Amalgamations of factorizations of complete equipartite graphs

A. J. W. Hilton
Department of Mathematics
University of Reading
Whiteknights
P.O. Box 220
Reading
RG6 6AX
U.K.
Matthew Johnson
Department of Mathematics
London School of Economics
Houghton Street
London
WC2A 2AE
U.K.

To Curt Lindner with thanks for the inspiration he has provided the authors.

Abstract

Let t be a positive integer, and let $L=\left(l_{1}, \ldots, l_{t}\right)$ and $K=$ $\left(k_{1}, \ldots, k_{t}\right)$ be collections of nonnegative integers. A graph has a (t, K, L) factorization if it can be represented as the edge-disjoint union of factors F_{1}, \ldots, F_{t} where, for $1 \leq i \leq t, F_{i}$ is k_{i}-regular

and at least l_{i}-edge-connected. In this paper we consider (t, K, L) factorizations of complete equipartite graphs. First we show precisely when they exist. Then we solve two embedding problems: we show when a factorization of a complete σ-partite graph can be embedded in a (t, K, L)-factorization of a complete s-partite graph, $\sigma<s$, and also when a factorization of $K_{a, b}$ can be embedded in a (t, K, L) factorization of $K_{n, n}, a, b \leq n$. Our proofs use the technique of amalgamations of graphs.

1 Introduction

We denote the complete s-partite graph with n vertices in each part $K_{n}^{(s)}$. Let t be a positive integer, let $K=\left(k_{1}, k_{2}, \ldots, k_{t}\right)$ and $L=\left(l_{1}, l_{2}, \ldots, l_{t}\right)$ where, for $1 \leq i \leq t, k_{i}$ is a positive integer and l_{i} is a nonnegative integer. A factorization F_{1}, \ldots, F_{t} of a graph such that, for $1 \leq i \leq t, F_{i}$ is k_{i}-regular and has edge-connectivity at least l_{i} is called a (t, K, L)-factorization. We describe exactly when $K_{n}^{(s)}$ has a (t, K, L)-factorization:

Theorem $1 A(t, K, L)$-factorization of $K_{n}^{(s)}$ exists if and only if
(A1) $\sum_{i=1}^{t} k_{i}=n(s-1)$,
(A2) if $n s$ is odd then each k_{i} is even,
(A3) for $1 \leq i \leq t, l_{i} \leq k_{i}$, and
$(\mathrm{A} 4) l_{i}=0$ if $k_{i}=1$.
If $n \in\{1,2\}$, then $K_{n}^{(s)}$ is either the complete graph or the complete graph less a one-factor. These cases of Theorem 1 were first proved by Johnstone [6]. They were subsequently proved by Johnson [5] using amalgamations, and here we attempt to generalize the results and techniques of that paper (which presented many results on (t, K, L)-factorizations of complete graphs) to obtain results on complete equipartite graphs.

We believe that the only other non-trivial case of Theorem 1 previously proved is when each $k_{i}=l_{i}=2$, that is when each factor is a Hamilton cycle. This case was first proved by Laskar and Auerbach [7], who constructed the
factorizations, and independently by Hilton and Rodger [4] using amalgamations.

We sketch how the technique of amalgamations is used. This will lead us to the other theme of this paper: embeddings.

1.1 Amalgamations

Consider a partition of a graph G 's vertex set into subsets V_{1}, \ldots, V_{r}. Then an amalgamation of G has vertex set V_{1}, \ldots, V_{r} and for each edge in G joining a pair of vertices in $V_{i}, 1 \leq i \leq r$, there is a loop on V_{i} in the amalgamation, and for each edge in G joining a vertex in V_{i} to a vertex in $V_{j}, 1 \leq i<j \leq r$, there is an edge $V_{i} V_{j}$ in the amalgamation. (We can think of the amalgamation as being obtained from G by merging vertices that belong to the same subset whilst retaining all edges.)

If G has a factorization, then we can represent it as an edge-colouring: the factors are the colour classes (in this paper we frequently use the equivalence of factorizations and edge-colourings). This colouring can be transferred to an amalgamation of G - each edge of the amalgamation has the same colour as the corresponding edge of G. In what follows when we refer to an amalgamation we mean a graph that has been edge-coloured. Suppose that $G=K_{n}^{(s)}$ and that it has a particular type of factorization, say a Hamiltonian decomposition. Then we can find some properties that an amalgamation of G must possess. For example we can find the number of loops on each vertex, the number of edges between each pair of vertices and the number of edges of each colour incident with each vertex. We call any edge-coloured graph that satisfies these properties an outline Hamiltonian decomposition of $K_{n}^{(s)}$. The aim when using amalgamations is to prove that every outline graph is an amalgamated graph. So in our example, for each outline Hamiltonian decomposition we would have to find a Hamiltonian decomposition of which it is an amalgamation.

1.2 Embeddings

Amalgamations can be used to prove embedding results. Suppose that we have a factorization (or an edge-colouring) of $K_{n}^{(\sigma)}$. Add to it a vertex v. Join v to each vertex of $K_{n}^{(\sigma)}$ by $n(s-\sigma)$ edges and put $n^{2}\binom{s-\sigma}{2}$ loops on v to form a graph G. Complete the edge-colouring of G by colouring the
edges incident with v. (Note that G can be seen to be $K_{n}^{(s)}$ with $n(s-\sigma)$ vertices merged.) If G is an outline factorization (of some specified type) of $K_{n}^{(s)}$ and we have proved that every outline graph is an amalgamated graph, then there is factorization of $K_{n}^{(s)}$ in which the factorization of $K_{n}^{(\sigma)}$ is embedded; we can think of this factorization of $K_{n}^{(s)}$ as being obtained from G by splitting v into $n(s-\sigma)$ vertices. From the properties that define an outline factorization we can work back to find the properties that the factorization of $K_{n}^{(\sigma)}$ must possess if it is to be embedded.

Hilton [1] first used the technique of amalgamations in the context of embedding factorizations of graphs: he considered Hamiltonian decompositions of the complete graph. Generalizations of his results to decompositions of the complete graph into regular factors of prescribed degree and edgeconnectivity have been proved by various authors; see, for example, $[3,8,10]$. The most general result of this kind was obtained by Johnson [5] who considered (t, K, L)-factorizations of the complete graph. Hilton, with Rodger, generalized his original result in a different direction by considering Hamiltonian decompositions of the complete equipartite graph [4]. In this paper, we unite these two strands of research by considering (t, K, L)-factorizations of the complete equipartite graph.

In the next section we formally introduce amalgamations of (t, K, L) factorizations of complete equipartite graphs, and at the end of the section we use amalgamations to prove Theorem 1. In the final section we consider embedding problems. We suppose that we have a factorization of $K_{n}^{(\sigma)}$, and ask when it can be embedded in a (t, K, L)-factorization of $K_{n}^{(s)}, \sigma<s$. We also look at embedding factorizations of $K_{a, b}$ in (t, K, L)-factorizations of $K_{n, n}, a, b \leq n$.

As noted before, $K_{1}^{(s)}=K_{s}$ and $K_{2}^{(s)}=K_{2 s}-I$, where I is a 1 -factor. Results on amalgamations and embeddings of (t, K, L)-factorizations of these graphs are already known and can be found in [5]. So in this paper we assume throughout that $n \geq 3$.

2 Amalgamated factorizations

2.1 Detachments

Before we formally define amalgamations we require another definition. Let D and G be graphs. D is a detachment of G if there is a bijection $\rho: E(D) \longrightarrow$ $E(G)$ and a surjection $\sigma: V(D) \longrightarrow V(G)$ such that

- if e is a loop on v in D, then $\rho(e)$ is a loop on $\sigma(v)$ in G,
- if e is an edge joining v and w in D and $\sigma(v)=\sigma(w)$, then $\rho(e)$ is a loop on $\sigma(v)$ in G, and
- if e is an edge joining v and w in D and $\sigma(v) \neq \sigma(w)$, then $\rho(e)$ is an edge joining $\sigma(v)$ and $\sigma(w)$ in G.

We can think of D as being obtained from G by splitting vertices. Some authors refer to detachments as disentanglements.

Let G be a graph of which we seek to find a detachment. We define three functions $f, c, e: \mathcal{P}(V(G)) \longrightarrow \mathbf{Z},(\mathcal{P}(V(G))$ is the power set of $V(G))$. For each set of vertices $V \subseteq V(G)$, let $f(V)$ be the total number of vertices we wish to split the vertices of V into, let $c(V)$ be the number of components in $G-V$, and let $e(V)$ be the number of edges (including loops) that are incident with at least one vertex in V (loops and edges incident twice with vertices in V are only counted once). We need the following result of Nash-Williams [9].

Proposition 2 Let k and l be nonnegative integers. Let G be a graph (possibly containing multiple edges and loops) in which the degree of each vertex is a multiple of k. Then G has an l-edge-connected k-regular detachment if and only if
(X1) G is l-edge-connected,
(X2) if $l=1$, then for all $V \subseteq V(G), f(V)+c(V) \leq e(V)+1$,
(X3) if l is odd and $l=k$, then G has no cutvertex with degree $2 l$, and
(X4) if l is odd and $l=k$, then G is not a loopless graph that contains exactly two vertices each with degree $2 l$.

2.2 Amalgamations

An amalgamation is the opposite of a detachment, except that we define amalgamations on graphs which have an edge-colouring. Let t be a positive integer. Let F and H be t-edge-coloured graphs. H is an amalgamation of F if there is a bijection $\phi: E(F) \longrightarrow E(H)$ and a surjection $\psi: V(F) \longrightarrow V(H)$ such that

- if e is a loop coloured i on v in F, then $\phi(e)$ is a loop coloured i on $\psi(v)$ in H,
- if e is an edge coloured i joining v and w in F and $\psi(v)=\psi(w)$, then $\phi(e)$ is a loop coloured i on $\psi(v)$ in H, and
- if e is an edge coloured i joining v and w in F and $\psi(v) \neq \psi(w)$, then $\phi(e)$ is an edge coloured i joining $\psi(v)$ and $\psi(w)$ in H.

Let F_{i} and H_{i} be the subgraphs of F and H induced by edges coloured i, $1 \leq i \leq t$.

Let t, n, K and L satisfy conditions (A1) to (A4) of Theorem 1 . Suppose that $F=K_{n}^{(s)}$ is t-edge-coloured and that F_{i} is k_{i}-regular and l_{i}-edgeconnected, $1 \leq i \leq t$. We think of the vertex set of $K_{n}^{(s)}$ as being composed of s parts P_{1}, \ldots, P_{s} where each part is a set of n independent vertices. If H is an amalgamation of F, then define $f: V(H) \longrightarrow \mathbf{N}$ by

$$
f(v)=\left|\left\{u: u \in V\left(K_{n}^{(s)}\right), \psi(u)=v\right\}\right|,
$$

and, for $1 \leq h \leq s$, define $f_{h}: V(H) \longrightarrow \mathbf{N}$ by

$$
f_{h}(v)=\left|\left\{u: u \in P_{h}, \psi(u)=v\right\}\right| .
$$

So f counts the vertices that are merged to form v and, for $1 \leq h \leq s$, f_{h} tells us how many of these vertices are from P_{h}. Together H, f and f_{h}, $1 \leq h \leq s$, form an amalgamated (t, K, L)-factorization of $K_{n}^{(s)}$.

Proposition 3 Let H, f and $f_{h}, 1 \leq h \leq s$, be an amalgamated (t, K, L) factorization of $K_{n}^{(s)}$. Then
(B1) for all pairs of distinct vertices $v, w \in V(H)$, there are $\sum_{\substack{h_{1}, h_{2} \in\{1, \ldots, s\} \\ h_{1} \neq h_{2}}} f_{h_{1}}(v) f_{h_{2}}(w)$ edges joining v to w,
(B2) for all $v \in V(H)$, there are $\sum_{1 \leq h_{1}<h_{2} \leq s} f_{h_{1}}(v) f_{h_{2}}(v)$ loops on v,
(B3) for all $v \in V(H)$, for $1 \leq i \leq t$, v is incident with $k_{i} f(v)$ edges of colour i (counting loops twice),
(B4) $\sum_{v \in V(H)} f(v)=n s$, and, for $1 \leq h \leq s, \sum_{v \in V(H)} f_{h}(v)=n$, and
(B5) for $1 \leq i \leq t, H_{i}$ has an l_{i}-edge-connected k_{i}-regular detachment.
Proof: The number of edges joining vertices v and w (possibly $v=w$) in the amalgamation is equal to the number of edges in $K_{n}^{(s)}$ joining a vertex merged to form v to a vertex merged to form w, and pairs of vertices are joined by one edge in $K_{n}^{(s)}$ unless they are in the same part. This is enough to prove (B1) and (B2). There are $f(v)$ vertices merged to form v and each is incident with k_{i} edges coloured $i, 1 \leq i \leq t$, so (B3) is satisfied. As we noted f and f_{h} count vertices in $V\left(K_{n}^{(s)}\right)$ and P_{h} respectively. In each case each vertex in the set is counted exactly once so (B4) is satisfied. Finally, for (B5), note that F_{i} is a l_{i}-edge-connected k_{i}-regular detachment of H_{i}.

2.3 Outline factorizations

A t-edge-coloured graph H, a function $f: V(H) \longrightarrow \mathbf{N}$ and functions f_{h} : $V(H) \longrightarrow \mathbf{N}, 1 \leq h \leq s$, form an outline (t, K, L)-factorization of $K_{n}^{(s)}$ if they satisfy (B1) to (B5). By Proposition 3, an amalgamated (t, K, L)factorization of $K_{n}^{(s)}$ is an outline (t, K, L)-factorization of $K_{n}^{(s)}$. As we shall see, the converse is not true in general. However, we can prove that a particular type of outline factorization of $K_{n}^{(s)}$ is an amalgamated factorization.

Theorem 4 Let H, f and $f_{h}, 1 \leq h \leq s$, be an outline (t, K, L)-factorization of $K_{n}^{(s)}$ such that $l_{i} \neq 1,1 \leq i \leq t$. Then H, f and $f_{h}, 1 \leq h \leq s$ are an amalgamated (t, K, L)-factorization of $K_{n}^{(s)}$ if for each $v \in V(H)$ either
(Z1) for $1 \leq h \leq s, f_{h}(v) \in\{0, n\}$, or
(Z2) $f_{h}(v)=0$ for all but one value of h.

Before the proof is given we make some remarks about the possibility of proving a more general outline/amalgamation theorem.

There are two restrictions on the outline factorizations covered by Theorem 4. First we have that $l_{i} \neq 1,1 \leq i \leq t$. We cannot find an example that shows that a theorem without this condition is not true, but we cannot prove such a theorem. We shall see later why we would have difficulty proving the theorem if we allowed $l_{i}=1$

The second restriction is given by (Z1) and (Z2). Let H be an outline graph that satisfies these two conditions. Suppose that there is a factorization of $K_{n}^{(s)}$ of which H is an amalgamation: we can think of it as being obtained by splitting the vertices of H. (Z1) and (Z2) say that each vertex in H must be split either into vertices that comprise all of some number of the parts of $K_{n}^{(s)}$ or into vertices that all belong to the same part of $K_{n}^{(s)}$. We consider some examples that show why we impose such restrictions.

In the first example let H, f and $f_{h}, 1 \leq h \leq 3$ be the outline $(3, K, L)$ factorization of $K_{3}^{(3)}$, with $K=L=(2,2,2)$, shown in Figure 1 (for $v_{i} \neq X$, $f\left(v_{i}\right)=1, f_{h}\left(v_{i}\right)=1$ if $\left\lceil\frac{i}{3}\right\rceil=h, f_{h}\left(v_{i}\right)=0$ otherwise; $f(X)=2, f_{1}(X)=$ $\left.f_{2}(X)=1, f_{3}(X)=0\right)$. We call this an outline Hamiltonian decomposition. It is easy to check that (B1) to (B5) are satisfied, yet we can show that H, f and $f_{h}, 1 \leq h \leq 3$ are not an amalgamation of a (3, K, L)-factorization of $K_{3}^{(3)}$. Suppose that $K_{3}^{(3)}$ has a Hamiltonian decomposition F_{1}, F_{2}, F_{3} such that F_{i} is a detachment of $H_{i}, 1 \leq i \leq 3$. Suppose also that the two vertices into which X is split are labelled v_{1} and v_{4} so that the parts of $K_{3}^{(3)}$ are $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{4}, v_{5}, v_{6}\right\}$ and $\left\{v_{7}, v_{8}, v_{9}\right\}$. Consider F_{1}, a 9-cycle obtained from H_{1} by splitting X into two vertices, v_{1} and v_{4}. Clearly each is adjacent to one of v_{2} and v_{7}, and one of v_{5} and v_{8}. The edge $v_{1} v_{2}$ is not in $K_{3}^{(3)}$ so we must have $v_{1} v_{7} \in E\left(F_{1}\right)$. But by a similar argument we must also have $v_{1} v_{7} \in E\left(F_{2}\right)$, a contradiction.

We have established that a general outline/amalgamation theorem cannot be proved without some restrictions. Is it possible though to lessen the restrictions of Theorem 4? In [4] Hilton and Rodger considered outline Hamiltonian decompositions of $K_{n}^{(s)}$. They stated that H, f and $f_{h}, 1 \leq h \leq s$ were amalgamations of Hamiltonian decompositions if they satisfied
(Z1*) for some vertex $u \in V(H), f_{h}(u) \in\{0, n\}$ for all but at most one value of h, and

Figure 1: Outline Hamiltonian decomposition of $K_{3}^{(3)}$

H_{1}

Figure 2: Outline Hamiltonian decomposition of $K_{3}^{(5)}$
(Z2*) for each vertex $v \in V(H) \backslash\{u\}, f_{h}(v)=0$ for all but one value of h.
We show that this is not true. Let H, f and $f_{h}, 1 \leq h \leq 5$ be the outline Hamiltonian decomposition of $K_{3}^{(5)}$ illustrated in Figure 2 (for $v_{i} \neq X$, $f\left(v_{i}\right)=1$ and $f_{h}\left(v_{i}\right)=1$ if $\left\lceil\frac{i}{3}\right\rceil=h, f_{h}\left(v_{i}\right)=0$ otherwise; $f(X)=4$, $\left.f_{h}(X)=0,1 \leq h \leq 3, f_{4}(X)=1, f_{5}(X)=3\right)$. We show that h, f and f_{h}, $1 \leq h \leq 5$ are not an amalgamation of a Hamiltonian decomposition of $K_{n}^{(s)}$. Suppose there is such a decomposition into Hamilton cycles F_{1}, \ldots, F_{6} and X is split into vertices labelled $v_{12}, v_{13}, v_{14}, v_{15}$ so that the parts of $K_{3}^{(5)}$ are $\left\{v_{3 i+1}, v_{3 i+2}, v_{3 i+3}\right\}, 0 \leq i \leq 4$. Therefore any loop on X in H_{i} corresponds to an edge in F_{i} joining v_{12} to one of v_{13}, v_{14}, v_{15} (since these latter three vertices are independent). But there are three loops on X in H_{1} so in $F_{1} v_{12}$ must have degree at least 3 , a contradiction.

We could avoid such counterexamples by extending the definition of outline factorizations. Consider a (t, K, L)-factorization of $K_{n}^{(s)}$, and a subset of the vertices that contains f_{1} vertices from the first part and f_{2} vertices from the second part. The number of edges in the subgraph of a k_{i}-factor induced by these vertices is at $\operatorname{most}\left(\min \left\{f_{1}, f_{2}\right\} \min \left\{k_{i}, \max \left\{f_{1}, f_{2}\right\}\right\}\right)$ (suppose $f_{1}<f_{2}$; every edge in the subgraph is incident with one of the f_{1} vertices in the first part, and each of these vertices has degree not more than k_{i}-since this is its degree in the k_{i}-factor-and not more than f_{2}-since it is joined by at most one edge to each of the f_{2} vertices in the second part). Hence we can add to Proposition 3 a sixth property of amalgamated (t, K, L)-factorizations.
(B6) Each vertex v has at most

$$
\sum_{1 \leq h_{1}<h_{2} \leq s} \min \left\{f_{h_{1}}(v), f_{h_{2}}(v)\right\} \min \left\{k_{i}, \max \left\{f_{h_{1}}(v), f_{h_{2}}(v)\right\}\right\}
$$

loops of colour $i, 1 \leq i \leq t$.
Then we could add (B6) to the definition of an outline (t, K, L)-factorization of $K_{n}^{(s)}$. It is possible, but not obvious, that with this extra condition Hilton and Rodger's theorem on Hamiltonian decompositions could be proved. However, in the more general case it is possible to find outline factorizations that satisfy (Z1*), (Z2*) and (B6) but are not amalgamations. We have an example, but it is too large to describe here.

2.4 Swap-sets

Before we prove Theorem 4, we must introduce an important tool first used in [2]. Let a and b be vertices each of degree d in a multigraph G. Let u be a neighbour of a and v be a neighbour of b in G. To (a, b)-swap the vertices u and v means to form a new graph from G by deleting the edges $a u$ and $b v$, and adding the edges $a v$ and $b u$. Clearly this manoeuvre leaves the degrees of all the vertices unaltered.

We can find d neighbours of a in G by counting a vertex u as a neighbour of a as many times as there are edges $a u$. An (a, b)-swap-set is a collection of d pairs of vertices such that each neighbour of a is the first element of exactly one pair and each neighbour of b is the second element of exactly one pair. We call the pairs (a, b)-pairs. The proof of the following lemma uses an argument from [2]

Lemma 5 If a and b are vertices each of degree d in a l-edge-connected multigraph G, then there exists an (a, b)-swap-set S such that a graph obtained from G by (a, b)-swapping any number of (a, b)-pairs in the swap-set is at least l-edge-connected.

We call a swap-set that satisfies this lemma an (a, b, l)-swap-set.
Proof: First form S. In G we can find l edge-disjoint $a-b$ paths $a u_{j} \cdots v_{j} b$, $1 \leq j \leq l$. Let $\left(u_{j}, v_{j}\right)$ be a pair in S. For any edges $a b$ in G not already considered as one of the paths, let (b, a) be a pair in S. Complete S by pairing off the remaining neighbours of a and b arbitrarily.

Consider a graph obtained from G by (a, b)-swapping pairs in S. It contains l edge-disjoint $a-b$ paths since, for $1 \leq j \leq l$, it contains either $a u_{j} \cdots v_{j} b$ or $b u_{j} \cdots v_{j} a$. Now we use induction to prove the lemma. We know that G is l-edge-connected. Suppose that after some number of (a, b) swaps we have obtained a graph H that is l-edge-connected, and then we (a, b)-swap a further (a, b)-pair (u, v) to obtain a graph J. That is, au and $b v$ are deleted in H and replaced by $a v$ and $b u$ to obtain J. If J is not l-edge connected, then we can find a minimal edge-cutset E such that $|E|<l$. We show that H has an edge-cutset of the same size as E, a contradiction. Let C_{1} and C_{2} be the two connected components of $J-E$. In J there are l edge-disjoint $a-b$ paths so a and b must be in the same component of $J-E$, say C_{1}. If u and v are also both in C_{1}, then in $J-E$ we could reverse the
(a, b)-swap of u and v to obtain $H-E$ which would also have two components. If u and v are both in C_{2}, then $a v$ and $b u$ must both be in E. Thus $(E \backslash\{a v, b u\}) \cup\{a u, b v\}$ is an edge-cutset of H. Finally, suppose that u is in C_{1} and v is in C_{2}. Then $a v \in E$ and $b u \in C_{1}$. Let $E^{\prime}=(E \backslash\{a v\}) \cup\{b v\}$ and $C_{1}^{\prime}=\left(C_{1}-\{b u\}\right) \cup\{a u\}$. Thus $H-E^{\prime}$ has two connected components, C_{1}^{\prime} and C_{2}.

2.5 Proof of Theorem 4

We will find a (t, K, L)-factorization of $K_{n}^{(s)}$ of which H, f and $f_{h}, 1 \leq h \leq s$ are an amalgamation.

By (B5), for $1 \leq i \leq t, H_{i}$ has an l_{i}-edge-connected k_{i}-regular detachment $F_{i} . H_{i}$ is called a colour class and F_{i} is called a factor. Let $V\left(K_{n}^{(s)}\right)$ be the vertex set of each factor. Label the vertices of each factor so that for each vertex v in H the set of vertices into which v is split when F_{i} is obtained from H_{i} is the same for each $i, 1 \leq i \leq t$. Also let the number of vertices in $P_{h}, 1 \leq h \leq s$, formed when v is split be $f_{h}(v)$. Let U also be a graph with vertex set $V\left(K_{n}^{(s)}\right)$ that contains each edge of each factor. We need to alter the factors until $U=K_{n}^{(s)}$ whilst retaining the property that each factor F_{i} is a k_{i}-regular l_{i}-edge-connected detachment of the corresponding colour class $H_{i}, 1 \leq i \leq t$.

Let $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. Let $V\left(K_{n}^{(s)}\right)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}$, where $V_{j}, 1 \leq j \leq r$, is the set of vertices-called a set of split vertices-that was formed by the splitting of the vertex v_{j} in each H_{i}. For $1 \leq j \leq r, 1 \leq h \leq s$, let $I_{j h}=V_{j} \cap P_{h}$; we call these sets independent sets of split vertices. So each set of split vertices can be partitioned into independent sets of split vertices. Note that $\left|I_{j h}\right|=f_{h}\left(v_{j}\right)$. If a part P_{h} of $V\left(K_{n}^{(s)}\right)$ is a subset of a set of split vertices, then it is called a single part (i.e $f_{h}\left(v_{j}\right)=n$ for some j); if it contains vertices from more than one set of split vertices, then it is called a mixed part.

Let x and y each be either a vertex, an independent set of split vertices or a set of split vertices. Then $p(x, y)$ is the number of edges in U that join x to y and $q(x, y)$ is the number of edges in $K_{n}^{(s)}$ that join x to y. If $p(x, y)=q(x, y)$, then we may say that x and y are joined the correct number of times.

There are four main stages to the proof. At each stage we use (a, b)-swaps to make alterations to the factors and thus also to U. (Note that to avoid
introducing further notation we use the same names- $F_{i}, 1 \leq i \leq t$, and U-for graphs before and after making (a, b)-swaps). In (C1) to (C4) we state the property U has at the end of each stage.
(C1) For each independent set of split vertices $I_{j h}$ and each set of split vertices $V_{z}, p\left(I_{j h}, V_{z}\right)=q\left(I_{j h}, V_{z}\right)$.
(C2) For each pair of independent sets of split vertices $I_{j h}$ and $I_{z g}, p\left(I_{j h}, I_{z g}\right)=$ $q\left(I_{j h}, I_{z g}\right)$.
(C3) For each vertex v and each independent set of split vertices $I_{j h}$, $p\left(v, I_{j h}\right)=q\left(v, I_{j h}\right)$.
(C4) For each pair of vertices v and $w, p(v, w)=q(v, w)$.
Note that when (C4) is satisfied, $U=K_{n}^{(s)}$ and the proof is complete.
For the first two stages we will work not with the factors F_{i} but with graphs F_{i}^{*} that are amalgamations of the factors and detachments of the colour classes. They are called partially amalgamated factors and are obtained from the factors by merging vertices that belong to the same single part. That is, they have vertex set $A \cup B$ where

$$
\begin{aligned}
& A=\left\{v \in K_{n}^{(s)}: v \text { is in a mixed part }\right\} \\
& B=\left\{P^{*}: P \text { is a single part }\right\}
\end{aligned}
$$

and for each edge $u v$ in F_{i}

- if u and v are both in mixed parts, then there is an edge $u v$ in F_{i}^{*},
- if u is in a mixed part and v is a single part P, then there is an edge $u P^{*}$ in F_{i}^{*}, and
- if u is in a single part P_{1} and v is in a single part P_{2}, then there is an edge $P_{1}^{*} P_{2}^{*}$ in F_{i}^{*}.

Note that $F_{i}^{*}, 1 \leq i \leq t$, is l_{i}-edge-connected. Let U^{*} be a graph also with vertex set $A \cup B$ that contains each edge of each partially amalgamated factor. If $V \subseteq K_{n}^{(s)}$ is a set of split vertices, then the subset of $A \cup B$ that comprises the vertices formed when the vertices of V were merged is also called a set of split vertices and is denoted V^{*}; independent subsets of split vertices in $A \cup B$ are similarly defined and denoted. Note that, by (Z1) and (Z2), in
U^{*} sets of split vertices contain either vertices in A or vertices in B but not both, and each vertex in B is an independent set of split vertices.

Let x and y each be either a vertex, an independent set of split vertices or a set of split vertices in U^{*}. Then $p^{*}(x, y)$ denotes the number of edges that join x to y in U^{*} and $q^{*}(x, y)$ denotes the number of edges that join x to y in an amalgamation of $K_{n}^{(s)}$ with vertex set $A \cup B$. Note that (B1) and (B2) say that each pair of sets of split vertices in U and U^{*} are joined the correct number of times.

Before we come to the four main stages of the proof, we remove any loops from the partially amalgamated factors. Note that the vertices of A belong to sets of split vertices that belong to mixed parts, and therefore, by (Z1) and (Z2), to sets of split vertices V_{j}^{*} such that $f_{h}\left(v_{j}\right)=0$ for all but one value of h. Hence, by (B2), the vertices of A do not have any loops. Suppose that there is a loop on $P^{*} \in B$ in F_{i}^{*}. Let V_{z}^{*} be the set of split vertices that contains P^{*}. By (B2), $f_{h}\left(v_{z}\right)>0$ for more than one value of h so there is a vertex $Q^{*} \in V_{z}^{*}, P^{*} \neq Q^{*}$. If there is also a loop on Q^{*}, then we delete the two loops and add two edges that each join P^{*} to Q^{*}. Otherwise we can find an edge $Q^{*} u, u \neq P^{*}$, and we delete this edge and the loop on P^{*} and add edges $P^{*} Q^{*}$ and $P^{*} u$. In each case F_{i}^{*} remains an l_{i}-edge-connected detachment of H_{i} and the vertices' degrees do not change.

Let P^{*} and Q^{*} be vertices in B that belong to the same set of split vertices. Each has degree $k_{i} n$ in $F_{i}^{*}, 1 \leq i \leq t$, and therefore each has $k_{i} n$ neighbours. By Lemma 5 we can find a $\left(P^{*}, Q^{*}, l_{i}\right)$-swap set. We call this set $S_{i}^{*}\left(P^{*}, Q^{*}\right)$. Recall that this is a collection of $k_{i} n\left(P^{*}, Q^{*}\right)$-pairs in F_{i}^{*} such that each neighbour of P^{*} is the first element of exactly one pair and each neighbour of Q^{*} is the second element of exactly one pair and that if we $\left(P^{*}, Q^{*}\right)$-swap pairs in $S_{i}^{*}\left(P^{*}, Q^{*}\right)$, then F_{i}^{*} remains l_{i}-edge-connected, and as P^{*} and Q^{*} belong to the same set of split vertices, F_{i}^{*} remains a detachment of H_{i}.

We show that after performing any number of $\left(P^{*}, Q^{*}\right)$-swaps on F_{i}^{*}, we can always find a detachment F_{i} that is an l_{i}-edge-connected k_{i}-factor of $K_{n}^{(s)}$. Proposition 2 tells us when it is possible to find such detachments. Of the four conditions, (X2) does not apply since we have that $l_{i} \neq 1,1 \leq i \leq t$, and (X3) and (X4) do not apply since $n \neq 2$ so F_{i}^{*} has no vertex of degree $2 k_{i}$. Thus we only require that (X1) is satisfied, and as we have just noted, F_{i}^{*} remains l_{i}-edge-connected. (We observe that if $l_{i}=1$, then (X2) would not necessarily remain satisfied after a $\left(P^{*}, Q^{*}\right)$-swap. This is the reason that we
cannot prove the theorem if we allow $l_{i}=1$.)
We recast (C1) and (C2) in terms of the partially amalgamated factors. Consider (C1). Each independent set of split vertices in A is also a set of split vertices so by (B1) is already joined the correct number of times to every other set of split vertices. We must alter the partially amalgamated factors so that each independent set of split vertices in B is joined the correct number of times to each set of split vertices. But the independent sets of split vertices in B are its vertices so we require that

$$
\left(\mathrm{C} 1^{*}\right) \text { for each } P^{*} \in B \text {, for } 1 \leq j \leq r, p^{*}\left(P^{*}, V_{j}^{*}\right)=q^{*}\left(P^{*}, V_{j}^{*}\right)
$$

When (C^{*}) is satisfied each independent set of split vertices in A will be joined the correct number of times to every other independent set of split vertices (in A and B). We require that the same is true for independent sets of split vertices in B so we further alter the partially amalgamated factors so that
$\left(\mathrm{C} 2^{*}\right)$ for each distinct pair $P^{*}, Q^{*} \in B, p^{*}\left(P^{*}, Q^{*}\right)=q^{*}\left(P^{*}, Q^{*}\right)$.
When $\left(\mathrm{C} 2^{*}\right)$ is satisfied the partially amalgamated factors will have detachments that satisfy (C2).

We begin with (C1*). Let the set-discrepancy of the partially amalgamated factors be defined by

$$
\delta_{s}^{*}=\sum_{j=1}^{r} \sum_{P^{*} \in B}\left|p^{*}\left(P^{*}, V_{j}\right)-q^{*}\left(P^{*}, V_{j}\right)\right| .
$$

When $\delta_{s}^{*}=0,\left(\mathrm{C} 1^{*}\right)$ is satisfied. We must alter the partially amalgamated factors so that δ_{s}^{*} is reduced if it is greater than zero.

As we noted, each pair of sets of split vertices in U^{*} is joined the correct number of times. Thus, for $1 \leq j \leq r$, for each set of split vertices $V_{z}^{*} \subseteq B$,

$$
\begin{equation*}
\sum_{P^{*} \in V_{z}^{*}} p^{*}\left(P^{*}, V_{j}^{*}\right)=\sum_{P^{*} \in V_{z}^{*}} q^{*}\left(P^{*}, V_{j}^{*}\right) . \tag{1}
\end{equation*}
$$

If $\delta_{s}^{*} \neq 0$, then there is a vertex $P^{*} \in B$ and a set of split vertices $V_{z_{1}}^{*}$ such that $p^{*}\left(P^{*}, V_{z_{1}}^{*}\right) \neq q^{*}\left(P^{*}, V_{z_{1}}^{*}\right)$. By (1), we can assume without loss of generality that

$$
\begin{equation*}
p^{*}\left(P^{*}, V_{z_{1}}^{*}\right)>q^{*}\left(P^{*}, V_{z_{1}}^{*}\right) \tag{2}
\end{equation*}
$$

and that there exists another vertex $Q^{*} \in B$ that is in the same set of split vertices as P^{*} such that

$$
\begin{equation*}
p^{*}\left(Q^{*}, V_{z_{1}}^{*}\right)<q^{*}\left(Q^{*}, V_{z_{1}}^{*}\right) . \tag{3}
\end{equation*}
$$

From $S_{i}^{*}\left(P^{*}, Q^{*}\right), 1 \leq i \leq t$, we create a further set $S^{*}\left(P^{*}, Q^{*}\right)$: for $1 \leq i \leq t$, if $(u, v) \in S_{i}^{*}\left(P^{*}, Q^{*}\right)$, then $(i, u, v) \in S^{*}\left(P^{*}, Q^{*}\right)$. Note that there is an obvious one-to-one relationship between the neighbours, over all the partially amalgamated factors, of P^{*} and the triples of $S^{*}\left(P^{*}, Q^{*}\right)$. Similarly for the neighbours of Q^{*}.

Claim 6 There is a sequence of sets of split vertices

$$
\Gamma=V_{z_{1}}^{*}, V_{z_{2}}^{*}, \ldots, V_{z_{m}}^{*}
$$

such that
(D1) $V_{z_{\alpha}}^{*} \neq V_{z_{\beta}}^{*}$ if $\alpha \neq \beta$,
(D2) either $p^{*}\left(P^{*}, V_{z_{m}}^{*}\right)<q^{*}\left(P^{*}, V_{z_{m}}^{*}\right)$ or $p^{*}\left(Q^{*}, V_{z_{m}}^{*}\right)>q^{*}\left(Q^{*}, V_{z_{m}}^{*}\right)$, and
(D3) for $2 \leq j \leq m$, there is a triple $\left(i_{j}, u_{j}, v_{j}\right) \in S^{*}\left(P^{*}, Q^{*}\right)$ where $u_{j} \in$ $V_{z_{j-1}}^{*}$ and $v_{j} \in V_{z_{j}}^{*}$.

Proof: In fact, we shall prove that there is a sequence of sets of split vertices

$$
\Delta=V_{g_{1}}^{*}, V_{g_{2}}^{*}, \ldots, V_{g_{m^{\prime}}}^{*}
$$

such that
(E1) $V_{g_{1}}^{*}=V_{z_{1}}^{*}$,
(E2) $V_{g_{\alpha}}^{*} \neq V_{g_{\beta}}^{*}$ if $\alpha \neq \beta$,
(E3) either $p^{*}\left(P^{*}, V_{g_{m^{\prime}}}^{*}\right)<q^{*}\left(P^{*}, V_{g_{m^{\prime}}}^{*}\right)$ or $p^{*}\left(Q^{*}, V_{g_{m^{\prime}}}^{*}\right)>q^{*}\left(Q^{*}, V_{g_{m^{\prime}}}^{*}\right)$, and
(E4) for $2 \leq j \leq m^{\prime}$, there is a triple $\left(i_{j}, u_{j}, v_{j}\right) \in S^{*}\left(P^{*}, Q^{*}\right)$ where $u_{j} \in V_{g_{h}}^{*}$ for some $h \in\{1,2, \ldots, j-1\}$ and $v_{j} \in V_{g_{j}}^{*}$.

It is easy to see that Δ has a subsequence that has $V_{g_{1}}^{*}=V_{z_{1}}^{*}$ as the first term and satisfies (D1), (D2) and (D3). (Let $V_{g_{m^{\prime}}}^{*}$ be the final term and work backwards. If $V_{g_{\alpha}}^{*}$ is the last term reached, then if $\alpha=1$ the subsequence is found. Otherwise, by (E4), there is a triple $\left(i_{\alpha}, u_{\alpha}, v_{\alpha}\right)$. Let the previous term of the sequence be the set of split vertices $V_{g_{\beta}}^{*}$ that contains u_{α}. As $\beta<\alpha$ we must eventually get back to $V_{g_{1}}^{*}$.)

We find Δ. The first term $V_{g_{1}}^{*}=V_{z_{1}}^{*}$ was found before the claim was stated. Suppose that we have found the first μ terms, and that this sequence of μ terms satisfies (E1), (E2) and (E4) with $m^{\prime}=\mu$. If for any $\alpha \in\{1,2, \ldots, \mu\}$

$$
\begin{aligned}
& p^{*}\left(P^{*}, V_{g_{\alpha}}^{*}\right)<q^{*}\left(P^{*}, V_{g_{\alpha}}^{*}\right), \text { or } \\
& p^{*}\left(Q^{*}, V_{g_{\alpha}}^{*}\right)>q^{*}\left(Q^{*}, V_{g_{\alpha}}^{*}\right),
\end{aligned}
$$

then we pick the smallest such α and let $\Delta=V_{g_{1}}^{*}, V_{g_{2}}^{*}, \ldots, V_{g_{\alpha}}^{*}$ as this also satisfies (E3). Otherwise, for $1 \leq j \leq \mu$,

$$
\begin{align*}
p^{*}\left(P^{*}, V_{g_{j}}^{*}\right) & \geq q^{*}\left(P^{*}, V_{g_{j}}^{*}\right), \tag{4}\\
p^{*}\left(Q^{*}, V_{g_{j}}^{*}\right) & \leq q^{*}\left(Q^{*}, V_{g_{j}}^{*}\right) . \tag{5}
\end{align*}
$$

Let $W=V_{g_{1}}^{*} \cup V_{g_{2}}^{*} \cup \cdots \cup V_{g_{\nu}}^{*}$. As P^{*} and Q^{*} are in the same set of split vertices, $q^{*}\left(P^{*}, V_{j}^{*}\right)=q^{*}\left(Q^{*}, V_{j}^{*}\right), 1 \leq j \leq r$. By (2), (3), (4) and (5), over all the factors P^{*} has more neighbours than Q^{*} in W. In $S^{*}\left(P^{*}, Q^{*}\right)$ there is a triple corresponding to each neighbour of P^{*} in each factor; similarly there is a triple corresponding to each neighbour of Q^{*}. So there is a triple $\left(i_{\mu+1}, u_{\mu+1}, v_{\mu+1}\right) \in S^{*}\left(P^{*}, Q^{*}\right)$, such that $u_{\mu+1} \in W$ and $v_{\mu+1} \notin W$. Let the set of split vertices containing $v_{\mu+1}$ be $V_{g_{\mu+1}}^{*}$. Then $V_{g_{\mu+1}}^{*} \neq V_{g_{j}}^{*}, 1 \leq j \leq \omega$, since $V_{g_{\mu+1}}^{*} \nsubseteq W$.

We must eventually find a set of split vertices that satisfies (E3): note that

$$
\begin{equation*}
\sum_{j=1}^{r} p^{*}\left(P^{*}, V_{j}^{*}\right)=\sum_{j=1}^{r} q^{*}\left(P^{*}, V_{j}^{*}\right), \tag{6}
\end{equation*}
$$

since both sums are equal to $n^{2}(s-1)$, the sum of the degrees of P^{*} taken over all the factors. As $p^{*}\left(P^{*}, V_{z_{1}}^{*}\right)>q^{*}\left(P^{*}, V_{z_{1}}^{*}\right)$, there is at least one set of split vertices V_{z} such that $p^{*}\left(P^{*}, V_{z}^{*}\right)<q^{*}\left(P^{*}, V_{z}^{*}\right)$ and therefore V_{z}, at least, satisfies (E3). This completes the proof of Claim 6.

We use the claim to reduce δ_{s}^{*}. For $2 \leq j \leq m,\left(P^{*}, Q^{*}\right)$-swap u_{j} and v_{j}
in $F_{i_{j}}^{*}$. Each new partially amalgamated factor F_{i}^{*} obtained in this way is an l_{i}-edge-connected detachment of the corresponding colour class H_{i}.

For $2 \leq j \leq m-1$, an edge from P^{*} to a vertex, u_{j+1}, that is in $V_{z_{j}}^{*}$, has been deleted and an edge from P^{*} to a vertex, v_{j}, that is in $V_{z_{j}}^{*}$ has been added. Thus $p^{*}\left(P^{*}, V_{z_{j}}^{*}\right)$ is unchanged. Similarly $p^{*}\left(Q^{*}, V_{z_{j}}^{*}\right), 2 \leq j \leq m-1$, is unchanged.

The edge $P^{*} u_{2}$ is deleted so $p^{*}\left(P^{*}, V_{z_{1}}^{*}\right)$ is reduced by 1 . Hence, by (2), δ_{s}^{*} is also reduced by 1 . The addition of $Q^{*} u_{2}$ causes $p^{*}\left(Q^{*}, V_{z_{1}}^{*}\right)$ to increase by 1 so, by (3), δ_{s}^{*} decreases further by 1 .

Consider (D2). If $p^{*}\left(P^{*}, V_{z_{m}}^{*}\right)<q^{*}\left(P^{*}, V_{z_{m}}^{*}\right)$, then the addition of $P^{*} v_{m}$ causes $p^{*}\left(P^{*}, V_{z_{m}}^{*}\right)$ to increase by 1 , and δ_{s}^{*} is reduced further by 1 . The deletion of $Q^{*} v_{m}$ may cause δ_{s}^{*} to increase by 1 , but at worst δ_{s}^{*} is reduced by 2 overall. The other possibility is that $p^{*}\left(Q^{*}, V_{z_{m}}^{*}\right)>q^{*}\left(Q^{*}, V_{z_{m}}^{*}\right)$, and by a similar argument δ_{s}^{*} is reduced overall by at least 2 in this case also. Note that the partially amalgamated factors remain loopless.

By repeated application of Claim 6, δ_{s}^{*} is reduced to zero. Thus (C^{*}) is satisfied, that is, every independent set of split vertices in B is joined the correct number of times to every set of split vertices. Independent sets of split vertices in A were already joined the correct number of times to each set of split vertices, so by finding detachments F_{i} of each F_{i}^{*} we could obtain a set of factors that satisfies (C1). For now however, we continue to work with the partially amalgamated factors. We show that when ($\mathrm{C} 1^{*}$) is satisfied, we can further alter them so that $\left(\mathrm{C} 2^{*}\right)$ is also satisfied, that is, so that each pair of independent sets of split vertices in B is joined the correct number of times (remember that the independent sets of split vertices in B are just its vertices).

Let the independent-set-discrepancy δ_{i}^{*} of the partially amalgamated factors be defined by

$$
\delta_{i}^{*}=\sum_{\substack{P^{*} * * \in \in B \\ Q^{*} \neq P^{*}}}\left|p^{*}\left(P^{*}, Q^{*}\right)-q^{*}\left(P^{*}, Q^{*}\right)\right| .
$$

If $\left(\mathrm{C} 2^{*}\right)$ is satisfied, then $\delta_{i}^{*}=0$. We describe a method that will reduce δ_{i}^{*} if it is greater than zero.

We need only consider sets of split vertices that each contain at least two vertices in B since if a vertex $P^{*} \in B$ is the only vertex in a set of split vertices, then, by $\left(\mathrm{C} 1^{*}\right)$ it is already joined the correct number of times to every other vertex in B.

Claim 7 Suppose that P^{*} and Q^{*} are vertices in B in the same set of split vertices and that $I_{z_{1}}^{*} \notin\left\{P^{*}, Q^{*}\right\}$ is an independent set of split vertices such that

$$
\begin{align*}
p^{*}\left(P^{*}, I_{z_{1}}^{*}\right) & >q^{*}\left(P^{*}, I_{z_{1}}^{*}\right), \tag{7}\\
p^{*}\left(Q^{*}, I_{z_{1}}^{*}\right) & <q^{*}\left(Q^{*}, I_{z_{1}}^{*}\right) . \tag{8}
\end{align*}
$$

Let $S^{*}\left(P^{*}, Q^{*}\right)$ be defined as before. Then there is a sequence of independent sets of split vertices

$$
\Gamma=I_{z_{1}}^{*}, I_{z_{2}}^{*}, \ldots, I_{z_{m}}^{*}
$$

such that
(F1) $I_{z_{j}}^{*} \notin\left\{P^{*}, Q^{*}\right\}, 1 \leq j \leq m$,
(F2) $I_{z_{\alpha}}^{*} \neq I_{z_{\beta}}^{*}$ if $\alpha \neq \beta$,
(F3) either $p^{*}\left(P^{*}, I_{z_{m}}^{*}\right)<q^{*}\left(P^{*}, I_{z_{m}}^{*}\right)$ or $p^{*}\left(Q^{*}, I_{z_{m}}^{*}\right)>q^{*}\left(Q^{*}, I_{z_{m}}^{*}\right)$, and
(F4) for $2 \leq j \leq m$, there is a triple $\left(i_{j}, u_{j}, v_{j}\right) \in S^{*}\left(P^{*}, Q^{*}\right)$ where $u_{j} \in$ $I_{z_{j-1}}^{*}$ and $v_{j} \in I_{z_{j}}^{*}$.

Proof: Again we shall actually prove that there is a sequence of independent sets of split vertices

$$
\Delta=I_{g_{1}}^{*}, I_{g_{2}}^{*}, \ldots, I_{g_{m^{\prime}}}^{*}
$$

such that
(G1) $I_{g_{1}}^{*}=I_{z_{1}}^{*}$,
(G2) $I_{g_{j}}^{*} \notin\left\{P^{*}, Q^{*}\right\}, 1 \leq j \leq m$,
(G3) $I_{g_{\alpha}}^{*} \neq I_{g_{\beta}}^{*}$ if $\alpha \neq \beta$,
(G4) either $p^{*}\left(P^{*}, I_{g_{m^{\prime}}}^{*}\right)<q^{*}\left(P^{*}, I_{g_{m^{\prime}}}^{*}\right)$ or $p^{*}\left(Q^{*}, I_{g_{m^{\prime}}}^{*}\right)>q^{*}\left(Q^{*}, I_{g_{m^{\prime}}}^{*}\right)$, and
(G5) for $2 \leq j \leq m^{\prime}$, there is a triple $\left(i_{j}, u_{j}, v_{j}\right) \in S^{*}\left(P^{*}, Q^{*}\right)$ where $u_{j} \in I_{g_{h}}^{*}$ for some $h \in\{1,2, \ldots, j-1\}$ and $v_{j} \in I_{g_{j}}^{*}$.

As before, from Δ we can find Γ.
The first term of $\Delta, I_{g_{1}}^{*}=I_{z_{1}}^{*}$, is known by the hypothesis. Suppose that we have found the first μ terms. If the sequence is not complete, then we can assume that, for $1 \leq j \leq \mu$,

$$
\begin{align*}
p^{*}\left(P^{*}, I_{g_{j}}\right) & \geq q^{*}\left(P^{*}, I_{g_{j}}^{*},\right. \tag{9}\\
p^{*}\left(Q^{*}, I_{g_{j}}^{*}\right) & \leq q^{*}\left(Q^{*}, I_{g_{j}}^{*}\right) . \tag{10}
\end{align*}
$$

Let $W=I_{g_{1}}^{*} \cup I_{g_{2}}^{*} \cup \cdots \cup I_{g_{\mu}}^{*}$. As P^{*} and Q^{*} are both vertices in B, $q^{*}\left(P^{*}, I^{*}\right)=q^{*}\left(Q^{*}, I^{*}\right)$, for every independent set of split vertices $I^{*} \notin$ $\left\{P^{*}, Q^{*}\right\}$. Therefore, by (7), (8), (9) and (10), over all the partially amalgamated factors P^{*} has more neighbours than Q^{*} in W. So there is a triple $\left(i_{\mu+1}, u_{\mu+1}, v_{\mu+1}\right) \in S^{*}\left(P^{*}, Q^{*}\right)$ such that $u_{\mu+1} \in W$ and $v_{\mu+1} \notin W$. Let the independent set of split vertices containing $v_{\mu+1}$ be $I_{g_{\mu+1}}^{*}$. Then $I_{g_{\mu+1}}^{*} \neq I_{g_{j}}^{*}$, $1 \leq j \leq \mu$, since $I_{g_{\mu+1}}^{*} \not \subset W$, and $I_{g_{\mu+1}}^{*} \notin\left\{P^{*}, Q^{*}\right\}$ since $v_{\mu+1} \notin\left\{P^{*}, Q^{*}\right\}$ as $v_{\mu+1}=P^{*}$ would imply that $u_{\mu+1}=Q^{*}$, and $v_{\mu+1}=Q^{*}$ would imply that there is a loop on Q^{*}.

We must eventually find a set of split vertices that satisfies (G4): note that

$$
\begin{equation*}
\sum p^{*}\left(P^{*}, I^{*}\right)=\sum q^{*}\left(P^{*}, I^{*}\right) \tag{11}
\end{equation*}
$$

(where the sums are over all independent sets of split vertices I^{*}) since both sums are equal to $n^{2}(s-1)$, the sum of the degrees of P^{*} taken over all the factors. As $p^{*}\left(P^{*}, I_{z_{1}}^{*}\right)>q^{*}\left(P^{*}, I_{z_{1}}^{*}\right)$, there is at least one independent set of split vertices I^{*} such that $p^{*}\left(P^{*}, I^{*}\right)<q^{*}\left(P^{*}, I^{*}\right)$ and therefore I^{*}, at least, satisfies (F3). This completes the proof of Claim 7.

We describe how to use the claim to reduce δ_{i}^{*}.
Choose a set of split vertices $V_{z}^{*} \subseteq B$ such that
$\left(\mathrm{C} 1^{*} \mathrm{a}\right)$ for every independent set of split vertices $I^{*} \in B \backslash V_{z}^{*}, p^{*}\left(I^{*}, V_{j}^{*}\right)=$ $q^{*}\left(I^{*}, V_{j}^{*}\right), 1 \leq j \leq r$.

As (C1*) implies (C1*a) we can begin by choosing any set as V_{z}^{*}. If possible choose a pair of independent sets of split vertices $P^{*} \in V_{z}^{*}, I_{z_{1}}^{*} \nsubseteq V_{z}^{*}$ that satisfies (7). By ($\mathrm{C1}^{*} \mathrm{a}$), there exists $Q^{*} \in V_{z}^{*}$ that satisfies (8). Now we can use Claim 7. For $2 \leq j \leq m,\left(P^{*}, Q^{*}\right)$-swap $\left(u_{j}, v_{j}\right)$ in $F_{i_{j}}^{*}$. Thus for $2 \leq j \leq m-1$, we add $P^{*} v_{j}$ to $F_{i_{j}}^{*}$ and delete $P^{*} u_{j+1}$ from $F_{i_{j+1}}^{*}$, and so $p^{*}\left(P^{*}, I_{z_{j}}^{*}\right)$ is unchanged since $v_{j}, u_{j+1} \in I_{z_{j}}^{*}$. Similarly $p^{*}\left(Q^{*}, I_{z_{j}}^{*}\right)$ is
unchanged, $2 \leq j \leq m-1$. By (7) and (8), the deletion of $P^{*} u_{2}$ and the addition of $Q^{*} u_{2}$ reduce δ_{i}^{*} by 2 , and, by (F4), the addition of $P^{*} v_{m}$ and the deletion of $Q^{*} v_{m}$ at worst have no further effect on δ_{i}^{*}. Note that no loops are created.

Consider how these $\left(P^{*}, Q^{*}\right)$-swaps affect δ_{s}^{*}. Let $V_{z_{j}}^{*}$ be the set of split vertices that contains $I_{z_{j}}^{*}, 1 \leq j \leq m$. For $2 \leq j \leq m-1, p^{*}\left(P^{*}, I_{z_{j}}^{*}\right)$ and $p^{*}\left(Q^{*}, I_{z_{j}}^{*}\right)$ were unchanged so $p^{*}\left(P^{*}, V_{z_{j}}^{*}\right)$ and $p^{*}\left(Q^{*}, V_{z_{j}}^{*}\right)$ do not change. Note that

$$
\begin{align*}
& p^{*}\left(P^{*}, V_{z_{1}}^{*}\right) \text { and } p^{*}\left(Q^{*}, V_{z_{m}}^{*}\right) \text { are reduced by } 1, \text { and } \tag{12}\\
& p^{*}\left(P^{*}, V_{z_{m}}^{*}\right) \text { and } p^{*}\left(Q^{*}, V_{z_{1}}^{*}\right) \text { are increased by } 1 . \tag{13}
\end{align*}
$$

Note that $V_{z_{1}}^{*}$ and $V_{z_{m}}^{*}$ are both subsets of B since they contain $I_{z_{1}}$ and $I_{z_{m}}$ which satisfy (7) and (F4) respectively and we know that each independent set of split vertices in A is already joined the correct number of times to P^{*} and Q^{*}.

As $P^{*}, Q^{*} \subset V_{z}^{*},\left(\mathrm{C} 1^{*}\right.$ a) remains satisfied. So we look for further pairs $P^{*} \in V_{z}, I_{z_{1}}^{*} \not \subset V_{z}$, and repeat the process. When no such pairs remain we have $p^{*}\left(P^{*}, I^{*}\right)=q^{*}\left(P^{*}, I^{*}\right)$ for every $P^{*} \in V_{z}^{*}$, for every independent set of vertices $I^{*} \notin V_{z}^{*}$. As $p^{*}\left(P^{*}, V_{j}^{*}\right)=\sum p^{*}\left(P^{*}, I^{*}\right)$ (where the sum is over all independent sets of vertices $\left.I^{*} \subseteq V_{j}^{*}\right)$, we have $p^{*}\left(P^{*}, V_{j}^{*}\right)=q^{*}\left(P^{*}, V_{j}^{*}\right)$, $1 \leq j \leq r, j \neq z$. By (6), this implies that $p^{*}\left(P^{*}, V_{z}^{*}\right)=q^{*}\left(Q^{*}, V_{z}^{*}\right)$ also. Thus

$$
\left(\mathrm{C} 1^{*} \mathrm{~b}\right) \text { for every vertex } P^{*} \in V_{z}^{*}, p^{*}\left(P^{*}, V_{j}^{*}\right)=q^{*}\left(P^{*}, V_{j}^{*}\right), 1 \leq j \leq r
$$

Note that ($\mathrm{C} 1^{*} \mathrm{a}$) and ($\mathrm{C} 1 * \mathrm{~b}$) together imply ($\mathrm{C} 1^{*}$).
Now find a pair $P^{*} \in V_{z}^{*}, I_{z_{1}}^{*} \in V_{z}^{*}$ that satisfies (7). By ($\mathrm{C} 1^{*} \mathrm{~b}$), there exists $Q^{*} \in V_{z}^{*}$ that satisfies (8) so we can reduce δ_{i}^{*} further using the claim and the method of $\left(P^{*}, Q^{*}\right)$-swapping just described. Note that $V_{z_{1}}^{*}=V_{z}^{*}$ and that $V_{z_{m}}^{*}=V_{z}^{*}$ (since only $I_{z_{m}}^{*} \in V_{z}^{*}$ can satisfy (F4)). Thus (12) and (13) cancel each other out and ($\mathrm{C} 1^{*} \mathrm{a}$) and $\left(\mathrm{C} 1^{*} \mathrm{~b}\right)$ remain satisfied. We repeat this until there are no further pairs $P^{*}, I_{z_{1}}^{*} \in V_{z}^{*}$ that satisfy (7). Then we begin the whole process again with another choice of V_{z}^{*}. Eventually δ_{i}^{*} is reduced to zero and ($\mathrm{C} 2^{*}$) is satisfied.

Therefore we can find detachments of the partially amalgamated factors that form a set of factors that satisfy (C2), and it is these we work with for the rest of the proof.

Whether or not independent sets of split vertices belong to the same set of split vertices is not important in the next two stages of the proof. Therefore we can label the independent sets of split vertices more simply as $I_{1}, I_{2}, \ldots, I_{r^{\prime}}$.

By (C2), for $1 \leq j<z \leq r^{\prime}$,

$$
\begin{equation*}
p\left(I_{j}, I_{z}\right)=q\left(I_{j}, I_{z}\right) . \tag{14}
\end{equation*}
$$

Let the independent-set-discrepancy of the factors be defined by

$$
\delta_{i}=\sum_{a \in V\left(K_{n}^{(s)}\right)} \sum_{j=1}^{r^{\prime}}\left|p\left(a, I_{j}\right)-q\left(a, I_{j}\right)\right| .
$$

When (C3) is satisfied, $\delta_{i}=0$. If $\delta_{i}>0$, we must show how to reduce it.
Let j and z be fixed. By (14),

$$
\begin{equation*}
\sum_{a \in I_{z}} p\left(a, I_{j}\right)=\sum_{a \in I_{z}} q\left(a, I_{j}\right) . \tag{15}
\end{equation*}
$$

If $\delta_{i}>0$, then for some vertex a and some $z_{1}, p\left(a, I_{z_{1}}\right) \neq q\left(a, I_{z_{1}}\right)$. We can assume that

$$
\begin{align*}
p\left(a, I_{z_{1}}\right) & >q\left(a, I_{z_{1}}\right), \tag{16}\\
p\left(b, I_{z_{1}}\right) & <q\left(b, I_{z_{1}}\right), \tag{17}
\end{align*}
$$

where b is a vertex in the same independent set of split vertices as a.
By Lemma 2, for each F_{i} we can form an $\left(a, b, l_{i}\right)$-swap-set which we call $S_{i}(a, b)$. We form a further set $S(a, b)$: for $1 \leq i \leq t$, if $(c, d) \in S_{i}(a, b)$, then $(i, c, d) \in S(a, b)$. Thus $S(a, b)$ contains ordered triples (i, c, d) where c is a neighbour of a and d is a neighbour of b in F_{i}. Note that there is an obvious one-to-one relationship between the triples of $S(a, b)$ and the neighbours, over all the factors, of a, and also between the triples of $S(a, b)$ and the neighbours, over all the factors, of b.

Claim 8 There is a sequence of independent sets of split vertices

$$
\Gamma=I_{z_{1}}, I_{z_{2}}, \ldots, I_{z_{m}}
$$

such that
(H1) $I_{z_{\alpha}} \neq I_{z_{\beta}}$ if $\alpha \neq \beta$,
(H2) either $p\left(a, I_{z_{m}}\right)<q\left(a, I_{z_{m}}\right)$ or $p\left(b, I_{z_{m}}\right)>q\left(b, I_{z_{m}}\right)$, and
(H3) for $2 \leq j \leq m$, there is a triple $\left(i_{j}, c_{j}, d_{j}\right) \in S(a, b)$ where $c_{j} \in I_{z_{j-1}}$ and $d_{j} \in I_{z_{j}}$.

Proof: In fact we shall prove that there is a sequence of independent sets of split vertices

$$
\Delta=I_{g_{1}}, I_{g_{2}}, \ldots, I_{g_{m^{\prime}}}
$$

such that
(I1) $I_{g_{1}}=I_{z_{1}}$,
(I2) $I_{g_{\alpha}} \neq I_{g_{\beta}}$ if $\alpha \neq \beta$,
(I3) either $p\left(a, I_{g_{m^{\prime}}}\right)<q\left(a, I_{g_{m^{\prime}}}\right)$ or $p\left(b, I_{g_{m^{\prime}}}\right)>q\left(b, I_{g_{m^{\prime}}}\right)$, and
(I4) for $2 \leq j \leq m^{\prime}$, there is a triple $\left(i_{j}, c_{j}, d_{j}\right) \in S(a, b)$ where $c_{j} \in I_{g_{h}}$ for some $h \in\{1,2, \ldots, j-1\}$ and $d_{j} \in I_{g_{j}}$.
From Δ we can find Γ.
The first term $I_{g_{1}}=I_{z_{1}}$ was found before the claim was stated. If the sequence is not complete, then we can assume that, for $1 \leq j \leq \mu$,

$$
\begin{align*}
p\left(a, I_{g_{j}}\right) & \geq q\left(a, I_{g_{j}}\right) \tag{18}\\
p\left(b, I_{g_{j}}\right) & \leq q\left(b, I_{g_{j}}\right) \tag{19}
\end{align*}
$$

Let $W=I_{g_{1}} \cup I_{g_{2}} \cup \cdots \cup I_{g_{\mu}}$. As a and b are in the same set of split vertices, $q\left(a, I_{j}\right)=q\left(b, I_{j}\right), 1 \leq j \leq r$. Therefore, by (16), (17), (18) and (19) over all the factors a has more neighbours than b in W. So there is a triple $\left(i_{\mu+1}, c_{\mu+1}, d_{\mu+1}\right) \in S(a, b)$, such that $c_{\omega+1} \in W$ and $d_{\mu+1} \notin W$. Let the set of split vertices containing $d_{\mu+1}$ be $V_{g_{\mu+1}}$. Then $V_{g_{\mu+1}} \neq V_{g_{j}}, 1 \leq j \leq \mu$, since $V_{g_{\mu+1}} \not \subset W$.

We will eventually find a set of split vertices that satisfies (I3): note that

$$
\begin{equation*}
\sum_{j=1}^{r} p\left(a, I_{j}\right)=\sum_{j=1}^{r} q\left(a, I_{j}\right) \tag{20}
\end{equation*}
$$

since both sums are equal to $n(s-1)$, the sum of the degrees of a taken over all the factors. As $p\left(a, V_{z_{1}}\right)>q\left(a, V_{z_{1}}\right)$, there is at least one set of split
vertices V_{z} such that $p\left(a, V_{z}\right)<q\left(a, V_{z}\right)$ and therefore V_{z}, at least, satisfies (I3). This completes the proof of Claim 8.

For $2 \leq j \leq m$, we (a, b)-swap c_{j} and d_{j} in $F_{i_{j}}$. Each new factor F_{i} obtained is clearly k_{i}-regular and, by Lemma 5 , it is l_{i}-edge-connected. It is also a detachment of the corresponding colour class H_{i}.

For $2 \leq j \leq m-1, p\left(a, I_{z_{j}}\right)$ and $p\left(b, I_{z_{j}}\right)$ are unchanged. By (16) and (17) the reduction in $p\left(a, I_{z_{1}}\right)$ and the increase in $p\left(b, I_{z_{1}}\right)$ reduce δ_{i} by 2 . By (H2) the changes in $p\left(a, I_{z_{m}}\right)$ and $p\left(b, I_{z_{m}}\right)$ at worst have no effect on δ_{i}. The factors remain loopless.

Finally we alter the factors so that (C 4) is satisfied
Let the vertex-discrepancy of the factors be defined by

$$
\delta_{v}=\sum_{a c \in E\left(K_{n}^{(s)}\right)}|p(a, c)-1| .
$$

If (C4) is satisfied, then $\delta_{v}=0$. If $\delta_{v}>0$, then we show how to reduce it.
We need only consider independent sets of split vertices that each contain at least two vertices: let I_{z} be an independent set of split vertices that contains just one vertex c. Let a be a vertex in a different part. As (C3) is satisfied, $p\left(a, I_{z}\right)=q\left(a, I_{z}\right)=1$. As $p(a, c)=p\left(a, I_{z}\right)$, we already have $p(a, c)=1$.

Claim 9 Suppose that a and b are vertices in the same independent set of split vertices, that $c_{1} \notin\{a, b\}$ and that

$$
\begin{align*}
p\left(a, c_{1}\right) & >1, \tag{21}\\
p\left(b, c_{1}\right) & <1 . \tag{22}
\end{align*}
$$

Let $S(a, b)$ be defined as before. Then there is a sequence of vertices $c_{1}, c_{2}, \ldots, c_{m}$ such that
(J1) $c_{j} \notin\{a, b\}, 2 \leq j \leq m$,
(J2) $c_{\alpha} \neq c_{\beta}$ if $\alpha \neq \beta$,
(J3) either $p\left(a, c_{m}\right)<1$ or $p\left(b, c_{m}\right)>1$, and
(J4) for $1 \leq j \leq m-1$ there is a triple $\left(i_{j}, c_{j}, c_{j+1}\right) \in S(a, b)$.

Proof: The first term of the sequence is known by the hypothesis. If the sequence is not complete, then we can assume, for $1 \leq j \leq \mu$,

$$
\begin{aligned}
p\left(a, c_{j}\right) & \geq 1 \\
p\left(b, c_{j}\right) & \leq 1
\end{aligned}
$$

As $p\left(a, c_{\mu}\right) \geq 1$ we can find a triple $\left(i_{\mu}, c_{\mu}, c_{\mu+1}\right) \in S(a, b)$. As there are no loops and $c_{\mu+1}$ is a neighbour of $b, c_{\mu+1} \neq b$. By (J1), $c_{\mu} \neq b$ and a is the second element of a pair in $S_{i_{\mu}}(a, b)$ only if b is the first element, so $c_{\mu+1} \neq a$. By (22), $p\left(b, c_{1}\right)=0$, so $c_{\mu+1} \neq c_{1}$. As $p\left(b, c_{j}\right) \leq 1,2 \leq j \leq \mu$, there is at most one triple in $S(a, b)$ with c_{j} as the third element and we have already found one such triple (namely $\left(i_{j-1}, c_{j-1}, c_{j}\right)$). Therefore $c_{\mu+1} \neq c_{j}$, $2 \leq j \leq \mu$.

The sequence must terminate: there is a finite number of vertices and it is easily seen that $p\left(a, c_{1}\right)>1$ implies that for some vertex $c, p(a, c)<1$. This completes the proof of Claim 9.

We describe how to use the claim to reduce the vertex-discrepancy. First choose an independent set of split vertices I_{z} such that
(C3a) for every vertex $c \notin I_{z}, p\left(c, I_{j}\right)=q\left(c, I_{j}\right), 1 \leq j \leq r$.
As (C3) implies (C3a) we can initially choose any set of split vertices as I_{z}. If possible choose a pair of vertices $a \in I_{z}, c_{1} \notin I_{z}$ that satisfy (21). By (C3a) there is a vertex $b \in I_{z}$ that satisfies (22). Therefore we use Claim 9: for $1 \leq j \leq m-1,(a, b)-\operatorname{swap}\left(c_{j}, c_{j+1}\right)$ in $F_{i_{j}}$. For $2 \leq j \leq m-1, p\left(a, c_{j}\right)$ and $p\left(b, c_{j}\right)$ are unchanged. By (21), the deletion of $a c_{1}$ reduces δ_{v} by 1 , and, by (22), the addition of $b c_{1}$ reduces δ_{v} further by 1 . By (J3), the addition of $a c_{m}$ and the deletion of $b c_{m}$ at worst has no net effect on δ_{v}. So overall δ_{v} is reduced by at least 2 . As $c_{j} \notin\{a, b\}, 1 \leq j \leq m$, no loops are created.

Consider the effect of these (a, b)-swaps on δ_{i}. Let $I_{z_{j}}$ be the set of split vertices that contains $c_{j}, 1 \leq j \leq m$. For $2 \leq j \leq m-1, p\left(a, c_{j}\right)$ and $p\left(b, c_{j}\right)$ were unchanged so $p\left(a, I_{z_{j}}\right)$ and $p\left(b, I_{z_{j}}\right)$ are unchanged. Note that

$$
\begin{align*}
& p\left(a, I_{z_{1}}\right) \text { and } p\left(b, I_{z_{m}}\right) \text { are reduced by } 1 \text {, and } \tag{23}\\
& p\left(a, I_{z_{m}}\right) \text { and } p\left(b, I_{z_{1}}\right) \text { are increased by } 1 . \tag{24}
\end{align*}
$$

As $a, b \in I_{z}$, (C1a) remains satisfied (even though (C1) does not). So we can look for further pairs $a \in I_{z}, c_{1} \notin V_{z}$ that satisfy (21) and repeat the process.

When no such pairs remain we have $p(a, c)=1$ for every $a \in I_{z}, c \notin I_{z}$. For $1 \leq j \leq r, j \neq z, p\left(a, I_{j}\right)=\sum_{c \in I_{j}} p(a, c)=\left|I_{j}\right|$. Thus $p\left(a, I_{j}\right)=q\left(a, I_{j}\right)$, $1 \leq j \leq r, j \neq z$. By (20), this implies that $p\left(a, I_{z}\right)=q\left(a, I_{z}\right)$ also. Thus
(C3b) for every vertex $a \in I_{z}, p\left(a, I_{j}\right)=q\left(a, I_{j}\right), 1 \leq j \leq r$.
Note that (C3a) and (C3b) together imply (C3).
Now if possible choose a pair $a \in I_{z}, c \in I_{z}$ that satisfies (21). By (C3b), there is a vertex $b \in I_{z}$ that satisfies (22), so we can use the claim to reduce δ_{v} further. Note that $I_{z_{1}}=I_{z}$ (since $I_{z_{1}}$ is the set that contains c_{1}). Note also that that $I_{z_{m}}=I_{z}$ since $c_{m} \in I_{z_{m}}$ and I_{m} satisfies (J3) and we know that $p(a, c)=1$ for all $a \in I_{z}, c \notin V_{z}$. Thus (23) and (24) cancel each other out and (C3a) and (C3b) remain satisfied. Look for further pairs $a, c_{1} \in I_{z}$ that satisfy (21) and reduce δ_{v} further. When no such pairs remain (C3) is satisfied since (C3a) and (C3b) are satisfied, and we can begin the process again with another choice of I_{z}. Eventually δ_{v} is reduced to zero and (C4) is satisfied. This completes the proof of Theorem 4.

2.6 Proof of Theorem 1

The following four sentences prove the necessity of the four conditions. The degree of a vertex in $K_{n}^{(s)}$ is equal to the sum of its degrees in the factors. By the handshaking lemma, a regular graph on an odd number of vertices must have even degree. The set of all edges incident with a vertex form an edge-cutset. A 1-factor of a simple graph (other than K_{2}) is not connected.

Now we have to show that there exists a (t, K, L)-factorization of $K_{n}^{(s)}$ whenever (A1) to (A4) are satisfied. By Theorem 4, unless $l_{i}=1$ for some i it is sufficient to find an outline (t, K, L)-factorization of $K_{n}^{(s)}$ that satisfies (Z1) and (Z2). It easy to find such outline factorizations H, f and $f_{h}, 1 \leq h \leq s$. Let $V(H)=\{v\}$. Let there be $n^{2}\binom{s}{2}$ loops on v (this is the number of edges in $\left.K_{n}^{(s)}\right)$. Let $n s k_{i} / 2$ of the loops be coloured $i, 1 \leq i \leq t$. Let $f(v)=n s$ and let $f_{h}(v)=n, 1 \leq h \leq s$. It is easy to see that H, f and $f_{h}, 1 \leq h \leq s$, satisfy (B1) to (B5).

Now for the case where some $l_{i}=1$. Replace every instance of 1 in L with 2 to obtain L^{\prime}. Note that, by (A4), if $l_{i}=1$, then $k_{i} \geq 2$ so t, K and L^{\prime} satisfy (A1) to (A4). A $\left(t, K, L^{\prime}\right)$-factorization is also a (t, K, L)-factorization since l_{i} prescribes only the minimum edge-connectivity.

3 Embedding factorizations

The most general embedding result that we might aim to find would show when it is possible to find an embedding of a factorization of $G=K_{a_{1}, \ldots, a_{s}}$ in a (t, K, L)-factorization of $K_{n}^{(s)}$, where $a_{i} \leq n, 1 \leq i \leq s$. To prove this using amalgamations however, we would have to add one vertex v_{0} to G to create an outline (t, K, L)-factorization of $K_{n}^{(s)}$. Thus we would have $f_{h}\left(v_{0}\right)=n-a_{h}, 1 \leq h \leq s$. But if we are to use Theorem 4 we require, by (Z1) and (Z2), that $f_{h}\left(v_{0}\right) \in\{0, n\}, 1 \leq h \leq s$. In Theorem 11, we find a way around this difficulty in the bipartite case and show when a factorization of $K_{a, b}$ can be embedded in a (t, K, L)-factorization of $K_{n, n}, a, b \leq n$. In the general case however, we confine ourselves to the following: in Theorem 10 we show precisely when a factorization G_{1}, \ldots, G_{t} of $K_{n}^{(\sigma)}$ can be embedded in a (t, K, L)-factorization F_{1}, \ldots, F_{t} of $K_{n}^{(s)}$ (except that we again have the restriction $\left.l_{i} \neq 1,1 \leq i \leq t\right)$. This has only been proved previously for the case of Hamiltonian decompositions [4].

3.1 Embedding equipartite graphs

We need some definitions before we can state the theorem. Let ω_{i} be the number of connected components of G_{i} and let these components be $C_{i, 1}, \ldots, C_{i, \omega_{i}}$. Let $\varepsilon_{i, j}=\sum_{v \in V\left(C_{i, j}\right)} k_{i}-d_{G_{i}}(v)$, and let $\varepsilon_{i}=\sum_{j=1}^{\omega_{i}} \varepsilon_{i, j}$. Let $r_{i, j}$ be the number of minimal separating sets of $C_{i, j}$ that contain fewer than l_{i} edges, let these sets be $E_{1}^{i, j}, E_{2}^{i, j}, \ldots, E_{r_{i, j}}^{i, j}$, and let $C_{m_{1}}^{i, j}$ and $C_{m_{2}}^{i, j}$ be the connected components of $C_{i, j}-E_{m}^{i, j}$. Let $\varepsilon_{i, j, m_{p}}=\sum_{v \in V\left(C_{m_{p}}^{i, j}\right)} k_{i}-d_{G_{i}}(v)$.

Theorem 10 Suppose that n, s, t, K and L are such that $a(t, K, L)$-factorization of $K_{n}^{(s)}$ exists and that $l_{i} \neq 1,1 \leq i \leq t$. Let $\alpha=n(s-\sigma)$. A t-edge-coloured $K_{n}^{(\sigma)}$ can be embedded in a (t, K, L)-factorization of $K_{n}^{(s)}$ if and only if
(I) $d_{G_{i}}(v) \leq k_{i}$ for each $v \in V\left(K_{n}^{(\sigma)}\right)$, for $1 \leq i \leq t$,
(II) $\varepsilon_{i, j} \geq l_{i}$ for $1 \leq i \leq t, 1 \leq j \leq \omega_{i}$,
(III) $\alpha \geq \max \left\{\varepsilon_{i} / k_{i}: 1 \leq i \leq t\right\}$, and
(IV) $\varepsilon_{i, j, m_{p}} \geq l_{i}-\left|E_{m}^{i, j}\right|$, for $1 \leq i \leq t, 1 \leq j \leq \omega_{i}, 1 \leq m \leq r_{i, j}, 1 \leq p \leq 2$.

Proof: By Theorem 1, we may assume that conditions (A1) to (A4) are satisfied.

Necessity: suppose that a t-edge-coloured $K_{n}^{(\sigma)}$ is embedded in an (t, K, L) factorization of $K_{n}^{(s)}$. We show that the conditions of the theorem hold.

As G_{i} is a subgraph of a k_{i}-regular graph, $d_{G_{i}}(v) \leq k_{i}$ for each $v \in$ $V\left(K_{n}^{(\sigma)}\right)$, for $1 \leq i \leq t$. So (I) holds.

By definition $\varepsilon_{i, j}$ is the number of edges incident with the vertices of $C_{i, j}$ in $E\left(F_{i}\right) \backslash E\left(G_{i}\right)$. All these edges join $C_{i, j}$ to $V\left(K_{n}^{(s)}\right) \backslash V\left(K_{n}^{(\sigma)}\right)$ and form an edge-cutset so there must be at least l_{i} of them. So (II) holds.

Similarly, ε_{i} is the number of edges incident with the vertices of G_{i} in $E\left(F_{i}\right) \backslash E\left(G_{i}\right)$, and all these edges join G_{i} to one of the α vertices of $V\left(K_{n}^{(s)}\right) \backslash$ $V\left(K_{n}^{(\sigma)}\right)$ which each have degree k_{i}. Thus $\varepsilon_{i} \leq k_{i} \alpha$. So (III) holds.

For $1 \leq i \leq t, 1 \leq j \leq \omega_{i}, 1 \leq m \leq r_{i, j}$, there must be l_{i} edge-disjoint paths from $C_{m_{1}}^{i, j}$ to $C_{m_{2}}^{i, j}$. We know that $\left|E_{m}^{i, j}\right|$ of these paths are in $C_{i, j}$. The remainder must go through $V\left(K_{n}^{(s)}\right) \backslash V\left(K_{n}^{(\sigma)}\right)$. Therefore there must be at least $l_{i}-\left|E_{m}^{i, j}\right|$ edges from each of $C_{m_{1}}^{i, j}$ and $C_{m_{2}}^{i, j}$ to $V\left(K_{n}^{(s)}\right) \backslash V\left(K_{n}^{(\sigma)}\right)$. So (IV) holds as $\varepsilon_{i, j, m_{p}}$ is the number of edges incident with the vertices of $C_{m_{p}}^{i, j}$ in $E\left(F_{i}\right) \backslash E\left(G_{i}\right)$.

Sufficiency: to complete the proof we must show that if the four conditions hold then we can find an embedding. From $K_{n}^{(\sigma)}$ we form H, f and $f_{h}, 1 \leq$ $h \leq s$, an outline (t, K, L)-factorization of $K_{n}^{(s)}$. Let $V(H)=V\left(K_{n}^{(\sigma)}\right) \cup\left\{v_{0}\right\}$. Let $f\left(v_{0}\right)=\alpha$, let $f(v)=1$ for each $v \in V\left(K_{n}^{(\sigma)}\right)$. Let $f_{h}\left(v_{0}\right)=0,1 \leq h \leq \sigma$, and let $f_{h}\left(v_{0}\right)=n, \sigma+1 \leq h \leq s$. If $v \in K_{n}^{(\sigma)}$, then let $f_{h}(v)=1$ if $v \in P_{h}$, else let $f_{h}(v)=0$. The edge set of H contains the edges of $K_{n}^{(\sigma)}$ (which are already coloured) and

- for $1 \leq i \leq t$, for each $v \in K_{n}^{(\sigma)}$, there are $k_{i}-d_{G_{i}}(v)$ edges coloured i from v_{0} to v, and
- for $1 \leq i \leq t$, there are $\left(\alpha k_{i}-\varepsilon_{i}\right) / 2$ loops coloured i on v_{0}.

If we can prove that H, f and $f_{h}, 1 \leq h \leq s$, are an outline (t, K, L) factorization of $K_{n}^{(s)}$, then we can apply Theorem 4. Any (t, K, L)-factorization F_{1}, \ldots, F_{t} of $K_{n}^{(s)}$ of which H, f and $f_{h}, 1 \leq h \leq s$, is an amalgamation is such that G_{i} is a subgraph of F_{i}.

We check that the number of loops added of each colour is an integer. As $\alpha=n(s-\sigma)$,

$$
\begin{aligned}
\frac{\alpha k_{i}-\varepsilon_{i}}{2} & =\frac{n(s-\sigma) k_{i}-\varepsilon_{i}}{2} \\
& =\frac{k_{i} n s}{2}-\varepsilon_{i}-\frac{k_{i} n \sigma-\varepsilon_{i}}{2}
\end{aligned}
$$

which is an integer since, by (A2), $k_{i} n s$ is even and $\left(k_{i} n \sigma-\varepsilon_{i}\right) / 2=\left|E\left(G_{i}\right)\right|$.
We must show that H, f and $f_{h}, 1 \leq h \leq s$, satisfy (B1) to (B5).
For $v, w \in V\left(K_{n}^{(\sigma)}\right)$, there is one edge joining v to w unless they are in the same part. For $v \in V\left(K_{n}^{(\sigma)}\right)$, the number of edges from v to v_{0} is

$$
\begin{aligned}
\sum_{i=1}^{t}\left(k_{i}-d_{G_{i}}(v)\right) & =\sum_{i=1}^{t} k_{i}-\sum_{i=1}^{t} d_{G_{i}}(v) \\
& =n(s-1)-n(\sigma-1) \\
& =\alpha \\
& =\sum_{\substack{h_{1}, h_{2} \in\{1, \ldots, s\} \\
h_{1} \neq h_{2}}} f_{h_{1}}(v) f_{h_{2}}\left(v_{0}\right) .
\end{aligned}
$$

So (B1) is satisfied.

For $v \in V\left(K_{n}^{(\sigma)}\right)$ there are no loops on v. The number of loops on v_{0} is

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{\alpha k_{i}-\varepsilon_{i}}{2} & =\sum_{i=1}^{t} \frac{\alpha k_{i}}{2}-\sum_{i=1}^{t} \sum_{v \in V\left(K_{n}^{(\sigma)}\right)} \frac{k_{i}-d_{G_{i}}(v)}{2} \\
& =\frac{\alpha n(s-1)}{2}-\sum_{v \in V\left(K_{n}^{(\sigma)}\right)} \sum_{i=1}^{t} \frac{k_{i}-d_{G_{i}}(v)}{2} \\
& =\frac{\alpha n(s-1)}{2}-\sum_{v \in V\left(K_{n}^{(\sigma)}\right)} \frac{n(s-1)-n(\sigma-1)}{2} \\
& =\frac{\alpha n(s-1)}{2}-\sum_{v \in V\left(K_{n}^{(\sigma)}\right)} \frac{\alpha}{2} \\
& =\frac{\alpha n(s-1)}{2}-\frac{\alpha n \sigma}{2} \\
& =\frac{\alpha n(s-1-\sigma)}{2} \\
& =\frac{n^{2}(s-\sigma)(s-\sigma-1)}{2} \\
& =n^{2}\binom{s-\sigma}{2} \\
& =\sum_{1 \leq h_{1}<h_{2} \leq s} f_{h_{1}}\left(v_{0}\right) f_{h_{2}}\left(v_{0}\right)
\end{aligned}
$$

So (B2) is satisfied.
For $v \in V\left(K_{n}^{(\sigma)}\right)$ there are $d_{G_{i}}(v)+\left(k_{i}-d_{G_{i}}(v)\right)=k_{i}=k_{i} f(v)$ edges of each colour incident with v. The number of edges of each colour incident with v_{0} is

$$
\begin{aligned}
\sum_{v \in V\left(K_{n}^{(\sigma)}\right)}\left(k_{i}-d_{G_{i}}(v)\right)+\alpha k_{i}-\varepsilon_{i} & =\varepsilon_{i}+\alpha k_{i}-\varepsilon_{i} \\
& =\alpha k_{i} \\
& =k_{i} f\left(v_{0}\right) .
\end{aligned}
$$

So (B3) is satisfied.
It is easy to see that (B4) is satisfied.

To show that (B5) is satisfied we must show that each H_{i} has an l_{i}-edgeconnected k_{i}-regular detachment. Thus we show that each H_{i} satisfies the conditions of Proposition 2.

First we show that each H_{i} is l_{i}-edge-connected. Suppose that H_{i} is not l_{i}-edge-connected. Then there is a minimal edge-cutset E such that $|E|<l_{i}$. As E is minimal it will contain only edges from one component of G_{i}, say $C_{i, 1}$, and perhaps also edges from v_{0} to $C_{i, 1}$. It cannot contain only edges from v_{0} to $C_{i, 1}$ since there are $\sum_{v \in V\left(C_{i, j}\right)}\left(k_{i}-d_{G_{i}}(v)\right)=\varepsilon_{i, j}$ such edges and, by (II), $\varepsilon_{i, j} \geq l_{i}$. The edges of E contained in $C_{i, 1}$ form one of its minimal separating sets, say $E_{1}^{i, 1}$, and we can assume that the two components of $H_{i}-E$ are $C_{1_{1}}^{i, 1}$ and $H_{i}-C_{1_{1}}^{i, 1}$. Therefore E must also contain all the edges from $C_{1_{1}}^{i, 1}$ to v_{0}. There are $\sum_{v \in V\left(C_{i, 1}^{1,1}\right)}\left(k_{i}-d_{G_{1}}(v)\right)=\varepsilon_{i, 1,1_{1}}$ such edges. So

$$
\begin{aligned}
|E| & =\left|E_{1}^{i, 1}\right|+\varepsilon_{i, 1,1_{1}} \\
& \geq l_{i},
\end{aligned}
$$

by (IV), a contradiction. So each H_{i} satisfies (X1).
As $l_{i} \neq 1,1 \leq i \leq t$ we need not consider (X2). Since $n \neq 3$ by assumption, $\alpha \neq 2$ and we need not consider (X3).

Finally, (X4) is satisfied since each H_{i} contains more than two vertices.

3.2 Embedding bipartite graphs

We consider an embedding of an edge-coloured $K_{a, b}$ with colour classes G_{1}, \ldots, G_{t} in a (t, K, L)-factorization F_{1}, \ldots, F_{t} of $K_{n, n}$. As well as the definitions used in Theorem 10 we need the following. For each component $C_{i, j}$ of H_{i} let $\gamma_{i, j}$ be

$$
\min _{\substack{m, x, y \\ x \neq y}}\left\{\left|E_{m}^{i, j}\right|+\sum_{\substack{v \in V\left(C_{m_{1}}^{i, j}\right) \cap P_{x}}}\left(k_{i}-d_{G_{i}}(v)\right)+\sum_{v \in V\left(C_{m_{2}}^{i, j}\right) \cap P_{y}}\left(k_{i}-d_{G_{i}}(v)\right), \sum_{v \in V\left(C_{i, j}\right) \cap P_{x}}\left(k_{i}-d_{G_{i}}(v)\right)\right\}
$$

Note that the two parts of $K_{n, n}$ are P_{1} and P_{2} where the set of a independent vertices of $K_{a, b}$ are embedded in P_{1} and the set of b independent vertices are embedded in P_{2}.

Theorem 11 Suppose that $n, s=2, t, K$ and L are such that $a(t, K, L)$ factorization of $K_{n, n}$ exists, and that $l_{i} \neq 1,1 \leq i \leq t$. Let a and b be integers, $1 \leq a, b \leq n$. A t-edge-coloured $K_{a, b}$ can be embedded in a (t, K, L) factorization of $K_{n, n}$ if and only if
(I) $d_{G_{i}}(v) \leq k_{i}$ for each $v \in V\left(K_{a, b}\right)$, for $1 \leq i \leq t$,
(II) $\varepsilon_{i, j} \geq l_{i}$ for $1 \leq i \leq t, 1 \leq j \leq \omega_{i}$,
(III) $2 n-(a+b) \geq \max \left\{\varepsilon_{i} / k_{i}: 1 \leq i \leq t\right\}$,
(IV) if $a=n-2$ and $k_{i}=l_{i}$ is odd, then, for $1 \leq j \leq \omega_{i}$, if there exists $v \in P_{2} \cap C_{i, j}$ such that $d_{G_{i}}(v)<k_{i}$, then either there exists $w \in P_{1} \cap C_{i, j}$ such that $d_{G_{i}}(w)<k_{i}$ or for all $u \in P_{2} \backslash C_{i, j}, d_{G_{i}}(u)=k_{i}$.
(V) if $b=n-2$ and $k_{i}=l_{i}$ is odd, then, for $1 \leq j \leq \omega_{i}$, if there exists $v \in P_{1} \cap C_{i, j}$ such that $d_{G_{i}}(v)<k_{i}$, then either there exists $w \in P_{2} \cap C_{i, j}$ such that $d_{G_{i}}(w)<k_{i}$ or for all $u \in P_{1} \backslash C_{i, j}, d_{G_{i}}(u)=k_{i}$.
(VI) $\sum_{j=1}^{\omega_{i}} \gamma_{i, j}+\left[(2 n-(a+b)) k_{i}-\varepsilon_{i}\right] / 2 \geq l_{i}, 1 \leq i \leq t$, and
(VII) $\varepsilon_{i, j, m_{p}} \geq l_{i}-\left|E_{m}^{i, j}\right|$, for $1 \leq i \leq t, 1 \leq j \leq \omega_{i}, 1 \leq m \leq r_{i, j}, 1 \leq p \leq 2$.

Proof: By Theorem 1, we may assume that conditions (A1) to (A4) are satisfied.

Necessity: suppose that a t-edge-coloured $K_{n}^{(\sigma)}$ is embedded in an (t, K, L) factorization of $K_{n}^{(s)}$. We show that the conditions (III), (IV), (V) and (VI) of the theorem hold. The others are identical to conditions of Theorem 10 and the reasons for their are necessity are the same.

Note that ε_{i} is the number of edges incident with the vertices of G_{i} in $E\left(F_{i}\right) \backslash E\left(G_{i}\right)$. These edges are all incident with the $2 n-(a+b)$ vertices of $V\left(K_{n, n}\right) \backslash V\left(K_{a, b}\right)$ which each have degree k_{i}. Thus $\varepsilon_{i} \leq(2 n-(a+b)) k_{i}$. So (III) holds.

Suppose that $a=n-2, k_{i}=l_{i}$ is odd and there exists $v \in P_{2} \cap C_{i, j}$ (for some j) such that $d_{G_{i}}(v)<k_{i}$. Thus v is joined to at least one of the two vertices of $P_{1} \backslash V\left(K_{a, b}\right)$. If there is a vertex $u \in P_{2} \cap\left(K_{a, b} \backslash C_{i, j}\right)$ such that $d_{G_{i}}(u) \neq k_{i}$ and there is no vertex $w \in P_{1} \cap C_{i, j}$ such that $d_{G_{i}}(w)<k_{i}$, then the two vertices of $P_{1} \backslash K_{a, b}$ form a cutset. Let J_{1} and J_{2} be the two components obtained when the cutset is removed. There must be k_{i} paths from J_{1} to J_{2} through the cutset so each of the two vertices must be joined
to each of J_{1} and J_{2} by $k_{i} / 2$ edges. This is a contradiction since k_{i} is odd. So (IV) holds. A similar argument shows that (V) holds.

From the argument that shows that (III) holds we can see that in F_{i} there are $\left[(2 n-(a+b)) k_{i}-\varepsilon_{i}\right] / 2$ edges joining vertices of $P_{1} \backslash V\left(K_{a, b}\right)=W_{1}$ to vertices of $P_{2} \backslash V\left(K_{a, b}\right)=W_{2}$. We will form an edge-cutset of F_{i} that separates W_{1} from W_{2}. First we take all the edges joining vertices of W_{1} to vertices of W_{2}. Next we ensure there is no path from W_{1} to W_{2} through $C_{i, j}$, $1 \leq j \leq \omega_{i}$. We do this by, for each j, taking either all the edges from $C_{i, j}$ to W_{1} (or W_{2}) or taking an edge-cutset $E_{m}^{i, j}$ from $C_{i, j}$ and also all edges from $C_{m_{1}}^{i, j}$ to W_{1} and from $C_{m_{2}}^{i, j}$ to W_{2} (or vice versa). Thus the minimum number of edges incident with $C_{i, j}$ we must take is $\gamma_{i, j}$, and so the edge-cutset formed has at least $\sum_{j} \gamma_{i, j}+\left[(2 n-(a+b)) k_{i}-\varepsilon_{i}\right] / 2$ edges. So (VI) holds.

Sufficiency: to complete the proof we must show that if the conditions hold then we can find an embedding. From $K_{a, b}$ we form H, f and $f_{h}, 1 \leq h \leq$ 2, an outline (t, K, L)-factorization of $K_{n, n}$. Let $V(H)=V\left(K_{a, b}\right) \cup\left\{v_{1}, v_{2}\right\}$. Let $f\left(v_{1}\right)=f_{1}\left(v_{1}\right)=n-a$; let $f\left(v_{2}\right)=f_{2}\left(v_{2}\right)=n-b$. For each $v \in K_{a, b}$, let $f_{h}(v)=1$, if $v \in P_{h}$, else let $f_{h}(v)=0$. Henceforth when we refer to P_{1} and P_{2} we will mean vertices in $K_{a, b}$; we do not consider the vertices v_{1} and v_{2} to be in these parts. The edge set of H contains the edges of $K_{a, b}$ (which are already coloured) and

- for each $v \in P_{1}$, there are $k_{i}-d_{G_{i}}(v)$ edges coloured i from v to v_{2},
- for each $v \in P_{2}$, there are $k_{i}-d_{G_{i}}(v)$ edges coloured i from v to v_{1}, and
- for $1 \leq i \leq t$, there are $\left[(2 n-(a+b)) k_{i}-\varepsilon_{i}\right] / 2$ edges coloured i from v_{1} to v_{2}
By (III), the number of edges of each colour from v_{1} to v_{2} is not negative.
If we can prove that H, f and $f_{h}, 1 \leq h \leq 2$, are an outline (t, K, L) factorization of $K_{n, n}$, then we can apply Theorem 4. Any (t, K, L)-factorization $F_{1}, F_{2}, \ldots, F_{t}$ of $K_{n, n}$ of which H, f and $f_{h}, 1 \leq h \leq s$, is an amalgamation is such that G_{i} is a subgraph of F_{i}.

We note that it is a simple matter to form H from the edge-coloured $K_{a, b}$. We add edges so that the vertices of $V\left(K_{a, b}\right)$ are incident with the correct number of edges of each colour and then add edges between v_{1} and v_{2} so that the total number of edges of each colour is correct. Most importantly, we do not have to make any choices about how to colour edges.

As an aside, we note this would not be the case if we tried to use the same technique to embed $K_{a_{1}, \ldots, a_{s}}$ in $K_{n}^{(s)}, s>2$. Suppose we add s vertices
v_{1}, \ldots, v_{s} to form an outline graph where v_{i} is the vertex that will be split to complete P_{i}. Now suppose that a vertex $v \in P_{1}$ in $K_{a_{1}, \ldots, a_{s}}$ is incident with less than k_{1} edges of colour 1 . Then in the outline graph, we have to have an edge coloured 1 from v to $v_{i}, i \neq 1$. So we have a choice of v_{i} (whereas in the bipartite case we have to choose v_{2}). So rather than proving that a particular outline graph satisfies (B1) to (B5), we have to show that at least one graph (of all the possible ones we could choose to create) satisfies the conditions.

Back to the proof: we must show that H, f and $f_{h}, 1 \leq h \leq s$, satisfy (B1) to (B5).

For $v, w \in V\left(K_{a, b}\right)$, there is one edge joining v to w unless they are in the same part. There are no edges from vertices in P_{1} to v_{1} and from vertices in P_{2} to v_{2}. For $v \in P_{1}$, the number of edges from v to v_{2} is

$$
\begin{aligned}
\sum_{i=1}^{t}\left(k_{i}-d_{G_{i}}(v)\right) & =\sum_{\substack{i=1}}^{t} k_{i}-\sum_{i=1}^{t} d_{G_{i}}(v) \\
& =n-b \\
& =\sum_{\substack{h_{1}, h_{2} \in\{1,2\} \\
h_{1} \neq h_{2}}} f_{h_{1}}(v) f_{h_{2}}\left(v_{2}\right) .
\end{aligned}
$$

A similar argument shows that each $v \in P_{2}$ is joined to v_{1} by the correct number of edges. The number of edges from v_{1} to v_{2} is

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{(2 n-(a+b)) k_{i}-\varepsilon_{i}}{2} & =\frac{2 n-(a+b)}{2} \sum_{i=1}^{t} k_{i}-\sum_{i=1}^{t} \sum_{v \in V\left(K_{a, b}\right)} \frac{k_{i}-d_{G_{i}}(v)}{2} \\
& =n^{2}-\frac{(a+b) n}{2}-\sum_{v \in V\left(K_{a, b}\right)} \sum_{i=1}^{t} \frac{k_{i}-d_{G_{i}}(v)}{2} \\
& =n^{2}-\frac{(a+b) n}{2}-\sum_{v \in P_{1}} \frac{n-b}{2}-\sum_{v \in P_{2}} \frac{n-a}{2} \\
& =n^{2}-\frac{(a+b) n}{2}-\frac{a(n-b)}{2}-\frac{b(n-a)}{2} \\
& =(n-b)(n-a) \\
& =\sum_{\substack{h_{1}, h_{2} \in\{1,2\} \\
h_{1} \neq h_{2}}} f_{h_{1}}\left(v_{1}\right) f_{h_{2}}\left(v_{2}\right) .
\end{aligned}
$$

So (B1) is satisfied.
There are no loops in H so (B2) is satisfied.
For $v \in V\left(K_{a, b}\right)$, there are $d_{G_{i}}(v)+\left(k_{i}-d_{G_{i}}(v)\right)=k_{i}=k_{i} f(v)$ edges of each colour incident with v. We must show that v_{1} and v_{2} are incident with the correct number of edges of each colour. First note that

$$
\begin{aligned}
\varepsilon_{i} & =\sum_{v \in V\left(K_{a, b}\right)} k_{i}-d_{G_{i}}(v) \\
& =(a+b) k_{i}-\sum_{v \in P_{1}} d_{G_{i}}(v)-\sum_{v \in P_{2}} d_{G_{i}}(v) .
\end{aligned}
$$

Clearly the two sums are equal so

$$
\sum_{v \in P_{2}} d_{G_{i}}(v)=\frac{(a+b) k_{i}-\varepsilon_{i}}{2}
$$

The number of edges coloured i incident with v_{1} is

$$
\begin{aligned}
& \sum_{v \in P_{2}}\left(k_{i}-d_{G_{i}}(v)\right)+\frac{\left.(2 n-(a+b)) k_{i}-\varepsilon_{i}\right)}{2} \\
& \quad=b k_{i}-\sum_{v \in P_{2}} d_{G_{i}}(v)+\frac{\left.(2 n-(a+b)) k_{i}-\varepsilon_{i}\right)}{2} \\
& \quad=b k_{i}-\frac{(a+b) k_{i}}{2}+\frac{\varepsilon_{i}}{2}+\frac{\left.(2 n-(a+b)) k_{i}-\varepsilon_{i}\right)}{2} \\
& \quad=(n-a) k_{i} \\
& =k_{i} f\left(v_{1}\right)
\end{aligned}
$$

A similar argument shows that v_{2} is incident with $k_{i} f\left(v_{2}\right)$ edges of colour i. So (B3) is satisfied.

It is easy to see that (B4) is satisfied.
Finally to show that (B5) is satisfied we must show that each H_{i} has an l_{i}-edge-connected k_{i}-regular detachment. Thus we show that each H_{i} satisfies the conditions of Proposition 2.

First we show that each H_{i} is l_{i}-edge-connected. Suppose that H_{i} is not l_{i}-edge-connected. Then there is a minimal edge-cutset E such that $|E|<l_{i}$. We consider two cases. First assume that v_{1} and v_{2} are in the same component of $H_{i}-E$. As E is minimal it will contain only edges from
one component of G_{i}, say $C_{i, 1}$, and perhaps also edges from v_{1} and v_{2} to $C_{i, 1}$. It cannot contain only edges from v_{1} and v_{2} to $C_{i, 1}$ since there are $\sum_{v \in V\left(C_{i, j}\right)}\left(k_{i}-d_{G_{i}}(v)\right)=\varepsilon_{i, j}$ such edges and by (II), $\varepsilon_{i, j} \geq l_{i}$. The edges of E contained in $C_{i, 1}$ form one of its minimal separating sets, say $E_{1}^{i, 1}$, and we can assume that the two components of $H_{i}-E$ are $C_{1_{1}}^{i, 1}$ and $H_{i}-C_{1_{1}}^{i, 1}$. Therefore E must also contain all the edges from $C_{1_{1}}^{i, 1}$ to v_{1} and v_{2}. There are $\sum_{v \in V\left(C_{i, 1}^{1}\right)}\left(k_{i}-d_{G_{1}}(v)\right)=\varepsilon_{i, 1,1_{1}}$ such edges. So

$$
\begin{aligned}
|E| & =\left|E_{1}^{i, 1}\right|+\varepsilon_{i, 1,1_{1}} \\
& \geq l_{i},
\end{aligned}
$$

by (VII), a contradiction.
Now assume that v_{1} and v_{2} are in different components of $H_{i}-E$. Thus E must contain the $\left[(2 n-(a+b)) k_{i}-\varepsilon_{i}\right] / 2$ edges from v_{1} to v_{2}. For each component $C_{i, j}, E$ contains either all the edges from $C_{i, j}$ to one of v_{1} or v_{2}, or an edge-cutset of $C_{i, j}$, say $E_{1}^{i, j}$, and all the edges from $C_{1,1}^{i, j}$ to v_{1} and from $C_{1,2}^{i, j}$ to v_{2} (or vice versa). It follows from (VI) that $|E| \geq l_{i}$. So each H_{i} satisfies (X1).

As $l_{i} \neq 1,1 \leq i \leq t$ we need not consider (X2),
H_{i} has a vertex of degree $2 l_{i}$ only if $a=n-2$ or $b=n-2$. We can see that, by (IV) and (V), these vertices will not be cutvertices so (X3) is satisfied.

Finally, (X4) is satisfied since each H_{i} contains more than two vertices.

References

[1] A. J. W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin. Theory B, 36 (1984), 125-134.
[2] A. J. W. Hilton and M. Johnson, An algorithm for finding factorizations of complete graphs, J. Graph Theory, 43 (2003), 132-136.
[3] A. J. W. Hilton, M. Johnson, C. A. Rodger and E. B. Wantland, Amalgamations of connected k-factorizations, J. Combin. Theory B, 88 (2003), 267-279.
[4] A. J. W. Hilton and C. A. Rodger, Hamiltonian decompositions of complete regular s-partite graphs, Discrete Math., 48 (1986), 63-78.
[5] M. Johnson, Amalgamations of factorizations of complete graphs, submitted.
[6] W. R. Johnstone, Decompositions of complete graphs, Bull. London Math. Soc., 32 (2000), 141-145.
[7] R. Laskar and B. Auerbach, On decomposition of r-partite graphs into edge-disjoint Hamilton circuits, Discrete Math. 14 (1976), 265-268.
[8] C. St. J. A. Nash-Williams, Amalgamations of almost regular edgecolourings of simple graphs J. Combin. Theory B, 43 (1987), 322-342.
[9] C. St. J. A. Nash-Williams, Connected detachments of graphs and generalized Euler trails, J. London Math. Soc., 31 (1985), 17-29.
[10] C. A. Rodger and E. B. Wantland, Embedding edge-colorings into 2-edge-connected k-factorizations of $K_{k n+1}$, J. Graph Theory, 10 (1995), 169-185.

Matthew Johnson
Department of Mathematics
London School of Economics
Houghton Street
London
WC2A 2AE
U.K.
email: matthew@maths.lse.ac.uk

