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Abstract

Let t be a positive integer, and let L = (l1, . . . , lt) and K =
(k1, . . . , kt) be collections of nonnegative integers. A graph has a
(t, K,L) factorization if it can be represented as the edge-disjoint
union of factors F1, . . . , Ft where, for 1 ≤ i ≤ t, Fi is ki-regular
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and at least li-edge-connected. In this paper we consider (t, K,L)-
factorizations of complete equipartite graphs. First we show precisely
when they exist. Then we solve two embedding problems: we show
when a factorization of a complete σ-partite graph can be embed-
ded in a (t, K,L)-factorization of a complete s-partite graph, σ < s,
and also when a factorization of Ka,b can be embedded in a (t, K,L)-
factorization of Kn,n, a, b ≤ n. Our proofs use the technique of amal-
gamations of graphs.

1 Introduction

We denote the complete s-partite graph with n vertices in each part K
(s)
n .

Let t be a positive integer, let K = (k1, k2, . . . , kt) and L = (l1, l2, . . . , lt)
where, for 1 ≤ i ≤ t, ki is a positive integer and li is a nonnegative integer.
A factorization F1, . . . , Ft of a graph such that, for 1 ≤ i ≤ t, Fi is ki-regular
and has edge-connectivity at least li is called a (t,K, L)-factorization. We

describe exactly when K
(s)
n has a (t,K, L)-factorization:

Theorem 1 A (t,K, L)-factorization of K
(s)
n exists if and only if

(A1)
t∑

i=1

ki = n(s− 1),

(A2) if ns is odd then each ki is even,

(A3) for 1 ≤ i ≤ t, li ≤ ki, and

(A4) li = 0 if ki = 1.

If n ∈ {1, 2}, then K
(s)
n is either the complete graph or the complete graph

less a one-factor. These cases of Theorem 1 were first proved by Johnstone
[6]. They were subsequently proved by Johnson [5] using amalgamations,
and here we attempt to generalize the results and techniques of that paper
(which presented many results on (t,K, L)-factorizations of complete graphs)
to obtain results on complete equipartite graphs.

We believe that the only other non-trivial case of Theorem 1 previously
proved is when each ki = li = 2, that is when each factor is a Hamilton cycle.
This case was first proved by Laskar and Auerbach [7], who constructed the
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factorizations, and independently by Hilton and Rodger [4] using amalgama-
tions.

We sketch how the technique of amalgamations is used. This will lead us
to the other theme of this paper: embeddings.

1.1 Amalgamations

Consider a partition of a graphG’s vertex set into subsets V1, . . . , Vr. Then an
amalgamation of G has vertex set V1, . . . , Vr and for each edge in G joining a
pair of vertices in Vi, 1 ≤ i ≤ r, there is a loop on Vi in the amalgamation, and
for each edge in G joining a vertex in Vi to a vertex in Vj, 1 ≤ i < j ≤ r, there
is an edge ViVj in the amalgamation. (We can think of the amalgamation as
being obtained from G by merging vertices that belong to the same subset
whilst retaining all edges.)

If G has a factorization, then we can represent it as an edge-colouring: the
factors are the colour classes (in this paper we frequently use the equivalence
of factorizations and edge-colourings). This colouring can be transferred
to an amalgamation of G—each edge of the amalgamation has the same
colour as the corresponding edge of G. In what follows when we refer to an
amalgamation we mean a graph that has been edge-coloured. Suppose that
G = K

(s)
n and that it has a particular type of factorization, say a Hamiltonian

decomposition. Then we can find some properties that an amalgamation of
G must possess. For example we can find the number of loops on each vertex,
the number of edges between each pair of vertices and the number of edges
of each colour incident with each vertex. We call any edge-coloured graph
that satisfies these properties an outline Hamiltonian decomposition of K

(s)
n .

The aim when using amalgamations is to prove that every outline graph is
an amalgamated graph. So in our example, for each outline Hamiltonian
decomposition we would have to find a Hamiltonian decomposition of which
it is an amalgamation.

1.2 Embeddings

Amalgamations can be used to prove embedding results. Suppose that we
have a factorization (or an edge-colouring) of K

(σ)
n . Add to it a vertex v.

Join v to each vertex of K
(σ)
n by n(s − σ) edges and put n2

(
s− σ

2

)
loops

on v to form a graph G. Complete the edge-colouring of G by colouring the
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edges incident with v. (Note that G can be seen to be K
(s)
n with n(s − σ)

vertices merged.) If G is an outline factorization (of some specified type) of

K
(s)
n and we have proved that every outline graph is an amalgamated graph,

then there is factorization of K
(s)
n in which the factorization of K

(σ)
n is embed-

ded; we can think of this factorization of K
(s)
n as being obtained from G by

splitting v into n(s− σ) vertices. From the properties that define an outline
factorization we can work back to find the properties that the factorization
of K

(σ)
n must possess if it is to be embedded.

Hilton [1] first used the technique of amalgamations in the context of
embedding factorizations of graphs: he considered Hamiltonian decomposi-
tions of the complete graph. Generalizations of his results to decompositions
of the complete graph into regular factors of prescribed degree and edge-
connectivity have been proved by various authors; see, for example, [3, 8, 10].
The most general result of this kind was obtained by Johnson [5] who con-
sidered (t,K, L)-factorizations of the complete graph. Hilton, with Rodger,
generalized his original result in a different direction by considering Hamil-
tonian decompositions of the complete equipartite graph [4]. In this paper,
we unite these two strands of research by considering (t,K, L)-factorizations
of the complete equipartite graph.

In the next section we formally introduce amalgamations of (t,K, L)-
factorizations of complete equipartite graphs, and at the end of the section
we use amalgamations to prove Theorem 1. In the final section we consider
embedding problems. We suppose that we have a factorization of K

(σ)
n , and

ask when it can be embedded in a (t,K, L)-factorization of K
(s)
n , σ < s.

We also look at embedding factorizations of Ka,b in (t,K, L)-factorizations
of Kn,n, a, b ≤ n.

As noted before, K
(s)
1 = Ks and K

(s)
2 = K2s − I, where I is a 1-factor.

Results on amalgamations and embeddings of (t,K, L)-factorizations of these
graphs are already known and can be found in [5]. So in this paper we assume
throughout that n ≥ 3.
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2 Amalgamated factorizations

2.1 Detachments

Before we formally define amalgamations we require another definition. Let
D andG be graphs. D is a detachment ofG if there is a bijection ρ: E(D) −→
E(G) and a surjection σ: V (D) −→ V (G) such that

• if e is a loop on v in D, then ρ(e) is a loop on σ(v) in G,

• if e is an edge joining v and w in D and σ(v) = σ(w), then ρ(e) is a
loop on σ(v) in G, and

• if e is an edge joining v and w in D and σ(v) 6= σ(w), then ρ(e) is an
edge joining σ(v) and σ(w) in G.

We can think of D as being obtained from G by splitting vertices. Some
authors refer to detachments as disentanglements.

Let G be a graph of which we seek to find a detachment. We define three
functions f, c, e: P(V (G)) −→ Z, (P(V (G)) is the power set of V (G)). For
each set of vertices V ⊆ V (G), let f(V ) be the total number of vertices we
wish to split the vertices of V into, let c(V ) be the number of components in
G−V , and let e(V ) be the number of edges (including loops) that are incident
with at least one vertex in V (loops and edges incident twice with vertices
in V are only counted once). We need the following result of Nash-Williams
[9].

Proposition 2 Let k and l be nonnegative integers. Let G be a graph (pos-
sibly containing multiple edges and loops) in which the degree of each vertex
is a multiple of k. Then G has an l-edge-connected k-regular detachment if
and only if

(X1) G is l-edge-connected,

(X2) if l = 1, then for all V ⊆ V (G), f(V ) + c(V ) ≤ e(V ) + 1,

(X3) if l is odd and l = k, then G has no cutvertex with degree 2l, and

(X4) if l is odd and l = k, then G is not a loopless graph that contains exactly
two vertices each with degree 2l. �
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2.2 Amalgamations

An amalgamation is the opposite of a detachment, except that we define
amalgamations on graphs which have an edge-colouring. Let t be a positive
integer. Let F and H be t-edge-coloured graphs. H is an amalgamation of F
if there is a bijection φ: E(F ) −→ E(H) and a surjection ψ: V (F ) −→ V (H)
such that

• if e is a loop coloured i on v in F , then φ(e) is a loop coloured i on
ψ(v) in H,

• if e is an edge coloured i joining v and w in F and ψ(v) = ψ(w), then
φ(e) is a loop coloured i on ψ(v) in H, and

• if e is an edge coloured i joining v and w in F and ψ(v) 6= ψ(w), then
φ(e) is an edge coloured i joining ψ(v) and ψ(w) in H.

Let Fi and Hi be the subgraphs of F and H induced by edges coloured i,
1 ≤ i ≤ t.

Let t, n, K and L satisfy conditions (A1) to (A4) of Theorem 1. Sup-

pose that F = K
(s)
n is t-edge-coloured and that Fi is ki-regular and li-edge-

connected, 1 ≤ i ≤ t. We think of the vertex set of K
(s)
n as being composed

of s parts P1, . . . , Ps where each part is a set of n independent vertices. If H
is an amalgamation of F , then define f : V (H) −→ N by

f(v) = |{u : u ∈ V (K(s)
n ), ψ(u) = v}|,

and, for 1 ≤ h ≤ s, define fh: V (H) −→ N by

fh(v) = |{u : u ∈ Ph, ψ(u) = v}|.

So f counts the vertices that are merged to form v and, for 1 ≤ h ≤ s,
fh tells us how many of these vertices are from Ph. Together H, f and fh,
1 ≤ h ≤ s, form an amalgamated (t,K, L)-factorization of K

(s)
n .

Proposition 3 Let H, f and fh, 1 ≤ h ≤ s, be an amalgamated (t,K, L)-

factorization of K
(s)
n . Then

(B1) for all pairs of distinct vertices v, w ∈ V (H), there are
∑

h1,h2∈{1,...,s}
h1 6=h2

fh1(v)fh2(w)

edges joining v to w,
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(B2) for all v ∈ V (H), there are
∑

1≤h1<h2≤s

fh1(v)fh2(v) loops on v,

(B3) for all v ∈ V (H), for 1 ≤ i ≤ t, v is incident with kif(v) edges of
colour i (counting loops twice),

(B4)
∑

v∈V (H)

f(v) = ns, and, for 1 ≤ h ≤ s,
∑

v∈V (H)

fh(v) = n, and

(B5) for 1 ≤ i ≤ t, Hi has an li-edge-connected ki-regular detachment.

Proof: The number of edges joining vertices v and w (possibly v = w) in

the amalgamation is equal to the number of edges in K
(s)
n joining a vertex

merged to form v to a vertex merged to form w, and pairs of vertices are
joined by one edge in K

(s)
n unless they are in the same part. This is enough

to prove (B1) and (B2). There are f(v) vertices merged to form v and each
is incident with ki edges coloured i, 1 ≤ i ≤ t, so (B3) is satisfied. As we

noted f and fh count vertices in V (K
(s)
n ) and Ph respectively. In each case

each vertex in the set is counted exactly once so (B4) is satisfied. Finally,
for (B5), note that Fi is a li-edge-connected ki-regular detachment of Hi. �

2.3 Outline factorizations

A t-edge-coloured graph H, a function f : V (H) −→ N and functions fh:

V (H) −→ N, 1 ≤ h ≤ s, form an outline (t,K, L)-factorization of K
(s)
n

if they satisfy (B1) to (B5). By Proposition 3, an amalgamated (t,K, L)-

factorization of K
(s)
n is an outline (t,K, L)-factorization of K

(s)
n . As we shall

see, the converse is not true in general. However, we can prove that a par-
ticular type of outline factorization of K

(s)
n is an amalgamated factorization.

Theorem 4 Let H, f and fh, 1 ≤ h ≤ s, be an outline (t,K, L)-factorization

of K
(s)
n such that li 6= 1, 1 ≤ i ≤ t. Then H, f and fh, 1 ≤ h ≤ s are an

amalgamated (t,K, L)-factorization of K
(s)
n if for each v ∈ V (H) either

(Z1) for 1 ≤ h ≤ s, fh(v) ∈ {0, n}, or

(Z2) fh(v) = 0 for all but one value of h.
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Before the proof is given we make some remarks about the possibility of
proving a more general outline/amalgamation theorem.

There are two restrictions on the outline factorizations covered by Theo-
rem 4. First we have that li 6= 1, 1 ≤ i ≤ t. We cannot find an example that
shows that a theorem without this condition is not true, but we cannot prove
such a theorem. We shall see later why we would have difficulty proving the
theorem if we allowed li = 1

The second restriction is given by (Z1) and (Z2). Let H be an outline
graph that satisfies these two conditions. Suppose that there is a factorization
of K

(s)
n of which H is an amalgamation: we can think of it as being obtained

by splitting the vertices of H. (Z1) and (Z2) say that each vertex in H must
be split either into vertices that comprise all of some number of the parts of
K

(s)
n or into vertices that all belong to the same part of K

(s)
n . We consider

some examples that show why we impose such restrictions.
In the first example let H, f and fh, 1 ≤ h ≤ 3 be the outline (3, K, L)-

factorization of K
(3)
3 , with K = L = (2, 2, 2), shown in Figure 1 (for vi 6= X,

f(vi) = 1, fh(vi) = 1 if

⌈
i

3

⌉
= h, fh(vi) = 0 otherwise; f(X) = 2, f1(X) =

f2(X) = 1, f3(X) = 0). We call this an outline Hamiltonian decomposition.
It is easy to check that (B1) to (B5) are satisfied, yet we can show that H,
f and fh, 1 ≤ h ≤ 3 are not an amalgamation of a (3, K, L)-factorization

of K
(3)
3 . Suppose that K

(3)
3 has a Hamiltonian decomposition F1, F2, F3 such

that Fi is a detachment of Hi, 1 ≤ i ≤ 3. Suppose also that the two vertices
into which X is split are labelled v1 and v4 so that the parts of K

(3)
3 are

{v1, v2, v3}, {v4, v5, v6} and {v7, v8, v9}. Consider F1, a 9-cycle obtained from
H1 by splitting X into two vertices, v1 and v4. Clearly each is adjacent to
one of v2 and v7, and one of v5 and v8. The edge v1v2 is not in K

(3)
3 so

we must have v1v7 ∈ E(F1). But by a similar argument we must also have
v1v7 ∈ E(F2), a contradiction.

We have established that a general outline/amalgamation theorem can-
not be proved without some restrictions. Is it possible though to lessen the
restrictions of Theorem 4? In [4] Hilton and Rodger considered outline Hamil-

tonian decompositions of K
(s)
n . They stated that H, f and fh, 1 ≤ h ≤ s

were amalgamations of Hamiltonian decompositions if they satisfied

(Z1∗) for some vertex u ∈ V (H), fh(u) ∈ {0, n} for all but at most one value
of h, and
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(3)
3
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Figure 2: Outline Hamiltonian decomposition of K
(5)
3
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(Z2∗) for each vertex v ∈ V (H) \ {u}, fh(v) = 0 for all but one value of h.

We show that this is not true. Let H, f and fh, 1 ≤ h ≤ 5 be the out-
line Hamiltonian decomposition of K

(5)
3 illustrated in Figure 2 (for vi 6= X,

f(vi) = 1 and fh(vi) = 1 if

⌈
i

3

⌉
= h, fh(vi) = 0 otherwise; f(X) = 4,

fh(X) = 0, 1 ≤ h ≤ 3, f4(X) = 1, f5(X) = 3). We show that h, f and fh,

1 ≤ h ≤ 5 are not an amalgamation of a Hamiltonian decomposition of K
(s)
n .

Suppose there is such a decomposition into Hamilton cycles F1, . . . , F6 and
X is split into vertices labelled v12, v13, v14, v15 so that the parts of K

(5)
3 are

{v3i+1, v3i+2, v3i+3}, 0 ≤ i ≤ 4. Therefore any loop on X in Hi corresponds
to an edge in Fi joining v12 to one of v13, v14, v15 (since these latter three
vertices are independent). But there are three loops on X in H1 so in F1 v12

must have degree at least 3, a contradiction.
We could avoid such counterexamples by extending the definition of out-

line factorizations. Consider a (t,K, L)-factorization of K
(s)
n , and a subset

of the vertices that contains f1 vertices from the first part and f2 vertices
from the second part. The number of edges in the subgraph of a ki-factor
induced by these vertices is at most (min{f1, f2}min{ki,max{f1, f2}}) (sup-
pose f1 < f2; every edge in the subgraph is incident with one of the f1

vertices in the first part, and each of these vertices has degree not more than
ki—since this is its degree in the ki-factor—and not more than f2—since
it is joined by at most one edge to each of the f2 vertices in the second
part). Hence we can add to Proposition 3 a sixth property of amalgamated
(t,K, L)-factorizations.

(B6) Each vertex v has at most∑
1≤h1<h2≤s

min{fh1(v), fh2(v)}min{ki,max{fh1(v), fh2(v)}}

loops of colour i, 1 ≤ i ≤ t.

Then we could add (B6) to the definition of an outline (t,K, L)-factorization

of K
(s)
n . It is possible, but not obvious, that with this extra condition Hilton

and Rodger’s theorem on Hamiltonian decompositions could be proved. How-
ever, in the more general case it is possible to find outline factorizations that
satisfy (Z1∗), (Z2∗) and (B6) but are not amalgamations. We have an exam-
ple, but it is too large to describe here.
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2.4 Swap-sets

Before we prove Theorem 4, we must introduce an important tool first used
in [2]. Let a and b be vertices each of degree d in a multigraph G. Let u be
a neighbour of a and v be a neighbour of b in G. To (a, b)-swap the vertices
u and v means to form a new graph from G by deleting the edges au and bv,
and adding the edges av and bu. Clearly this manoeuvre leaves the degrees
of all the vertices unaltered.

We can find d neighbours of a in G by counting a vertex u as a neighbour
of a as many times as there are edges au. An (a, b)-swap-set is a collection
of d pairs of vertices such that each neighbour of a is the first element of
exactly one pair and each neighbour of b is the second element of exactly one
pair. We call the pairs (a, b)-pairs. The proof of the following lemma uses
an argument from [2]

Lemma 5 If a and b are vertices each of degree d in a l-edge-connected
multigraph G, then there exists an (a, b)-swap-set S such that a graph obtained
from G by (a, b)-swapping any number of (a, b)-pairs in the swap-set is at least
l-edge-connected.

We call a swap-set that satisfies this lemma an (a, b, l)-swap-set.

Proof: First form S. In G we can find l edge-disjoint a–b paths auj · · · vjb,
1 ≤ j ≤ l. Let (uj, vj) be a pair in S. For any edges ab in G not already
considered as one of the paths, let (b, a) be a pair in S. Complete S by
pairing off the remaining neighbours of a and b arbitrarily.

Consider a graph obtained from G by (a, b)-swapping pairs in S. It
contains l edge-disjoint a–b paths since, for 1 ≤ j ≤ l, it contains either
auj · · · vjb or buj · · · vja. Now we use induction to prove the lemma. We
know that G is l-edge-connected. Suppose that after some number of (a, b)-
swaps we have obtained a graph H that is l-edge-connected, and then we
(a, b)-swap a further (a, b)-pair (u, v) to obtain a graph J . That is, au and
bv are deleted in H and replaced by av and bu to obtain J . If J is not l-edge
connected, then we can find a minimal edge-cutset E such that |E| < l. We
show that H has an edge-cutset of the same size as E, a contradiction. Let
C1 and C2 be the two connected components of J − E. In J there are l
edge-disjoint a–b paths so a and b must be in the same component of J −E,
say C1. If u and v are also both in C1, then in J − E we could reverse the
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(a, b)-swap of u and v to obtain H − E which would also have two compo-
nents. If u and v are both in C2, then av and bu must both be in E. Thus
(E \ {av, bu})∪{au, bv} is an edge-cutset of H. Finally, suppose that u is in
C1 and v is in C2. Then av ∈ E and bu ∈ C1. Let E ′ = (E \ {av}) ∪ {bv}
and C ′

1 = (C1 − {bu}) ∪ {au}. Thus H −E ′ has two connected components,
C ′

1 and C2. �

2.5 Proof of Theorem 4

We will find a (t,K, L)-factorization of K
(s)
n of which H, f and fh, 1 ≤ h ≤ s

are an amalgamation.
By (B5), for 1 ≤ i ≤ t, Hi has an li-edge-connected ki-regular detachment

Fi. Hi is called a colour class and Fi is called a factor. Let V (K
(s)
n ) be the

vertex set of each factor. Label the vertices of each factor so that for each
vertex v in H the set of vertices into which v is split when Fi is obtained
from Hi is the same for each i, 1 ≤ i ≤ t. Also let the number of vertices in
Ph, 1 ≤ h ≤ s, formed when v is split be fh(v). Let U also be a graph with

vertex set V (K
(s)
n ) that contains each edge of each factor. We need to alter

the factors until U = K
(s)
n whilst retaining the property that each factor Fi is

a ki-regular li-edge-connected detachment of the corresponding colour class
Hi, 1 ≤ i ≤ t.

Let V (H) = {v1, v2, . . . , vr}. Let V (K
(s)
n ) = V1 ∪ V2 ∪ · · · ∪ Vr, where

Vj, 1 ≤ j ≤ r, is the set of vertices—called a set of split vertices—that was
formed by the splitting of the vertex vj in each Hi. For 1 ≤ j ≤ r, 1 ≤ h ≤ s,
let Ijh = Vj ∩Ph; we call these sets independent sets of split vertices. So each
set of split vertices can be partitioned into independent sets of split vertices.
Note that |Ijh| = fh(vj). If a part Ph of V (K

(s)
n ) is a subset of a set of

split vertices, then it is called a single part (i.e fh(vj) = n for some j); if it
contains vertices from more than one set of split vertices, then it is called a
mixed part.

Let x and y each be either a vertex, an independent set of split vertices
or a set of split vertices. Then p(x, y) is the number of edges in U that

join x to y and q(x, y) is the number of edges in K
(s)
n that join x to y. If

p(x, y) = q(x, y), then we may say that x and y are joined the correct number
of times.

There are four main stages to the proof. At each stage we use (a, b)-swaps
to make alterations to the factors and thus also to U . (Note that to avoid
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introducing further notation we use the same names—Fi, 1 ≤ i ≤ t, and
U—for graphs before and after making (a, b)-swaps). In (C1) to (C4) we
state the property U has at the end of each stage.

(C1) For each independent set of split vertices Ijh and each set of split
vertices Vz, p(Ijh, Vz) = q(Ijh, Vz).

(C2) For each pair of independent sets of split vertices Ijh and Izg, p(Ijh, Izg) =
q(Ijh, Izg).

(C3) For each vertex v and each independent set of split vertices Ijh,
p(v, Ijh) = q(v, Ijh).

(C4) For each pair of vertices v and w, p(v, w) = q(v, w).

Note that when (C4) is satisfied, U = K
(s)
n and the proof is complete.

For the first two stages we will work not with the factors Fi but with
graphs F ∗

i that are amalgamations of the factors and detachments of the
colour classes. They are called partially amalgamated factors and are ob-
tained from the factors by merging vertices that belong to the same single
part. That is, they have vertex set A ∪B where

A = {v ∈ K(s)
n : v is in a mixed part},

B = {P ∗ : P is a single part},

and for each edge uv in Fi

• if u and v are both in mixed parts, then there is an edge uv in F ∗
i ,

• if u is in a mixed part and v is a single part P , then there is an edge
uP ∗ in F ∗

i , and

• if u is in a single part P1 and v is in a single part P2, then there is an
edge P ∗

1P
∗
2 in F ∗

i .

Note that F ∗
i , 1 ≤ i ≤ t, is li-edge-connected. Let U∗ be a graph also with

vertex set A∪B that contains each edge of each partially amalgamated factor.
If V ⊆ K

(s)
n is a set of split vertices, then the subset of A∪B that comprises

the vertices formed when the vertices of V were merged is also called a set
of split vertices and is denoted V ∗; independent subsets of split vertices in
A ∪ B are similarly defined and denoted. Note that, by (Z1) and (Z2), in
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U∗ sets of split vertices contain either vertices in A or vertices in B but not
both, and each vertex in B is an independent set of split vertices.

Let x and y each be either a vertex, an independent set of split vertices
or a set of split vertices in U∗. Then p∗(x, y) denotes the number of edges
that join x to y in U∗ and q∗(x, y) denotes the number of edges that join x

to y in an amalgamation of K
(s)
n with vertex set A ∪B. Note that (B1) and

(B2) say that each pair of sets of split vertices in U and U∗ are joined the
correct number of times.

Before we come to the four main stages of the proof, we remove any loops
from the partially amalgamated factors. Note that the vertices of A belong
to sets of split vertices that belong to mixed parts, and therefore, by (Z1)
and (Z2), to sets of split vertices V ∗

j such that fh(vj) = 0 for all but one
value of h. Hence, by (B2), the vertices of A do not have any loops. Suppose
that there is a loop on P ∗ ∈ B in F ∗

i . Let V ∗
z be the set of split vertices that

contains P ∗. By (B2), fh(vz) > 0 for more than one value of h so there is
a vertex Q∗ ∈ V ∗

z , P ∗ 6= Q∗. If there is also a loop on Q∗, then we delete
the two loops and add two edges that each join P ∗ to Q∗. Otherwise we
can find an edge Q∗u, u 6= P ∗, and we delete this edge and the loop on P ∗

and add edges P ∗Q∗ and P ∗u. In each case F ∗
i remains an li-edge-connected

detachment of Hi and the vertices’ degrees do not change.
Let P ∗ and Q∗ be vertices in B that belong to the same set of split

vertices. Each has degree kin in F ∗
i , 1 ≤ i ≤ t, and therefore each has kin

neighbours. By Lemma 5 we can find a (P ∗, Q∗, li)-swap set. We call this
set S∗i (P

∗, Q∗). Recall that this is a collection of kin (P ∗, Q∗)-pairs in F ∗
i

such that each neighbour of P ∗ is the first element of exactly one pair and
each neighbour of Q∗ is the second element of exactly one pair and that if we
(P ∗, Q∗)-swap pairs in S∗i (P

∗, Q∗), then F ∗
i remains li-edge-connected, and as

P ∗ and Q∗ belong to the same set of split vertices, F ∗
i remains a detachment

of Hi.
We show that after performing any number of (P ∗, Q∗)-swaps on F ∗

i , we

can always find a detachment Fi that is an li-edge-connected ki-factor of K
(s)
n .

Proposition 2 tells us when it is possible to find such detachments. Of the
four conditions, (X2) does not apply since we have that li 6= 1, 1 ≤ i ≤ t, and
(X3) and (X4) do not apply since n 6= 2 so F ∗

i has no vertex of degree 2ki.
Thus we only require that (X1) is satisfied, and as we have just noted, F ∗

i

remains li-edge-connected. (We observe that if li = 1, then (X2) would not
necessarily remain satisfied after a (P ∗, Q∗)-swap. This is the reason that we
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cannot prove the theorem if we allow li = 1.)
We recast (C1) and (C2) in terms of the partially amalgamated factors.

Consider (C1). Each independent set of split vertices in A is also a set of
split vertices so by (B1) is already joined the correct number of times to
every other set of split vertices. We must alter the partially amalgamated
factors so that each independent set of split vertices in B is joined the correct
number of times to each set of split vertices. But the independent sets of
split vertices in B are its vertices so we require that

(C1∗) for each P ∗ ∈ B, for 1 ≤ j ≤ r, p∗(P ∗, V ∗
j ) = q∗(P ∗, V ∗

j ).

When (C1∗) is satisfied each independent set of split vertices in A will be
joined the correct number of times to every other independent set of split
vertices (in A and B). We require that the same is true for independent sets
of split vertices in B so we further alter the partially amalgamated factors
so that

(C2∗) for each distinct pair P ∗, Q∗ ∈ B, p∗(P ∗, Q∗) = q∗(P ∗, Q∗).

When (C2∗) is satisfied the partially amalgamated factors will have detach-
ments that satisfy (C2).

We begin with (C1∗). Let the set-discrepancy of the partially amalga-
mated factors be defined by

δ∗s =
r∑

j=1

∑
P ∗∈B

|p∗(P ∗, Vj)− q∗(P ∗, Vj)|.

When δ∗s = 0, (C1∗) is satisfied. We must alter the partially amalgamated
factors so that δ∗s is reduced if it is greater than zero.

As we noted, each pair of sets of split vertices in U∗ is joined the correct
number of times. Thus, for 1 ≤ j ≤ r, for each set of split vertices V ∗

z ⊆ B,∑
P ∗∈V ∗

z

p∗(P ∗, V ∗
j ) =

∑
P ∗∈V ∗

z

q∗(P ∗, V ∗
j ). (1)

If δ∗s 6= 0, then there is a vertex P ∗ ∈ B and a set of split vertices V ∗
z1

such that p∗(P ∗, V ∗
z1

) 6= q∗(P ∗, V ∗
z1

). By (1), we can assume without loss of
generality that

p∗(P ∗, V ∗
z1

) > q∗(P ∗, V ∗
z1

) (2)
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and that there exists another vertex Q∗ ∈ B that is in the same set of split
vertices as P ∗ such that

p∗(Q∗, V ∗
z1

) < q∗(Q∗, V ∗
z1

). (3)

From S∗i (P
∗, Q∗), 1 ≤ i ≤ t, we create a further set S∗(P ∗, Q∗): for 1 ≤ i ≤ t,

if (u, v) ∈ S∗i (P
∗, Q∗), then (i, u, v) ∈ S∗(P ∗, Q∗). Note that there is an

obvious one-to-one relationship between the neighbours, over all the partially
amalgamated factors, of P ∗ and the triples of S∗(P ∗, Q∗). Similarly for the
neighbours of Q∗.

Claim 6 There is a sequence of sets of split vertices

Γ = V ∗
z1
, V ∗

z2
, . . . , V ∗

zm

such that

(D1) V ∗
zα
6= V ∗

zβ
if α 6= β,

(D2) either p∗(P ∗, V ∗
zm

) < q∗(P ∗, V ∗
zm

) or p∗(Q∗, V ∗
zm

) > q∗(Q∗, V ∗
zm

), and

(D3) for 2 ≤ j ≤ m, there is a triple (ij, uj, vj) ∈ S∗(P ∗, Q∗) where uj ∈
V ∗

zj−1
and vj ∈ V ∗

zj
.

Proof: In fact, we shall prove that there is a sequence of sets of split vertices

∆ = V ∗
g1
, V ∗

g2
, . . . , V ∗

gm′

such that

(E1) V ∗
g1

= V ∗
z1

,

(E2) V ∗
gα
6= V ∗

gβ
if α 6= β,

(E3) either p∗(P ∗, V ∗
gm′ ) < q∗(P ∗, V ∗

gm′ ) or p∗(Q∗, V ∗
gm′ ) > q∗(Q∗, V ∗

gm′ ), and

(E4) for 2 ≤ j ≤ m′, there is a triple (ij, uj, vj) ∈ S∗(P ∗, Q∗) where uj ∈ V ∗
gh

for some h ∈ {1, 2, . . . , j − 1} and vj ∈ V ∗
gj

.
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It is easy to see that ∆ has a subsequence that has V ∗
g1

= V ∗
z1

as the first
term and satisfies (D1), (D2) and (D3). (Let V ∗

gm′ be the final term and work
backwards. If V ∗

gα
is the last term reached, then if α = 1 the subsequence

is found. Otherwise, by (E4), there is a triple (iα, uα, vα). Let the previous
term of the sequence be the set of split vertices V ∗

gβ
that contains uα. As

β < α we must eventually get back to V ∗
g1

.)
We find ∆. The first term V ∗

g1
= V ∗

z1
was found before the claim was

stated. Suppose that we have found the first µ terms, and that this se-
quence of µ terms satisfies (E1), (E2) and (E4) with m′ = µ. If for any
α ∈ {1, 2, . . . , µ}

p∗(P ∗, V ∗
gα

) < q∗(P ∗, V ∗
gα

), or

p∗(Q∗, V ∗
gα

) > q∗(Q∗, V ∗
gα

),

then we pick the smallest such α and let ∆ = V ∗
g1
, V ∗

g2
, . . . , V ∗

gα
as this also

satisfies (E3). Otherwise, for 1 ≤ j ≤ µ,

p∗(P ∗, V ∗
gj

) ≥ q∗(P ∗, V ∗
gj

), (4)

p∗(Q∗, V ∗
gj

) ≤ q∗(Q∗, V ∗
gj

). (5)

Let W = V ∗
g1
∪ V ∗

g2
∪ · · · ∪ V ∗

gµ
. As P ∗ and Q∗ are in the same set of split

vertices, q∗(P ∗, V ∗
j ) = q∗(Q∗, V ∗

j ), 1 ≤ j ≤ r. By (2), (3), (4) and (5), over
all the factors P ∗ has more neighbours than Q∗ in W . In S∗(P ∗, Q∗) there
is a triple corresponding to each neighbour of P ∗ in each factor; similarly
there is a triple corresponding to each neighbour of Q∗. So there is a triple
(iµ+1, uµ+1, vµ+1) ∈ S∗(P ∗, Q∗), such that uµ+1 ∈ W and vµ+1 /∈ W . Let the
set of split vertices containing vµ+1 be V ∗

gµ+1
. Then V ∗

gµ+1
6= V ∗

gj
, 1 ≤ j ≤ ω,

since V ∗
gµ+1

6⊆ W .
We must eventually find a set of split vertices that satisfies (E3): note

that
r∑

j=1

p∗(P ∗, V ∗
j ) =

r∑
j=1

q∗(P ∗, V ∗
j ), (6)

since both sums are equal to n2(s − 1), the sum of the degrees of P ∗ taken
over all the factors. As p∗(P ∗, V ∗

z1
) > q∗(P ∗, V ∗

z1
), there is at least one set of

split vertices Vz such that p∗(P ∗, V ∗
z ) < q∗(P ∗, V ∗

z ) and therefore Vz, at least,
satisfies (E3). This completes the proof of Claim 6. �

We use the claim to reduce δ∗s . For 2 ≤ j ≤ m, (P ∗, Q∗)-swap uj and vj
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in F ∗
ij
. Each new partially amalgamated factor F ∗

i obtained in this way is an
li-edge-connected detachment of the corresponding colour class Hi.

For 2 ≤ j ≤ m− 1, an edge from P ∗ to a vertex, uj+1, that is in V ∗
zj

, has
been deleted and an edge from P ∗ to a vertex, vj, that is in V ∗

zj
has been

added. Thus p∗(P ∗, V ∗
zj

) is unchanged. Similarly p∗(Q∗, V ∗
zj

), 2 ≤ j ≤ m− 1,
is unchanged.

The edge P ∗u2 is deleted so p∗(P ∗, V ∗
z1

) is reduced by 1. Hence, by (2),
δ∗s is also reduced by 1. The addition of Q∗u2 causes p∗(Q∗, V ∗

z1
) to increase

by 1 so, by (3), δ∗s decreases further by 1.
Consider (D2). If p∗(P ∗, V ∗

zm
) < q∗(P ∗, V ∗

zm
), then the addition of P ∗vm

causes p∗(P ∗, V ∗
zm

) to increase by 1, and δ∗s is reduced further by 1. The
deletion of Q∗vm may cause δ∗s to increase by 1, but at worst δ∗s is reduced
by 2 overall. The other possibility is that p∗(Q∗, V ∗

zm
) > q∗(Q∗, V ∗

zm
), and by

a similar argument δ∗s is reduced overall by at least 2 in this case also. Note
that the partially amalgamated factors remain loopless.

By repeated application of Claim 6, δ∗s is reduced to zero. Thus (C1∗)
is satisfied, that is, every independent set of split vertices in B is joined the
correct number of times to every set of split vertices. Independent sets of
split vertices in A were already joined the correct number of times to each set
of split vertices, so by finding detachments Fi of each F ∗

i we could obtain a
set of factors that satisfies (C1). For now however, we continue to work with
the partially amalgamated factors. We show that when (C1∗) is satisfied, we
can further alter them so that (C2∗) is also satisfied, that is, so that each
pair of independent sets of split vertices in B is joined the correct number of
times (remember that the independent sets of split vertices in B are just its
vertices).

Let the independent-set-discrepancy δ∗i of the partially amalgamated fac-
tors be defined by

δ∗i =
∑

P∗,Q∗∈B

Q∗ 6=P ∗

|p∗(P ∗, Q∗)− q∗(P ∗, Q∗)|.

If (C2∗) is satisfied, then δ∗i = 0. We describe a method that will reduce
δ∗i if it is greater than zero.

We need only consider sets of split vertices that each contain at least two
vertices in B since if a vertex P ∗ ∈ B is the only vertex in a set of split
vertices, then, by (C1∗) it is already joined the correct number of times to
every other vertex in B.
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Claim 7 Suppose that P ∗ and Q∗ are vertices in B in the same set of split
vertices and that I∗z1

/∈ {P ∗, Q∗} is an independent set of split vertices such
that

p∗(P ∗, I∗z1
) > q∗(P ∗, I∗z1

), (7)

p∗(Q∗, I∗z1
) < q∗(Q∗, I∗z1

). (8)

Let S∗(P ∗, Q∗) be defined as before. Then there is a sequence of independent
sets of split vertices

Γ = I∗z1
, I∗z2

, . . . , I∗zm

such that

(F1) I∗zj
/∈ {P ∗, Q∗}, 1 ≤ j ≤ m,

(F2) I∗zα
6= I∗zβ

if α 6= β,

(F3) either p∗(P ∗, I∗zm
) < q∗(P ∗, I∗zm

) or p∗(Q∗, I∗zm
) > q∗(Q∗, I∗zm

), and

(F4) for 2 ≤ j ≤ m, there is a triple (ij, uj, vj) ∈ S∗(P ∗, Q∗) where uj ∈
I∗zj−1

and vj ∈ I∗zj
.

Proof: Again we shall actually prove that there is a sequence of independent
sets of split vertices

∆ = I∗g1
, I∗g2

, . . . , I∗gm′

such that

(G1) I∗g1
= I∗z1

,

(G2) I∗gj
/∈ {P ∗, Q∗}, 1 ≤ j ≤ m,

(G3) I∗gα
6= I∗gβ

if α 6= β,

(G4) either p∗(P ∗, I∗gm′ ) < q∗(P ∗, I∗gm′ ) or p∗(Q∗, I∗gm′ ) > q∗(Q∗, I∗gm′ ), and

(G5) for 2 ≤ j ≤ m′, there is a triple (ij, uj, vj) ∈ S∗(P ∗, Q∗) where uj ∈ I∗gh

for some h ∈ {1, 2, . . . , j − 1} and vj ∈ I∗gj
.
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As before, from ∆ we can find Γ.
The first term of ∆, I∗g1

= I∗z1
, is known by the hypothesis. Suppose that

we have found the first µ terms. If the sequence is not complete, then we can
assume that, for 1 ≤ j ≤ µ,

p∗(P ∗, I∗gj
) ≥ q∗(P ∗, I∗gj

), (9)

p∗(Q∗, I∗gj
) ≤ q∗(Q∗, I∗gj

). (10)

Let W = I∗g1
∪ I∗g2

∪ · · · ∪ I∗gµ
. As P ∗ and Q∗ are both vertices in B,

q∗(P ∗, I∗) = q∗(Q∗, I∗), for every independent set of split vertices I∗ /∈
{P ∗, Q∗}. Therefore, by (7), (8), (9) and (10), over all the partially amalga-
mated factors P ∗ has more neighbours than Q∗ in W . So there is a triple
(iµ+1, uµ+1, vµ+1) ∈ S∗(P ∗, Q∗) such that uµ+1 ∈ W and vµ+1 /∈ W . Let the
independent set of split vertices containing vµ+1 be I∗gµ+1

. Then I∗gµ+1
6= I∗gj

,
1 ≤ j ≤ µ, since I∗gµ+1

6⊂ W , and I∗gµ+1
/∈ {P ∗, Q∗} since vµ+1 /∈ {P ∗, Q∗} as

vµ+1 = P ∗ would imply that uµ+1 = Q∗, and vµ+1 = Q∗ would imply that
there is a loop on Q∗.

We must eventually find a set of split vertices that satisfies (G4): note
that ∑

p∗(P ∗, I∗) =
∑

q∗(P ∗, I∗), (11)

(where the sums are over all independent sets of split vertices I∗) since both
sums are equal to n2(s− 1), the sum of the degrees of P ∗ taken over all the
factors. As p∗(P ∗, I∗z1

) > q∗(P ∗, I∗z1
), there is at least one independent set of

split vertices I∗ such that p∗(P ∗, I∗) < q∗(P ∗, I∗) and therefore I∗, at least,
satisfies (F3). This completes the proof of Claim 7. �

We describe how to use the claim to reduce δ∗i .
Choose a set of split vertices V ∗

z ⊆ B such that

(C1∗a) for every independent set of split vertices I∗ ∈ B \ V ∗
z , p∗(I∗, V ∗

j ) =
q∗(I∗, V ∗

j ), 1 ≤ j ≤ r.

As (C1∗) implies (C1∗a) we can begin by choosing any set as V ∗
z . If possible

choose a pair of independent sets of split vertices P ∗ ∈ V ∗
z , I∗z1

6⊆ V ∗
z that

satisfies (7). By (C1∗a), there exists Q∗ ∈ V ∗
z that satisfies (8). Now we

can use Claim 7. For 2 ≤ j ≤ m, (P ∗, Q∗)-swap (uj, vj) in F ∗
ij
. Thus

for 2 ≤ j ≤ m − 1, we add P ∗vj to F ∗
ij

and delete P ∗uj+1 from F ∗
ij+1

,
and so p∗(P ∗, I∗zj

) is unchanged since vj, uj+1 ∈ I∗zj
. Similarly p∗(Q∗, I∗zj

) is
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unchanged, 2 ≤ j ≤ m − 1. By (7) and (8), the deletion of P ∗u2 and the
addition of Q∗u2 reduce δ∗i by 2, and, by (F4), the addition of P ∗vm and the
deletion of Q∗vm at worst have no further effect on δ∗i . Note that no loops
are created.

Consider how these (P ∗, Q∗)-swaps affect δ∗s . Let V ∗
zj

be the set of split
vertices that contains I∗zj

, 1 ≤ j ≤ m. For 2 ≤ j ≤ m − 1, p∗(P ∗, I∗zj
)

and p∗(Q∗, I∗zj
) were unchanged so p∗(P ∗, V ∗

zj
) and p∗(Q∗, V ∗

zj
) do not change.

Note that

p∗(P ∗, V ∗
z1

) and p∗(Q∗, V ∗
zm

) are reduced by 1, and (12)

p∗(P ∗, V ∗
zm

) and p∗(Q∗, V ∗
z1

) are increased by 1. (13)

Note that V ∗
z1

and V ∗
zm

are both subsets of B since they contain Iz1 and Izm

which satisfy (7) and (F4) respectively and we know that each independent
set of split vertices in A is already joined the correct number of times to P ∗

and Q∗.
As P ∗, Q∗ ⊂ V ∗

z , (C1∗a) remains satisfied. So we look for further pairs
P ∗ ∈ Vz, I

∗
z1
6⊂ Vz, and repeat the process. When no such pairs remain we

have p∗(P ∗, I∗) = q∗(P ∗, I∗) for every P ∗ ∈ V ∗
z , for every independent set

of vertices I∗ /∈ V ∗
z . As p∗(P ∗, V ∗

j ) =
∑
p∗(P ∗, I∗) (where the sum is over

all independent sets of vertices I∗ ⊆ V ∗
j ), we have p∗(P ∗, V ∗

j ) = q∗(P ∗, V ∗
j ),

1 ≤ j ≤ r, j 6= z. By (6), this implies that p∗(P ∗, V ∗
z ) = q∗(Q∗, V ∗

z ) also.
Thus

(C1∗b) for every vertex P ∗ ∈ V ∗
z , p∗(P ∗, V ∗

j ) = q∗(P ∗, V ∗
j ), 1 ≤ j ≤ r.

Note that (C1∗a) and (C1∗b) together imply (C1∗).
Now find a pair P ∗ ∈ V ∗

z , I∗z1
∈ V ∗

z that satisfies (7). By (C1∗b), there
exists Q∗ ∈ V ∗

z that satisfies (8) so we can reduce δ∗i further using the claim
and the method of (P ∗, Q∗)-swapping just described. Note that V ∗

z1
= V ∗

z and
that V ∗

zm
= V ∗

z (since only I∗zm
∈ V ∗

z can satisfy (F4)). Thus (12) and (13)
cancel each other out and (C1∗a) and (C1∗b) remain satisfied. We repeat
this until there are no further pairs P ∗, I∗z1

∈ V ∗
z that satisfy (7). Then we

begin the whole process again with another choice of V ∗
z . Eventually δ∗i is

reduced to zero and (C2∗) is satisfied.
Therefore we can find detachments of the partially amalgamated factors

that form a set of factors that satisfy (C2), and it is these we work with for
the rest of the proof.
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Whether or not independent sets of split vertices belong to the same
set of split vertices is not important in the next two stages of the proof.
Therefore we can label the independent sets of split vertices more simply as
I1, I2, . . . , Ir′ .

By (C2), for 1 ≤ j < z ≤ r′,

p(Ij, Iz) = q(Ij, Iz). (14)

Let the independent-set-discrepancy of the factors be defined by

δi =
∑

a∈V (K
(s)
n )

r′∑
j=1

|p(a, Ij)− q(a, Ij)|.

When (C3) is satisfied, δi = 0. If δi > 0, we must show how to reduce it.
Let j and z be fixed. By (14),∑

a∈Iz

p(a, Ij) =
∑
a∈Iz

q(a, Ij). (15)

If δi > 0, then for some vertex a and some z1, p(a, Iz1) 6= q(a, Iz1). We
can assume that

p(a, Iz1) > q(a, Iz1), (16)

p(b, Iz1) < q(b, Iz1), (17)

where b is a vertex in the same independent set of split vertices as a.
By Lemma 2, for each Fi we can form an (a, b, li)-swap-set which we call

Si(a, b). We form a further set S(a, b): for 1 ≤ i ≤ t, if (c, d) ∈ Si(a, b), then
(i, c, d) ∈ S(a, b). Thus S(a, b) contains ordered triples (i, c, d) where c is a
neighbour of a and d is a neighbour of b in Fi. Note that there is an obvious
one-to-one relationship between the triples of S(a, b) and the neighbours,
over all the factors, of a, and also between the triples of S(a, b) and the
neighbours, over all the factors, of b.

Claim 8 There is a sequence of independent sets of split vertices

Γ = Iz1 , Iz2 , . . . , Izm

such that
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(H1) Izα 6= Izβ
if α 6= β,

(H2) either p(a, Izm) < q(a, Izm) or p(b, Izm) > q(b, Izm), and

(H3) for 2 ≤ j ≤ m, there is a triple (ij, cj, dj) ∈ S(a, b) where cj ∈ Izj−1

and dj ∈ Izj
.

Proof: In fact we shall prove that there is a sequence of independent sets of
split vertices

∆ = Ig1 , Ig2 , . . . , Igm′

such that

(I1) Ig1 = Iz1 ,

(I2) Igα 6= Igβ
if α 6= β,

(I3) either p(a, Igm′ ) < q(a, Igm′ ) or p(b, Igm′ ) > q(b, Igm′ ), and

(I4) for 2 ≤ j ≤ m′, there is a triple (ij, cj, dj) ∈ S(a, b) where cj ∈ Igh
for

some h ∈ {1, 2, . . . , j − 1} and dj ∈ Igj
.

From ∆ we can find Γ.
The first term Ig1 = Iz1 was found before the claim was stated. If the

sequence is not complete, then we can assume that, for 1 ≤ j ≤ µ,

p(a, Igj
) ≥ q(a, Igj

), (18)

p(b, Igj
) ≤ q(b, Igj

). (19)

Let W = Ig1 ∪ Ig2 ∪ · · · ∪ Igµ . As a and b are in the same set of split vertices,
q(a, Ij) = q(b, Ij), 1 ≤ j ≤ r. Therefore, by (16), (17), (18) and (19) over
all the factors a has more neighbours than b in W . So there is a triple
(iµ+1, cµ+1, dµ+1) ∈ S(a, b), such that cω+1 ∈ W and dµ+1 /∈ W . Let the set
of split vertices containing dµ+1 be Vgµ+1 . Then Vgµ+1 6= Vgj

, 1 ≤ j ≤ µ, since
Vgµ+1 6⊂ W .

We will eventually find a set of split vertices that satisfies (I3): note that

r∑
j=1

p(a, Ij) =
r∑

j=1

q(a, Ij), (20)

since both sums are equal to n(s − 1), the sum of the degrees of a taken
over all the factors. As p(a, Vz1) > q(a, Vz1), there is at least one set of split
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vertices Vz such that p(a, Vz) < q(a, Vz) and therefore Vz, at least, satisfies
(I3). This completes the proof of Claim 8. �

For 2 ≤ j ≤ m, we (a, b)-swap cj and dj in Fij . Each new factor Fi ob-
tained is clearly ki-regular and, by Lemma 5, it is li-edge-connected. It is
also a detachment of the corresponding colour class Hi.

For 2 ≤ j ≤ m − 1, p(a, Izj
) and p(b, Izj

) are unchanged. By (16) and
(17) the reduction in p(a, Iz1) and the increase in p(b, Iz1) reduce δi by 2. By
(H2) the changes in p(a, Izm) and p(b, Izm) at worst have no effect on δi. The
factors remain loopless.

Finally we alter the factors so that (C4) is satisfied
Let the vertex-discrepancy of the factors be defined by

δv =
∑

ac∈E(K
(s)
n )

|p(a, c)− 1|.

If (C4) is satisfied, then δv = 0. If δv > 0, then we show how to reduce it.
We need only consider independent sets of split vertices that each contain

at least two vertices: let Iz be an independent set of split vertices that
contains just one vertex c. Let a be a vertex in a different part. As (C3)
is satisfied, p(a, Iz) = q(a, Iz) = 1. As p(a, c) = p(a, Iz), we already have
p(a, c) = 1.

Claim 9 Suppose that a and b are vertices in the same independent set of
split vertices, that c1 /∈ {a, b} and that

p(a, c1) > 1, (21)

p(b, c1) < 1. (22)

Let S(a, b) be defined as before. Then there is a sequence of vertices c1, c2, . . . , cm
such that

(J1) cj /∈ {a, b}, 2 ≤ j ≤ m,

(J2) cα 6= cβ if α 6= β,

(J3) either p(a, cm) < 1 or p(b, cm) > 1, and

(J4) for 1 ≤ j ≤ m− 1 there is a triple (ij, cj, cj+1) ∈ S(a, b).

25



Proof: The first term of the sequence is known by the hypothesis. If the
sequence is not complete, then we can assume, for 1 ≤ j ≤ µ,

p(a, cj) ≥ 1,

p(b, cj) ≤ 1.

As p(a, cµ) ≥ 1 we can find a triple (iµ, cµ, cµ+1) ∈ S(a, b). As there are
no loops and cµ+1 is a neighbour of b, cµ+1 6= b. By (J1), cµ 6= b and a
is the second element of a pair in Siµ(a, b) only if b is the first element, so
cµ+1 6= a. By (22), p(b, c1) = 0, so cµ+1 6= c1. As p(b, cj) ≤ 1, 2 ≤ j ≤ µ,
there is at most one triple in S(a, b) with cj as the third element and we have
already found one such triple (namely (ij−1, cj−1, cj)). Therefore cµ+1 6= cj,
2 ≤ j ≤ µ.

The sequence must terminate: there is a finite number of vertices and it
is easily seen that p(a, c1) > 1 implies that for some vertex c, p(a, c) < 1.
This completes the proof of Claim 9. �

We describe how to use the claim to reduce the vertex-discrepancy. First
choose an independent set of split vertices Iz such that

(C3a) for every vertex c /∈ Iz, p(c, Ij) = q(c, Ij), 1 ≤ j ≤ r.

As (C3) implies (C3a) we can initially choose any set of split vertices as Iz.
If possible choose a pair of vertices a ∈ Iz, c1 /∈ Iz that satisfy (21). By
(C3a) there is a vertex b ∈ Iz that satisfies (22). Therefore we use Claim 9:
for 1 ≤ j ≤ m − 1, (a, b)-swap (cj, cj+1) in Fij . For 2 ≤ j ≤ m − 1, p(a, cj)
and p(b, cj) are unchanged. By (21), the deletion of ac1 reduces δv by 1, and,
by (22), the addition of bc1 reduces δv further by 1. By (J3), the addition of
acm and the deletion of bcm at worst has no net effect on δv. So overall δv is
reduced by at least 2. As cj /∈ {a, b}, 1 ≤ j ≤ m, no loops are created.

Consider the effect of these (a, b)-swaps on δi. Let Izj
be the set of split

vertices that contains cj, 1 ≤ j ≤ m. For 2 ≤ j ≤ m− 1, p(a, cj) and p(b, cj)
were unchanged so p(a, Izj

) and p(b, Izj
) are unchanged. Note that

p(a, Iz1) and p(b, Izm) are reduced by 1, and (23)

p(a, Izm) and p(b, Iz1) are increased by 1. (24)

As a, b ∈ Iz, (C1a) remains satisfied (even though (C1) does not). So we can
look for further pairs a ∈ Iz, c1 /∈ Vz that satisfy (21) and repeat the process.
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When no such pairs remain we have p(a, c) = 1 for every a ∈ Iz, c /∈ Iz.

For 1 ≤ j ≤ r, j 6= z, p(a, Ij) =
∑
c∈Ij

p(a, c) = |Ij|. Thus p(a, Ij) = q(a, Ij),

1 ≤ j ≤ r, j 6= z. By (20), this implies that p(a, Iz) = q(a, Iz) also. Thus

(C3b) for every vertex a ∈ Iz, p(a, Ij) = q(a, Ij), 1 ≤ j ≤ r.

Note that (C3a) and (C3b) together imply (C3).
Now if possible choose a pair a ∈ Iz, c ∈ Iz that satisfies (21). By (C3b),

there is a vertex b ∈ Iz that satisfies (22), so we can use the claim to reduce
δv further. Note that Iz1 = Iz (since Iz1 is the set that contains c1). Note
also that that Izm = Iz since cm ∈ Izm and Im satisfies (J3) and we know
that p(a, c) = 1 for all a ∈ Iz, c /∈ Vz. Thus (23) and (24) cancel each other
out and (C3a) and (C3b) remain satisfied. Look for further pairs a, c1 ∈ Iz
that satisfy (21) and reduce δv further. When no such pairs remain (C3) is
satisfied since (C3a) and (C3b) are satisfied, and we can begin the process
again with another choice of Iz. Eventually δv is reduced to zero and (C4) is
satisfied. This completes the proof of Theorem 4. �

2.6 Proof of Theorem 1

The following four sentences prove the necessity of the four conditions. The
degree of a vertex in K

(s)
n is equal to the sum of its degrees in the factors.

By the handshaking lemma, a regular graph on an odd number of vertices
must have even degree. The set of all edges incident with a vertex form an
edge-cutset. A 1-factor of a simple graph (other than K2) is not connected.

Now we have to show that there exists a (t,K, L)-factorization of K
(s)
n

whenever (A1) to (A4) are satisfied. By Theorem 4, unless li = 1 for some i it

is sufficient to find an outline (t,K, L)-factorization of K
(s)
n that satisfies (Z1)

and (Z2). It easy to find such outline factorizations H, f and fh, 1 ≤ h ≤ s.

Let V (H) = {v}. Let there be n2

(
s

2

)
loops on v (this is the number of edges

in K
(s)
n ). Let nski/2 of the loops be coloured i, 1 ≤ i ≤ t. Let f(v) = ns

and let fh(v) = n, 1 ≤ h ≤ s. It is easy to see that H, f and fh, 1 ≤ h ≤ s,
satisfy (B1) to (B5).

Now for the case where some li = 1. Replace every instance of 1 in L
with 2 to obtain L′. Note that, by (A4), if li = 1, then ki ≥ 2 so t, K and L′

satisfy (A1) to (A4). A (t,K, L′)-factorization is also a (t,K, L)-factorization
since li prescribes only the minimum edge-connectivity. �
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3 Embedding factorizations

The most general embedding result that we might aim to find would show
when it is possible to find an embedding of a factorization of G = Ka1,...,as

in a (t,K, L)-factorization of K
(s)
n , where ai ≤ n, 1 ≤ i ≤ s. To prove

this using amalgamations however, we would have to add one vertex v0 to
G to create an outline (t,K, L)-factorization of K

(s)
n . Thus we would have

fh(v0) = n − ah, 1 ≤ h ≤ s. But if we are to use Theorem 4 we require, by
(Z1) and (Z2), that fh(v0) ∈ {0, n}, 1 ≤ h ≤ s. In Theorem 11, we find a
way around this difficulty in the bipartite case and show when a factorization
of Ka,b can be embedded in a (t,K, L)-factorization of Kn,n, a, b ≤ n. In the
general case however, we confine ourselves to the following: in Theorem 10
we show precisely when a factorization G1, . . . , Gt of K

(σ)
n can be embedded

in a (t,K, L)-factorization F1, . . . , Ft of K
(s)
n (except that we again have the

restriction li 6= 1, 1 ≤ i ≤ t). This has only been proved previously for the
case of Hamiltonian decompositions [4].

3.1 Embedding equipartite graphs

We need some definitions before we can state the theorem. Let ωi be the num-
ber of connected components ofGi and let these components be Ci,1, . . . , Ci,ωi

.

Let εi,j =
∑

v∈V (Ci,j)

ki − dGi
(v), and let εi =

ωi∑
j=1

εi,j. Let ri,j be the number of

minimal separating sets of Ci,j that contain fewer than li edges, let these sets
be Ei,j

1 , Ei,j
2 , . . . , Ei,j

ri,j
, and let Ci,j

m1
and Ci,j

m2
be the connected components of

Ci,j − Ei,j
m . Let εi,j,mp =

∑
v∈V (Ci,j

mp )

ki − dGi
(v).

Theorem 10 Suppose that n, s, t,K and L are such that a (t,K, L)-factorization

of K
(s)
n exists and that li 6= 1, 1 ≤ i ≤ t. Let α = n(s−σ). A t-edge-coloured

K
(σ)
n can be embedded in a (t,K, L)-factorization of K

(s)
n if and only if

(I) dGi
(v) ≤ ki for each v ∈ V (K

(σ)
n ), for 1 ≤ i ≤ t,

(II) εi,j ≥ li for 1 ≤ i ≤ t, 1 ≤ j ≤ ωi,

(III) α ≥ max{εi/ki : 1 ≤ i ≤ t}, and
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(IV) εi,j,mp ≥ li − |Ei,j
m |, for 1 ≤ i ≤ t, 1 ≤ j ≤ ωi, 1 ≤ m ≤ ri,j, 1 ≤ p ≤ 2.

Proof: By Theorem 1, we may assume that conditions (A1) to (A4) are
satisfied.

Necessity: suppose that a t-edge-colouredK
(σ)
n is embedded in an (t,K, L)-

factorization of K
(s)
n . We show that the conditions of the theorem hold.

As Gi is a subgraph of a ki-regular graph, dGi
(v) ≤ ki for each v ∈

V (K
(σ)
n ), for 1 ≤ i ≤ t. So (I) holds.

By definition εi,j is the number of edges incident with the vertices of Ci,j

in E(Fi) \E(Gi). All these edges join Ci,j to V (K
(s)
n ) \ V (K

(σ)
n ) and form an

edge-cutset so there must be at least li of them. So (II) holds.
Similarly, εi is the number of edges incident with the vertices of Gi in

E(Fi)\E(Gi), and all these edges join Gi to one of the α vertices of V (K
(s)
n )\

V (K
(σ)
n ) which each have degree ki. Thus εi ≤ kiα. So (III) holds.

For 1 ≤ i ≤ t, 1 ≤ j ≤ ωi, 1 ≤ m ≤ ri,j, there must be li edge-disjoint
paths from Ci,j

m1
to Ci,j

m2
. We know that |Ei,j

m | of these paths are in Ci,j. The

remainder must go through V (K
(s)
n ) \ V (K

(σ)
n ). Therefore there must be at

least li − |Ei,j
m | edges from each of Ci,j

m1
and Ci,j

m2
to V (K

(s)
n ) \ V (K

(σ)
n ). So

(IV) holds as εi,j,mp is the number of edges incident with the vertices of Ci,j
mp

in E(Fi) \ E(Gi).
Sufficiency: to complete the proof we must show that if the four conditions

hold then we can find an embedding. From K
(σ)
n we form H, f and fh, 1 ≤

h ≤ s, an outline (t,K, L)-factorization of K
(s)
n . Let V (H) = V (K

(σ)
n )∪{v0}.

Let f(v0) = α, let f(v) = 1 for each v ∈ V (K
(σ)
n ). Let fh(v0) = 0, 1 ≤ h ≤ σ,

and let fh(v0) = n, σ + 1 ≤ h ≤ s. If v ∈ K
(σ)
n , then let fh(v) = 1 if v ∈ Ph,

else let fh(v) = 0. The edge set of H contains the edges of K
(σ)
n (which are

already coloured) and

• for 1 ≤ i ≤ t, for each v ∈ K
(σ)
n , there are ki − dGi

(v) edges coloured i
from v0 to v, and

• for 1 ≤ i ≤ t, there are (αki − εi)/2 loops coloured i on v0.

If we can prove that H, f and fh, 1 ≤ h ≤ s, are an outline (t,K, L)-

factorization of K
(s)
n , then we can apply Theorem 4. Any (t,K, L)-fac-

torization F1, . . . , Ft of K
(s)
n of which H, f and fh, 1 ≤ h ≤ s, is an amalga-

mation is such that Gi is a subgraph of Fi.
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We check that the number of loops added of each colour is an integer. As
α = n(s− σ),

αki − εi

2
=

n(s− σ)ki − εi

2

=
kins

2
− εi −

kinσ − εi

2

which is an integer since, by (A2), kins is even and (kinσ − εi)/2 = |E(Gi)|.
We must show that H, f and fh, 1 ≤ h ≤ s, satisfy (B1) to (B5).

For v, w ∈ V (K
(σ)
n ), there is one edge joining v to w unless they are in

the same part. For v ∈ V (K
(σ)
n ), the number of edges from v to v0 is

t∑
i=1

(ki − dGi
(v)) =

t∑
i=1

ki −
t∑

i=1

dGi
(v)

= n(s− 1)− n(σ − 1)

= α

=
∑

h1,h2∈{1,...,s}
h1 6=h2

fh1(v)fh2(v0).

So (B1) is satisfied.
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For v ∈ V (K
(σ)
n ) there are no loops on v. The number of loops on v0 is

t∑
i=1

αki − εi

2
=

t∑
i=1

αki

2
−

t∑
i=1

∑
v∈V (K

(σ)
n )

ki − dGi
(v)

2

=
αn(s− 1)

2
−

∑
v∈V (K

(σ)
n )

t∑
i=1

ki − dGi
(v)

2

=
αn(s− 1)

2
−

∑
v∈V (K

(σ)
n )

n(s− 1)− n(σ − 1)

2

=
αn(s− 1)

2
−

∑
v∈V (K

(σ)
n )

α

2

=
αn(s− 1)

2
− αnσ

2

=
αn(s− 1− σ)

2

=
n2(s− σ)(s− σ − 1)

2

= n2

(
s− σ

2

)
=

∑
1≤h1<h2≤s

fh1(v0)fh2(v0)

So (B2) is satisfied.

For v ∈ V (K
(σ)
n ) there are dGi

(v) + (ki − dGi
(v)) = ki = kif(v) edges of

each colour incident with v. The number of edges of each colour incident
with v0 is ∑

v∈V (K
(σ)
n )

(ki − dGi
(v)) + αki − εi = εi + αki − εi

= αki

= kif(v0).

So (B3) is satisfied.
It is easy to see that (B4) is satisfied.
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To show that (B5) is satisfied we must show that each Hi has an li-edge-
connected ki-regular detachment. Thus we show that each Hi satisfies the
conditions of Proposition 2.

First we show that each Hi is li-edge-connected. Suppose that Hi is not
li-edge-connected. Then there is a minimal edge-cutset E such that |E| < li.
As E is minimal it will contain only edges from one component of Gi, say
Ci,1, and perhaps also edges from v0 to Ci,1. It cannot contain only edges

from v0 to Ci,1 since there are
∑

v∈V (Ci,j)

(ki − dGi
(v)) = εi,j such edges and, by

(II), εi,j ≥ li. The edges of E contained in Ci,1 form one of its minimal
separating sets, say Ei,1

1 , and we can assume that the two components of
Hi − E are Ci,1

11
and Hi − Ci,1

11
. Therefore E must also contain all the edges

from Ci,1
11

to v0. There are
∑

v∈V (C
11
i,1)

(ki − dG1(v)) = εi,1,11 such edges. So

|E| = |Ei,1
1 |+ εi,1,11

≥ li,

by (IV), a contradiction. So each Hi satisfies (X1).
As li 6= 1, 1 ≤ i ≤ t we need not consider (X2). Since n 6= 3 by

assumption, α 6= 2 and we need not consider (X3).
Finally, (X4) is satisfied since each Hi contains more than two vertices.

�

3.2 Embedding bipartite graphs

We consider an embedding of an edge-coloured Ka,b with colour classes
G1, . . . , Gt in a (t,K, L)-factorization F1, . . . , Ft of Kn,n. As well as the defi-
nitions used in Theorem 10 we need the following. For each component Ci,j

of Hi let γi,j be

min
m,x,y
x 6=y

|Ei,j
m |+

∑
v∈V (Ci,j

m1
)∩Px

(ki − dGi
(v)) +

∑
v∈V (Ci,j

m2
)∩Py

(ki − dGi
(v)),

∑
v∈V (Ci,j)∩Px

(ki − dGi
(v))


Note that the two parts of Kn,n are P1 and P2 where the set of a independent
vertices of Ka,b are embedded in P1 and the set of b independent vertices are
embedded in P2.
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Theorem 11 Suppose that n, s = 2, t,K and L are such that a (t,K, L)-
factorization of Kn,n exists, and that li 6= 1, 1 ≤ i ≤ t. Let a and b be
integers, 1 ≤ a, b ≤ n. A t-edge-coloured Ka,b can be embedded in a (t,K, L)-
factorization of Kn,n if and only if

(I) dGi
(v) ≤ ki for each v ∈ V (Ka,b), for 1 ≤ i ≤ t,

(II) εi,j ≥ li for 1 ≤ i ≤ t, 1 ≤ j ≤ ωi,

(III) 2n− (a+ b) ≥ max{εi/ki : 1 ≤ i ≤ t},

(IV) if a = n − 2 and ki = li is odd, then, for 1 ≤ j ≤ ωi, if there exists
v ∈ P2∩Ci,j such that dGi

(v) < ki, then either there exists w ∈ P1∩Ci,j

such that dGi
(w) < ki or for all u ∈ P2 \ Ci,j, dGi

(u) = ki.

(V) if b = n − 2 and ki = li is odd, then, for 1 ≤ j ≤ ωi, if there exists
v ∈ P1∩Ci,j such that dGi

(v) < ki, then either there exists w ∈ P2∩Ci,j

such that dGi
(w) < ki or for all u ∈ P1 \ Ci,j, dGi

(u) = ki.

(VI)
∑ωi

j=1 γi,j + [(2n− (a+ b))ki − εi]/2 ≥ li, 1 ≤ i ≤ t, and

(VII) εi,j,mp ≥ li − |Ei,j
m |, for 1 ≤ i ≤ t, 1 ≤ j ≤ ωi, 1 ≤ m ≤ ri,j, 1 ≤ p ≤ 2.

Proof: By Theorem 1, we may assume that conditions (A1) to (A4) are
satisfied.

Necessity: suppose that a t-edge-colouredK
(σ)
n is embedded in an (t,K, L)-

factorization of K
(s)
n . We show that the conditions (III), (IV), (V) and (VI)

of the theorem hold. The others are identical to conditions of Theorem 10
and the reasons for their are necessity are the same.

Note that εi is the number of edges incident with the vertices of Gi in
E(Fi) \E(Gi). These edges are all incident with the 2n− (a+ b) vertices of
V (Kn,n) \ V (Ka,b) which each have degree ki. Thus εi ≤ (2n− (a+ b))ki. So
(III) holds.

Suppose that a = n − 2, ki = li is odd and there exists v ∈ P2 ∩ Ci,j

(for some j) such that dGi
(v) < ki. Thus v is joined to at least one of the

two vertices of P1 \ V (Ka,b). If there is a vertex u ∈ P2 ∩ (Ka,b \ Ci,j) such
that dGi

(u) 6= ki and there is no vertex w ∈ P1 ∩ Ci,j such that dGi
(w) < ki,

then the two vertices of P1 \ Ka,b form a cutset. Let J1 and J2 be the two
components obtained when the cutset is removed. There must be ki paths
from J1 to J2 through the cutset so each of the two vertices must be joined
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to each of J1 and J2 by ki/2 edges. This is a contradiction since ki is odd.
So (IV) holds. A similar argument shows that (V) holds.

From the argument that shows that (III) holds we can see that in Fi

there are [(2n− (a+ b))ki− εi]/2 edges joining vertices of P1 \V (Ka,b) = W1

to vertices of P2 \ V (Ka,b) = W2. We will form an edge-cutset of Fi that
separates W1 from W2. First we take all the edges joining vertices of W1 to
vertices of W2. Next we ensure there is no path from W1 to W2 through Ci,j,
1 ≤ j ≤ ωi. We do this by, for each j, taking either all the edges from Ci,j

to W1 (or W2) or taking an edge-cutset Ei,j
m from Ci,j and also all edges from

Ci,j
m1

to W1 and from Ci,j
m2

to W2 (or vice versa). Thus the minimum number
of edges incident with Ci,j we must take is γi,j, and so the edge-cutset formed
has at least

∑
j γi,j + [(2n− (a+ b))ki − εi]/2 edges. So (VI) holds.

Sufficiency: to complete the proof we must show that if the conditions
hold then we can find an embedding. FromKa,b we formH, f and fh, 1 ≤ h ≤
2, an outline (t,K, L)-factorization of Kn,n. Let V (H) = V (Ka,b) ∪ {v1, v2}.
Let f(v1) = f1(v1) = n − a; let f(v2) = f2(v2) = n − b. For each v ∈ Ka,b,
let fh(v) = 1, if v ∈ Ph, else let fh(v) = 0. Henceforth when we refer to P1

and P2 we will mean vertices in Ka,b; we do not consider the vertices v1 and
v2 to be in these parts. The edge set of H contains the edges of Ka,b (which
are already coloured) and

• for each v ∈ P1, there are ki − dGi
(v) edges coloured i from v to v2,

• for each v ∈ P2, there are ki−dGi
(v) edges coloured i from v to v1, and

• for 1 ≤ i ≤ t, there are [(2n− (a + b))ki − εi]/2 edges coloured i from
v1 to v2

By (III), the number of edges of each colour from v1 to v2 is not negative.
If we can prove that H, f and fh, 1 ≤ h ≤ 2, are an outline (t,K, L)-

factorization of Kn,n, then we can apply Theorem 4. Any (t,K, L)-fac-
torization F1, F2, . . . , Ft of Kn,n of which H, f and fh, 1 ≤ h ≤ s, is an
amalgamation is such that Gi is a subgraph of Fi.

We note that it is a simple matter to form H from the edge-coloured Ka,b.
We add edges so that the vertices of V (Ka,b) are incident with the correct
number of edges of each colour and then add edges between v1 and v2 so that
the total number of edges of each colour is correct. Most importantly, we do
not have to make any choices about how to colour edges.

As an aside, we note this would not be the case if we tried to use the
same technique to embed Ka1,...,as in K

(s)
n , s > 2. Suppose we add s vertices
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v1, . . . , vs to form an outline graph where vi is the vertex that will be split to
complete Pi. Now suppose that a vertex v ∈ P1 in Ka1,...,as is incident with
less than k1 edges of colour 1. Then in the outline graph, we have to have
an edge coloured 1 from v to vi, i 6= 1. So we have a choice of vi (whereas
in the bipartite case we have to choose v2). So rather than proving that a
particular outline graph satisfies (B1) to (B5), we have to show that at least
one graph (of all the possible ones we could choose to create) satisfies the
conditions.

Back to the proof: we must show that H, f and fh, 1 ≤ h ≤ s, satisfy
(B1) to (B5).

For v, w ∈ V (Ka,b), there is one edge joining v to w unless they are in the
same part. There are no edges from vertices in P1 to v1 and from vertices in
P2 to v2. For v ∈ P1, the number of edges from v to v2 is

t∑
i=1

(ki − dGi
(v)) =

t∑
i=1

ki −
t∑

i=1

dGi
(v)

= n− b

=
∑

h1,h2∈{1,2}
h1 6=h2

fh1(v)fh2(v2).

A similar argument shows that each v ∈ P2 is joined to v1 by the correct
number of edges. The number of edges from v1 to v2 is

t∑
i=1

(2n− (a+ b))ki − εi

2
=

2n− (a+ b)

2

t∑
i=1

ki −
t∑

i=1

∑
v∈V (Ka,b)

ki − dGi
(v)

2

= n2 − (a+ b)n

2
−

∑
v∈V (Ka,b)

t∑
i=1

ki − dGi
(v)

2

= n2 − (a+ b)n

2
−

∑
v∈P1

n− b

2
−

∑
v∈P2

n− a

2

= n2 − (a+ b)n

2
− a(n− b)

2
− b(n− a)

2
= (n− b)(n− a)

=
∑

h1,h2∈{1,2}
h1 6=h2

fh1(v1)fh2(v2).
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So (B1) is satisfied.
There are no loops in H so (B2) is satisfied.
For v ∈ V (Ka,b), there are dGi

(v) + (ki − dGi
(v)) = ki = kif(v) edges of

each colour incident with v. We must show that v1 and v2 are incident with
the correct number of edges of each colour. First note that

εi =
∑

v∈V (Ka,b)

ki − dGi
(v)

= (a+ b)ki −
∑
v∈P1

dGi
(v)−

∑
v∈P2

dGi
(v).

Clearly the two sums are equal so∑
v∈P2

dGi
(v) =

(a+ b)ki − εi

2
.

The number of edges coloured i incident with v1 is

∑
v∈P2

(ki − dGi
(v)) +

(2n− (a+ b))ki − εi)

2

= bki −
∑
v∈P2

dGi
(v) +

(2n− (a+ b))ki − εi)

2

= bki −
(a+ b)ki

2
+
εi

2
+

(2n− (a+ b))ki − εi)

2
= (n− a)ki

= kif(v1)

A similar argument shows that v2 is incident with kif(v2) edges of colour i.
So (B3) is satisfied.

It is easy to see that (B4) is satisfied.
Finally to show that (B5) is satisfied we must show that each Hi has an

li-edge-connected ki-regular detachment. Thus we show that each Hi satisfies
the conditions of Proposition 2.

First we show that each Hi is li-edge-connected. Suppose that Hi is
not li-edge-connected. Then there is a minimal edge-cutset E such that
|E| < li. We consider two cases. First assume that v1 and v2 are in the
same component of Hi −E. As E is minimal it will contain only edges from
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one component of Gi, say Ci,1, and perhaps also edges from v1 and v2 to
Ci,1. It cannot contain only edges from v1 and v2 to Ci,1 since there are∑
v∈V (Ci,j)

(ki − dGi
(v)) = εi,j such edges and by (II), εi,j ≥ li. The edges of

E contained in Ci,1 form one of its minimal separating sets, say Ei,1
1 , and

we can assume that the two components of Hi − E are Ci,1
11

and Hi − Ci,1
11

.

Therefore E must also contain all the edges from Ci,1
11

to v1 and v2. There

are
∑

v∈V (C
11
i,1)

(ki − dG1(v)) = εi,1,11 such edges. So

|E| = |Ei,1
1 |+ εi,1,11

≥ li,

by (VII), a contradiction.
Now assume that v1 and v2 are in different components of Hi −E. Thus

E must contain the [(2n − (a + b))ki − εi]/2 edges from v1 to v2. For each
component Ci,j, E contains either all the edges from Ci,j to one of v1 or v2,
or an edge-cutset of Ci,j, say Ei,j

1 , and all the edges from Ci,j
1,1 to v1 and from

Ci,j
1,2 to v2 (or vice versa). It follows from (VI) that |E| ≥ li. So each Hi

satisfies (X1).
As li 6= 1, 1 ≤ i ≤ t we need not consider (X2),
Hi has a vertex of degree 2li only if a = n − 2 or b = n − 2. We can

see that, by (IV) and (V), these vertices will not be cutvertices so (X3) is
satisfied.

Finally, (X4) is satisfied since each Hi contains more than two vertices.
�
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