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Abstract

We discuss statistical properties of phase boundary in the 2D low-tem-
perature Ising ferromagnet in a box with the two-component boundary
conditions. We prove the weak convergence in CJ0, 1] of measures de-
scribing the fluctuations of phase boundaries in the canonical ensemble
of interfaces with fixed endpoints and area enclosed below them. The
limiting Gaussian measure coincides with the conditional distribution of
certain Gaussian process obtained by the integral transformation of the
white noise.
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1 Introduction

The large deviation probabilities for the total magnetization in the two-dimensi-
onal (2D) Ising ferromagnet are known to possess the non-classical asymptotics
in the phase coexistence region. The exponential decay here is of the surface
order [25, 9] reflecting the fact that the phase separation is the main mechanism
responsible for this asymptotic behaviour. (Without being explicitly stated, this
fact was essentially presented in the early papers by Minlos and Sinai [19, 20]
where the case of d-dimensional (d > 2) Ising model was rigorously studied.)
The rate function corresponds to the total surface tension of the phase boundary
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and the limiting shape of the latter can be described in the framework of the
Wulff theory [7, 23]. Particularly, in the typical configurations, the immersed
phase tends to form a unique macroscopic droplet with the shape and the area
close to that of the Wulff droplet, i. e., the solution of the related variational
problem. As a result, the optimal value of the Wulff functional provides the cor-
rect constant on the surface scale of the exponential decay of large deviations
probabilities. Note the really remarkable fact that the last observation is actu-
ally true for all subcritical temperatures, i. e., in the whole phase coexistence
region [15, 16].

The results obtained in [7, 23, 15, 16] describe many interesting properties of
the phase boundary as well as typical configurations in the considered situation.
However, they are not sufficient to deliver the exact asymptotics of the probabil-
ities of large deviations. To this end one needs more detailed information about
the fluctuations of phase boundary with respect to the limiting Wulff shape, the
information that is also of independent interest.

The present paper is an attempt on the way to fill this gap. Namely, we dis-
cuss statistical properties of phase boundary in the 2D low-temperature Ising
ferromagnet with the two-component boundary conditions in the canonical en-
semble of interfaces with fixed endpoints and fixed ”area enclosed below them”.
We prove the weak convergence in CJ0, 1] of the probability distributions de-
scribing the fluctuations of such interfaces around the corresponding part of the
Wulff shape to certain conditional Gaussian distribution. This limiting mea-
sure coincides with the conditional distribution of a Gaussian random process
obtained by the integral transformation of the white noise.

As in the preceding paper [6], where similar problem for a general model of
the SOS-type was investigated, we use extensively the large deviation principle
in the strong form [8] combined with ideas further developed from the original
book [7]. These results were announced in [14].

To our knowledge, there were only two mathematical papers ! studying weak
convergence of measures describing fluctuations of the phase boundary in the 2D
Ising ferromagnet [13], [5]. Nevertheless, the methods used there were adjusted
to the investigation of interfaces with fixed endpoints (even only horizontal ones
in [13]) and are not applicable to the additional volume constraint discussed
here.

The paper is organized as follows. Sect. 2 contains notions and known facts
to be used later on. The main results are stated in Sect. 3. The basic poly-
mer representation of the partition function is developed in Sect. 4. Then, in
Sect. 5 we prove the analyticity of the corresponding free energy and discuss
some its properties that are used in proofs of limit theorems in Sect. 6. Conver-
gence of finite dimensional distributions of the considered conditional process
is established in Sect. 7. The proof of the main result is completed in Sect. 8,
where the tightness condition for the sequence of measures is checked. Finally,
in Appendix we present the geometric construction of the solution to the Wulff

I Many interesting ideas appeared already in the pioneering paper [10], where however only
a particular one-dimensional distribution of the phase boundary was discussed.



variational problem corresponding to the discussed situation.
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2 Preliminaries

To fix the notations let us recall briefly certain notions and facts from the theory
of the 2D Ising model (for detailed discussion see, e. g., [7]).
Lattices. Let Z? be the two-dimensional integer lattice and (ZQ)* be its

dual, (ZQ)* = (Z + 1/2)2, both consisting of sites. These lattices are im-
mersed into R? equipped with the usual Euclidean distance | - |, |z — y| =
V(1 —y1)2 + (22 — y2)?, where x = (z1,22) and y = (y1,92). We call a bond
any segment of unit length connecting two neighbouring sites of the dual lattice.

Let s, t be two neighbours in Z? and f denote the unit segment connecting
s and t. By definition, a bond e separates these sites if the segments f and e
are orthogonal and meet at their midpoints.

Fix one of the two directions (1,1) and (1,—1). Any straight line passing
through a site in this fixed direction is called a diagonal. Thus, any site belongs
to certain (uniquely determined) diagonal. By definition, a site s € Z? is at-
tached to s* € (ZQ)* provided they share the diagonal and |s — s*| = v/2/2. A
site s € Z? is attached to a bond e if s is attached to one end of e.

Let e; and es; be two orthogonal bonds that share a site of the dual lattice.
We say that e; and e; form a linked pair of bonds if they belong to the same
half-plane in R? determined by the diagonal passing through their common
point.

For a set V C Z?, |V| denotes its cardinality and OV is its outer boundary,

6V:{SEZQ\V:3t€VWith|t—s|:1}.

A bond e is called a boundary bond of the set V if there exist t € V and s € Z*\V
such that e separates ¢ and s.

Configurations. For V C Z? denote by Qy = {—1,1}V the set of all possible
configurations ¢ = oy in V. In the case V = {s} the configuration oy is
reduced to the spin at the site s and is denoted simply by o,. If Vy, N > 1, is



the vertical strip in Z? of the width N,
VN:{t:(tl,t2>€ZQZO<t1<N}, (2.1)

we denote the corresponding set {—1,1}"™ of configurations by Q.
Fix any V C Z2. A configuration & = 0z2\v in the complement 72\ 'V is
called a boundary condition (for V). Two kinds of boundary conditions will be

considered mainly in the following: the constant plus boundary condition 7,

o, =1, for all t € Z?\ V, (2.2)
and the two-component boundary condition 7%, ¢ € (—7/2,7/2),

—p 1, if to > 11 tan @,
9t = { —1, otherwise. (2:3)

Contours. Let o be a configuration in a set V C Z? and & be a boundary
condition. The boundary I'(c,7) of the configuration ¢ under the boundary
condition 7 is the collection of all bonds separating the sites in Z? with different
values of spins. Then any site s* of the dual lattice is the meeting point of an
even number of such bonds. If four bonds meet at a common vertex we split
them up into two pairs of linked bonds. This procedure is actually a fixed choice
of the so-called "rounding of corners” along the diagonal passing through the
common vertex of these bonds. Apply this procedure at any dual site that is a
meeting point of four bonds from I'(o,7). Then the boundary I'(c, @) splits up
into connected components to be called contours.

Let Viar, M > 1, be the set (cf. (2.1))

VNM:{t:(tlatQ)GVN31_M<t2<M} (2.4)

and @ = . Then every contour of I'(¢,7), 0 € Qny = {—1,1}VV s a
closed polygon. For @ = 3% the boundary I'(0,7) contains one (infinite) open
polygon S. In the case M > [N tan ¢] + 1 this open polygon passes through the
points (0,1/2) and (N, [N tan ] + 1/2).

Phase boundary. Let o be a configuration in Vy (recall (2.1)) and ¥ be
the boundary condition defined in (2.3). As before, denote by S € I'(¢,@) the
(infinite) open contour passing through the points (0,1/2) and (N, [N tan ¢] +
1/2). Let A(S) be the points from Z2 N Ry,

Ry = {(xl,xg) eR?:z, € [O,N]},

that are attached to bonds of S. The restriction of S to the vertical strip Ry
is called the phase boundary and is denoted also by S.

Let 73 denote the set of all phase boundaries consistent with the boundary
condition o%. Fix any S € T,. The point (0,1/2) is the initial point and
(N, [N tan |+ 1/2) is the ending point of the phase boundary S. By definition,



the height h(S) of S is the difference in the ordinates of the ending and the
initial points of S. Thus, for S € 7,7 one has h(S) = [N tan ¢).

Assume that M = M(S) > 1 is such that the contour S is covered by
the rectangle Ryy = [0, N] x (1 — M, M). Then the polygon S splits up the
rectangle Ry s into two parts, the "upper” and the ”lower” ones, with the areas
QE and ) respectively. The quantity

_ Qn—Qy

CL(S) :CLN(S) B

(2.5)
is called the area under the phase boundary S. Clearly, this definition does not
depend upon M provided it is sufficiently large, M > M;(S). Observe also that
for "nice” contour S that intersects any vertical linex =k, k =1,2,..., N—1, at
a unique point the quantity a(S) gives the value of the integral of the piecewise
constant function appearing after removing all vertical segments from S.

Gibbs measures. Let V be a finite subset of Z2 and & be a boundary con-
dition. The Gibbs distribution Py g(-|7) in V with the boundary condition & is
the probability measure in 2y given by

Pys(olo) = Z(V,B,0) " exp{—BH(o|7)}, o€ Qy, (2.6)

where the hamiltonian H(o|7) is defined by

Hiolg)=— > o.w0i— > 05T, (2.7)
s,t eV, seV,tedV,

the partition function Z(V, 3,7) is

Z(V,8,5) = Y exp{—BH(o|7)}, (2.8)

oceQy

and # > 0 denotes the inverse temperature. In what follows we will always
assume that [ is sufficiently large.

Ensembles of phase boundaries. Consider the box Vxjs defined in (2.4)
and let @ be the boundary condition from (2.3). Let Px arg(:[%) be the
Gibbs distribution in Qxp = {—1,1}V¥™ defined as in (2.6)—(2.8). For M >
N tan ¢ denote by T,7,, the set of all phase boundaries in Viyps consistent with
the boundary condition ¥. The Gibbs distribution Py as 5(-[6%¥) induces the
probability distribution Px as5.,(+) in T, according to the following formula

P o(S) = PNiM’ﬂ<{a € Oy : T'(0,5%) S} } 69”>, S e Ty

Another form of this distribution will be of importance in the following ([7,
§4.3]). Namely, let ®(A) be the function of finite subsets in Z? determined from
the cluster expansion of the partition function Z(Vyar, 3,51) ([7, §3.9]), |S]



denote the length 2 of the polygon S, and A(S) is the set of sites attached to
the phase boundary. Then, defining the weights wy s (S) via

wnu($) =esp{-288|- Y o)} (2.9)

AC Vi :ANA(S)#£0

we rewrite

S
PN agp(S) = LALAC)

= (2.10)
2(N, M, )

where Z(N, M, ¢) is the corresponding partition function,

E(N, M, ) = Z wn v (S).

SETH v

For future references we recall here the following important properties of the
function ®(A) ([7, §3.9,84.3]): ®(A) is a translation invariant function vanishing
on non-connected sets A C Z?; moreover, there exists 3y < oo such that for all
B > By one has

|@(A)] < exp{—2(8 — Bo)d(A)}, (2.11)
where the function d(A) satisfies the inequality

d(A) > 2diam(A) + 2 (2.12)

with diam(A) denoting the diameter of the set A, diam(A) = max{|z — y| :
z,y € A}. According to Lemma 3.10 ([7]) estimate (2.11) implies the inequality

> [(A)| < KIS, (2.13)
ACZ2:ANA(S)#£D

where K = K(f) is a constant such that K\0 as 8, + co. Therefore, for all
sufficiently large 3 the weights (cf. (2.9))

w(S) = exp{_zﬁm - ¥ @(A)} (2.14)

A:ANA(S)#£D

are well defined.

Let Ty = U Ty, be the set of all phase boundaries in Vi consistent with
the boundary condition ¥ and Ty = U, T, denote the set of all possible phase
boundaries in Vy (the union here is over all ¢ € (—n/2,7/2)). Due to [7,
Theorem 4.8] the quantities

2N, )= D> w(S), EW)= ) w(S)

SeTy SeTn

20bserve that two external halfbonds of S did not contribute to |S| in [7] but this does
not affect the value on the right-hand side of (2.10).



are finite (in fact, Z(IN) coincides with the partition function Z(V, 0, restr),
where Z(NV, H, restr) is the partition function for the restricted grand canonical
ensemble of the phase boundaries (see definition (4.3.16) in [7])). As a result, one
can define the probability distributions Py g.,(-) = PN 400,8,4(+) and Py g(+) in
Tx and Tx respectively via the following formulas

P g.o(S) = EI(”](VS;) SeTy, (2.15)
and
Pn(5) = ;U((Ji)), S € Tw. (2.16)

Here again one has the condition 8 > (57 > Ber that is a consequence of appli-
cation of the cluster expansions technique.

Surface tension, free energy, Legendre transformation. For any fixed ¢ €
(—m/2,7/2) denote by n = n(p) = (—sinp, cosy) the unit orthogonal vector
to the straight line ¢t = t; tany in R?. Let the box Vs, M > N tan, be as
in (2.4) and Z(Vn, 3,@) denote the partition function in Qs corresponding
to the boundary condition . By definition, the surface tension in the direction
of n is given by

A Yoid
)= lim lim O g 205 77)

2.17
N—00 M —00 6N gZ(VNM,6,5+), ( )

where the boundary conditions @ and 7' are defined by (2.3) and (2.2) respec-
tively.

The surface tension is closely related to another important function, the so
called free energy. To define it we fix any ¢ > 0 and for any complex number H
satisfying the condition

RH| <2—-6/p8 (2.18)
we introduce the partition function
E(N,H) = > exp{BHA(S)}w(S) (2.19)
SeTn

with h(S) denoting the height of the phase boundary S. The limit

(2.20)

is called the free energy corresponding to the height h(.S) of the phase boundary.
According to Theorem 4.8 [7] this limit exists and is an analytical function of
H in the domain (2.18).

The free energy F(H) defined in (2.20) is dual to the surface tension 75(-).
Namely ([7, Theorem 4.12]), one has

73(n) = %F*(B tan @) cos ¢, (2.21)



where f*(-) denotes the Legendre transformation of the real convex function 3

f:R—=R,
f¥(p) = Sl;p(px — f(x)).

The following property of the Legendre transformation will be used below.

Property 2.1 Let f(-) be a strictly convex twice continuously differentiable real
function defined in a region U C R™, m > 1, and f*(p) be its Legendre trans-
formation, f*(p) = sup, ((z,p) — f(z)), p € R™. Assume that the values x € U
and p € R™ are related via V f(x) = p. Then the following relations hold

() = (z,p) = f(=),
Vf*(p) = =, 1 (2.22)
Hess f*(p) = (Hess f(z)) .

Observe that in the considered case the matrix Hess f(z) of the second
derivatives f(z) as a function of x € R™ is strictly positive definite at x.

This duality property of the Legendre transformation can be verified directly
or induced from the known facts ([24, Chap. 5]).

Wulff shape. Let 13(¢) = 73(n) be the surface tension defined in (2.17).
Using the symmetry properties of the lattice Z? we easily have

8(p) =1(m/2 =),  T(p) = T8(—)

and thus 75(n) can be defined for all unit vectors n € S.

Denote by D the set of all closed self-avoiding rectifiable curves v C R2
that are boundaries of bounded regions (thus, boundary of any bounded convex
region belongs to D). Recall that any such rectifiable curve has finite length and
has a tangent at its almost every point. To each v € D we assign the quantity

W@) = W) = [ 7t ds 2.2

where ds denotes the length element and n; is the unit outward vector to the
curve 7 at the point s € 7. The functional (2.23) is called the Wulff functional
corresponding to the surface tension 73(-).

For any v € D denote by Vol(y) the area of the enclosed region. By defini-
tion, the Wulff shape wg is a solution to the variational problem

Ws(y) — inf : v €D, Vol(y) > 1.
Alternatively, one defines

W3 x = Npest {QL’ e R?: (z,n) < /\Tg(ﬂ)},

3Here and in the following we omit restrictions near the signs like upper bounds, sums,
integrals etc. when the appropriate operation is going over the whole set of possible values of
parameters, summation indices, integration variables respectively.



where (-, -) denotes the usual scalar product in R?, n is a unit vector, and 75(-)
is the surface tension defined in (2.17). Then the Wulff shape wgs coincides
with the boundary of the set Wps ), where Ag is determined from the condition
Vol(W3,»,) = 1. The Wulff shape is known to be unique up to translations in
R? [26, 27]. Due to positiveness of the stiffness, 4 75(p) + dd—;m(gp), the Wulff
shape is a smooth strictly convex closed curve in R? and inherits the natural
symmetries from Z? [7, §2.20, §4.21].

Wulff profile. The main goal of the present paper is to study the statistical
properties of phase boundaries of the 2D Ising ferromagnet in a bulk with the
two-component boundary conditions o¥. More precisely, we investigate the
limiting behaviour of probability distributions Px g,,(-) (Pn,a,8,,(:) resp.) in
the canonical ensemble of phase boundaries S € Ty (T3, resp.) with fixed
value of the area (recall (2.5))

aN(S):quN, gy —q as N — oo,

enclosed below them. The phase boundary here is an open polygon; thus, its
limiting behaviour is closely related to the corresponding piece of the Wulff
shape to be called below the Wulff profile.

To construct the Wulff profile we use the following geometric algorithm. °
Let I be a non-vertical straight line intersecting the Wulff shape at two different
points O and A (we denote by A that of them that is to the left; see Figure 1,a)).
The segment OA splits up the interior of the Wulff shape into two parts, the
"upper” one @;" and the "lower” one @; with the areas |Q;"| and |Q; | = 1—|Q;|
correspondingly. Clearly, Ql+ and @), are convex sets having tangents at all their
boundary points except O and A.

— //
R A
l/
o’ 1
a) b)

Figure 1: Geometric construction of the Wulff profile

4Here we treat the surface tension 75(-) as a function of ¢ (recall that n = (—sin ¢, cos ¢)).

5The analytical expression for the Wulff profile in terms of the free energy F(-) from (2.20)
is given in (3.14) below. See also Appendix for more detailed discussion of the problem in a
framework of a general 1D SOS model.



We say that the line [ generates a (g, p)-cutting of the Wulff shape if the
following two conditions hold: a) the line [ has the slope angle ¢; b) the area
|Q; | (|Q;| in the case ¢ < 3 tan ) satisfies the equality

ta

Q| = o - =57 104P cos ¢

with |OA| denoting the length of the segment OA (and thus |OA|cosp is its
horizontal projection). Due to the strict convexity of the Wulff shape wg, for
any ¢ € R and ¢ € (—m/2,7/2) there exists a unique (g, ¢)-cutting of wg (for
q= %tancp the points O and A coincide and [ becomes a tangent to the Wulff
shape). If, in addition, the limiting value g is relatively small,

g~ 5 tane| < Qo(¢) (224)

(with Qo(¢) easily identified in terms of the Wulff shape), all the tangents to @,
at its boundary points (different from O and A) have uniformly bounded slope
angles. Then the simple transformation (reflection + scaling; see Figure 1,b))
of the arc OA gives the corresponding Wulff profile (in the degenerate case
q= %tan ¢ the Wulff profile becomes a segment O’ A").

It what follows we will always assume the validity of condition (2.24) (which
in particular will make possible the SOS approximation of phase boundaries for
sufficiently large values of the inverse temperature f3).

3 Results

Let Tn be the set of all possible phase boundaries in Vi and P(-) = Py ()
denote the probability distribution from (2.16). Let E(-) = En (-) be the
corresponding operator of mathematical expectation.

Fix any S € Ty and for all K =0,1,..., N define
ga (k) = max{ts : (k,t2) € S}. (3.1)

Let gi;(x), z € [0, N], be the piecewise linear interpolation of the values g (k).
Denote by &1(t), t € [0, 1], the random polygonal function

Ex(t) = gn(Nt) — g3 (0). (3.2)

Our aim here is to describe the statistical properties of trajectories fj\r,(t) con-
ditioned by fixing the values of the area an(S) and the height h(S).
More precisely, let Ax be the random vector

An = (YN, hN), (3.3)
where hy = hy(S) is the height of S € Ty and

1
YN = N@N(S) (34>

10



is the normalized area under S (recall (2.5)). For H = (Hy, H1), denote by
Ly, (H) the logarithmic moment generating function of the random vector Ay
(recall (2.16)),

L, (H) = 1ogEexp{5(H, AN)} — log=(N, A, H) — logZ(N),  (3.5)
where the partition function Z(N, A, H) is calculated via

=N, AH) = Y exp{—Qﬁ\S|+ﬁHOYN+BH1hN— 3 <I>(A)}. (3.6)
SeTn A:ANA(S)#D

We will show below (see Remark 5.1.1) that the last expression is finite provided
the real part ®H of H = (Hy, H) belongs to the set

D2 — {(HO, Hi) €R?:|Hy| <2—68/8,|Hi + Ho| <2~ 6/ﬁ} (3.7)
with some § > 0 and 8 > [y(6).

Consider any sequence of real vectors Ay = (Nqn, Nby) such that 2N2qy
and Nby are integer numbers and

N'Ay — A= (q,b), 2q # b, (3.8)
in such a way that
1
-1 —_ = Emp—
N~1Ay — A o(m) as N — oo. (3.9)

Definition 3.1 Let 6 be a positive number. Any sequence An satisfying (3.8)-
(3.9) is called (An,6)-regular if the following conditions hold:
1) for any N > 1
P(An = An) > 0; (3.10)

2) for all N > 1 there exists a solution Hy € D3? of the equation

BV Ly, (H) ]H_H = Ay (3.11)

3) there exists a solution H= (Q, H) € D? of the equation

I(H) = 6‘1VH/O F(Hoy + Hy) dy )H:ﬁ: A (3.12)

Here D3 is the set from (3.7), Vu denotes the gradient with respect to H =
(Ho, H1) and F(-) is the free energy from (2.20).

Remark 3.1.1 It can be checked directly that (3.10) is true provided Nby and
2N2qy are integer numbers of the same parity.

11



Remark 3.1.2 The condition Hy € Dg for all N > 1 is a technical one; namely,

we will show below (see discussion after (7.5)) that the inclusion H € D? implies
Hy € D2 for all sufficiently large N.

Remark 3.1.3 Using the strict convexity of the function F'(-) one can show that
the relations 2¢ # b and @) # 0 are equivalent (see also discussion in Appendix
below).

Fix any (Ay,d)-regular sequence Ay and consider the conditional random
process

05 () = (X (W)An = An) (3.13)

with &% () defined in (3.2). Applying arguments similar to those used in [7] one
can prove the law of large numbers for the process 014\', (t). Namely, the distri-
bution of the process tends weakly in the space CJ0, 1] of continuous function
on the segment [0, 1] to the distribution concentrated on some deterministic
function é(t), t € [0, 1]. The function é(¢) presents the solution of the following
variational problem (cf. (2.23), (2.21))

W) = / LR (f'(1)) dt — inf,
0 1
fe {g € AC[0,1] : g(0) = 0,9(1) = b,/o g(t)dt = q}

(here AC|0, 1] is the space of absolutely continuous functions on [0, 1]) and can
be computed explicitly,

é(t)=(F(H+ Q) - F(H+Q—Qt))/BQ, (3.14)

where (Q, H) is the solution of (3.12). Observe that due to Remark 3.1.3 one
has @ # 0 and thus é(t) is well defined. Moreover, in view of the inclusion
(Q, H) € D? the derivative of é(t) is uniformly bounded in [0, 1].
Consider the random process
1

On(t) = \/N(ejt,(t) — Né(t)), t e [0,1], (3.15)

and denote the corresponding measure in C[0,1] by pujy = ,uE’*. The following
theorem formulates the main result of the present paper.

Theorem 3.2 Let a (An,0)-reqular sequence An be as described above. Then
there exists By = Bo(8) < oo such that for all B > By the sequence of measures
iy converges weakly to some Gaussian measure p* in C[0,1]. The limiting
measure (¥ coincides with the conditional probability distribution of the random
process £(t), t € [0,1], obtained by the integral transformation of the white noise
dws,

2 t 1/2
§(t)zﬁ_1/ (F"(H+Q - Qs)) 2 dw,,  te0,1),
0

12



conditioned by the conditions

1
ﬁz/oé(t)dt:() and  E(1)=0.

Remark 3.2.1 The random vector Ay from (3.3) has zero mean and the vari-
ances of its components are of order NV (see Lemma 6.1 below). Therefore, the
condition 2¢ # b means that the events {Axy = An} are in the large deviation
region for the distribution Py g(-).

Plan of the proof of Theorem 3.2. The proof of our main result follows the
same scenario used in the case of random walks [6] with necessary modifications.

Namely, for any natural number k£ and a set S of real numbers s;, 0 < 57 <
S9 < ...< 8 <1 =S5y consider the random vector

On = (Yo, Xn(s1),..., Xn(sk), Xn(1)) € RFF2, (3.16)
where Yy was defined in (3.4), and X (), t € [0, 1], are calculated via (cf. (3.2))
Xn(t) = g (INt]) — g§(0), (3.17)

with [Nt] denoting the integral part of Nt. Let M%™ k =0,1,..., be the set
M’f\ﬂ'z = {M = (mo,m1,...,Mky1) : {QNmO,ml, . ,m;H_l} C Zl}. (3.18)

Then for any My € M?VJFQ of the kind My = (Nqn,ml,...,m%, Nbx) one
has the relation

POy =My)
P(Ay = Ay)

P(XN(81>:m}V,...,XN(Sk>:mlf\] }AN:AN) = (319)

Here Ay = (Yn, Xn(1)) is the vector from (3.3) and Ay = (Ngn, Nby) is the
(An, 0)-regular sequence fixed above.
First we investigate the asymptotical behaviour of the numerator and the

denominator in (3.19) and obtain the central limit theorem for the finite dimen-
sional distributions of the random process

On(t) = (Xn(t) | An = An). (3.20)

Then we prove that the difference between the conditional process 67 (t) (re-
call (3.13)) and ©x(t) has uniformly bounded exponential moments in some
neighbourhood of the origin. This observation implies immediately the same
central limit theorem for the corresponding finite dimensional distributions of
the process 07 (t).

Finally, we check the following inequality

E[0% () — 0% ()| < |t — 57/
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with some constant C' > 0 uniformly in s,t € [0,1] and sufficiently large N.
This implies the weak compactness of the sequence pj and finishes the proof
by applying known results on weak convergence of measures in C[0, 1] ([11]). O

Similar result holds also for the random process
On(t) = (En(OAN = Ay),  te]0,1],
induced by the lowest points of intersection (cf. (3.1)),
gy (k) = min{tg (k,to) € S},
via
En(t) = gn(NT) = g5 (0).

Let uy" denote the probability distribution in CJ[0, 1] corresponding to the
process (recall (3.15))

b (1) = \/Lﬁ(e;v(t) LN, teo1]

Theorem 3.3 For the sequences of measures py" the statement of Theorem 3.2
holds true. Moreover, for any sequence of real numbers an, ay — 0 as N — 0o
one has the convergence

an (0% (t) — 05(t) — 0 (3.21)
in probability as N — oo.

Clearly, the formulated results are valid also for the measures uﬁ]\*/[ describing
the statistical properties of the phase boundaries S € 73,, in the box Vs with
the boundary condition &%, provided only M > (maxejo1y|é(t)| + &) N with
any fixed € > 0. This follows immediately from the observation that the events
{max ep0,1) ‘N‘leﬁ (t) — é(t)| > €} belong to the large deviations region for the
measures 15y and thus have exponentially small probabilities as N — oo.

4 Basic representation of the partition function

We start with discussing the statistical properties of the vector ©y of joint
distribution (recall (3.16)),

On = (Y, Xn(s1)s- -, Xn(sn), Xn(ski1)) € RF+2, (4.1)

where k is a natural number, the quantities s; satisfy the condition 0 < s; <
... < 8k < Sp+1 = 1, the normalized area Yy is defined in (3.4), and the process
Xn(t), t €[0,1], is determined via (recall (3.17))

Xn(t) = g (INt]) — g§(0). (4.2)

14



For future references we consider more general situation. Namely, fix any
natural number k and a collection R = {r1,...,7+1} of natural numbers (they
can depend on N, i. e., 7; = r; n) such that for all sufficiently large N > Ny(R)
one has the relation

O<r <...<rp <7g41 = N.

Denote (cf. (4.2))
X(ri) = gi(ri) = gx(0) (4.3)

and consider the random vector
Onr = (Yn,X(1), ..., X (1), X (rp41)) € RFF2. (4.4)

For any complex vector H = (Hg, Hy, ..., Hiy1) € C**2 we denote by Ly »(H)
the logarithmic moment generating function of the random vector Oy %,

LN’R(H) = logEexp{B(H, @Nﬂg) }

Observe that the last equality can be rewritten in the form (cf. (3.5))

Lyr(H) =1ogZ(N,R,H) — log Z(N), (4.5)
where
EVRH) = Y exp{ =208+ B(H,On%) - Y. @)} (46)
SETN A:ANA(S)#£D

As we will show below (see Theorem 5.1) the last expression is finite provided
RH belongs to the set

~Nk+2 . [ )
D6+ = {H = (Ho,Hl,...,Hk+1) € RF+2 . HO S (_W’Q—i_ m%

|HZ| < m,lz 1,...,]{,‘Hk+1 —H‘ < m},

(4.7)
where (Q, H) is the solution of (3.12) and § is the positive number fixed in
Definition 3.1 above.

Since the partition function Z(N, R, H) contains all the information about
the statistical properties of the random vector Oy r, we will study it carefully
in the remaining part of this section. Following [7], we split up every phase
boundary S € Ty into pieces that are typical at low temperatures (”tame an-
imals”) and pieces to be interpreted as excitations appearing at non-vanishing
temperatures ("wild animals”).

Let us recall briefly the necessary considerations ([7, §4.4]). Denoting
W(A) = exp{—®(A)} — 1
we observe that there exists Sy < oo such that

[W(A)] < exp{—2(8 — Fo)d(A)} (4.8)

15



for all B > By and any finite set A (cf. (2.11)-(2.12)). In particular, U(A)
vanishes on non-connected sets A.

Denote by Cx the set of all collections C = {S,Ay,...,A;}, where S € Ty,
finite sets A; C Z? are connected and satisfy the condition A; N A(S) # 0,
i=1,...,7; j = 0,1,...; here A(S) is the set of sites attached to the phase

boundary S. Then the partition function Z(/N,R,H) can be rewritten in the
form

E(VRH) = Y exp{-20IS|+ B(H.Onr)} [ (®(A)+1)

SETN A:ANA(S)#£D
J

= > exp{-28/5+ s(H On %) } [T w0,
Celn =1

(4.9)

Fix any C = {S,A1,...,A;} € Cy. We say that the collection C is regular

in the column m € N if the line {(z,y) € R?* : = m} intersects the set

SUA;U...UA;  at a unique point. Let 1 <m; <my < ... <my < N -1,

l=1(C)e{0,1,...,N —1}, be the set of all m, 1 <m < N — 1, such that the
collection C is regular in the column m. Denote

Ay ={(z,y) €R® 1z <},
Do = {(z,y) ER?:my <z <ma},

N ={(z,y) eR? iy <z <my},
Appr = {(z,y) eR? :my <z}

(in the case I = 0 we have A = R?). By definition, the animal &;,i =1,...,1+1,
is the collection

572 = {Si7Aj17"'7AjS}7

where

S, =SNA;, {Ajl,...,Ajs}:{AGC:ACAi}.

Let (mi,y;) = SN {(z,y) € R? : x = m;},i=1,...,1. We put also (mg,yo) =
(0,1/2) and (mi41,yi41) = (N,h(S) + 1/2). For any animal & we define the
following quantities: the length |¢;| that coincides with the length of the polygon
S;; the base J(&) = (mi—1,my); the width |J(&;)| = m; — m;_1; the height
h(&;) = yi — yi—1 with (m;_1,y;—1) and (m;,y;) denoting the beginning and the
end of the animal §;. Then, we define the area a(§;) below &; as

(&) = 5 (o7 —af),

where a; and a:r denote the areas of the lower and the upper parts of the
rectangle [m;_1,m;| X [y;—1 — M, y;—1 + M] that appear after cutting it along
S;i (clearly, this definition is independent of M provided it is sufficiently large,
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M > My(S); cf. (2.5)). Finally, for r € J(&;) = (m;—1, m;] we denote by h(r,&;)
the height of the animal &; in the r-th column,

h(r,&) = g (r) — gn(mi-1).
Direct computations give us the following relations

+1

= Zh(fi),

)=
D2 h&) +hlr&(r), (4.10)
I+1

a(S) = (a(&) + (N —m:)h(&))

=1

with j(r) denoting j such that r € J(§;). Define the activity of §; via

_ kE+1
Ywrm(&) = eXp{_%'gi' +A(&) ((1 N %)HO + 1{i<j<rn>}H”>
n=1
k+1
+ 52 Liizitr )y Hnh(Tn, §(r,)) + 6H0—a (&) } H U(A
n=1 AL €&

(4.11)
where 1<,y and 1g;— (.. )y denote the indicator functions of the relations i <
j(ryn) and ¢ = j(r,) correspondingly. Then the partition function =Z(N, R, H)
can be rewritten in the form

1(C)

EN,RH) = Y [ ¥nru&) (4.12)

CelCn =1

Fix any animal £. An animal & is called vertically congruent to & iff it can
be obtained by shifting all components of £ on the same distance in vertical
direction. Let é denote the class of all animals that are vertically congruent to
&. Clearly, all € € é have the same length, base, height etc. and thus have the
same activity ¥ N,R,H(é)- Observe that any collection C € Cn can be rewritten
in the form {él, e ,él—|—1} such that the class fz has the base J(él) = (m;_1, my]
and 0 = mg < my <...<myy; = N. On the other hand, to any such collection
{él, . ,él—i—l} corresponds a unique C € Cy; therefore, there exists a one-to-one
mapping between Cyn and the set K of all ordered collections {él, e ,él—i—l}
described above. As a result, (4.12) can be rewritten in the form

I+1
=(N, R, H) = > I ovru&) (4.13)

{él?"‘:él+1}€I€N =1
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In a similar way we consider the set ﬁ(a,b], (a,b] C [0, N], a, b € N, of ordered
collections {él, e él} of the equivalence classes éz such that J(éz) = (mj—1, m;]
and a = mg < m; < ... < myy1 = b. Using the activities from (4.11) we
introduce the partition function

I+1
=((a,b], N, R, H) = 3 [T¥~ruE). (4.14)

{él 7"-7él+1}€ﬁ(a,b] =1

(In the case a = b we put as usually Z(, N, R, H) = 1.) Relations (4.13) and
(4.14) will be the starting point of our considerations.

It follows from estimate (2.13) that the weights w(S) from (2.14) coincides
asymptotically as  — oo with exp{—2ﬁ |S \} Therefore, the probability distri-
bution (2.15) is ”close” to the distribution concentrated on the polygons S € T,
of minimal length. It is convenient to consider slightly larger set of phase bound-
aries

Too ={S€Tn:|SN{(z,y):z=m}=1,Ym=0,...,N} (4.15)

and the probability distribution

exp{—28|5|}
PN g.oo(S) = ———, S 00 4.16
N757 ( ) E(N,/B, OO) GTN, ( )
with the partition function
2(N,B,00) = Y exp{-28|5[}. (4.17)
SETN,OO

Note that according to definition (4.15) every S € Ty, oo is regular in any column
m, m = 0,..., N. Therefore, any animal { corresponding to S € Ty o has unit
width and is called a tame animal. The probability distribution Py g o (:) from
(4.16)—(4.17) is called the ensemble of tame animals. Any animal that is not
tame is called wild.

For any S € Tn oo one has |S| = [&1| + ... + [{n]. Moreover, for any tame
animal & one easily gets |J(§)| =1, [£] = |h(§)| + 1, a(§) = h(£)/2 and therefore
(cf. (4.10))

= > ). = > (N =+ 1/2)h(E))

As a result, the distribution (4.16)—(4.17) coincides with the distribution of a
homogeneous random walk with the generating function Z(H) of one step,

Z(H) = Eexp{BH(&)} = Q(H)/Q(0),

Too Y sinh(2.3)
Q(H) = Z exp{—25(|k| + 1) +6Hk} =€ 5cosh(25) — cosh(Hf)

k=—oc0

(4.18)
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Thus, the limiting behaviour of the phase boundary S in the ensemble of tame
animals with fixed values X (N) = Nby and a(S) = N2qy can be described by
Theorem 2.3 from [6], where such asymptotics for a general random walk was
investigated. To extend that result to the case of the probability distribution
Py g(-) (recall (2.16)) in the ensemble of phase boundaries S € Ty (i. e., to
prove Theorem 3.2) is the main goal of the present paper.

In the ensemble of tame animals the partition function (4.6) is reduced to

Z(N,RHoc)= > exp{—26|5|+B(H,@N7R)}. (4.19)
SETN, 00

We rewrite it in the form

N
=(N,R,H, c0) H Q(Hy ), (4.20)

where Q(-) was defined in (4.18) and the quantities Hy ;, j = 1,..., N, are
calculated via

k+1
Hy,j = (1 - (- 1/2)/N HO + Z Hplgi<p, 3 (4.21)

n=1
For future references we define also the partition function (cf. (4.14))

E((a,b], N, R, H,00) = [[ QHn,), (4.22)

j=a+1

where (a,b] C [0, N] is a segment with integer endpoints a, b. Here again
=(0, N, R, H, 00) = 1.

Observe that the function Q(+) is finite for all H such that [RH| < 2. More-
over, if for some § > 0 and 5 > [y(J) > 0 one has

IRH| < 2 —§/28, (4.23)

then

| cosh(H B)| < cosh(|RH|p) < cosh(28 —§/2) < ob/4

cosh(28) — cosh(28) —  cosh(28) (424)
if only 5 > By() > 0 and therefore
tanh(28) 4l < cosh(28 — §/2) - (4.25)

PBQ(H) 1= cosh(28)

As a result, logQ(H) is well defined and uniformly bounded for all real H
satisfying (4.23) with any fixed 8 > [y(0) > 0.

Consider arbitrary H € §k+2 (recall (4.7)). Then any Hy ; from (4.21)
satisfies (4.23) and therefore the function N~!'logZ(N,R,H,00) is bounded
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uniformly in N and any such H. Since the asymptotical properties of the
partition function Z(N, R, H, o) are well understood ([6]), we can reduce the
investigation of the partition function =Z(N, R, H) from (4.6) to the study of the
relative partition function

=(N, R, H)

Z(N H) = .
(N, 5, R, H) =(N,R,H, o)

(4.26)

In the remaining part of this section we develop the so-called polymer represen-
tation of this partition function and obtain certain estimates for the polymer
weights. All the considerations will be applicable also to the relative partition
function

=((a,b], N,R,H)
=((a,b], N,R,H, c0)

(recall (4.14), (4.22)) for any interval (a,b] C (0, N] with integer endpoints.
Substituting (4.13) and (4.20) into (4.26) one easily obtains ©

=((a,b], N, R, H) (4.27)

1+1
Z(N,8,R,H) = 3 H(QN,R,H@) I1 Q(HNJ)_I). (4.28)
{51,~~~7él+1}€l€Ni:1 jeJ(&)

For any segment I = (a,b] C [0, N| denote

)?N,R,H(I):<HQ(HNJ)>_1 3 Tnrul@). (4.29)

jel EJ(E)=I
Then (4.28) can be rewritten in the form

N/2] «@

[
é(N,ﬁ,R, H) = Z Z H)A(N,R,H([i)a (4.30)

a=0 {11,12,...,Ia} =1

where the inner sum is taken over all families of mutually disjoint intervals I; =
(@i, b;] € [0, N] such that |I;] > 2. Observe that |I| =1 implies Xy z u(I) = 1.

Formula (4.30) is a particular case of the polymer representation of the
partition function ([17], [7]). To apply cluster expansions technique we need the
following estimate (cf. [7, Lemma 4.7]).

Lemma 4.1 Let H € C**2 be such that RH € ﬁ§+2 and a real number ~y
satisfies the condition

0<vy<4/8.
For any interval I C (0, N| with integer endpoints put

iN,R,H(I):(HQ(HN,j>)_1 Z ‘I’N,R,H(@exp{ﬂé}-

Jel &1(d)=I

6Here and below j is always an integer number; therefore, j € J(é) means j € J(é)ﬂZl. For
any segment I = (a,b] C [0, N] with integer endpoints we denote by |I| its length, |I| = b —a.
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Then there exists f > 0 depending only upon the value By from (4.8) and
on the constant § such that for all B > B and all intervals I C (0, N] under

consideration one has
Xy, u(D)] < exp{—4(6 - B)(|I| - 1)}. (4.31)
The functions )_/EN,R,H(I) depend analytically on such H.

Remark 4.1.1 Putting v = 0 we obtain estimate (4.31) for the polymer weights
XN,R,H(I) from (429)

Proof. We start with the following observation. Let £ be a wild animal with
the base J(§) = (m/,m"] and let a natural number m satisfies the condition
m' < m < m”. Since £ is not regular in the column m at least one of the
following two events can occur: 1) the vertical line {(x,y) € R? : z = m}
intersects the corresponding part S = S¢ of the phase boundary at least at
three points; 2) a point from some set A € £ belongs to the column m and thus
at least two boundary bonds of the set A are intersected by this line. Therefore,
for any wild animal £ = (S, Aq, ..., Ax) one has the inequality

I(8)] =12 5 (Na($) — (198) - 1) + 32 d(a)
Aeg

where N (S) denotes the number of full horizontal bonds in S, the function d(-)
satisfies (2.11)—(2.12) and J(S) = J(§). As a result,

> d(A) > 3(](S)] — 1) = Na(9).

Aeg
Denote

k
X(9) = > exp{=2(8 = Bo) D_d(A:)}  (4.32)

k,Al,,AkAlﬁA(S)¢®
kL d(A)>3(]J(S)|-1)=Np(S)

and fix any 51 > 0. As it was shown in [7] (see equation (4.7.11)), there exists
a function € = (1), (1) \0 as p1 oo, such that

X(S) < exp{—6(8 — B2)(|J(S)| — 1) +2(8 — B2)Nu(S)} exp{e| S|}  (4.33)
with 52 = 50 + ﬁl. Define

Xnru(S) = Z U N =H(E)
£:Se=8

(4.34)

where the sum is taken over all wild animals § with fixed S¢ = S. We prove
below the following estimate

Xz u(S) < exp{=28|S| + (28 — §/2)N,(5)} X (S) (4.35)
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with NV, (S) denoting the number of vertical bonds in S. Then (4.31) follows
directly. ~
Indeed, for any H, RH € D52, one has (recall (4.25))

’Q(HN,j)’_l < 625-1-253

with some (35 = B3(fp, ). Therefore the inequality

‘)?N,R,H(I)‘ < ‘H Q(Hn ;) Z Xy rp(S)e!

jel S:I1(S)=I, yin(S)=0

(here ¥, (S) denotes the y-coordinate of the initial point of S) can be rewritten
in the form

‘ Xyl I), < (4B =6P2+283) (1] -1) ,26+265 ,—(26—e—7)

Z exp{(2ﬁ—25g—(25—6—7))Nh(5)}
S:I(S)=1I, yin(S)=0
exp{(=6/2 + e+ 7)Ny(5)},

where the identity |S| = N,(S) + N, (S) + 1 was used. Let (; be such that
£ = 6(61> < 5/8 and 62 = 60 +61 > 63. Then

’):(N R H(D’ < e~ 4B=262)(1]-1) Z e Pa(Nn(S)F=0Nu(S)/4 - (4.36)
S:1(S)=I,
Yin (S)=0

where we used the obvious inequality 285 + 283 < 2(82 + B3)(|I| — 1) (recall
that for any wild animal £ one has |J(£)| > 1) and denoted By =202 —e —~. It
remains to observe that the last sum was shown to be bounded [7, page 119],

Do ¢ OIS < R(py, 0) 1 (1 - R(B1,0) T, (437)
S:I(S)=I, yin(S)=0

provided By is large enough, B4 > B4(9), to guarantee the estimate

gy Lt e

T <L

R(f4,0) = 2e
As a result, (4.31) follows directly from (4.36) and (4.37).

It remains to establish (4.35). To do this we cut the polygon S into pieces
by any vertical line x = m, m € N. Then S splits up into certain collection
of zigzag fragments f,, consisting of two horizontal half-bonds and (possibly) a
vertical segment of S. The ordering of f,, in S determines in a unique way the
initial and ending points of f,. Define the height h(f,) of f, as the difference
between ordinates of ending and initial points of f,,. Clearly,

hE)= > h(fa),  No(&)= > [h(fa)l. (4.38)

fneéi fn€£1
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Define the midpoint ¢,, of the fragment f,, as the midpoint of the vertical segment
belonging to f, (provided it is not empty) or as the midpoint of the fragment
fn itself (otherwise). Let d,, denote the distance from ¢, to the vertical line
x = m,; passing through the ending point of the animal &; (recall that J(&;) =
(m;—1,m;]). The direct geometric considerations give the equality

al&) = duh(fn). (4.39)

Now (4.38) and (4.39) imply the relation (cf. (4.11))

re) (1= 20) + o) = 2 A (1- ") ()
fn€&i

Then, the inclusion *H € 13§+2 and the inequality
1/2<d, <|I|-1/2<my (4.41)
imply the estimate (recall (3.7), (4.7))

m;

%{ﬁh(&) ((1 — W)HO + i lociy Hi + Hk+1> + 5H0%a(fi)} (4.42)
- < (26— 38/4) No(S).

On the other hand, from the inclusion *'H € ﬁg“ and the obvious inequality
|h (715 &(r) )| < No(Sq,,,) one easily obtains

k
5
R{BY Limstry Hahlrn: §i600) } < 7 Vo (5e). (4.43)
n=1

Finally, (4.35) follows immediately from (4.34), (4.11), (4.7), (4.42) and (4.43).
Estimate (4.31) is proved.
It remains to observe that the uniform estimates obtained above imply the

analyticity of Xy r.m(I) as a function of H, RH € 23§+2. O

Corollary 4.2 Let the polymer weights )Z'NR’H(I) be defined as in (4.29) with
the activities ¥ n » 1 (&) replaced by (cf. (4.11))

k+1

Uy ru(&) = eXP{—25|§¢| + Bh(&:) (H()(l - %) + 7; Hnl{i<j(rn)}>

k+1
+B8 > th(rfwgj(rn)>1{i=j(rn)}} [T ¥(As).
n=1 AsEE;
(4.44)
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Then there exist constants Sy and Nog = No(Bo) such that for all 5 > By, N > Ny
and all segments I = (a,b] C [0, N], b— a < log®> N, with integer endpoints one
has the estimate

Sy ra(l) = Xvmu(D)| < 2(e208 NN _1) exp{-4(8—fo) (11| -1)}. (4.45)

Proof.  We start with the following simple observation. There exists B_> 0
(probably different from £ in (4.31)) such that for all ay > 0 and all 8 > 8 one
has

’(H Q(HN’j))_l Z \I’NRH(E)’ < e—0an/8,—4(B=B)(1]-1) (4.46)

Jel E1(é)=1
Ny (§)>an

Indeed, using the relation (cf. (4.37))
Z e Ba(Nn(S)+1)=6Ny(5)/4

SJ(S):I, yin(s):O7
NU(S)EQN
S 6—5041\1/8 Z 6_64(Nh(s)+1)_5Nv(S)/8
S:J(S)=I, yin(S)=0
< e 0N/8R(8y,6/2)11(1 = R(B4,6/2)) "

one easily deduces (4.46) from (4.36).

Now,
Knvrm(D) = Xnrmn()| [[|QHN,)]
jer
< Z ‘\I’N,R,H<é) — Uy R ()
&J(€)=I, Ny(§)<log?> N (4.47)
+ Z ’\IJNRH(é) + Z "T’N,R,H(é) :
&J(O=1, &J(O=I,
N, (§)>log® N N, (§)>log® N

< |I|N,(€), definitions (4.11) and (4.44)

Then, using the simple estimate }a(f)
one obtains

\I/N,R,H(é) - CI}NRH(E)‘ < (625‘1‘ - 1) ‘\I’N,R,H<é)‘

< (ezmog‘* N/N _ 1) ‘\I’N,R,H<é))7

Ny (S)
N

(4.48)

provided |I| < log? N and N,(S) < log®? N. Finally, substituting (4.48) into
(4.47) and using (4.46) to evaluate the last two sums in (4.47) one easily deduces
(4.45) from Lemma 4.1 for all sufficiently large N. O
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5 Cluster expansion and limiting properties of
the partition function

We establish here the cluster expansion for the relative partition function
E(N, 8, R,H) and investigate some asymptotical properties of the correspond-
ing free energy to be used later. The following statement presents the main
result of this section.

Theorem 5.1 There exists a constant By depending only on 6 and the constant
Bo from (2.11) such that for all 8 > By, N, and H, RH € D§+2 (recall (4.7)),
the partition function Z(N, R, H) is finite (i. e., the defining series is absolutely
convergent) non-vanishing analytical function of H satisfying the bond

log E(N, 8, R, H)| = ’log =(N,R,H) — i_vjl log Q(Hy.;) -
< Nexp{—4(8 - )}

There exist functions ®n g u(l) of intervals I = (a,b] C (0, N] with integer
endpoints such that

[P rm(D)| < exp{-4(8 - Bo) (1T - 1)}, (5.2)
and R
logZ(N,B8,R,H) = > ®nru(l) (5.3)
IC[0,N]

Finally, the functions ®nr u(l) depend analytically on polymer weights
Xnvru(l'), I' CI, and the following inequality holds

' 0PN ru(l)
OXnNru(l)

Remark 5.1.1 For k = 0 one has Z(N,R,H) = Z(N, A, H) (recall (3.6)) and
therefore this partition function is finite for all H, RH € D? (recall (3.7)).

< (] = 1I') + 1) exp{|I'| exp{—4(8 — Bo)} }. (5.4)

Proof. 1In view of the polymer representation (4.30) and Lemma 4.1, expan-
sion (5.3) and estimates (5.2) follow from any of numerous versions of cluster
expansions for polymer models (see, e. g., [18], [17]).

Then, (5.1) follows directly from (5.2) and the inequality

> ewrm(D| £ Y26+ 1) exp{-4(8 - fo)i} < exp{-4(8 - R)}, (5.5)

I:1oCI i=1

that is valid for some 3y < oo and arbitrary Iy = (a,a + 1] C [0, N], a € Z.
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It remains to check (5.4). Due to the Mébius inversion formula (see, e. g.,
[18, §2.6], [7, §3.8], [8, §3.3]) the cluster weights ® » u(I) can be calculated
from (recall (4.27))

oyrul)= >  (-)"NogE(I*, N, R, H), (5.6)
I*:0#I*CI

where again I* are intervals with integer endpoints. According to Proposi-

~

tion 3.6 ([8]) the functions log=(I*, N, R, H) depend analytically on the poly-
mer weights Xy g u(I"), I' C I*. Moreover, using (4.30) and (5.3) one has”

~

dlogZ(I*,N,R,H) Z(I*\I' N,R,H 8

og A( ) ) 9 ) _ (: \ ) ) 9 ) _ eXp{— Z q)Nj?,,H(I)}

6XN7R7H(I/> :(I*7N7R7H) I~_( b]jC]*

InI'#0¢
As a result, (5.5) implies directly that
logZ(I*, N, R, H .
0 0og A( ) 7R7 ) < eXp{|I/|8—4(6—ﬂ0)}7 (57>
OXnwru(l')

with some 3 depending only on By. It remains to observe that for any pair
I, I'’) I' C I, of intervals with integer endpoints there exists no more than
(1| = I’ + 1)2 such intervals I satisfying the condition I’ C I C I. Finally,
(5.4) follows immediately from (5.6), (5.7) and the last observation. O

Remark 5.1.2 We have proved (5.4) using only the polymer representation
(4.30) of the partition function Z(N, 8, R, H) and the estimate (4.31) of polymer

weights X ~N,RrH(I) (recall Remark 4.1.1). Since the explicit form of these poly-
mer weights was not used, our result is valid for any partition function defined
via (4.30) with any collection of polymer weights satisfying (4.31).

In the remaining part of the present section we obtain some corollaries of
Theorem 5.1 to be used later on.

Let first k=0, R = {r1}, 1 = N and H = (0, H) € C?. Then the partition
function =(N,R,H) from (4.6) coincides with the partition function =(N, H)
(recall (2.19)) for the height h(S) of the phase boundary S. Define é(N, H)
similarly to (4.26). The following result was obtained in [7].

Corollary 5.2 ([7], Theorem 4.8) Let H satisfies the condition

IRH| < 2 —6/28. (5.8)

"In the case I'* \ I = I; U Iy with disjoint intervals I; and I we denote

(I, Uls, N,R,H) = E(I;, N,R,H)Z(I2, N, R, H).
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Then all statements of Theorem 5.1 are valid for the partition function E(N, H).
Moreover, the functions ®n r u(l) do not depend on N,

Oy ru(l)=2(|1]),

where |I| denotes the length of the interval I, and there exists a limit

. logZ(N, H
P(H) = tim 8= 1)

n—o00 N

: (5.9)

that presents an analytical function of H in the region (5.8). Finally, one has
the expansion

F(H) = Z ® (i) (5.10)

and the estimate R
|F(H)| < exp{—4(8— fo)}, (5.11)
where B > By with sufficiently large By.

Remark 5.2.1 Due to (4.27) one has Z(I, N,R,H) = 1 for any I C [0, N] such
that |I| = 1. Thus, (5.6) implies ¢y (1) = 0 that explains the absence of i = 1
in (5.10). The expansion from (5.10) plays an important role in the following
considerations.

Remark 5.2.2 It follows from (5.9), definitions (4.26) and (4.20) that the limit
(recall (2.20))
 logE(N, H)
F(H)= lim —————=
( ) Ngnoo N
exists, is an analytical function of H in the region (5.8), and satisfies there the
following identity ([7, page 120])
F(H)=F(H)+1log Q(H).
To study the asymptotical properties of the area an(S) below the phase
boundary S we put k+1 = 0 in (4.1). Denote the corresponding partition func-

tion by Z(NV, H, area) and define the relative partition function g(N , H, area) as
in (4.26).

Corollary 5.3 Assume that H satisfies (5.8). Then Z(N, H, area) is a non-
vanishing analytical function of such H. Moreover, there exists the limat

=~ . logE N, H, area HPN
Farea(H) = ngn 8= N ) = / F((1-=)H)dz, (5.12)
> 0

where ﬁ() is the free energy from (5.9) corresponding to the height h(S) of the
phase boundary S. Finally, there exist constants By and Ny such that for all
N > Ny and 8> fBo

1
log (N, H, area)—N/ ﬁ((l—x)H) dx’ gexp{—?)(ﬁ—ﬁo)}logloN. (5.13)
0

27



Remark 5.3.1 Due to the integral representation in (5.12) the function ﬁarea(')
is an analytical function of H in the region (5.8).

Remark 5.3.2 The derivatives of N1 log (N H, area) with respect to H con-

verge to the corresponding derivatives of Farea(H ). In this case estimate (5.13)
is also true with possibly another constant .

The following simple property of real functions will be used below.

Property 5.4 Let f(-) be a smooth real function, f : U — R, where U is some

open convex set in RF. Assume that for anyi=1,...,k one has
Of(x)
— ; 5.14
‘ (9x1 = i ( )
=y

uniformly iny € U. Then for all y,z € U
k
‘f(y)—f(z)‘ Szai\yi—2i|~ (5.15)
i=1

Proof. Define g(t) = f(z 4+ t(y — z)). Then

—2)) - (i — 2)

IIMw

and therefore (recall (5.14))

£0) = 1] =190 =90 < [ lg' )] de < Yl — .
O

Proof of Corollary 5.3. The analyticity of log é(N, H, area) with respect to
H in the region (5.8), the cluster expansion

lOg (NH area Z q)NHarea ) (516)
I1C[0,N]

and the estimates for ®x g area(l) of the type (5.2) and (5.4) follow directly
from Theorem 5.1. It remains to establish (5.13).

We will check below that there exists a constant C; = (9, By) such that
for all B > By and all intervals I = (m’,m”] C [0, N], |m/ —m”| < log® N, with
integer endpoints the following inequality holds

log® N
(I)N,H,area(l) - @(1—m”/N)H(|I|) < N exp{—3(8 — o)}, (5.17)
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where the quantities ®p (k) coincide with the elements of expansion (5.10).
Then (5.13) will follow directly from (5.17).
Indeed, using (5.16) we obtain

1
log =Z(N, H, area) — N/ F(1-=z)H) d:v’
0

N

< S |R(-wmE - Y evmaeal)| (51

m''= I=(m,m/]:IC(0,m']

+)N/O1 F((1 - 2)H) dz — ﬁ:ﬁ((l — j/N)H)

)

where in view of (5.10),
F((1=j/N)H) =Y @u_jnmk). (5.19)
k=2

Let us estimate every term on the right-hand side of (5.18). First of all, due to

analyticity of F () there exists a constant Cy = C3(d, 8) > 0 such that for all
B > Bo and H in the region (5.8) one has

1 N :
‘N/ F(1-a)H)dz Y F((1- 2)H)| < Ca.
| $#(0- 4
Then, (5.11) and analog of (5.2) imply
Ry = ‘ﬁ((l—m”/N)H) — Z ‘I)N,H,area(f)‘
I=(m,m"]:1C(0,m"] (520)

< exp{—4(8 — fo)} + exp{—4(8 — fo)} = C3 < 0.

Finally, for any m” > log> N we rewrite (recall (5.19))

Ry = )ﬁ((l — m”/N)H) — Z CI)N,H,area(I)‘
I=(m,m"]:I1C(0,m"]
< Z “I)N,H,area(f) - q’(l—m”/N)H([)‘

I=(m,m":1C(0,m"’]
|m' —m|<log® N

* 2 (12x.marea(D)] + [ @ —mr/ma (1)) -

I=(m,m"): IC(0,m”"
|m/' —m|>log? N
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Applying (5.17) to estimate every term in the first sum and using (5.2) for all
other terms we obtain

8

1 N
Ry <log? N - C1—2 " exp{—3(8 — Bo)}

+2 Z exp{—4(8 — Bo)k} (5.21)
k>log? N
10
< (4 logN N xp{—3(8 — Bo)}

for all sufficiently large N. Finally, applying (5.20) for m” < log® N and (5.21)
in the opposite case, log? N < m” < N, we obtain

1
log Z2(N, H, area) — N/ F((1-=z)H) dx‘
0

log!® N
N

< C3log® N + C4(N —1log® N) exp{—3(8 — Bo)} + Cs

< Csexp{—3(8 — o)} log"’ N

with some constant C5 > 0 for all sufficiently large N.

Thus, it remains to prove (5.17). Fix any I = (m’,m"] C [0, N], |m" —m/| <
log® N, with integer endpoints. Recall that the partition function _(N H, area)
corresponding to the normalized area Yy is expressed in terms of activities

Un marea(&i) = eXP{—meﬂ + 5H(1 - %)M&) + 5H 1 } H V(A
As€E;
where the animal &; has the base J(&;) = (m;—1, m;]. Define (cf. (4.29))

XNHarea (HQ(l—]/N )) Z VN H,area f) I'CI

jEr E1E)=1"

For all £ with J(€) C (m/,m"] consider also new activities

EN,H,aurea(@ { 25|§| + 5H<1 - —> } H \II

(with the same value m/ for all such animals £) and polymer weights

XNHarea (HQ(l—J/N )) Z Uy m,area (£), I'CI.

&1(6)=I
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Clearly, the polymer weights Xy area(-) satisfy (4.31). Moreover, for all I’,
I’ C I, one has

)A(N,H,area(ll) - iN’H’area(I/)‘
< 2<62/3 log* N/N _ 1) exp{—4(8 — B)(|I] — 1)} (5.22)

4
< 452 R 2 NI ey a (5~ B)(11] - 1),

provided N and 8 are sufficiently large, 8 > 3 and N > Ny. In the second
inequality above we have used the simple inequality e* — 1 < xe” that is true
for all z > 0.
Let ®n garea(l) and @y g area(l) be the cluster weights generated by
-

)?N,H,area(fl) and XN,H,area(I/), I I, correspondingly. In view of Re-
mark 5.1.2 we apply (5.4) and (5.15) to obtain

“I)N,H,area(f) - 6J\f,H,aurea(I)‘

/| —4(B-Bo) - =
< > ke " log' N - ’XN,H,area(I') — Xn,marea(!’)|-
I:1'cI

Then, using (5.22) one gets

"I)N,H,area(f) - 6N,H,areab([)’
1 8 N 4 / ’ —4 —
< 48 OgN o28log* N/N Z o~ 4(B—=Bo)(II'|=1) |I"|e~ *(F~F0)
1:1'crl
8
< log" N 3-8
- N
provided N is sufficiently large and § > B’ > 0. It remains to observe that due
to its definition ®n, m area(l) coincide with ® ., /nyp (). O

Finally, consider the random vector ©y from (4.1)—(4.2),
@N = (YN,XN(81>, ce 7XN(SI€),XN(1)) c RIH—Q’

where the collection & = {s1,...,8k41} is such that 0 < 51 < ... < sgy1 = 1.
Denote

R(S) = {[Nsl], . ..,[Nsk],N}.

Then the corresponding partition function Z(N, R(S), H) is given by (4.6) with
R replaced by R(S). For any H, RH € D2, define

k+1

H(z)=(1-2)Ho+ Y Hl{sey. (5.23)
=1
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Corollary 5.5 The partition function (N, R(S),H) is a non-vanishing ana-
lytical function of H, RH € D§+2. There exist the limat

Frois)(H) = lim 285 =, ]\7;(8) H) _ /O F(H(x)) da, (5.24)

N —o0

where F(-) is the free energy from (5.9) and H(z) was defined in (5.23). Finally,
there exist constants Ny and By such that for all N > Ny and 8 > [y

log (N, R(S N/ (z)) dx’ <log'® Nexp{—3(8 - Bo)}. (5.25)

Remark 5.5.1 Due to the integral representation in (5.24), the free energy
Fr(s)(H) is an analytical function of H, *H ¢ DE+2,

Remark 5.5.2 The analog of (5.25) holds for any partial derivative of the func-
tion log Z(N, R(S), H) as a function of H, RH € DF*? with possibly different
constant .

Proof. Arguments similar to those used in the proof of Corollary 5.3 imply the
following estimate

’N/ o F(H dm—log ((ri,ri+1],N,R,H)’

<log'’ Nexp{—3(8 — Bo)}

forany i =0,1,...,kand N > Ny with sg =19 =0,r; = [Ns;],i=1,...,k+1.
On the other hand,

(5.26)

1

‘log S(N,R(S),H)— N | F(H(z)) dx‘

0

A(H(’r>) dx — logg((riv TH—l]? N7 Rv H)’

IA
gl
=
T

+
By
l

+ Z > ’(pN,R(S),H(I)"

t=1TI: (r;,r;+1]CIC[0,N]

Therefore, (5.26) and (5.5) imply the inequality

‘log (N, R(S N/

< (k+1)log"" N exp{—3(8 — o)} + kexp{ 4(8 — Bo)}
<log"' N exp{—3(8 — fo)}

for all sufficiently large N and g > BO. O
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6 Limit theorems for the joint distribution

We study here the asymptotical behaviour of the probabilities P(Ony = My)
and P(Anx = An) entering the right-hand side of (3.19).

Let an integer number k£ > 0 and a set S of real numbers s;, {0 < 51 < ... <
sk < 1 = sgy1 be fixed. Denote

R:{ri:ri:[Nsi],izl,...,kz—i—l}

and for H € 23§+2 consider the logarithmic moment generating function
Ly r(H) corresponding to the random vector Oy g = Oy from (4.1)-(4.2),

Lyr(H) =logEexp{3(H,On %)} (6.1)

For any H € 13§+2 we introduce also the random vector © y z u with H-tilted
distribution,

P(@N,R,H = M) = exp{ﬁ(M, H) - LN,R(H)}P(@N,R = M), (62)

where M € M52 (recall (3.18)). Observe that the mean vector EQy g and
the covariance matrix CovOy r u of Oy r u can be calculated via

BEONRrH = VulLyrH), B3?CovOy r.u = HessLy »(H), (6.3)

where Vi denotes the gradient and HessLy & (H) is the Hessian (the matrix of
the second derivatives) of Ly = (H) as the function of H = (Hy, Hy, ..., Hiy1).
Assuming that H and M are related via

M = VuLyr(H)
one easily obtains (recall (6.2), (4.5))

Z(N,R,H)
E(N)
=exp{—Lyx (M)} P(Onru=M)

P (Onr =M) = exp{—5(M, H)} P(Onru =M)

(6.4)

with L} »(-) denoting the Legendre transformation

LyrM) = Sup (B(M,H) — Ly r(H)).

In view of (6.4) the problem is reduced to the investigation of the asymptotical
behaviour of the probability P(@N’R’H = M)
For any H € ﬁ§+2 define the matrix

%NJQ(H) HeSSLNJQ(H) (65)

1
= 2N
and introduce the quadratic form By g 1 (T), T = (to,t1,..-,tkr1) € RFF2

BN,R,H(T) = (’BN’R(H>T, T)
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Consider also the quadratic form

Bru(T) = (Br(H)T, T)

corresponding to the matrix (recall (5.24))
1 ! L~
Br(H) = @Hess/ (log@ + F) (H(z)) d, (6.6)
0

where Q(+), F(+), and H(z) were defined in (4.18), (5.9), and (5.23) respectively.

Lemma 6.1 Let 5 > By with By fized in (5.11). Then uniformly in H € 15§+2
and T € R**2|T| =1, one has

BN,R,H(T) — BR,H(T) as N — o0o. (67)

Moreover, there exist positive constants b, No, and B depending only on By from
(5.11) and § such that uniformly in H € DIH'Q N > Ny, and B> 3 one has

Br u(T) > b|T|?, By ru(T) > b|T|% (6.8)

Proof. In view of (6.5), (4.5), and (4.26) one easily obtains

By rH) = HesslogZ(N, R, H, 00) + Hesslog 2(N, 8, R, H). (6.9)

1
BN BN

The first term on the right-hand side of (6.9) presents the normalized covariance
matrix for the ensemble of tame animals. Due to (4.20) the corresponding
quadratic form Qun z m(T) satisfies the relation

Onvru(T) = Qru(T) + ONH|T|* as N — oo, (6.10)
where the limiting quadratic form Qg u(T) is calculated via

k+1

Or 1(T) = 512 / (log Q)”( (z )) ((1 —x)to + Z 1{$<8l}tl)2 dr.  (6.11)

=1

Let F ~.=.H(T) be the quadratic form corresponding to the second term on the
right-hand side of (6.9). According to Remark 5.5.2 one has

log!
N

N exp{—3(8 - 50)}) T as N — oo
(6.12)

ﬁN,R,H(T) = ]?R,H(T) + O(

with the limiting quadratic form (cf. (6.11))

k+1
1 +

@ /Ol(ﬁy/(f_j(x)) ((1 - W)to + Z 1{x<sl}tl>2 dzx.

=1

Fru(T) =
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As a result, (6.7) follows immediately from (6.10) and (6.12).
It remains to prove the inequalities in (6.8). First, observe that

Bru(T) = Qr u(T) + Fr.u(T).

We will show later that the function 32 (logQ +F )H(H ) is uniformly bounded
from below (and above) by two positive constants uniformly in H, |H| < 2 —
36/48, provided 3 is sufficiently large, 3 > . Then the first inequality in (6.8)
follows from the observation that the quadratic form

1 k+1
/ ((1 — z)to + Z 1{$<sl}tl) da
0
is a positive continuous function of T = (fo, .. ., tx+1) on the unit sphere |T| = 1,

and thus is bounded from below by some posmve constant C7.
To prove that the function 5~ (logQ + F ) (H) is bounded uniformly in H,
|H| < 2—30/48, we observe that due to (4.18)

52 cosh(28) cosh(Hf) — 1
A | H) =
B2OH? 0g Q(H) (cosh(Qﬁ) — COSh(Hﬁ))Q

and thus (recall (4.24))

_gpcosh(28p) — 1 < cosh(28p) —1 cosh(Hp)

cosh(28y) —  cosh(20) cosh(25)
2 5/4

(&
= grom? O = Ty

if only 8 > 3o and H € R! satisfies (4.23). On the other hand, due to Corol-
lary 5.2 for any fixed Hy, |Ho| < 2 — 36/43, the function F(H) is analytic in
the disk of radius §/48 with the center at Hy. Applying the Cauchy formula
and estimate (5.11) one obtains

‘ﬁﬁ([ﬁ‘ < C(6) exp{—4(8 - Bo)},

where C(§) > 0 is a constant depending only on . The needed inequality
follows immediately provided ( is such that

1 _gpcosh(28) — 1

(0) exp{~4(8 — fo) } < 2° cosh(2/3) - a

Put b = ¢;C1 /2. Since the convergence in (6.7) is uniform in H € 13§+2, the
last inequality in (6.8) follows for all sufficiently large N, N > Nj. O

Let © be the Gaussian random vector with zero mean and the covariance
matrix B (H) (recall (6.6)). Denote its characteristic function by g (T),

Y (T) = exp{—%BR,H(T)}, T € RF+2, (6.13)

35



Since the matrix B (H) is positively definite, the distribution of © is non-
degenerate and has the density pg(X), X € R¥2,

Theorem 6.2 Let a sequence of vectors Hy € 23§+2 satisfy the condition
Hy - HEe€ D§+2 as N — o0o. Consider the random vector

1
VN

Then for all B > Bo with sufficiently large By the distribution of O} converges
weakly as N — oo to the distribution of the random vector © with the charac-
teristic function Xg(T).

@7\] = (@N,R,HN — E@N,R,HN)' (6.14)

Proof. Let xn(T) be the characteristic function of the random vector Oy =z H, ,

, S(N, R, Hy +if 1T
xn(T) = Eexp{z(T,@N’R’HN)} = ( N +if )

(6.15)

E’(N7 Rv HN)
Then the characteristic function x% (T) of the random vector O} equals
. 1 i
log Xn(T) = =5 By (T) — GNa/z N (6.16)
where
k+1 83
Ry=— Y titmtpsrr—r—log=(N,R, H) (6.17)
63 L e 6H56Hm8Hp HIHN‘Fﬂi\/ﬁT

with some w = w(Hy, T), 0 <w < 1. Since the convergence in (6.7) is valid for
T belonging to any compact set in R¥*2 (uniformly in H € 15§+2), it remains
to prove that
Ry = O(NB/Q) as N — oo. (6.18)
Let xn,=,u(T) be the characteristic function of the random vector On % ,
H e D2 (cf. (6.15))

=(N,R,H +i3'T)
=(N,R,H)

xnrH(T) = (6.19)

We will show below that the function log xn = u(T) can be extended to an
analytical function of T in the region {T € Ck+2,2fiol ISt;| < §/4}. Then,
applying the Cauchy formula one obtains

83
—] T) < C(6 1 T 6.20
G000, 8 xn,ru(T)| < C( )<H,;§1fa(5>’ og xnr.u(T)| (6.20)
for all such T, where (recall (4.7))
k+1
G(5) = {(H, T):HeDif2, TeC2 Y |3t < 5/4}.
i=0
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and the constant C'(J) depends only on d. This will give us the needed estimate
for the remainder Ry .
Using (4.26) we rewrite (6.19) in the form

E(N,R,H+i'T)
=(N, 8,R, H)

xvRH(T) = X¥ru(T) : (6.21)

where X‘]’VOR’H(T) denotes the corresponding characteristic function in the en-
semble of tame animals (recall (4.20), (4.18)),

N .
0o Q(Hn,j +iB "N )
T) =[] , 6.22
XN,R,H( ) i Q(HN,3> ( )

and the quantities ¢y ; are calculated via (cf. (4.21))

k+1
tN:j = (1 - (j o 1/2)/N)t0 + Ztnl{jgrn}-
n=1
It follows from (5.1) that
E(N,R,H+ip~'T
log WV, R, H + if ) < 2N exp{—4(8 — o)} (6.23)

=(N,3,R,H)

uniformly in (H, T) € G(J) provided 8 > By with Sy = $9(26/3) > 0. On the
other hand (see (4.10.18) in [7]), the inequality

log Q(Huj + i twj) —log Q(Hn j)| < C(8)e 71Nl < O(8)e=2/1
(6.24)
holds uniformly in N, j = 1,...,N and (H,T) € G(4). Then, (6.21), (6.22),
(6.23), and (6.24) imply the estimate

llog xn. %1 (T)| < C(6)Ne 2/ (6.25)

for all N, (H,T) € G(9) provided S > 5p(2§/3) > 0. Finally, the analyticity
of log xn, =, u(T) follows directly from (6.25), definitions (6.21), (6.22), (4.18),
and Theorem 5.1.

Since (6.18) follows directly from (6.17), (6.20), and (6.25), one has the

convergence
X~ (T) = xg(T), as N — oo (6.26)

that is uniform in T belonging to any compact set in R¥*2 provided § is suffi-
ciently large. O

Let Hy, Hy — H € ﬁ§+2 be the sequence of vectors from Theorem 6.2.
For any N define

1
Eny =EONnRrHN = BVHLN,R(I_D S
=Hy
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and for any My € M52 (recall (3.18)) put

1
Xy = i (My — Ey).
Theorem 6.3 Uniformly in My € MIfVH and Hy € 13§+2, Hy - He Z/)\gﬁ'z,
one has
k44

2N 2 POnruy =Mpy) —Ppu(Xn) =0 as N = oo,

where Py (-) denotes the density of the random vector © from Theorem 6.2,
provided B > Bog with sufficiently large By > 0.

Proof. Using the well-known inversion formula for the Fourier transformation
we rewrite the difference

in the form

1 (6.27)
- Yoo (T e HT-HN) g

(27T)k+2 /RIH-? XH( )8 )
where

A= {T = (to,...,tp1) € RFZ 1 Jto| <2aN32 |ty < 7V/N,1=1,2,... k+1}.

Following the standard proof of the local limit theorem (see, e. g., [12, §43] we
evaluate the right-hand side of (6.27) by the sum of four terms,

(27T>_(k+2) (J1 + Jo+ J3 + J4) ,

where for some positive constants A and A

J = / N (T) — Xu(D)|dT, 2 = [-A, AP+,
Ay

J2=/ e (T) dT, Ay = RFF2\ 2y,
Ao

Jp:/ |xn(T)|dT, p=3,4,

with
Ay = {T e R |t <AVN,I=0,1,...,k+1}\ 2,
Ap = A\ (A UA).

Fix any € > 0. We will show in the following that the constants A and A
can be chosen in such a way to imply J, < ¢/4, p = 1,...,4, if only 8 > fp
(and N > Ny) with sufficiently large By > 0 (and Ny > 1).
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First, due to (6.26) one has J; — 0 as N — oo for any fixed A > 0 and all
B > Po, provided [y is sufficiently large.

Then, since the distribution of the random vector © is non-degenerate, one
has Jo — 0 as A — oo for all g > [y with sufficiently large .

To estimate J3 fix any T € 3. Then |T| < Ay/N(k+2) and for any N
one gets (recall (6.17), (6.20), and (6.25))

k+1
IRn| < C1(0 —35/4(Z|tl|) < Cy(5)N exp{—35/4}(k +2)*/|T|?

< C1(0)N3/? exp{—36/4} (k + 2)2A|T|%.
Consequently (recall (6.16)),

C1(0)(k + 2)?
6

RN‘ _35/4A|T|2.

. 1
log x v (T) + §BN,R,HN ‘ ‘6]\/3/2
Let A > 0 be such that
C1(0)(k +2)?
6

with the constant b from (6.8). Then

exp{—3§/4} A <

=~ o

1 b b
Rlogxy(T) < —5Bnrmy (T) + Z|T|2 < —ZIT|2
and therefore

X~ (T)| < exp{Rlogx(T)} < exp{—b|T|*/4}

for all T € 23 uniformly in N > Ny and 3 > 3 (with Ny and 3 from Lemma 6.1).
As a result,

JBZ/ }X?V(T)’dTS/ e_b|T\2/4dT\(O as A S oo
9[3 9[2

Finally, fix any T € 24 and rewrite |x% (T)| in the form (recall (6.21), (6.14))

—1/2T)} ‘~ (N, R, HN—FZT/ﬁ\/_)‘

6.28
E(N, R, Hy))| (629

XN (T)] = XXy (N

The arguments, similar to those used in the proof of Theorem 4.2 from [6]
imply the existence of a constant C' = C(R, d, By) > 0 such that for all T € 2y,
He D§+2, B > Bo, and N sufficiently large one has

X¥rE(NT2T)| < exp{~CN}.

Then, applying (5.1) to estimate the partition functions on the right-hand side
of (6.28) one immediately gets

X~ (T)| < exp{—N(C —2exp{—4(8 — fo)}) }-
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Therefore, for all sufficiently large 3, 5 > By, one obtains
Ji= [ PG(D|AT < [ ORI = (2m N exp(-ON/2} N0
Ay A

as N — oo that finishes the proof of the theorem. O

In the arguments above the Gaussian density Dg(-) can be replaced by
the density of zero-mean Gaussian distribution with the covariance matrix
By r(Hy) (recall (6.5), (6.16), and (6.26)). In particular, one has

Corollary 6.4 There exist positive constants Ny, By, co, and Cy such that for
all N > Ny and B > By

Co o 1/2 2
ﬁﬁ < (det HessLAN(HN)) P(Anuy = An) < 57, (6.29)

where L () was determined in (3.5) and Hy —in (3.11).
For future references we formulate also the following simple statement.

Corollary 6.5 Let all Xy be uniformly bounded. Then under the conditions
of Theorem 6.3 one has

1 k44

PONRrHy =Mny) = §N_TT9H(XN) (1 +0(1)),

where the estimate o(1) is uniform with respect to the considered sequences Hy €
25§+2 and Xy, provided only B is sufficiently large.

Moreover, there exist positive constants By, ¢;, C;, © = 1,2, and a number
Ng such that

ktd
025164-2 < ClﬁH(XN) < N%P(@N,R,HN = MN) < ClﬁH<XN) < 025k+2
(6.30)

uniformly in N > Ny and the sequences Hy, X under consideration, provided
only B > Bo.

7 Convergence of finite dimensional distribu-
tions

We prove here the convergence of finite dimensional distributions of the condi-
tional random process (recall (3.15))

03 (1) = 7}(

to the corresponding distributions of the Gaussian measure p* from Theo-
rem 3.2.

05 (t) — Né(t)), t €10,1],
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Consider first the vector Ay of conditions (3.3) with the logarithmic moment
generating function Ly (H) from (3.5). Assume that H belongs to the set D?
defined in (3.7). Then

log™® N)

w7 Vilay (H) = Z(H) + (=55

Nﬂ (7.1)

where Z(H) was defined in (3.12) and the estimate O(-) is uniform in H € D2.
Indeed, it follows from (3.5) and (4.26) that

B VeLa, (H) = 5 'V (1og (N, A, H) + logZ(N, A, H oo)). (7.2)

Then, due to Remark 5.5.2 one has

1
_VH log Z(N, A, H) — BVH/ ((1 — x)Ho + H,) dx’
0

NG (7.3)

~ 10
< o-3(8—Bnlog N
= N

On the other hand, the analyticity and uniform boundedness of log Q(+) in the
region (4.23) imply the estimate

1
—VHlog (N,A,H, 00) — lVH/ logQ((1 — 2)Ho + Hy) de = O(N™).
0

Np B
(7.4)
Finally, (7.1) follows directly from (7.2)—(7.4) and definition (3.12).
Let Hy and H be the solutions of (3.11) and (3.12) respectively. Applying
the implicit function theorem to Z(-) and taking into account estimate (7.1) one
easily obtains

10
Hy — H| = 5-@(%) +ATIO(N" Ay — A), (7.5)

where the estimates O(-) are uniform in Hy € D}, and N"'Ay € I(D})
respectively (here ¢’ > 0 is any fixed number and Z (D5,) denotes the image

of the region D%). Thus Hy — H as N — oo and therefore all Hy with
sufficiently large N belong to the region D? from (3.7) (recall Remark 3.1.2).
Let ©n be the random vector from (3.16),

On = (YN, XN(Sl), Ceey XN(Sk), XN(Sk+1)) € RFF2,
For Hy = (HY, HY) determined from (3.11) we introduce the vector
HY = (HY,0,...,0, HY) € RF2,
Clearly, the sequence HY, converges to

=(Q,0,...,0,H) € RF2,
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where H = (Q, H) denotes the solution of (3.12); thus, all HY, with sufficiently
large N belong to the region D *? from (4.7). Denote (recall (6.1), (6.3))

E} = EON w9 = (NqN,e}V,...,eéﬁV,NbN)

with L9
e = enls:) = 5 g e () ]

Similarly to (7.1) one easily obtains the relation (recall (7.5))

H=HY,

%e]\;(s) = é(s) +50(

log!® N

) +50(N 1Ay - 4), (7.6)

where (cf. (3.14))

é(s) = %/0 F'((1-2)Q+H)de = (F(H+Q) — F(H+Q—Qs))/6Q (7.7)

and the estimates O(-) are uniform in s € [0, 1] provided f is sufficiently large.
For any My € M5 (see (3.18)) of the kind

My = (Ngn,mby, ..., m5, Nby)
we put
7 1 i i .
.CCN:\/—N(mN_eN), 2:1,...,k.

Let D, (-) denote the probability distribution of the Gaussian random vector

O = (7,1, ..., & 1) with the characteristic function Xgo (T) from (6.13). Then
Pe(X°)
Po(0)

presents the density of the conditional distribution (&1, ..., &7 =0, &1 = 0).
Finally, define the random process (recall (3.20), (7.7))

pre(xt, ..., 2"0) = X% =(0,2,...,2% 0) € RF"2

ON (1) =

Theorem 7.1 Let a natural number k and a collection of real numbers t;,
0<t; <...<tg <1, be fired. Then for all B > By with sufficiently large By the
distribution of the random vector (O% (t1),...,O%(tx)) converges weakly to the
Gaussian distribution with the density pr(-|0). This limiting distribution coin-
cides with the corresponding distribution of the measure p* from Theorem 3.2.

(On(t) — Né(t)). (7.8)

The proof of Theorem 7.1 can be obtained by literal repetition of that of
Theorem 5.2 in [6]. It is based on the following simple observation that follows
immediately from Theorem 6.3 (cf. Lemma 5.1 in [6]).
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Lemma 7.2 Let all 2% be uniformly bounded. Then

P(On(s1) =mh,...,On(si) = mh) = N5 pp(ah, ..., 25]0) (1 + o(1))
as N — oo if only B is sufficiently large, 5 > [y > 0; the estimate o(-) is
uniform in such ;.

Denote (cf. (4.3))

A X =0;X(8) =gk (j) — g% (i — 1)
and choose any p, B
0<p<d/l12 (7.9)

with 6 fixed in Theorem 3.2.

Lemma 7.3 There exist positive constants C, By, and Ny such that for all
B> PBo, N> Ny, and all j=1,..., N one has

E(exp{p|A; X[} | Ay = Ay) < C. (7.10)

Proof. Fix any j € {1, 2, N} and a phase boundary S € Tx. Applying to S
the animal decomposition described in Sect. 4 we observe that A;X is uniquely
determined by the animal ¢ satisfying the condition J (é) D (5 —1,4]. Denote
by {£} the event

{f} = {S € Ty : the animal decomposition of S contains f}

Then one has

E(ef2 Xl Ay = Ax) = Zexp{plAjX(é)l}P({é}\ Ay =Ay), (711

where the summation is going over the whole set of disjoint events {é } such that
J(€) = (mi_1,ms) 2 (j —1,7]. Relation (7.11) will be the initial point of our
reasoning. R

We start with the following simple observation. Let Z(N,R,H), H € Dk+2

be the partition function from (4.13) and € € Kn be the animal fixed above.
Denote by Ky (3= K the set of all collections from Ky that contain £,

N(é) - {{517 e ’éH'l} € ﬁ]\] : é € {éla cee 7él+1}}-
Clearly, the sets Ky (é ) form the partition of K labeled by € under considera-
tion. Define (cf. (4.13))

+1

Z(N, R,H;f) = Z H\IJNRH(gz)

{€1,...&ip1}eRln(€) =1
=Z(N,R,HI[E) Uy rul)

(7.12)
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Then for all H € 15§+2 and sufficiently large § one has

’E(N,R,H%)

=(N, R, H) ’5 exp{ (26 + Qs + )| J (I}, (7.13)

where J(€) is the base of the animal ¢ and (recall (4.25))
Qs = [ log Q(H) + 2. (7.14)

HH <2625
To check (7.13) observe that the cluster expansion of log Z(N, R, H| é) con-

tains only the cluster weights depending on I = (a,b] C (0,N]\ J(£). Since
the same weights appear in the expansion for logZ(/N, R, H) one easily obtains
(recall (4.26), (4.20), (4.21), and (5.5))

)ng(N,R,H\é)—1ogE(N,R,H)+ 3" logQ(Hy ;)| < KIT(E)| (7.15)

JEI(E)

for all H € 15§+2 and sufficiently large 3, where the constant K = K(5) ~\, 0
as f /" 0o. Thus, (7.13) follows directly from (7.15), (7.14), and the inequality
|Hn ;| <2—6/28 (cf. (4.7), (4.23)).

We will show below that for some constant C' > 0 and all sufficiently large
[ one has

P(Ay = Ay;{€})
P(Ay = Ay) (7.16)
< Cexp{(26 + Qs +2p)[J(E)] + I} Uz (6),

P({é}’ Ay =An) =

where
ml

AE) = (ald), hid]) = (ran(@ + (1 - 52)h(é), n(®)
(recall that J(€) = (my_1,m;]), Hy is the solution to (3.11), and (cf. (4.11))

W am(€) = exp{~281¢] + 5r()((1 - @)Ho +H)

N
—|—ﬁH0—a } I] wa
Aseé
= exp{ —281¢1 + B(AELH) } I wia
Aseé

with H € D2. Then (7.10) follows directly.
Indeed, accordingly to (4.42)

B(A[E], H) < (28 —356/4) Ny (€) (7.17)
for any H € DZ. Then, the inequalities

BE < No(§),  1a@I < TE)]-No@), 1T <my (7.18)
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imply |a[€]| < N,(€) and therefore
AF]l < [alé]] + [RE]] < 2N, (€). (7.19)

As a result, using the simple observation

[A;X(6)] < No(§) (7.20)
one obtains (recall (7.9))
E(exp{p|A; X[} | AN = An)
< OY e a2 O 28-5/2Nu) T w(A
; A<t (7.21)
— 028(25+Q5+2p)|f| Z o 2BIE1+(26—38/2) N, (€) H T(A
I £&J(6)=1 As€€

where ), denotes the summation over all I = (a,b] C (0, N] such that I D
(j —1,7]. Asin Sect. 4 (recall (4.32)—(4.35)) we estimate the inner sum via

3 e 2BIEIH(28-8/2)N. () X (§)
S:I(S)=1, yin(S)=0
< e 8(B=B2)(I[-1)+2(62—5) Z e~ 0N (5)/4=B3(Nn(5)+1)

S:I(S)=I, yin(S)=0

where 3 = 285 — ¢ and (s in (4.33) is sufficiently large to imply e(52) < /4.
Evaluating the last sum by help of (4.37) one easily obtains (7.10),

— R(B3,9)

for 3 > B4 and some constant C, where we set 84 = (682 + Qs + 2p)/4 and
C = Cexp{26: + Qs + 2p}.
It remains to establish (7.16). First, we apply the analog of (6.4) to rewrite

P(Av = Ani{€})) _ E(N,Hy, A PAyem, = Av)
P(Ay = Ay) E(N,Hy,A)  P(Anmy = Ax)

X > A(B_ R(pB3, )"
A 4(B=Pa)n _\ZHT)
E(e’/l%X | Ay = E_ (n+1)e : <C, (7.22)

(7.23)

with Hy denoting the solution of (3.11). The first fraction on the right-hand
side of (7.23) can be estimated by help of (7.12)—(7.13),

E(N,Hy,A:€)  E(N,Hy, A€
E(N,Hy,A)  ZE(N,Hp,A)
< exp{ (2685 + Qs + p)| T ()} w1y (€)-

On the other hand, similarly to (7.13) one obtains

\IJN,A,HN (é)

(7.24)

| BVH(log (N Hy, A €) = log E(N, Hiy, A)) | < (Qsa + ) JE)]  (7.25)
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with (recall (4.24))

sinh Hp
= max
H:|H|<%—5/25 cosh 28 — cosh Hf

Qsi= ma %logQ(H)

= max
H:|H|<2-5/28

sinh (28 — 6/2) - e 02 emo/
= cosh2B —cosh(28 —6/2) — 1 —e=0/4  ¢ed/4 1

for all 8 > (By(9). Thus, taking into account the simple identity

%VH log \I’N,A,H(é) = A[¢]

(that can be obtained by direct computations) one deduces immediately that

1 _ .
EAN;é,HN = BVH logZ(N,H, A;€) ‘H .
= N
satisfies the estimate
By, — Av = AE| < Q51 + 9T (7.26)

It remains to evaluate the last fraction in (7.23). Let first [J(€)| < AVN
with some fixed constant A > 0. Observe that the analog of (7.25) for the
second derivatives can be obtained in a similar way; therefore, the analog of
(5.24) for our special case R = {N} imply the convergence

1 R 1 1
EQ—NHGSS log=(N,H, A;€) — ?Hess/O F((1—x)Ho+ Hy) dx
for any 8 > By(0) uniformly in H = (Hy, Hy) € 23? Thus, the limiting proper-
ties of the random vector (A N; {é}) are the same as that of Ay. In particular,

if |A[£]] < BV/N with any fixed constant B > 0, one can apply Corollary 6.4 to
obtain (recall (7.26))

P(AN;&HN = AN)
P(AN,HN = AN)

provided (3 is sufficiently large. In the opposite case, |A[f]| > B+V/N, one has
(recall (6.30))

< (7.27)

R S A2 .
P(Ayeny = An) < 1 < N7 Cer!Mell (7.28)
P(Avuay =An) ~ P(Anuy =A4An) = B2~
Finally, for |.J(€)| > AVN one gets
N ~ A2 .
P(AN;&HN AN) < 1 < CQN S (_3’4@9“](5)‘_ (729)

P(Anuy =An) ~ P(Anmy =An) — B2
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Now, (7.16) follows immediately from (7.23), (7.24), and (7.27)—(7.29). O
Observe that this proof can be applied to any local variable that satisfies

~

the analog of (7.20) with the right-hand side of the kind C'N,(§), where C' > 0
is any fixed constant; then (7.9) should be replaced by

0<p<d/12C.
In particular, one has

Corollary 7.4 Let the constants C', By, and Ny be as determined in Lemma 7.5.
Then

E(exp{plgk () = gn ()} | A = Ax) < C
forall  =1,2,..., N provided only N > Ny and 8 > (.

For future references we formulate here the following corollary of Lemma 7.3
that could be obtained directly from (7.16) using calculations similar to those
in (7.21)—(7.22).

Corollary 7.5 Fiz a number j € {1, 2,.. .,N}. For any phase boundary S €
Tn apply the animal decomposition and denote by £(j) the animal satisfying
J(E(F)) 2 (j — 1,4]. Then there exists B < oo such that for all 8 > B and all
[ >1 one has

P(|J(EG) > 1+ 1] Ay = Ay) < exp{—4(8 - B)I}.
Another consequence of Lemma 7.3 is the following

Theorem 7.6 For all § > By with By determined in Theorem 7.1 the finite
dimensional distributions of the random process 0% (t), t € [0,1], have the same
limiting behaviour as that of O (t).

Proof. In view of the observation (recall (3.15), (3.20), (7.8), (3.17), and (3.2))

Bit) ~ O (1) = L (N1 + 1) = g (e | Ay = Aw)

the statement of the theorem follows immediately from (7.10). For details see
[6, Theorem 5.4]. O

8 Proof of main theorems

To complete the proof of our main result we need to check the weak compact-
ness of the sequence of measures py. We obtain it here as an implication of
Theorem 2.2 from [11, Chap. 9] which provides the sufficient condition for the
weak compactness of measures in C[0, 1]. The following statement verifies the
assumption of the mentioned theorem.
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Theorem 8.1 There exist positive numbers C, By, and Ny such that
Blox(t) = 0 (s)[" < Cle — 5|7/
uniformly in N > Ny and all segments [s,t] C [0,1], s < t, provided only B > So.

As in [6] we consider two cases, A = Ay = |t —s| < N~8/% and A > N=8/9,
separately.

Lemma 8.2 There exist positive numbers C7 and N1 such that
E|0% (1) — 0% (s)|* < Cyft — 5|7/

uniformly in [s,t] € [0,1], A < N=%9 if only N > Ny and 8 > By with By
determined in Lemma 7.3.

The proof is based on estimate (7.10) and can be obtained by literal repeti-
tion of that of Lemma 6.2 from [6].

Lemma 8.3 There exist positive numbers Cs, B2, and Ny such that
* * 4
E|0N(t) — 05 (s)| < Calt —s| (8.1)

uniformly in [s,t] C [0,1], A > N=8/9 if only N > Ny and B is sufficiently
large, B > Ba.

Proof. Denote (recall (3.2))
Cn = &L (1) — &4 (s) = g (Nt) — g (N's)
and introduce the random vector (cf. (3.3))
An = (Yn, hn, (v /VA)

with the logarithmic moment generating function Ly, (H), H € R3, (cf. (3.5))

La, (H) = 1ogEexp{5(H, T\N)} —logE(N, A H) — logE(N).  (8.2)

For Hy = (HY, Hy,) determined from (3.11) we define
HY, = (Hy, Hy,0)

and

_ 1 _
Ey=- loeZ(N,A,H = (N Nby, e .
N ﬁVH og ( s 4y ) HIH?\, ( qn, N> eN)? (8 3)

where similarly to (7.6) one obtains the relation (recall (3.9))

En = N(&(t) — é(s)) + Ao(V/'N),
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As a result, for all sufficiently large N one has

We will show below that for all N > N, and g > [ with sufficiently large
Ny > 0 and (5 > 0 one gets the estimate

P(|¢w — enVA| > kVNA| Ay = Ay) < fn(k), (8.5)
where
(k) = Dy exp{—aik?}, if |k| <evNA,
VR Dyexp{—aoN 8|k}, if  |k| > eV NA,
and Dy, Do, aq, ao, € are some fixed positive constants. Thus, the series in
(8.4) is convergent and (8.1) follows immediately.

It remains to establish estimates (8.5)—(8.6). To do this we introduce the
vector (recall (8.3))

(8.6)

and determine Hy = Hy (k) = (f[f{,(k), f[}v(k), ﬁ?\](k)) from the equation
1 - -
—Vulog=Z(N,AH =Zy. :
5VH 0og ( ) 43y ) H—Tir N (8 8)

It follows from (8.2) and the implicit function theorem that provided & in (8.7)
is of order v NA the quantities HY, (k) — HY, HY (k) — HY, and H% (k)VA are
of order A. Therefore, there exist € = £(p) > 0, N3 > 0, and 5 > 0 such that
for all k, |k| < evNA, all § > B3, and all N > N3 the following inequalities
hold true

[HY (k) — HY| < pA,  |Hy(k) - Hy| <pd,  |H3(k)| < pVA.
Thus, applying arguments similar to those used in the proof of Lemma 6.1 one

obtains the inequality (cf. (6.8))

(HesszAN(H)T, T) ‘H—ﬁ (k)z CB%N|T|? (8.9)

for all k, |k|] < ev/NA, all T € R®, 8 > B4, N > Ny, where C, 34, and N,
are some positive constants depending only on € and Sy from (5.11). For future
references we fix such value of € > 0.

Assuming that (y — éxVNA > 0 (in the opposite case the estimates are
similar) we rewrite

P((n > énVA+kVNA|Ay = Ay)
_ P(Ay = AN, (v > énVA +kVNA)

P(Ay = An) (8.10)
e BN @ Py (Ay = An, (v > envVA + kVNA)
T Liy (AN Pu, (Ay = An) ’
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where "E;N () and L} (-) denote the Legendre transformations of the functions
La,(-)and Ly, (+) correspondingly, Hy was determined in (8.8), Hy —in (3.11),
and Pgz (-), Pry(-) denote the tilted distributions of the random vectors Ay

and Ay with parameters H ~ and Hpy respectively.

Let us evaluate first the difference L} (Zn) — L3, (An). It follows from
(8.2), (8.3), (3.11) and the duality relations (2.22) for the Legendre transforma-
tion that

Ly (Ey) = Li, (An) and 9L} (En) =0,

where 8QZT\N(-) denotes the derivative of the function ERN (zo, 21, z2) With re-
spect to zo. Consequently (cf. relation (A.5) in [6]),

- - kN -
Liy(Zn) — Ly (En) = / (kVN = y)(82)* L}, (Nan, Ny, én +y) dy
0

(8.11)
and one needs to evaluate (92)°L} (-) from below. Denote

E?\] = EN + (O7O7y) = (NQN,NbN,éN +y) (812)

We will show below that in the case |k| < eV NA there exist positive constants
oy = ay(e) and Bs such that for all y, |y| < kv/N, one has

(02)°Li (ER) = an/N. (8.13)
Then (8.11) implies
Ly (Zn) — L} (En) > aqk? (8.14)

provided |k| < ev/ NA and due to the convexity of "E;N () (see also Property A.2
in [6])
Ly (Zn) — Ly (En) > 209N/ 18|K| (8.15)

in the opposite case, |k| > ev/NA. Thus, it remains to prove (8.13). To do this
determine HY = (H (y), Hx (y), H%(y)) from the condition (recall (8.12))

1

6VHEXN(H) =E}

H=HY,

and consider the matrix Hess EAN(I,jI?]JV) Since it is positive definite (recall
inequality (8.9)) there exists C5 = Cs(¢) > 0 such that for all y, |y| < kv/N <
eNV/A, one has

{(%)ZZAN(H)<%)ZEAN(H) - (%{)[—[OEAN(H)>2:| ‘H:ﬁ%z C5N>.
(8.16)
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On the other hand,

det Hess L, (H) | _ < CgN® (8.17)

H=HY,

uniformly in such y with some fixed constant Cs > 0. Since due to the duality
relations (2.22) the value of the derivative (92)°L}  (EY) coincides with the
ratio of the left-hand sides in (8.16) and (8.17), one immediately obtains (8.13).

It remains to evaluate the last fraction in (8.10). Consider first the case
k| < eV NA. Let Ay g be the random vector with the distribution induced by

P, ()and L, g (H), H= (Ho, Hi1), be its logarithmic moment generating
function,

Ly, iy (H) = log(ZMeM?\] 6B(H’M)PﬁN(AN _ M))
= EAN (i:IN + <H07 H17 0)) - EAN(FIN)

Note that this function is strictly convex and satisfies the condition

det Hess L, g, (H) ‘H—(O 0)2 C5;N? (8.18)

(since the expression on the left-hand side of (8.18) coincides with the left-hand
side of (8.16) with y = kv/N). As a result, applying analog of (6.29) one gets

Pr. (Ay = An) < 6%

On the other hand, the denominator Py, (Ay = Ax) can be evaluated from

below via the analog of (6.30). Thus, there exist positive constants C7, 87, and
N7 such that for all N > Ny, > f7, and |k| < e/ NA one has

PﬁN(AN = An,(Ny > éN\/Z—FkaA) < PﬁN(AN = AN)

< (4. 8.19
Puay(Ay = An) T Puy(Av=A4y) ~ 7 (8.19)

In the opposite case, |k| > eV NA, one easily gets (recall (6.30))

PI:IN(ANZAN,CN>§N\/Z+/€VNA) - 1
Pu,(An = An) ~ Puy(Anv = An) (8.20)
2
< " < Cgexp{as N/ 8|k[}.

It remains to observe that (8.5)—(8.6) follow immediately from (8.10), (8.14),
(8.15), (8.19), and (8.20). O

Proof of Theorem 3.2. The statement of the theorem follows directly from
Theorems 7.1, 7.6, 8.1, and Theorem 2.2 from [11]. O

Proof of Theorem 3.3. The first part of the theorem can be obtained in the
same way as Theorem 3.2. The convergence in (3.21) follows from Corollary 7.4.
O
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A Wulff construction in 1D models of SOS type

The 1D SOS model is the simplest interface model. In view of its simplicity it
is very popular in the physical literature and is used mainly as a ”toy model”
for discussing the statistical properties of interfaces. In particular, the Wulff
construction for this model is well understood ([1, 21}).

On the other hand, the interfaces appearing in the 1D SOS model present
sample paths of 1D random walk of the special type (see, e. g., [6, Sect. 3])
and therefore the Wulff construction here follows immediately from the known
facts of the sample paths large deviations theory ([3, Chap. 5], [22]). Using the
probabilistic interpretation one can investigate much general case of random
walks than those usually appearing in the physical literature in the context of
1D model of SOS type (see, e. g., [2] for a list of typical examples). In this
sense, the random walks provide the most general model of SOS type and for
this reason we will use the probabilistic language in the present section. We
will restrict ourselves to the discrete case, though the generalization to the
continuous one is straightforward [6, Sect. 2].

Let &; be a sequence of independent integer valued random variables having
the same non-degenerated distribution that is concentrated on the lattice Z!.
Then the interface is described by the sequence of partial sums, Sy = 0, S =
Ele &;, of the corresponding random walk. Denote by

L(h) = log E exp{h¢}

the logarithmic moment generating function (the free energy) of a single step
of this random walk. Assume in addition that L(-) is a finite function (and
thus analytical) in some open neighbourhood of the origin. ® Finally, for any
n > 1 and t € [0,1] define a random polygonal function (a piece-wise linearly
interpolated interface)

[nt]

Tn(t) = Spg) + ANt} g+ = Z&' + {nt}ne+1
=1

with [nt] and {nt} denoting the integral and the fractional parts of nt corre-
spondingly.

Then the distribution of n='x,,(t) satisfies the large deviations principle with
the rate function ([22], [4], [3, Chap. 5])

/1 L*(f'(¢)) dt, if f e AC[0,1], f(0) =0,
0

400 otherwise,

J(f) =

where AC[0, 1] is the space of absolutely continuous functions on [0, 1] and L*(-)
is the Legendre transformation of L(-),

L*(x) = Sl}llp(xh - L(h)),

8This is a usual conjecture in applications; moreover, typically one demands the existence
of all exponential moments for & (see, e. g., [2]).

52



that is well defined due to the strict convexity of L(-). In particular, for any
admissible pair (g, b) (i. e., satisfying condition (A.4) below) one has

log P (2, b, b 2(t)dt € (g, _
lim lim o8 (x (D e®bte) fO ’ (4 q—l—E)) =-J(f),
eN0n—oo n

where f(-) presents a solution of the variational problem:

J(f) — inf : f(0)=0, f(1)=0, /Of(t)dt:q. (A.1)

Note that the functional J(-) is closely related to the Wulff functional with
naturally defined surface tension (see, e. g., [6, Sect. 3]), and therefore the
function f(-) is the Wulff profile in the considered situation.

A/

a) b)
Figure 2: Wulff construction in a general 1D model of SOS type

It turns out that the variational problem (A.1) can be solved explicitly.
Namely, define the quantities hg = ho(g,b) and h; = hy(q,b) from the equations

1
/ L/ (}All + yilo) dy = b,
0

. (A.2)
/ yL'(h1 + yho) dy = q.
0
Then the Wulff profile f(-) is defined via ([6, Sect. 2])
) L(hy + ho) — L(hy + (1 = t)ho) ) /ho, if ho # 0,
ft) = ( ) (A.3)

L'(hy)t = bt otherwise.

The relations (A.2)—(A.3) have a simple geometric interpretation. Namely,
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rewriting (A.2) in the form (cf. [21, Theorem 3])

(L + ho) = L(in)) /ho =,

ho 7 7 7
% (L(hl Fho) B g, +y)) dy = q—b/2

hi Jo 2

we infer that these conditions prescribe to find two points A(hy, L(hy)) and
O(hy + ho, L(hy + ho)) on the graph of the function L(-) such that (see Fig-
ure 2,a)): 1) the straight line passing through O and A has the slope coeffi-
cient b; 2) the area Qp(hg) of the figure bounded by the segment OA and the
arc of the graph of L(-) with the endpoints A and O equals (¢ —b/2)hg?, where
ho denotes the horizontal separation of the points A and O (in the case ¢ < b/2
one should interchange these points). Then the Wulff proflie f(-) is obtained
by simple transformation (reflection + scaling) of the arc OA (see Figure 2,b)).
In the critical case 2¢ = b the points O and A coincide and due to the second
line in (A.3) the corresponding Wulff profile is reduced to the segment O’A’
(Figure 2,b)).

Due to the strict convexity and analyticity of the function L(-) the normal-
ized area Qp(ho)/ho? is an increasing function of hg and Qp(hg)/ho? — 0 as
ho — 0. In particular, the conditions iLO = 0 and 2¢q = b are equivalent (recall
(A.3)). As a result, equations (A.2) have at most one solution. Such solution
clearly exists for every pair (g, b) satisfying the condition °

lg—b/2] < s%p Qu(h)/h?. (A.4)

Here the supremum corresponds to the most "upper” limiting position of the
secant OA; thus, (A.4) means that the real secant should be below the limiting
one (if such exists).
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