussian random
initial conditions will generically be planar. This result is
closely related to the flattening instability for the collapse of
homogeneous ellipsoids found by Lin, Mestel, and Shu (1965):
a generic peak in such a density field is significantly triaxial,
and the self-gravity of the perturbation, which in this case is
important in driving density growth in the linear regime, gen-
erates a triaxial velocity field, which causes collapse to occur
first along the shortest axis. The later stages of the collapse are
essentially kinematic, with particles accelerated only to finite
velocities, which is the reason why this extrapolation of linear
theory is a good approximation in the general case. The
method is much less accurate if applied to the collapse of a
spherical peak, since then gravitational accelerations diverge
as the peak collapses. In contrast, in the analysis in the present
paper, anisotropic evolution of density perturbations already
arises in the linear regime, as a result of the dominance of
kinematic effects over self-gravity, in a background flow which
is anisotropic. The background flow, even if initiated from a
density perturbation in an isotropic cosmological model, might
be very poorly described by the Zel’dovich approximation, so
that the Zeldovich approximation could not be directly
applied to predict the pancaking of small-scale structure. The
pancakes predicted in an anisotropic background flow have
preferred orientations fixed by the flow, while the pancakes
predicted in an isotropic background flow by the Zel’dovich
analysis do not.

The discussion given here of nonlinear evolution of pertur-
bations in anisotropic background flows only strictly applies
to the first scales to collapse (the same remark also applies to
the Zel’dovich analysis). Suppose there is initially a spectrum of
density perturbations of different wavelengths, with the rms
amplitude having a peak at a certain wavelength. Then col-
lapse will occur first on the scale corresponding to this peak,
and will proceed as already described. The evolution of pertur-
bations on larger scales in the linear regime should not be
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much affected by the nonlinear evolution on small scales, at
least insofar as pressure is unimportant. However, the clump-
ing and peculiar velocities due to collapse on small scales will
tend to disrupt the formation of well defined pancakes by the
nonlinear collapse of larger scales, although some remnant of
pancake structure is likely to remain.

VII. PERTURBATION GROWTH IN A PLANAR SHEET

In this section, we analyze perturbation growth in a planar
fluid sheet which is undergoing anisotropic expansion or con-
traction in its own plane. This is the two-dimensional analog of
the three-dimensional problem considered in previous sections
of this paper. A principal motivation for this analysis is the
inference that the nonlinear evolution of perturbations in
anisotropic background flows is likely to consist of collapse
down to a planar sheet or pancake of gas (we consider here
only the case of a collisional fluid). The properties of the first
pancakes to form can be estimated as follows: suppose that
collapse occurs along the z-axis, for perturbations having co-
moving wavenumber g;. Collapse occurs when linear theory
predicts a relative overdensity € ~ 1, and a peculiar velocity
parallel to the wavevector v. The wavelength in the collapse
direction is Ay = 27as/qs, and all fluid within distance +45/2
of the midplane of the perturbation collapses down to form a
sheet of surface density o = p, A3, p, being the background
density at that time. For a collisional fluid, the kinetic energy
in the collapse motions ends up being thermalized, resulting in
a sound speed in the pancake layer ¢, ~ v if there are no
energy losses, with smaller values if radiative cooling is signifi-
cant. We assume that the vertical collapse is completed and the
fluid sheet reaches approximate dynamical equilibrium in the
vertical direction, with thickness h, while in the transverse
directions it is still approximately comoving with the back-
ground flow. The transverse extent of the fluid sheet is expected
to be at least L, 2 2na,/qs, L, R 2na,/q; in the X, y directions,
respectively. We assume that the sheet is “thin,” with h < (L,,
L,). Then for perturbations within the sheet having wave-
lengths A > h, the behavior of the sheet can be approximated as
being two-dimensional. This is the basic simplifying assump-
tion made in the rest of this section.

a) Perturbation Equations in a Two-dimensional Sheet

We consider perturbations to a fluid layer in the thin sheet
approximation: The layer is assumed to be symmetric about
the plane z = 0, and to be locally self-gravitating and in hydro-
static equilibrium in the z-direction at all times, with local
thickness h. In addition, the z-dependence of the horizontal
velocity and the horizontal gravitational force is assumed to be
ignorable. Under these circumstances, the z-dependence of the
equations of motion can be integrated out, and the equations
effectively become two-dimensional. This approximation
becomes rigorous for variations with horizontal wavelengths
1> h (e.g, Goldreich and Lynden-Bell 1965), but gives useful
answers even for A < h. The thin sheet approximation has been
used extensively in studies of the dynamics of galactic disks
(e.g., see Hunter 1983 for a review), and has also been applied
by Tomisaka and Ikeuchi (1985) to an investigation of pertur-
bation growth in an isotropically expanding fluid sheet. Here I
extend this analysis to the case of anisotropic expansion/
contraction.

We define p and p to be the volume density and three-
dimensional pressure within the sheet, and define a surface
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density and integrated pressure by integrating over the vertical
extent of the sheet:

asf pdz and PEJ pdz .

We define u to be the velocity parallel to the plane of the sheet.
With the assumptions listed above, the z-integrated continuity
and Euler equations, together with the Poisson equation, are
(seeeqs. [2.1],[2.2],[2.3])

Do

_l)_tz —aV”x°u, (7.13)

Du 1

D_t= _V”xq)lz=0_;V||xP’ (7.1b)
V2® = 4nGp , (7.1¢)

where V| is the component of the gradient operator parallel to
the sheet, and D/Dt is the time derivative comoving with the
two-dimensional velocity u. The source term for ® in equation
(7.1c) may include contributions from mass external to the
sheet. The integrated pressure is assumed to be uniquely
related to the surface density, P = P(g), so that it is derivable
from a two-dimensional enthalpy

H(o) = JdP/a = fC,Z do/o ,

where C, = (dP/do)'/? is the two-dimensional sound speed. If
the three-dimensional pressure is given by the relation p o p’,
then, as is shown in Appendix A, the two-dimensional pressure
is given by P oc o”, where the polytropic indices are related by
I' = 3 — 2/y. Thus, the physically interesting range 1 < y<5/3
corresponds to 1 < T" < 9/5. As in the three-dimensional case,
the vorticity obeys a conservation law; in the two-dimensional
case, only the z-component of the vorticity is interesting.

The method followed for analyzing perturbations in a two-
dimensional flow is essentially the same as that for a three-
dimensional flow as presented in § IL, so we just summarize the
derivation here. We consider a background flow which varies
on scale L parallel to the plane of the sheet, and perturbations
to this flow having wavelength A < L. We introduce coordi-
nates X; (i = 1, 2) comoving with the background flow in the
plane of the sheet, and define scale factors A;{t) = (0x;/0X )|, as
before. The local background flow around a point comoving
with the fluid can be approximated by a linear velocity field
up; = Hy;xj and a constant surface density o, = 6,. We now
consider a perturbed motion of the form ¢ = a,(1 + ¢€), o’ = uj,
+ v, ® = @, + x. After linearizing in perturbed quantities and
discarding terms O(x'/L), O(4/L), we obtain the perturbation
equations

Oe L Oy
—| =-—-A4;1—= 7.2
ol ~ T axp (722)
ov; Fi
i Hiv,= —A;!' — (y]._ 2 7.2
6t X + l]v_) A;z 6X; (Xlz—o + Cs €) s ( b)
62 2
At At . + gr_ 4nGoy€d(z) , (7.2¢)

“ooxjox, " o2

where the summation convention is assumed and the index
i runs over values i=1, 2. In equation (7.2c), we have
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assumed that the perturbed gravitational field is due only to
density perturbations within the sheet, which is treated as
having infinitesimal vertical thickness. As in the three-
dimensional case, we specialize to a background flow having
zero vorticity, V. A u, = 0, and the perturbation equations
can be simplified by introducing the new velocity variable V,=
Ajv;. We consider plane-wave perturbations, having spatial
dependence of the form exp (ig + X') = exp (ik x'), where ¢
and k have components only in the plane of the sheet. Substi-
tuting into the perturbation equations, one finds that the per-
turbed Poisson equation (7.2c) has the solution

27TGO'0€
(Pijqiqj)l/z ’
where P, = A;'A4;". As in the three-dimensional case, we
separate V into components parallel and perpendicular to q,
and the perpendicular component V| is constant with time

because of vorticity conservation. Combining equations (7.2b)
and (7.3), we obtain an equation for the parallel component Vi

av, —ig 27rGaol i
dt (Pijq:9) !

while equation (7.2a) gives an equation for €

(7.3)

X |z=0 =

- c:]e , (7.4)

de . V
o= —tPijqi<qj ;ﬂ + Vl,.) : (7.5)

These two equations can be combined into a single equation
for the evolution of the density perturbation:
d’e k de
-2

) kdt + (C2k* — 2nGay k)e

/- k
= _1<Pij -2 E Pij)qi Vi, (1.6)

where k2 = P;;q;q; as before. This is identical to the corre-
sponding equation (2.32b) for the three-dimensional case,
except that the effect of self-gravity is given by a term 2nGo, k
rather than 4nGp,. This has the important consequence that
for perturbations in which the effect of pressure is negligible
compared to self-gravity and background kinematics, the
growth rate is larger for smaller wavelengths, in contrast to the
three-dimensional case, in which it is the same for all wave-
lengths. The critical Jeans wavevector for which pressure
exactly balances self-gravity is k, = 2nGo,/C2 = (2/T1 J(1/h),
where h is the half-thickness of the layer derived in Appendix
A. The thin sheet approximation made here is strictly valid
only for kh < 1; however, comparison of results derived with
and without the thin sheet approximation for other analogous
problems (e.g., Larson 1985) suggests that this approximation
gives answers correct to factors of order unity even for kh > 1.
Equation (7.6) simplifies considerably if the shear flow has fixed
principal axes, A,(t) = diag [a,(t), a5(t)], and if we consider
perturbations aligned with one of the principal axes, say g =
(g1, 0). Then

d%e a, de q:\? q

— 4= 2( 41} 11 =0. :

i + a, dt + [C5<a1 2nGo, a, e=0. (7.7
This equation is equivalent to equation (4.10) of Tomisaka and

Ikeuchi (1985), derived for an isotropically expanding/
contracting sheet.
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b) General Behavior of Perturbations

The evolution of perturbations in a two-dimensional flow
can be analyzed in a similar manner to that for the three-
dimensional case. Henceforth, we concentrate on vorticity-free
perturbations (V, = 0), since these seem to be of the most inter-
est in practice. The type of behavior depends on the wavenum-
ber; for simplicity of exposition, consider a perturbation
aligned with a principal axis, so that k = q,/a,. If k,C, =
27Go/C, 2 a1/a,, there are three regimes to consider. For k >
k;, the pressure term dominates in equation (7.7), and € oscil-
lates as a sound wave. For k; > k » (1/2nGo)(a,/a,)*, self-
gravity dominates, and € has growing and decaying solutions.
For k < (1/2nGo)(a,/a,)?, the kinematic term dominates, and
the growth of € is exactly the same as it would be in the
three-dimensional case with the same scale factor a,(f). If
k,C, < a,/a,, then the intermediate range of k in which self-

gravity dominates disappears. For a sheet formed by pancake .

collapse in a three-dimensional anisotropic background flow,
we take the transverse scale factors in the sheet to be the same
as a,(?), a,(t) for the three-dimensional flow. Then the condi-
tion on the wavelength for self-gravity to dominate can also be
written as h < A, < [4n*Gp,/(a,/a;)*]45. The transverse extent
of the sheet in the x,-direction is L, 2 (a;/as)A;. Now a,/az >

1 (since the z-axis in the three-dimensional flow is assumed to
be the fastest contracting), and in practice (see § IV and V) we
find typically 4nGp,/(a,/a;)* < 1, so a necessary condition for
self-gravity to dominate is h < A; < Ly, ie., the sheet must be
thin.

While the perturbation equations can be solved exactly by
numerical integration, given the time-dependence of the scale
factors a,(?), a,(2), it is useful to consider approximate methods
of solution. We rewrite equation (7.6) (for ¥V, = 0) as

) .
E—21—(E=a}2€, (7.8a)

where
w*(t) = 2nGo(t)k(t) — CHk*(e) , (7.8b)

and k(t) is the proper wavenumber as before. Note that this
form applies for arbitrary orientation of the wavevector. If wis
“large,” then this equation may be solved by the WKB approx-
imation. In Appendix B, we show that the WKB solutions have

the form
€EXCy \/k%t_) exp [-_F Jw(t)dt] ,

where the conditions for the approximation to be valid are
roughly

(7.92)

[0)
= =

1.
k(o<

<1, (7.9b)

Now |k/k| ~|a,/a,| or |ay/a,|, while typically |o/w]| ~
|a,/a, |, | ay/a, |, so that the WKB validity conditions become
® > |a,/a, |, | a,/a,|. For the perturbations with k < k; which
grow due to self-gravity, the growth rate is maximized at wave-
number k = ik;, for which w = 3C,k,. Similar WKB treat-
ments have been derived by Tomisaka and Ikeuchi (1985) and
by Balbus (1988a) for the case of a shearing, rotating sheet.

In the opposite limit w < | k/k|, we obtain an approximate
solution by setting the right-hand side of equation (7.8a) to
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zero. The equation may then be integrated to give

exc, sz(t)dt +c;.- (7.10)

The WKB method can also be applied to perturbations of
three-dimensional flows, but in that case it is not useful for
describing the growth of perturbations due to self-gravity. In
the three-dimensional case, the perturbation equation takes
the form of equation (7.8a), with w?(t) = 4nGp,(t) — c2(kA(t).
Therefore, for perturbations in which pressure dominates self-
gravity, o ~ ic,k, so the WKB validity conditions are fulfilled
in any background flow for sufficiently large k. Thus sound
waves can be described by WKB solutions. However, when
self-gravity dominates pressure, @ ~ (4nGp,)*'?, and these sol-
utions could only be described by the WKB approximation if
the condition (4nGp,)"/?/(a/a) > 1 were satisfied, whereas for
the background flows studied in this paper we have instead
(4nGp,)**/(a/a) S 1 except close to the turnaround time for a
principal axis (in fact, this ratio tends to 0 asz — £, for generic
spherical and planar collapses). In contrast, for two-
dimensional flows, when self-gravity dominates pressure, we
have o ~ (2nGok)!? = [(4n>Gp,)as/a,)(q1/95)]"*, and in this
expression the factor (¢,/q3) * 1 can function as a large param-
eter and make the WK B approximation valid.

¢) Power-Law Scale Factors

In analogy with the three-dimensional case, we can also
study the limiting behavior of density perturbations aligned
with a principal axis when A,{t) = diag [a,(%), a,(t)] and the
scale factors have power-law time dependence. Thus, we take a
reference time t; at which aft) =1 (i = 1, 2), 41,(t) = G5 and
o(t;) = o; and introduce a dimensionless time variable T =
(2nGo,q,)"* |t — t.|. We assume that the scale factors have
time dependence af7) = (7/7)* (i=1,2), and define B =
o, + a,. (We assume > 0 and «; #0.) Then, in terms of these
variables, equation (7.7) becomes

2 20, di —(@1+h) 2-INp-a1
de [ 2mde (T (- ()= L _0.
dt Tt dt T; g1/ \T;

(7.11)

We examine the limiting behavior of the solutions of this equa-
tion as t — 0. There is a critical value of the polytropic expo-
nent I',, =2 — a,/p which determines whether pressure is
important as t - 0. For I < [, (or if the pressure is set to
zero), then pressure is negligible compared to self-gravity as
7—0, and vice versa. For I' > I, we define an auxiliary
parameter 6, = (I' — 1) + 2«,. We thus have the following
cases.

)r<T,a +p<2
The kinematic term dominates, and we have solutions

1-2ay
b

€~ 4T €~cCy. (7.12)

i) T<T,a, +B>2
Self-gravity dominates, and we have WKB-type growing/

decaying solutions
Bl/2 —(x1+p—2)/2
2T |, 1)

€~c, 7 BuP4 g +
£t "p[— @ +B—2)2

where B = 1 *4.
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i) [>T, 8, <2
The kinematic term dominates, so we again have the solu-
tions

1-20y
B

€~cyT €e~c,. (7.14)

ivy I'>T,, 8, >2

The pressure term dominates, and we have WKB-type oscil-
latory solutions:

=51/ D2, =@1/2-1)
~ T ti—m, 7.1
€~cCyt exp [_z G/2=1) ] (7.15)

where D = (q/q, ).

We can apply these results to find the limiting behavior as
t > t. of perturbations within fluid sheets which form during
the spherically symmetric or plane-symmetric collapses dis-
cussed in §§ IV and V. For a spherical background flow, we
take a3 = b. If the two-dimensional perturbation is tangential,
then a, =b, a, = a, 50 that a; =%, 0, = —4, f = 1. We are
interested in y in the range 1 <y < 5/3, which translates to
1<I'<9/5 s0that ' >T, =0, and §, < 8/5; i.e., pressure
dominates self-gravity, but kinematics in turn dominates pres-
sure, and we have asymptotic dependences € oc 7-1/3 or
€ = constant. If the two-dimensional perturbation is radial,
then a, = a, a, = b, so for the same range of y, we have I' <
I, =3,and a; + f=0, so self-gravity dominates pressure,
but kinematics dominates both, and the limiting behaviors are
€ = constant and € oc >, For a planar background flow, we
have a; = a and a, = a, = b. But b — constant as ¢ — t., SO
that a; = &, = § = 0. Returning to the original equation (7.11),
we find that the kinematic term vanishes, and the self-gravity
and pressure terms have a constant ratio. We find that the
solutions have limiting behavior € = constant or € oc 1.

d) WKB Growth Factors for Pressure-free Fluid Sheet

A simple application of the results of § VIIb is to the case
that pressure is negligible within the sheet (k < k;), and the
wavevector is aligned with a principal axis, k(f) = q./a,(2).
Then equation (7.8b) for w() reduces to

_ 2ra0) Il g1 | _ 4n°Gp; g,
“’2‘”‘2”6”"(‘)[ % ][al(t)]‘af(r)az(t) g5+ (719

o_ _ (_ ! _)

w a 2a,
The factor multiplying the exponential in the WKB solution
(7.9a) becomes

thus

(7.17)

ko) a3

Jo(b) * el

i) Spherical Background Flow
In this case, we have either a,(t) = b(t), a,(¢) = a(t) (tangential
perturbation) or a,(t) = a(t), a,(t) = b(t) (radial perturbation).
The integral appearing in the exponential in the WKB solution
can be written in terms of the dimensionless variables of § IVas

(7.18)

B B(9)
fw(t)dt =A f o4 (7.19a)
where
1/2
A= (37:)1/2(@) , (7.19b)
qs
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and A, = (105,/3)a, etc. The WKB approximation is valid if
la/a,0| < 1, |a,/a, o| < 1. These ratios can be written in
terms of the dimensionless variables as

a, _ (1) 40410
a0 (A) BO) ° (7.20)
a; _ (1) A(0)4506)
a0 <A> A0)BO) (7:200)

In Figure 8 we plot the values of [ wdt,|a,/a;w|and | a,/a, |,
normalized to A = 1, as functions of 6 for tangential pertur-
bations [A,(6) = B(6), A,(0) = A(6)] for spherical collapses
with 6,/9; = (0, 0.9, 1). (One finds similar results for radial per-
turbations, but with generally smaller growth factors.) From
these curves, for any given value of A, one can read off the
approximate range of # in which the WKB approximation is
valid (once a thin sheet has formed), and also the change in the
value of | wdt over any interval, which gives the exponential
part of the WKB growth factor. For the generic case 0,/0; < 1,
one finds that for any fixed A > 1, the WKB approximation is
valid at early stages of the collapse, but always breaks down as
6 — 2, in agreement with the results of § VIIc. For the special
case 6;/0; = 1, WKB approximation is valid at all stages of the
collapse provided A > 1.

ii) Planar Background Flow
One can perform the same analysis for a planar background
flow. In this case, a,(f) = a,(t) = b(t). In terms of the dimen-
sionless variables used in § V, we have

de
Jw(t)dt =A fBTZ(O) =Alno, (7.21a)
where
q 1/2
A= (6n)1/2<—‘> , (7.21b)
q3
and
4, _&_lM_Z (7.22)

We see from this that for any fixed A > 1, the WKB approx-
imation for density perturbations in a sheet is valid at all
stages of the collapse after the sheet forms. The complete WKB
growth factor, including the multiplicative factor ay"*/a}’? o
1/6*/? can be written as

€oc A2

Thus the amplitude tends to a finite value as 8 — 1.

(7.23)

VIII. SUMMARY

This paper presents an analysis of the linear evolution of
short-wavelength perturbations in a background fluid flow
which is undergoing gravitational collapse on large scales. The
only forces acting on the fluid are assumed to be self-gravity
and pressure, with a barotropic equation of state. The back-
ground flow is assumed to be non-rotating (zero vorticity). A
generic flow of this type will be inhomogeneous and have a
complicated velocity field, but locally, in the neighborhood of a
point comoving with the fluid, it looks like a piece of a homo-
geneous, anisotropic flow having a linear velocity field, and
described by a matrix of scale factors A, ). The local evolution
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FiG. 8—WKB growth factor for tangential perturbation in thin sheet formed in spherical background flow (see text for details). Plotted are | wdt,|a,/a,0)|, and

|ay/a, @|. (@) 8/5; = 0.(b) 8,/5; = 0.9.(c) 6/6; = 1.

of perturbations in the short-wavelength limit in an inhomoge-
neous flow is the same as that in the equivalent homogeneous
flow, the effects of large-scale gradients entering only through
the scale factors A4,£z). In § II, I derive the evolution equations
for locally plane-wave perturbations with wavevector k. The
existence of a conserved vorticity variable (with two indepen-
dent components) allows the system of equations to be reduced
from fourth-order to second-order in time. One finds four inde-
pendent perturbation modes: two of these have vorticity and
the other two are vorticity-free, with purely longitudinal pecu-
liar velocities. Specializing to a flow in which the principal axes
of the local shear are fixed in time, the matrix A4,(t) is diago-
nalized, with components a(t) along these principal axes. The
anisotropy of the local velocity field then causes the wavevec-
tor of a perturbation to be sheared toward alignment with the
principal axis having the smallest scale factor aft), unless the
wavevector happens to be exactly aligned with one of the other
principal axes. As a result of this shear, vorticity and density
perturbations are coupled: a vorticity perturbation in general
drives the growth of a density perturbation.

Aside from vorticity, the evolution of the density pertur-
bation € depends on pressure (represented by a term c2k?),
self-gravity (a term 4nGp), and the kinematics of the back-
ground flow (represented by a term depending on the expan-
sion rates a;/a; and on the orientation of the wavevector). The

pressure term tends to cause oscillations in € (sound waves),
while the self-gravity term tends to cause € to grow. The kine-
matic term either damps or amplifies the peculiar velocity
parallel to a principal axis according as there is expansion
(a;/a; > 0) or contraction (&;/a; < 0) along that axis, thus hin-
dering or helping growth in €. Pressure and self-gravity balance
at the Jeans wavenumber k; = (4nGp)'/?/c,. If k < k;, pressure
is negligible and € grows at a rate independent of the magni-
tude of the wavevector k. However, the kinematic effect may
dominate over self-gravity in driving perturbation growth, and
may drive growth even when pressure dominates self-gravity.
Growth in € driven by kinematics depends on the direction of
the wavevector—it is fastest when the wavevector is aligned
with the fastest contracting principal axis.

For the specific background collapses studied in this paper,
which are pressure-free and start from nearly homogeneous
and isotropic initial conditions, the effect of background kine-
matics on perturbation growth is initially comparable to that
of self-gravity, but it comes to dominate as the collapse pro-
ceeds and gravitational tidal fields cause the local velocity field
around any point to become increasingly anisotropic. For
spherically symmetric background flows, the growth in aniso-
tropy results from the increasing inhomogeneity (central
concentration) of the density distribution, while for plane-
symmetric flows it results from the increasing flattening. For a
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generic collapse, both of these mechanisms are likely to operate
to some extent. It seems likely that the result that background
kinematics come to dominate over self-gravity will be a fairly
general one for collapses in which pressure is unimportant on
large scales.

Perturbation evolution is studied in detail for background
flows having either spherical symmetry or planar symmetry
(no symmetry is imposed on the perturbations). In both cases,
the initial conditions are taken to be linear perturbations of an
Q = 1 cosmological model, and pressure is assumed to be neg-
ligible on the scale of the background flow (although it may
still be important on small scales). With these assumptions, the
nonlinear evolution of the background flow can be derived
analytically up to the time that mass shells cross. For spherical
flows, discussed in § IV, the local properties of the background
flow about any comoving point can, after suitable scaling, be
specified by a single parameter §,/9;, the initial ratio of the
overdensity on a spherical shell to the mean interior over-
density. In the generic case 6,/5; < 1 of a perturbation with
some degree of central concentration, the local flow becomes
anisotropic in the sense that there is at late stages contraction
along two degenerate principal axes in the tangential direc-
tions, and expansion along the radial direction. Of the pertur-
bation modes, one is a vorticity mode with velocity transverse
to the wavevector at all times, another has both transverse and
longitudinal velocity components, and the other two are purely
longitudinal (vorticity-free). Detailed results for the modes are

Vol. 336

given for the case of negligible pressure (k < k,). Perturbation
evolution is sensitive to the orientation of the wavevector,
which tends to get sheared toward being tangential. Growth of
density is fastest when the wavevector is tangential, and is
dominated by kinematics rather than self-gravity in the late
stages. At late times, the density perturbation generically varies
as € oc (t, — 1)~ '3, ¢, being the collapse time, in contrast to the
behavior found for collapse of a uniform sphere (6,/5; = 1),
whichise oc (£, — 1) 1.

For a plane-symmetric background flow, as discussed in § V,
the local properties of the background solution are (after
scaling) completely specified, with no adjustable parameters.
The local flow becomes anisotropic in the sense that at late
stages there is contraction along the collapse axis perpendicu-
lar to the symmetry plane, and expansion along two degener-
ate principal axes in the tangential directions. The
classification of the four perturbation modes is the same as for
the spherical case. The wavevector of a perturbation tends to
be sheared toward the collapse direction, and the growth of e is
fastest for this orientation. At late times, the growth of density
perturbations (for zero pressure) is dominated by kinematics
rather than self-gravity, with the dependence. € oc (£, — 1)~ 1.

For a generic collapse which is neither homogeneous nor
spherical, it seems likely that during the later stages, growth of
density perturbations will be dominated by the background
kinematics rather than self-gravity. In general, there will be a
single fastest contracting principal axis, and perturbation
growth will be fastest when the wavevector is aligned with this
axis. Therefore, as discussed in § VI, the nonlinear develop-
ment of these perturbations is likely to lead to collapse to
planar structures (“ pancakes”) oriented perpendicular to the
preferred axis. (In the special case that the two fastest contract-
ing axes are degenerate, as for a spherical background flow, the
collapse is likely to be planar in the first instance, but with the
planes later collapsing down to filaments aligned along the
slowest contracting axis.) For a collisional fluid, the resulting
planar gas layer may reach vertical equilibrium while it is still
nearly comoving with the background flow in the transverse
directions, under the influence of the background tidal forces,
and be quite thin relative to its transverse extent if the collapse
is accompanied by sufficient energy dissipation. Section VII
considers perturbation growth in a thin fluid sheet undergoing
shearing motion, which is essentially the two-dimensional
analog of the three-dimensional problem discussed in the pre-
vious sections. A distinctive feature of the two-dimensional
problem is that the self-gravity of a perturbation increases with
increasing wavenumber. Provided the sound speed in the sheet
is small enough, there is a range of wavelengths, between the
large scales on which kinematics dominate and the small scales
on which pressure dominates, over which self-gravity causes
perturbations to grow much more rapidly than would pertur-
bations of the same wavelength which were still part of the
three-dimensional background flow.

The results of this paper suggest the following scenario for
the fragmentation of a cold collapsing flow. If the collapse
starts from nearly homogeneous and isotropic initial condi-
tions, then initially self-gravity contributes significantly to
growth of density perturbations, and perturbations which go
nonlinear at this stage will collapse to self-gravitating objects.
At later stages, the collapse becomes anisotropic as tidal fields
grow, and the mechanism of perturbation growth becomes
mainly kinematic. Perturbations which go nonlinear at this
stage collapse to planar pancakes which may not be self-
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1 gravitating. However, these pancakes, if gaseous, may be sus- gation. However, if correct it could have important implica-
ceptible to self-gravitating instabilities on small scales, leading tions for galaxy formation and star formation.
to formation of gravitationally bound fragments. The charac-
teristic sizes of the fragments formed by this two stage process I thank Barbara Ryden for comments on a draft of this
will be sensitive to the amount of radiative cooling in the paper. This research was supported by NASA grant NAGW-
pancake. Clearly, the scenario outlined requires further investi- 931.
APPENDIX A

RELATION OF TWO-DIMENSIONAL AND THREE-DIMENSIONAL POLYTROPIC COEFFICIENTS

We consider a fluid sheet with planar symmetry which in the perpendicular (z) direction is self-gravitating and in hydrostatic
equilibrium. The three-dimensional pressure p(z), volume density p(z), and gravitational potential ®(z) are related by

dp do
— = —p— Al
dz Pz (Ala)
a*o
— = . Alb
3 = 4nGp (Alb)
With the polytropic relation p = xp’, these can be combined into a single equation:
d dp
— T2 = =0. A2
o (K')’p dz> +4nGp =0 (A2)
The method of solution of this equation is given by Goldreich and Lynden-Bell (1965) as follows. Define p. = p(z = 0). Then
b
<£> =cos? X, (A3a)
Pe
where X(z) is given implicitly by integrating
dZ K py—Z 1/2 B
— === x)t-2, A3b
X <2nG> (cos X) (A3b)
The surface density ¢ is then given by
o /2 dZ 2K pv 1/2
= = X\ —= X =|— , A4
o 2Lp(2)dz ZL o )<dX> (;:G) (A4)
while the vertically integrated pressure P is given by
© n/2 dZ 2K3p37—2 1/2
= = X\ —= JdX = ———]) 1,, AS
P ZLp(z)dz ZL Kp( )<dX>d < G > y (A5a)
where
1,=22U"1MB2 —1/y,2—-1/y), (A5b)

and B(x, y) is the beta function. The quantity I, is finite for y > 1 Particular values are I, = 1 and I, = n/4. Combining equations
(A4) and (A5), we obtain a polytropic relation between the two-dimensional pressure P and the surface density

P =Ko', (A6a)
where
r=3-24, (A6b)
G\t~

K= (%) Ll (A6c)

If we define the effective thickness of the fluid sheet by h = a/2p,, then it follows from combining the above equations that

CZ

h= e A7
I'l,nGo (A7)

where C, = (dP/do)"/? is the two-dimensional sound speed.
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APPENDIX B
WKB SOLUTIONS

We consider the solutions of an equation of the form

d?y dy 1
— —=— B1
) 5= 5 00y, (B1)
in the limit € - 0. We define new variables
2(x) = 4 (z) =exp |2 xa( dx' 1Q(x) (B2)
) exp [J¥ a(x")dx"]’ qz) = exp x X
in terms of which equation (B1) becomes
d? 1
=2y (B3)
This equation is of standard Shrodinger form. The solutions as € — 0 are (e.g., Bender and Orszag 1978, § 10.1)
Cy 1~
~— +-| V4t , B4
YO a7 P [— c f « )‘“] B
and the condition for this to be a good approximation is, roughly,
dq/dz
€ <1 B4b
770 (B4
(Bender and Orszag give a more precise criterion). Transforming back to the original variables, we obtain the solutions
Cy 1 [~ 1 [~
~—_— - t—= :
) ~ T e [i - f Vot — > f a(t)dt] : (BSa)
with the conditions for this to be a good approximation being roughly
9 a(x)
€ 02(x) <1, € 0% <1. (B5b)

This transformation of variables can also be used to derive the connection formulae relating the WKB solutions on either side of a
point x = x, at which Q(x,) = 0 to those for an equation of the standard form (B3), if these are needed.
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