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ABSTRACT

A general analysis is presented of the structure of a steady state, plane-parallel shock wave in which both
thermal conduction and radiative cooling are important. The fluid is assumed to have a perfect-gas equation
of state, with radiative cooling a function only of its temperature and density. Conduction in both diffusive
and saturated regimes is treated. For the case of a strong shock, with conductivity and cooling function
varying as power laws in temperature, approximate analytic solutions describing the shock wave are derived.
For a plasma of solar composition, conduction is found to have a significant effect on the shock temperature
and overall thickness of the postshock layer only for shock velocities vy = 3 x 10* km s~ !, corresponding to
shock temperatures T, = 10'° K, but it affects the local structure of parts of the shock wave at much lower

velocities. The effects of conduction are greatly enhanced if the heavy-element abundance is increased.

Subject headings: hydrodynamics — shock waves

I. INTRODUCTION

Considerable work has been devoted to the effects of heat
conduction on the interface between a hot gas and a cold gas in
the case that approximate pressure equilibrium holds through-
out the fluid, with all flows being subsonic. If there is no radi-
ative cooling, a thermal wave propagates from the hot gas into
the cold gas, evaporating the cold phase (e.g., Zel’dovich and
Raizer 1967). If there is radiative cooling, the behavior is more
complicated (e.g., Doroshkevich and Zel’dovich 1981): if the
boundary between the phases is initially infinitely sharp, then
at early times a thermal wave propagates into the cold phase,
and there is evaporation, but at late times a cooling wave
propagates into the hot phase, and there is condensation onto
the cold phase (this discussion assumes that the cooling time
scale for the hot gas exceeds that for cooler gas, as is typically
the case). These ideas have been applied to the evaporation of
clouds in the interstellar medium (e.g., Penston and Brown
1970; Cowie and McKee 1977; McKee and Cowie 1977).

In the opposite extreme, one has the case that there is a large
pressure difference between two bodies of gas, and the interface
propagates as a shock front moving supersonically into the
low-pressure gas. There has been extensive work on the
separate effects on shock waves of thermal conduction
(reviewed by Zel’dovich and Raizer 1967) and radiative cooling
(reviewed by McKee and Hollenbach 1980), but no systematic
investigation of their combined effects. Chevalier (1975) and
Cowie (1977) investigated (mainly by means of time-dependent
numerical simulations) the effects of thermal conduction on the
evolution of supernova remnants, in which a point explosion
drives a roughly spherical shock into the surrounding medium.
More recently, Bond et al. (1984) and Shapiro and Struck-
Marcell (1985) have performed time-dependent numerical
simulations of the planar shock structures arising from gravita-
tional collapse in the “pancake” theory of galaxy formation,
including both radiative cooling and thermal conduction.
While assuming similar physical parameters, Bond et al. and
Shapiro and Struck-Marcell come to opposite conclusions
about the effects of thermal conductivity on their results.

In view of this, it seemed worthwhile to make a more system-
atic investigation of the structure of shocks with both radiative
cooling and thermal conduction, to elucidate the conditions
under which thermal conduction is likely to be an important
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effect. An additional motivation was that (with the exception of
some of the numerical simulations referred to) previous investi-
gations of the effects of thermal conduction had all assumed
that the heat flux was given by the diffusive approximation
Q = —k(T)dT/dx, valid when the mean free path of the par-
ticles transporting the energy is small compared with the
length scale of temperature variation. This approximation
breaks down when the temperature gradient becomes very
large, and the heat flux saturates at a value Q,, independent of
|dT/dx|, as discussed, for instance, by Cowie and McKee
(1977).

The investigations in this paper are restricted to shocks in
plane-parallel, steady state flows. In addition, I assume that the
gas may be treated as a single fluid with a perfect-gas equation
of state, although for an ionized gas a two-fluid treatment, with
the electrons and ions allowed to have different temperatures,
would be more exact. I assume equilibrium radiative cooling,
in which the cooling rate depends only on the present tem-
perature and density of the gas. The plan of the paper is as
follows: Section II gives the basic equations of steady, one-
dimensional gas flow. These are cast into dimensionless form.
For the case in which the thermal conductivity and radiative
cooling rate per unit volume have the dependences k = x(T)
and A = p2I(T), the solutions scale straightforwardly with the
density. Section III outlines a general procedure for solving the
steady-flow equations and gives a qualitative description of the
behaviors produced by radiative cooling, thermal conduction,
and flux saturation. Section IV derives approximate analytic
solutions for the shock temperature and for the structure of the
pre- and postshock regions in a strong shock wave, assuming
that the conductivity and cooling rate vary as power laws in
temperature. Section V presents results for the astrophysically
interesting case of a fully ionized plasma, with heat conduction
by free electrons and cooling by bremsstrahlung and line and
recombination radiation. Estimates are given for the shock
velocity at which conduction becomes important. Section VI is
a summary.

II. BASIC EQUATIONS

We consider the one-dimensional steady flow of a non-
viscous gas. In the frame in which the shock front is at rest, the
equations of mass conservation, momentum conservation, and
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energy balance are (e.g., Landau and Lifshitz 1959):

2 (o) =0, 2.1a)
dx
d 2
— @+ pv)=0, (2.1b)
dx
d 1, _
E |:pv<§ v+ h) + Q] =—A, (2.1¢)

where v (>0) is the velocity; p, p, T, h are respectively the
density, pressure, temperature, and enthalpy per unit mass; Q
is the heat flux due to conduction; and A is the radiative
cooling rate per unit volume. The shock wave is assumed to be
optically thin to its own radiation. We specialize to the case of
a perfect gas with adiabatic index y = 5/3 and (constant) mean
molecular mass y, for which p = (kg/umy)pT. It is convenient
to introduce a scaled temperature variable defined by

T = kg T/umy = p/p , (2.2)
in terms of which
h=3T; (2.3)
T is the square of the isothermal sound speed.
Equations (2.1a) and (2.1b) can be integrated immediately.

We assume that far upstream (x - — oo, for v > 0), the pres-
sure, density, and velocity are p, po, and v,. Then

pY = povg , (24
p+ pv* = po + povp - (2.5
We define an energy flux
F=povs3v* +3T)+Q, (2.6)
in terms of which equation (2.1¢) becomes
% =—Alp, T). 2.7

The above equations apply in regions of the flow where the
flow variables are all continuous. At a shock front, where p and
v vary discontinuously, they must be supplemented by jump
conditions relating flow variables on either side of the discon-
tinuity ([ X] denotes the change in X across the shock discon-
tinuity, moving in the flow direction):

[pv]1=0, (2.8a)
[p+pv*]1=0, (2.8b)
[F]1=0. (2.8¢)

Equations (2.8a) and (2.8b) are in fact equivalent to equations
(2.4) and (2.5), respectively, while equation (2.8c) can be derived
by integrating equation (2.7) across the shock discontinuity (A
being everywhere finite). The solution to the flow is found by
integrating equation (2.7), in conjunction with equations (2.4)
and (2.5), and the jump condition (2.8c). For some purposes it
is convenient to use as the independent variable the column
density rather than the spatial coordinate; they are related by

= J.pdx . 2.9

We have yet to specify the form of the conductive heat flux Q
and the radiative cooling rate A. For small temperature gra-

LACEY

Vol. 326

dients, the conductive flux is given by the diffusion approx-
imation: Qg = —k(p, T)dT/dx = —k(p, T)dT/dx, but for
large temperature gradients the heat flux saturates at a value
Q.. independent of | dT/dx | (e.g., Cowie and McKee 1977). On
dimensional grounds, Q,,, must vary as the product of the
thermal energy density with the typical thermal velocity; thus
Qu = —0pT?? sgn (dT/dx), with § dimensionless. § is related
to Cowie and McKee’s ¢, parameter by 6 = 5¢,. The actual
conductive flux will be assumed to be the minimum of the
diffusive and saturated fluxes:

Q = —min (k|dT/dx|, 0pT*?) sgn (dT/dx). (2.10)

Where needed, the conductivity and the radiative cooling rate
will be assumed to have the dependences ik = k(T) and A =
p2I(T), as usually occurs in practice, with L = Ofor T < T..

a) Dimensionless Form of Equations
For the purpose of solving the flow equations, it is conve-
nient to introduce dimensionless flow variables (cf. Zel’dovich
and Raizer 1967). Define a dimensionless velocity

n = /v, . (2.11)
Combining with equation (2.4), we have
p=po/n. (212)
Define a dimensionless temperature
t=Twi=nl +19—1), (2.13)

where the second equality follows from equations (2.5), (2.11),
and (2.12). The initial temperature z, is related to the adiabatic
Mach number M of the shock: M? = (vy/c,)? = 215!, where
¢o = (5po/3po)*'? is the adiabatic sound speed. For a shock, we
have the condition M > 1; thus 7, < 2. We define a dimen-
sionless spatial coordinate £, and dimensionless total and con-
ductive energy fluxes fand q:

§=x/%o, (2.14)
F 5
fer—=401+1%)-nl+4q, @.15)
2Po Vo
Y . [ dt 20_13/2] (dr)
= = —min | k — 1, sen|—), (216
! 2P0 V3 (x) dé¢ n & dé (2.16)
where
ko) = 24D @17
Po Xo Vo
It is also convenient to define
g(n) = M3(1 + o) — 7] (2.18)

as the component of the dimensionless energy flux due to the
motion of the fluid. Thus the total energy fluxisf=g + g.
For A = p>L(T), the energy-balance equation (2.7) becomes

g_ 1o
&= (2.19)
where
I(z) = 2P0 ’;%L(T) (2.20)

In the above, x, is some characteristic length scale for the

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1988ApJ...326..769L

No. 2, 1988

shock layer, based on the conductivity or the cooling function,
that we have still to specify. We are free to define x, so that it
has the scaling x, oc 1/p,, so that p, disappears from the
problem except as an overall scaling factor. These equations
can easily be generalized to the case in which A(p, T) has a
different form, or k = k(p, T), but then the solutions no longer
scale in a simple way with p,. The dimensionless column
density is

0 =Z/poXo = f(l/n)dé : 2.21)

III. SOLUTION OF SHOCK STRUCTURE

The initial, upstream (£ — — co0) state of the gas is n =1,
=1, < 2, and the final, downstream (¢ — o0) state is # =
n, <1,7=1, =n,(1 + 79 — n,). In the initial and final states,
dn/dé =0, q = 0,1 = 0. The function #(£) decreases monotoni-
cally from the initial to the final states, dn/d¢ < 0, and varies
discontinuously at a shock. We assume that the radiative
cooling function has I(t) = 0 for 7 < 7, so, for the initial and
final states to be equilibria, we must have 7, < 7, 1, < 7. The
total energy flux decreases monotonically and continuously,
dfjd¢ <0, so that f; <f, =1+ 575. In the initial and final

(17570/4 (==0)/4 i
n
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states, f = 4n[3(1 + 1) — 1] (eq. [2.15]), so the bound on f;
gives 1, < (1 + 57,). In the absence of cooling, f; = fy, 7, =
(1 + 570), 7y = (1 + 57)3 — 1), and 1 < 7(§) < 7,. The
condition that cooling not occur is simply 7, > 7(1 + 51,)
(3 — 70). In the case 1, < (1 + 570)(3 — 17,), the gas radiates
energy, and the final stateis n, = #,, t, = t,, where

M. = 3(1 + 7o) — [3(1 + 70)* — 71" G.n

is the smaller root of equation (2.13) for 7 = «,.

a) Solution for Unsaturated Conduction

We assume for the present that the conductive heat flux is
everywhere unsaturated (formally, we let 6 — 00), and post-
pone discussion of the effects of saturation to the next section.
In this case,

q = qaiee = —k(t)dr/dE ; (3-2)

q must be finite everywhere, since fis, so t(¢) must be contin-

uous, even at shocks. Consider the solution trajectory in the

7- plane. There are four cases to consider, depending on the
values of 7, and 7, (they are sketched in Fig. 1):

1. 19> %, 1. > (1 + 5t0)(3 — 70): 17 and 1 vary contin-

. t
n

FiG. 1.—Trajectories in 7-n plane for various values of 7, and 7,. Solid curve shows actual trajectory; dashed curve shows (n) relation. See text for details.
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FiG. 2.—Trajectory in g-n plane. Solid curve shows actual trajectory (discontinuous at shock); dashed curves show bounds on g. See text for details.

uously, with no jump. The final state is n, = 3 + 57¢)

(Fig. 1a).

2. 19> %, 7. < f6(1 + 570)(3 — 70): 1 has a shock jump.

The final state is 4 = 7., © = 7. (Fig. 1b).

3. 19 <3, 1.> fe(l + 570)3 — 70): n has a jump. The
final state is #; = (1 + 57,) (Fig. 1c).

4. 15 <%, 1. < 75(1 + 510)3 — 70): n has a jump. The
final state is n = 7., © = 1, (Fig. 1d).

For the nonradiative case, the reason why a jump in  occurs
for 7o <3 (M2 >9/5) is as follows (Zel'dovich and Raizer
1967): The form of the () relation (eq. [2.13]), together with
the assumption dr/d¢ < 0, requires dt/d¢ > 0 and thus ¢ <0
for n > 4(1 + 1), and dt/dé <0, g > 0 for n < }(1 + o). On
the other hand, energy conservation (eq. [2.15] with f= f,)
requires g > O for n > 4(1 + 57,), and vice versa. Therefore, it
is impossible for the solution to evolve continuously through
the range (1 + 5t0) < < 3(1 + o). Since r must vary contin-
uously, the solution jumps from n= {3—10) to 7=
%(1 + STo).

This argument can be generalized to the radiative case: fis
then bounded between its initial and final values, f; < f < fo,
and g correspondingly has bounds depending on 7: gu,() <
41) < Guax(), Where  guin(n) = f1 — 9(1),  Gmax(n) = fo — g(n)-
Again we find that for 7, < 3, the solution cannot vary contin-
uously in the range (1 + 5t) <#n < 3(1 + 7o), and so must
jump across the range (1 + 570) <7 < +(3 — 7o) A sketch of
the behavior for this case is given in Figure 2.

In the case that the shock is radiative, the location in 5 of the
shock jump is not known a priori, and must be found by inte-
grating the energy equation inward (toward the shock) from
the initial and final states and matching at some intermediate

oint. It is convenient to perform this matching in the f-t
plane; f(£) and (&) are both continuous, and thus f(z) is also
continuous. It is, however, in general double-valued because
©(n) has two roots for each value of 7 in the range 7 <
1(1 + 1,)*: there is a branch £, (t) corresponding to the range
n > (1 + 1) and a branch f_(7) for the range n < 3(1 + 7).
The monotonicity conditions df,/dt <0, df_/dt >0 follow
from df/dé < 0. The location of the shock © = 1, is given by the
intersection of f. (r) and f_(z), as is sketched in Figure 3. Then

f+(7) can be calculated as follows: Dividing equation (2.19) by
equation (3.2) results in

a k(t)l(7)
dt - n*q

Combining this with equations (2.13) and (2.15) then gives a
differential equation for g(r):

(3.3

A1 + 14 — 2k(D)(x)
nZ

which can be integrated from = 1 and # = 7, in the directions
of decreasing and increasing 7, respectively. From g(n7) one
derives f(n) = g(n) + q(n), and thus f,(z). Note that the trajec-
tories in the f-t plane depend on the conductivity and cooling
function only through the product k(v)l(z) = 4&(T)L(T)/vg.
Once the location of the shock has been solved for, the spatial

dq?
E + 2[5(1 + 7o) — 81lq = , (34

Ts (1 +‘r..,)2 /4

T
F1G. 3—Matching of trajectories in f~t plane to determine shock tem-
perature t,.
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dependence of the fluid variables can be found by integrating
d_, do_ _(1+ 70— 29k(D)
dn " q(m)

to give &(n) or o(n), and then inverting, to give n(¢), (¢), and so
on.

(3.5)

b) Solution for Saturated Conduction

In the case in which  is finite, the conductive flux is limited
by the condition | g| < | g.,(n) |, where

G = —20n"(1 + 79 — n)*'? sgn (de/d?) . (3.6)

An immediate consequence is that 7(£) no longer need be con-
tinuous, since q remains finite even if dz/d¢ is infinite. Therefore
solution trajectories in the f~r plane may make horizontal
jumps across certain ranges of 7. The condition | q| = | g..(n)|
defines unique trajectories (independent of &(T) and L(T)) for
the (+) and (—) branches of f(7):

STRUCTURE OF SHOCKS

Sesa® = 9g(0) — | e | (3.72)
S=sadtt) = 9(n) + 1 g - (3.7b)
(a) g+ =777\
f -7 - fisar_ 5
D ..... f/ ,,,,, 5
\:
s i

T

ﬂ (1+7,)°/4

773

For a solution trajectory coinciding with f = f,,, &(n) can be
found by integrating
& nldfa/dn

e (3.8)

The condition |q| <|¢s,| translates into bounds on f.(7):
froad® <f1(1) < 94(0), 9-(1) <f_(1) <f_oulr), where g4(7)
denotes g(n) evaluated on the (+) or (—) branches of n(z). The
function g, (t) has a maximum in the range 0 < 7 < (1 + 17,)?,
and f, sa,(r) also has a maximum, if 4 is sufﬁmently small, as is
sketched in Flg 4qa. For larger 0, f,,(7) is monotonically
decreasing, as is shown in Figure 4b. The function g_(t) mono-
tonically increases, and so does f_,(7) in the range 0 <7 <
11 + 10)% 0 <f<f, (the latter restriction being necessary
because | g,,, | has a maximum), as shown in Figure 4c.
Consider the behavior of f, (z), integrating inward from 7 =
To. At T=7Tp, 4= 0, while | g, | >0 if § >0, 75 > 0, so the
solution is initially unsaturated. At some point, the solution
f+(7) found via integration of equation (3.4) may intersect the
curve f=f,.(7). The subsequent behavior depends on
whether df, .,./dt > 0 or <O at the intersection. If df .,,/dt >

(1+}0)2/4

To T¢ Ts
T

FiG. 4—Effects of conductive saturation on trajectories in f-z plane. Solid curves show actual trajectories; dashed curves show bounds on f. See text for details.
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0, the solution must jump across to the point on the f, ., curve
with the same value of f since f cannot increase. There results a
shock discontinuity at which there are jumps in both tem-
perature and density. This case is sketched in Figure 4a. If
df ; sa/dt < O, then the solution is forced to follow the f = f, ,,
curve in the direction of increasing t for as long as
df s unsa/dt < df ., /dT along this curve, where df, .../dT is
evaluated via equation (3.4) as though the conduction were
unsaturated. This case is sketched in Figure 4b. The solution
can branch off again from f = f, ,, if it reaches a point where
df+ unsat/dt = df+ sal/d‘c and (d/dt)(df+ unsat/dt - df+ sal/d‘c) > 0.
The behavior of f_(z) is similar, except that intersection of

f-(z) with f__(r) does not result in a shock discontinuity
because df_,,/dt > 0. The solution is forced to follow f=
S—sal7) (moving in the direction of increasing ) for as long as
Af _ unsar/dT > df _ . /d7, as sketched in Figure 4c. It can branch
off again where df_ ... /dt = df_,,/dr and (d/dTt)(df_,,s./dT
— df _,/dt) < 0. Again, the shock location is found from the
intersection of f, (t) and f_(z). In the case in which f,(r) has
a jump, the intersection may occur in the jump region, as
sketched in Figure 4d.

¢) Spatial Structure of Shock

Combining the results of §§ IIla and IIIb, we can give a
qualitative picture of the spatial structure of the transition
region between the upstream and downstream states. Neglect-
ing saturation, one finds an isothermal shock, at which t = 1,
and 5 jumps from #,_ to 7., if either 1, <} or 1, < 7, <
(1 + 570)(3 — 1) for 15 < 2. We define £ = 0 at this “main
shock.” The temperature 7, at the shock is the maximum tem-
perature achieved in the flow. If there is no radiative cooling,
the postshock flow is at constant temperature. Radiative
cooling causes the temperature to decline from t, to . beyond
the shock. A conductive precursor propagates ahead of the
main shock, in the region £ < 0 where ,_ < 5 < 1. If the con-
duction is everywhere unsaturated, then the temperature in
this precursor increases continuously from t = 7, upstream to
T = 1, at the shock. If k(z) - 0 as 7 — 1, the precursor extends
only a finite distance ahead of the shock.

When saturation effects are included, there may be an addi-
tional “ precursor shock ” ahead of the main shock at & = &, <
0, at which 7 jumps from t,_ to 7,, and # jumps from 7,_ to
N,+. In the limit 7, -0, M — co, such a precursor shock
always occurs, with 7,_ = 0 and 7,, = 7, although the shock
jump is small if > 1. If t, > 0, then there is a precursor shock
only if 0 is small enough. For 8 smaller still, the precursor
shock and the main shock merge into a single shock at which
both density and temperature are discontinuous. For a strong
shock (M — o0), this occurs for § < 4/3/2 in the adiabatic case,
and at a larger value of 0 is there is radiative cooling.

IV. APPROXIMATE ANALYTIC SOLUTIONS

In this section we derive simple analytic solutions that, given
certain assumptions and approximations, describe various
portions of the shock, and then use these to estimate the shock
temperature. For simplicity we consider the limit of a very
strong shock, with 7 = 0, M — 00, and also assume 7, < 1. We
also assume that the thermal conductivity and cooling function
are power laws in temperature: I(t) = at® k(t) = bt®, so that
k(x)l(x) = abt**# = ct?, with y > 1. We consider separately the
ranges 7 > 4(+), upstream of the main shock, and n < 1(—),
downstream of the main shock.

Vol. 326

a) Behavior for 3 < n < 1 (Upstream)
Since 7, = 0, the (+) range is restricted to 2 < 7 < 1,7 < 3.
For1 — n < 1, we have

taxl—n<l. @.1)

In this approximation, we have p ~ p,, ie., the flow is iso-
choric. Taking t as our basic variable, we can rewrite equation
(34)forg = —|q]as

M — 6| ~ P Y
I q| = 2k(r)l(zr) = 2¢c1?, 4.2)
The saturated conductive flux is approximately
| o | = 26732 4.3)
and
f=1+3t—|q]. 4.4
Equation (3.5) becomes
do/dt = dé/dt = —k(7)/q(z) . 4.5)

While strictly valid only for 1 — 5 < 1, the above equations are
roughly correct even for n = 2.

If we neglect the effects of saturation, we find that the solu-
tion to equation (4.2), subject to the boundary condition
lg| = 0att = 0, has limiting behaviors

9 1/(y—-1)
N
c

1/2 1/(y—1)
() e o [HLE g

The iarge-t behavior is physically relevant only if it occurs for
(&

Now consider the effects of finite §. Comparing equations
(4.6) and (4.3), we find that g would always be saturated for
7 — 0, if the solution were continuous. However, for 7, = 0,
S+sa > fo in the range 0 < 7 < 7, s0 no continuous solution is
possible in this range. For § < 4/3'/2, 7, > 3/16, and the solu-
tion jumps straight from n =1, 1=0to n<%. For §> 1,
1, ~ (3/26)* < 1, and the solution has a shock transition from
7 =0 to 7 = 1, after which it varies continuously over some
range of 1, before undergoing a second shock.transition, this
one at constant temperature t =1, to the region 5 < %.
Whether the conduction is saturated in the range T,<T<T
depends on the value of

lq|l = 37,

_dlqlunsal dlqlsat_ ﬁ_ y—3/2 N.-1/2

A, = e 3 = 3+ 20-1 304, (4.7)
A, being evaluated on the curve q = q,,. For A, > 0, the
solution g(z) may join the curve q = q,,,, while for A, < 0, the
solution must branch off. Thus, for y < 2, q is unsaturated for
T— 00, and for y > 2, q is saturated for t — oo but can be
unsaturated at intermediate t. Whether the regime “7 — o0 ” is
reached in the physical range of ¢ depends on the values of ¢
and 6.

b) Behavior for 0 < n < % (Downstream)
For 7, =0, the (—) range is restricted to 0 <7 <3,
7 < 3/16. For n < 1, we have

RNkl 4.8)
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thus p ~ p, vZ, ie., the flow is isobaric. Equation (3.4) approx-
imates to

4 | 1oq ~ 2 KO k(T)l(’) =2er772, 49)
drt
while equation (3.6) becomes
G ~ 20712 (4.10)
and
f=5t+4q; (4.11)

&(r) and o(t) can be found by integrating
tdo/dt ~ d&/dt = —k(t)/q(7) .

The above approximations are roughly valid even for # =

Consider the solution of equation (4.9) with boundary condi-
tion ¢ =0 at t =0, i.e,, 7, = 0. Solutions ¢(7) for 7. > 0 con-
verge on this solution from below. One finds the following
limiting behaviors:

4.12)

l<y<3:

N 2¢ 1/2"'.@_1)/2 (},_ l)c 1/3-y)
1=\; 1 ’ 50 ’

Loome oy (l2=206)7077 [ = De]ve
5 ’ 25 ’ 50
(4.13a)

g=3[—1+(1 +4c/25"]z . (4.13b)
y>3:
o Loz ‘< [ 25 jll/(v-”
R G-2c]
2 1/2 50 1/(y=3)
~ (y _c 1> 07Dy [(y - l)c:I . (4130

The solution for y = 3 is exact. We see that fory < 3, g/f~ 1 at
low temperatures and gq/f < 1 at high temperatures, while for
y > 3, the reverse is true. For y = 3, g/f = constant, indepen-
dent of temperature in the downstream region.
Now consider the effects of saturation. Define
— Wunsar _ Aoat _ £ sz _ g

. 4.19)

For A_ > 0, an unsaturated solution g(t) can join onto g =
gsu(7), while for A_ < 0, the solution must branch off. Making
use of this, and comparing the unsaturated solutions (4.13)-
(4.10), one finds the following: for 1 < y < 2, ¢(z) is saturated
for  — 0 and becomes unsaturated for 7 — oo; for 2 <y < 5/2,
q(7) is unsaturated for t — 0 and unsaturated for t — oo, but
can be saturated at intermediate 7; for y > 5/2, g(t) is unsatu-
rated for 7 — 0 and becomes saturated for © — co. The regime
“17— 00 ” may or may not be achieved in the physical range of
7, depending on the values of ¢ and 6.

¢) Determination of Shock Temperature and Spatial Structure

The shock temperature can be estimated by matching the
approx1mate solutions for the upstream and downstream
regions. We concentrate on the case a =%, f=5/2, y =3,
because this turns out to be of the most physical interest (see
§ V). The case y = 3 also happens to be the simplest to analyze.
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Consider first the case in which saturation effects can be
neglected. Here 7, is found by solving f, () = f_(z), with £, (1)
given by equations (4.4) and (4.6), and f_(z) given by equations
(4.11) and (4.13b). We find

2
~N—_— 5
ST T A+ 4257

and f, (1) = 1 for 7 < 7, so that only a negligible fraction of the
total energy flux is radiated from the upstream region. Numeri-
cal integration of the exact equations shows that these approx-
imate results are accurate to better than 10%. In the limit ¢ — 0
in which there i 1s no thermal conduction, the approximate solu-
tion gives 7, = £, to be compared with the exact solution ,
3/16. Equatxon (4.15) for 7, can be further approximated as

‘L’z% (c=s25,y=3),
~1lJe (€225,y=3), (4.16)

showing that the effects of conduction become significant for
¢ 2 25, leading to a reduction in the shock temperature by a
factor of (25/c)*/* compared with its value in the absence of
conduction.

Given the approximate solutions for g(t), one can then
derive the dependence of temperature on position 7(£) by inte-
grating equation (4.5) for £ < 0, or equation (4.12) for & > 0 (we
take £ = 0 at the shock front). For ¢ < 0, equation (4.6) gives

y=3), (4.15)

g~ —31,and
3 1/p
TR (rf + ?ﬂ é) E<0), (4.17a)
while for £ > 0, g is given by equation (4.13b) and
5 ﬁ s 1/
TR 15——2—5[(1+4c/25)/ —1]¢ E>0,y=3).
(4.17b)

We assume f§ > 0. We see that a conductive precursor propa-
gates ahead of the shock by a distance ¢; &~ —(b/3p)%, while in
the postshock region the gas cools back down to t =0 in a
distance &, ~ (2b/SP)[(1 + 4c/25)*'> — 1]7*<. Thus, com-
pared with its value in the absence of conduction, the spatial
thickness of the cooling layer behind the shock is changed by a
factor (25/c)?~®2 for ¢ Z 25. One can derive similar relations
with the column density ¢ instead of ¢ as the independent
variable. One finds that the column density of the precursor is
o, ~ &, (for B > 0), while that of the postshock cooling zone is
o, = BB — 1)&,/ty) (for B > 1). Thus, for ¢ 2 25, conduction
changes the column density for cooling by a factor (25/c)t 2,
The column density is reduced for a < 1. This reduction occurs
because the cooling rate per unit mass A/p, which is pro-
portional to L/T in the approximately isobaric conditions
behind the shock, increases with decreasing temperature if
o < 1. Therefore, conduction transports heat to parts of the
shocked layer where it is radiated more efficiently. Similarly,
the thickness of the cooling layer is reduced by conduction if
a < 2, because then the cooling rate per unit volume A oc L/T>
increases with decreasing temperature.

Now consider the effects of saturation. Rather than varying
continuously, the temperature in the conductive precursor
jumps from t = 0 to 7 = 7, at a weak shock ahead of the main
shock, where 7, is the solution of f+sal(®) = 1. For 8> 1, equa-
tions (4.3) and (4 4) givet, ~ (3/20)%. If 1, > T, then the precur-
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sor shock at 7, and the main shock at 7, merge into a single
shock at 7 ; using equation (4.16), we find that this occurs for
all values of ¢ for 6 <(3,/5)/2, and at ¢ 2 (26/3)* for § 2
(3/5)/2. Fort, < 7, A, <0att =1, (eq. [4.7]), and the solu-
tion f, (r) is unsaturated for 7, < v < 7,. Since f, ~ 1 in this
range, the solution differs negligibly from that derived above
neglecting saturation. In the postshock region, saturation
becomes important only at values of ¢ large enough that the
precursor does not exist. Combining equations (4.10) and
(4.13b), we find that the conductive flux is saturated for t > 7,
with 7o, & {40/5[(1 + 4¢/25)'* — 11} If 1, < 1, then 7, is
found from f_,(t) = 1. For 6 < (\/5)/2, saturation sets in for
¢ 2 (10,/5)8 < 25, and 7, & } in the saturated regime; for 0 2
(v/5)/2, saturation sets in for ¢ 2 (20)* > 25, and 7, ~ 1/(26)? in
the saturated regime. Thus for 6 < (,/5)/2, saturation sets in
before conduction can significantly affect the shock tem-
perature.

We now briefly consider determination of the shock struc-
ture for y # 3. The value of 7, is found by equating the approx-
imate solution for f given by equations (4.4) and (4.6) with that
given by equations (4.11) and (4.13aj (1 <y < 3) or (4.13¢)
(y > 3). We find that f~ 1 at the shock front is always valid,
and

R

Ts > €S Corit >

1
~3
V—l 1/(y—1)
~ > chcrity

e (4.18)
where c,,;, ~ 5% For y < 3, conduction becomes significant
first in low-temperature parts of the postshock region, while
for y > 3 conduction becomes significant first at T = 7, and is
always negligible at sufficiently low temperatures. The spatial
structure of the precursor is the same as for y = 3 (eq. [4.17a]).
In the absence of conduction, the postshock coeling layer has
finite thickness if a < 3, and finite column density if a < 2.
With conduction, the cooling layer thickness &, is finite if
in addition f—a+3>0, and is changed by a factor
~(Corit/Q) 20D for ¢ > ¢y, While the column density o,
is finite if f—a + 1> 0, and is changed by a factor ~
(Corie/O)E ™0~ for ¢ > ¢,y As in the case y =3, we see
that conduction reduces &, for a < 2, and reduces o, for o < 1.

V. PHYSICAL EXAMPLE

We consider the structure of a strong radiative shock in
which the gas is fully ionized. The conductive heat flux in a
plasma is dominated by the electrons. Assuming that the elec-
trons are scattered only by Coulomb interactions with ions
and other electrons, the conductivity in the diffusive regime is

2\ k32 \(_€r \sp
= 20(n) (m§/2e4><Z_ In Ac T D)

(Spitzer 1962), where Z = Zn; Z?/n, is the mean ionic charge,
and €, is a function of Z given approximately by eé, ~
0.095(Z + 0.24)/(1 + 0.24Z) (Max, McKee, and Mead 1980).
The Colomb logarithm is a slowly varying function of n,, T,
and Z for which I adopt the fixed value In A¢ = 32. The satu-
ration parameter 0 can be expressed as

_ 1/2 1/2 3/2
g = e’<3> <@) E (5.2)
n) \m.)

(Cowie and McKee 1977), where p, is the mean molecular mass
per electron. The value of the suppression factor €’ is somewhat
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uncertain; I adopt Cowie and McKee’s estimate € = 0.4,
although some plasma experiments suggest values as low as
€' =~ 0.04 (Max, McKee, and Mead 1980).

The above estimates of the conductive parameters neglect
the effects of magnetic fields and plasma turbulence, which
both tend to suppress thermal conduction. Thus the calcu-
lations in this paper give upper limits on the effectiveness of
conduction. The effect of magnetic fields on thermal conduc-
tion is discussed by Balbus (1986). Even quite a weak field will
inhibit particle motion perpendicular to the field direction. If
the magnetic field is uniform and makes an angle ¢ with the
flow direction, the heat flux in this direction is then reduced by
a factor cos? ¢ in the diffusive regime and cos ¢ in the saturat-
ed regime. If the field is tangled, the suppression factor may be
larger. If the plasma is turbulent, particles will be scattered by
plasma waves, reducing the mean free path and thus the con-
ductivity. A likely source of turbulence is the shock front itself:
as discussed by McKee and Hollenbach (1980), in the low-
density plasmas characteristic of astrophysics, the collisionless
plasma scales (Debye length, Larmor radius) are typically
much smaller than the Coulomb collision length, so that ther-
malization of particle velocities in the shock front is accom-
plished by plasma turbulence rather than by collisions. There
will be a turbulent layer at the shock front in which the particle
mean free path is comparable to collisionless scales (Tidman
and Krall 1971), so that the conductivity is reduced far below
the value given by equation (5.1). However, the thickness of
this layer is also expected to be comparable to collisionless
scales. If this layer is thin compared with the other scales in the
problem, then the shock jump conditions will corectly relate
quantities on either side of the layer, where the equations of
this paper do apply, and the analysis of the structure of the rest
of the shock wave goes through unchanged.

In a fully ionized plasma, the radiation is dominated by
bremsstrahlung, for which

16\ 27\ "2( ke \_
AB=<§><§> (ms—?zh'c—a)gslnﬁT”z (3

(e.g., Karzas and Latter 1961), where C is the velocity of light.
The average Gaunt factor g is very weakly varying; I adopt a
constant value g = 1.3.

For conduction and cooling rates given by equations (5.1)
and (5.3), we have « = 3, 8 = 5/2,7 = 3,and

¢ = (22X 22\ (ma)( e (—5_’”65’ B (%) (54
32x \m,) \hC)\In Ac) p2\C) ° '

The analysis of § IV shows that, for y = 3, conduction signifi-
cantly affects the shock structure for ¢ 2 25. This critical value
of ¢ corresponds through equation (5.4) to a critical value vq .,
of the shock velocity, and to a critical value of the shock tem-
perature T, = (umy/Skg)v? ;.. The values of vg .y, and T, o
have a significant dependence on the composition of the
plasma. For simplicity consider a plasma containing a single
species with atomic number Z and mass number A, so that
u=A/Z +1) and pu, = A/Z. Then we find for hydrogen
(Z=1,A=1)0g4u~35x10*kms ™, T, ., = 1.5 x 10!°K;
for helium (Z =2, A = 4) vy, 80 x 103kms ™!, T, ., = 2.0
x 10° K; for oxygen (Z =8, A = 16) vy i = 3.3 x 10* km
s™L, T, . = 4.6 x 108 K. For solar composition, vy . & 2.6
x 10*km s™!, T, ., ~ 1.0 x 10'° K, not much different from
the values for hydrogen. This composition dependence is domi-
nated by that of the mean molecular mass u. For the same
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compositions, the saturation parameter has values 0 = 4.8 (H),
6 = 10.6 (He), = 16.2 (O) and 0 = 5.6 (solar). We see from the
results of § IV that at low enough shock velocities, the shock
will have a conductive precursor, and that conduction will
have an important effect on the shock temperature before satu-
ration sets in.

The above analysis neglects contributions to the cooling rate
from line and recombination radiation, which become impor-
tant when the plasma is only partially ionized. For a plasma of
solar composition in ionization equilibrium, line and recombi-
nation radiation exceed bremsstrahlung for T <107 K
Increased cooling tends to make conduction more important,
because it steepens the temperature gradient in the postshock
region. I performed numerical integrations of the exact equa-
tions for the shock structure using the analytic fit to the solar
abundance equilibrium cooling curve given by Rosner, Tucker,
and Vaiana (1978) for the range 14 x 10*K < T < 4.7
x 107 K, with bremsstrahlung at the rate given by equation
(5.3) at higher temperatures, and the cooling rate set to zero at
lower temperatures. These calculations show that the estimate
made above for the shock velocity at which conduction has a
significant effect on the shock temperature and thickness
remains valid, even including these extra contributions to the
cooling rate.

When radiative cooling is by bremsstrahlung alone, the local
structure of the postshock region is nowhere significantly
affected by conduction unless the global structure is. This result
is no longer true when line and recombination cooling are
included. A useful measure of the effect of conduction on the
local structure is the ratio dX /dX, = (dX./dT)/(dZ,/dT),
dX./dT being the column density per unit temperature in the
postshock region with conduction, and dX,/dT being the
column density per unit temperature without conduction,
evaluated at the same temperature. The ratio dX_/dX, was
evaluated for the shock structure calculations using the solar
abundance cooling curve; the deviations from unity were
found to be largest at the cutoff in the cooling function at
T. = 1.4 x 10* K, and at the peak of the cooling curve at
T ~10° K. At the cooling cutoff, we have formally
dZ./dX, — oo. This is because, if L(T) goes to zero discontin-
uously at T = T, x = x,, then in the absence of conduction,
(T—T)oc(x —x,) for x<x, and T =T, for x > x_, in the
neighborhood of the cutoff, so that dT/dx is discontinuous;
when conduction is included, the behavior is (T — T,) oc
(x — x.)? for x < x,, so that dT/dx goes to zero continuously,
avoiding the divergence in the conductive flux that would
otherwise arise. These effects of the sharp cutoff on dZ /dZ, are
confined to the neighbourhood T ~ T.. The deviations of
dX /dZ, from unity at the peak of the cooling curve increase
with the shock velocity: they are only a few percent for v, =
102 km s, they reach a factor of 2 at v, & 103 km s, and
they reach a factor of 10 at v, & 5 x 103 km s~ . These results
are not affected by saturation unless 0 is smaller than ~ 102
of the value estimated above.

A further effect on the radiative cooling rate would be pos-
sible departures from ionization equilibrium. Raymond (1979)
and Shull and McKee (1979) find that this is an important
effect for shock velocities v, ~ 100 km s~ (for solar
abundances), for which subequilibrium ionization of hydrogen
and helium may cause the cooling rate in the immediate post-
shock region to exceed the equilibrium value by a factor of 10
or more. This effect should become small at larger shock ve-
locities, because ionization of these elements becomes nearly
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complete. To estimate the effects of enhanced cooling, I calcu-
lated shock models using the solar abundance cooling function
mentioned above, but with the nonbremsstrahlung part of the
cooling rate arbitrarily boosted by a factor of 10. This could
alternatively represent the effects of increasing the heavy-
element abundance by a factor of 10 above solar. The devi-
ations of dX_/dX, from unity near the peak of the cooling curve
are now about 10% for v, = 102 km s, increasing to a factor
of 2 for v, ~ 3 x 10> km s™! and a factor of 10 for vy~ 2

x 103 km s~ *. However, the effect of conduction on the shock
temperature is only a few percent even at v, = 10* km s~ . In
all of the numerical calculations, f ~ 1 at the shock front was
foundtobea good approximation.

For the case in which the cooling function I(T) and/or the
conductivity x(T) are not power laws in T, one can estimate
the shock velocity at which conduction significantly affects the
shock temperature as follows (we assume a strong shock): in
the absence of conduction, the characteristic length scale for
radiative cooling in _the postshock region is X, =
(9/512)(vo/p0 L), where L, is evaluated at the temperature T, =
(3/16)v3. The conductive heat flux is then Q ~ &, T,/X 001 Con—
duction is expected to become important when thls conductive
flux becomes comparable to the total energy flux F, = 1p, v3.
The condition |Q|/F, =1 gives k,L,/vs = 3/64. For power-
law conductivity and cooling functions, this gives almost the
same critical shock velocity as the results of § IV.

Finally, we consider relativistic corrections, which become
important at high temperatures. The electrons become rela-
tivistic for T 2 m,c?/ky =~ 6 x 10° K. This has several effects.
At given electron and ion densities, the expressions for the
conductivity and bremsstrahlung cooling rate in the extreme
relativistic regime (kz T » m,c?) differ from the nonrelati-
vistic expressions by factors ~2(m,c?/ky T)'* and
~3(kg T/m,c*)*'?, respectively (Lifshitz and Pitaevskii 1981;
Bisnovatyi-Kogan, Zeldovich, and Sunyaev 1971), so that kL
has the same temperature dependence but is somewhat larger.
Another effect is the creation of electron-positron pairs, which
boosts the thermal energy density and cooling rate at given
temperature and baryon density. If pair creation in the shock is
significant, the results presented here would have to be modi-
fied.

VI. SUMMARY

This paper presents a general procedure for deriving the
structure of a steady state, plane-parallel shock in which both
thermal conduction and radiative cooling are important. The
gas is assumed to behave as a single fluid with perfect-gas
equation of state. Conduction in both diffusive and saturated
regimes is treated. In the case in which k = x(T) and A =

p2L(T), the solutions scale with the preshock density p, as
p € po, X € 1/py, T = constant, x being the spatial coordinate.
For a y =5/3 gas, the condition for a shock to occur is
M > 3/,/5 with diffusive conduction and no radiation, while if
radiative cooling is effective, shocks can occur for M > 1,
where M is the adiabatic Mach number. When combined with
radiative cooling, conduction has the effect of reducing the
shock temperature at a given shock velocity. If conduction is
everywhere in the diffusive regime, then the temperature varies
continuously, even at shocks, but this need no longer be true if
the saturation parameter 9 is finite. If there is a shock with
finite M, then if 0 is sufficiently large the shock is isothermal
and is preceded by a conductively heated precursor in which
temperature varies smoothly. If 6 is reduced, a “precursor”
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shock, across which there is a temperature jump, develops
ahead of the “main shock.” If § is made even smaller, the
precursor shock merges with the main shock. For a strong
shock (M — o0) this occurs (and the precursor vanishes
entirely) for § < 4/,/3 if there is no radiative cooling, and at
larger values of 6 if there is cooling.

For a strong shock, with M > 1, the pre—(main) shock flow is
at roughly constant density, while the post-(main) shock flow
is at roughly constant pressure. These features allow approx-
imate analytical solutions to be derived, when one makes the
additional assumptions that the conductivity and cooling rate
have power-law dependences on temperature. These analytical
results, together with numerical calculations, are used to inves-
tigate shock wave structure for realistic conductivity and
cooling laws, assuming no suppression of conduction by mag-
netic fields. For an ionized gas of solar composition, conduc-
tion is found to have a significant effect on the shock

temperature and overall thickness of the postshock region only
for shock velocities v, 2 3 x 10* km s™%, corresponding to
shock temperatures T, 2 10° K. However, conduction can
have significant effects on the local structure of the shock wave,
in particular the column density per unit temperature dx/dT,
at much lower velocities: for solar composition, these effects
are of order unity at T ~ 10° K, corresponding to the peak of
the cooling curve, for v, ~ 10° km s~ 1. The effects of conduc-
tion are also greatly enhanced if the gas contains a large pro-
portion of heavy elements. In all cases investigated, the
radiation from the conductive precursor was found to be a
negligible fraction of the total.
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