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Abstract

For speed-flow data, which are intensively discussed in transportation science, com-
mon nonparametric regression models of the type y = m(x) + noise turn out to be
inadequate since simple functional models are unable to capture the essential rela-
tionship between predictor and response. Instead a more general setting is required,
allowing for multifunctions rather than functions. The proposed tool is conditional
modes estimation which, in the form of local modes, yields several branches that cor-
respond to the local modes. A simple algorithm for computing the branches is derived.
This is based on a conditional mean-shift algorithm and is shown to work well in the
considered application.
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1 Introduction

Speed-flow diagrams have been widely used and discussed in traffic engineering. Fig. 1
shows two speed-flow diagrams for a 4-lane Californian uninterrupted highway (“freeway”);
only lanes 2 and 3 are shown here (data from University of California, Berkeley). Speed
is measured in miles per hour, and traffic flow in vehicles per lane per hour. Each plotted
point is an average speed and hourly flow rate for data collected over a 30-second interval.
The question of interest is how can the shape of the data cloud be explained. For uncon-
gested traffic, there is no significant association between traffic flow and speed - this is the
large cluster at the top of the plots. However, when the traffic gets too dense, there may
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Figure 1: Speed-flow diagram for Californian freeway.

still be high traffic flow, but with a considerably diminished speed due to congestion. The
less dense cloud of data points at the bottom of the figures corresponds to this situation.

Looking at Fig. 1, it is clear that the speed v cannot be adequately described as a function
v(q) of the flow q. Thus, any attempts at modelling data of this form have been based on
modelling the traffic flow as a function q(v) of speed. For example, a Greenshields-type
model (Greenshields, 1935) as given in the Highway Capacity Manual 2000 (HCM, 2000)
has the form

q = q0

[
vf − v

vf − v0

]1/β

.

In this equation, q0 is the maximum flow, v0 is the speed v(q0) at maximum flow, and vf

is the free-flow speed, assuming that the vehicle is alone on the highway. The constant
β is specific for the type of the highway, e.g. β = 1.31 for a multi-lane highway. For
an overview of available models see Li (2005). Direct modelling v = v(q), the natural
quantity of interest, has hardly been considered, as mathematical modelling is generally
based on functional forms. It is obvious that for this kind of data standard regression
models are inappropriate. Regression modelling that allows prediction of speed given
traffic flow has to account for the specific variability of the data which is characterized by
the two branches.

There has been considerable effort over recent decades to understand data of this type.
In the eighties most studies concentrated on just reporting the graphical relationship
between flow and speed (see Hall & Hall (1990) and Hall, Hurdle & Banks (1992) for
an overview on this literature), while in the last decade the research interest focussed on
finding mathematical models for the data as in Daganzo (1995), Del Castillo & Benitez
(1995), or more recently Li & Zhang (2001), to name a few. However, there are few
instances of using statistical tools to analyze speed-flow diagrams. An early approach in
this direction was given by Drake, Schoefer & May (1967). Kockelman (2001) applied
mixture models of congested and uncongested conditions to flow-density relations.

Traffic speed prediction is becoming an increasingly important issue, e.g. to construct
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and support Intelligent Transportation Systems (ITS), enabling drivers to obtain their
expected arrival time (Xiao, Sun & Ran, 2003). Huang & Ran (2003) noted that traffic
flow may be considered as one of the most important variables in this model, though
an accurate model for the speed will also involve other variables, e.g. weather conditions.
However, citing the latter authors, ‘it is very difficult to use traffic flow directly ... because
each traffic flow might be corresponding to two different traffic speeds’, and for a given
value of flow, ‘it is impossible to decide whether it is congested or not’ (If it was possible,
one could simply apply methods for nonparametric estimation of branching curves, see
Silverman & Wood (1987)). The common – suboptimal – way out is to use other variables
instead of flow, e.g. time. As a first step towards a more adequate solution of this problem,
we present in this paper an approach to modelling speed given flow directly which may
also be used for general non-standard regression problems with several branches of data.
Our approach is based on a new and simple method to find the conditional modes of a
multivariate distribution.

2 Conditional Modes and Densities

Let (X1, Y1), . . . , (Xn, Yn) denote an iid. sample from a population (X, Y ) ∈ R2 with
joint density f(x, y), where Y is a scalar response variable. A common way of deriving
regression functions is by considering the minimization problem

m(x) = arg min
a

E(l(Y − a)|X = x), (1)

where l(·) denotes a loss function. The quadratic loss function l(z) = z2 yields the most
widely used regression function m(x) = E(Y |X = x), whereas l(z) = |z| + (2p − 1)z
yields regression quantiles (see Koenker (2005) for an overview), and in the special case
p = 0.5 the conditional median. An early reference to local median smoothers is Härdle
& Gasser (1984). If the loss function is taken as l(·) = −δ(·), where δ(·) is the delta-
function, i.e. δ(x) = 0 for x 6= 0 and

∫
δ(x) dx = 1, one obtains the conditional mode

Mode(Y |X = x). As observed by Berlinet, Gannoun & Matzner-Løber (1998, 2000) in the
context of nonparametric regression, and Hyndman (1995) and Matzner-Løber, Gannoun
& Gooijer (1998) in the context of nonparametric forecasting, the conditional mode has
clear advantages when the conditional distributions (the forecast densities, resp.) are
multimodal. To refer to the resulting curve Scott (1992) uses the term modal regression
curve or trace.

The mode differs from the mean and the median in one important aspect. While the
conditional mean and median always represent a single value, the conditional mode is not
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necessarily unique, as the maximum density fY |X(a|x) might be achieved for more than
one value. Moreover, a conditional density function can have several conditional maxima
at different levels, which may be interpreted as local modes, being defined by

local Mode(Y |X = x) = arg max
a∈U

fY |X(a|x) (2)

where U (in the unidimensional case) is a closed interval and the maximum is taken over the
interior of the interval. It is the multiplicity of local modes which makes them attractive
for the analysis of data such as speed-flow diagrams. When the conditional distribution
of the data is multimodal, then the data cannot be described properly by a function. The
underlying structure represents a relation rather than a function. It is assumed that the
underlying relation R ⊂ R2 decomposes into several branches, which are defined by the
operators

M(j)(·) = jth local Mode(·),
where j = 1, . . . , p is a suitable enumeration of the branches (e.g. from bottom to top).
The underlying relation has the form

R = {(x,M(j)(Y |X = x));x ∈ R, j = 1, . . . , p},

which may also be described by the multifunction

Mf (x) = {M(j)(Y |X = x)|1 ≤ j ≤ p}. (3)

[A mapping M : A −→ B is said to be a multifunction if M(x) ⊂ B for all x ∈ A.
For details on multifunctions, see standard books on set-valued analysis, e.g. Aubin &
Frankowska (1990).]

As for the function m(·) in (1), which is usually assumed to be “smooth”, i.e. at least
once continuously differentiable, one has to impose some smoothness on Mf (·). Since
conditional mode estimators are edge-preserving, they tend to have jumps. So, we only
require each branch to be smooth except at a finite set of points.

Equation (2) provides some motivation for estimating the conditional mode(s) as the local
maxima of the conditional density estimator, which in the case of univariate predictors
takes the form

f̂(y|x) =
f̂(x, y)

f̂(x)
=

∑n
i=1 K1

(
Xi−x

h1

)
K2

(
Yi−y
h2

)

h2
∑n

i=1 K1

(
Xi−x

h1

) , (4)

with kernels K1,K2 and bandwidths h1, h2 (Samanta & Thavaneswaran, 1990, Hynd-
man, Bashtannyk & Grunwald, 1996). Extensions to local linear estimators have been
considered by Fan, Yao & Tong (1996), Hyndman & Yao (2002), and Fan & Yim (2004).
Plotting the conditional densities at different values of the flow x, using the graphical tools
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Figure 2: Speed-flow diagram for lane 2 with local (linear) mean and median smoother.

developed by Hyndman, Bashtannyk & Grunwald (1996), gives Fig. 3 (h1 = 100, h2 =
4, K1, K2: Gaussian) which provides a direct view of the conditional maxima of the dis-
tribution.

Obviously there is a wide range of flow values reaching from about 1000 to 1600 vehi-
cles/hour where the conditional distribution of speed given flow is multimodal. Consid-
ering exemplarily the conditional distribution of speed at flow=1400, one can predict the
speed as follows: the expected speed will be either around 30 mph or around 60 mph,
where 60 mph is more likely. From this we see that there are two problems which need to
be addressed:

a) How can the conditional modes be estimated? This is the topic of the next section.

b) How does one quantify that one estimated mode is more likely than another one?
This issue will be treated in Section 4.

3 Estimating the conditional modes

Estimation of the maxima of a density function is quite an old problem and has been
considered by a large number of authors, starting with early publications from Parzen
(1962) and Nadaraya (1965). However, there has been comparatively little work in the
literature on the estimation of the maxima of a conditional density function. In the
previous section we suggested using the value(s) maximizing the conditional kernel density
estimate as estimator(s) for the conditional mode(s). Samanta & Thavaneswaran (1990)
and Berlinet, Gannoun & Matzner- Løber (1998) show that this estimator, also called
the sample conditional mode, is consistent and asymptotically normally distributed under
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suitable regularity conditions. A separate issue is how to find the maxima of the conditional
density estimates.

Mehra, Ramakrishnaiah & Sashikala (2000) apply smoothed rank nearest neighbor esti-
mators, but constrain themselves to the case of a unique conditional mode. Alternatively,
a simple grid search based on the conditional density estimates (4) could be applied. How-
ever, searching for maxima on a grid is computationally extremely demanding, especially
when the space of predictors is multivariate, and implementation is not straightforward
if all conditional local maxima have to be found, rather than just the global one. Hence,
more sophisticated methods are needed. Scott (1992) uses averaged shifted histograms.
Carreira-Perpiñan (2000) uses an EM algorithm to model X and Y jointly as a Gaussian
mixture and then proposes a gradient ascent algorithm for mode finding starting from the
locations of the centroids. Based on the observation that maxima of the conditional den-
sity (4) have the property f̂ ′(y|x) = 0, we propose a simpler alternative concept. Let us
assume that K2 belongs to a special class of radially symmetric kernel functions satisfying

K2(·) = ckk((·)2),

with ck being a strictly positive constant. The function k(·) is called the profile of K2. We
work with a slightly more general setting than in equation (4) and analyze the conditional
density estimator

f̂(y|x) =
ck

h2

n∑

i=1

wi(x)k

((
Yi − y

h2

)2
)

,
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where wi(x) is some weight function, usually a kernel function, not depending on y. (The
extension to multivariate predictors is straightforward and only affects the definition of
the weights wi(x).) From the estimation equation

∂f̂(y|x)
∂y

=
2ck

h3
2

n∑

i=1

wi(x)k′
((

Yi − y

h2

)2
)

(y − Yi) = 0

the mode estimator ym is given by

ym =

n∑
i=1

wi(x)k′
((

Yi−ym

h2

)2
)

Yi

n∑
i=1

wi(x)k′
((

Yi−ym

h2

)2
) . (5)

Note that the dependence of ym ≡ ym(x) on x is suppressed for notational ease. Let

g(·) = −k′(·)

and consider g as a kernel profile belonging to a kernel function G(·) = cgg((·)2). When
K2 is the Gaussian kernel, then G is Gaussian as well. The kernel K2 has been named the
shadow of G by Cheng (1995). By use of G one obtains the equation

ym =

n∑
i=1

wi(x)G
(

Yi−ym

h2

)
Yi

n∑
i=1

wi(x)G
(

Yi−ym

h2

) . (6)

In the case of conditional mode estimation, one has the weights

wi(x) =
K1

(
Xi−x

h1

)

n∑
j=1

K1

(
Xj−x

h1

) . (7)

The resulting equation ym = µ(ym), with

µ(ym) =

n∑
i=1

K1

(
Xi−x

h1

)
G

(
Yi−ym

h2

)
Yi

n∑
i=1

K1

(
Xi−x

h1

)
G

(
Yi−ym

h2

) , (8)

cannot be solved analytically, but the solution ym can be obtained iteratively by calculating
a series of local means. An important tool is the so-called mean shift

µ(y)− y,

which for a mode ym takes the value zero. This is the basic idea of the mean shift algorithm,
which has been recently studied in the unconditional case (i.e. wi(x) ≡ 1) by Comaniciu,
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Figure 4: Multimodal regression for speed-flow data based on mean shift.

Ramesh & Meer (2001), Comaniciu & Meer (2002) and Comaniciu (2003). For a given
starting point y0, Cheng (1995) showed that the sequence (y`)`=1,2,... defined by

y`+1 = µ(y`) (9)

converges to a nearby mode ym, which is a fixed point of (9). To account for multimodal
conditional distributions, one applies the mean shift procedure as follows: For a given x,

1) Choose a set of starting points y
(1)
0 (x) < . . . < y

(P )
0 (x).

2) For j = 1, . . . , P :
Set ` = 0. Iterate

y
(j)
`+1(x) = µ(y(j)

` (x)) (10)

until convergence is reached, resulting in estimates ŷ
(1)
m (x), . . . , ŷ(P )

m (x).

3) The estimator for Mf (x) is the random set

M̂f (x) = {ŷ(1)
m (x), . . . , ŷ(P )

m (x)}.

The set M̂f (x) is ordered, i.e. ŷ
(1)
m (x) ≤ . . . ≤ ŷ

(P )
m (x). This follows immediately from the

properties of the mean shift, as the series of local means converges to a nearby conditional
mode (see Comaniciu & Meer, 2002, Theorem 1). This ordering makes it easy to identify
the branches. Note that M̂(x) may actually be a multiset, because some modes might
have been reached more often than once. This will certainly occur when P exceeds the
number p of branches. However, it is also possible when P is equal to or smaller than the
number of branches, as some modes may not have been found, while other modes may be
included several times in the multiset. To be certain that all modes are discovered, one has
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to use a sufficiently large number of starting points. Each point gives an iteration process,
which will find a conditional mode within its basin of attraction. If one may assume that
the data are bimodal (as in the speed/flow example), it is sufficient to start one mean
shift procedure from the bottom and one from the top of the distribution of the data.
Then each one will find its corresponding mode automatically. For more than two modes,
there are a variety of methods to detect the number of modes of a univariate distribution
(Silverman, 1981, Muller & Sawitzki, 1991) or to test for multimodality (Fisher, Mammen
& Marron, 2002). Recently, Davies & Kovac (2004) presented another tool for controlling
the modality based on the taut string method. However, most of these methods are either
not directly applicable to the case of a conditional distribution, or they suffer from some
drawbacks (see Hartigan, 2000). If there is uncertainty about the number of branches, we
recommend simply using more starting points than is strictly necessary. This will certainly
mean that some modes are reached two or more times, but if the mean shift is iterated
until convergence, all estimates belonging to the same mode will be approximately equal.

Fig. 4 shows the results of a multimodal regression using the above algorithm. Note that
the fitted curve corresponds nicely to the schematic ‘generalized speed-flow relationship’
depicted in Fig. 2 in Hall, Hurdle & Banks (1992). The conditional mean shift is calculated
with Gaussian kernels K1 and K2 (h1 = 100, h2 = 4) and weights as in (7). The starting
points are constant w.r.t. x, i.e. y

(1)
0 (x) ≡ y

(1)
0 = min{Y1, . . . , Yn} and y

(2)
0 (x) ≡ y

(2)
0 =

max{Y1, . . . , Yn}. In other situations, when there is some prior information about the
shape of the underlying relation, it might be useful to work with variable starting points.
Though the mean shift algorithm has been accused of being quite slow (Comaniciu &
Meer, 2002), we almost always observed convergence after about 30 iterations. Of course,
this is still much faster than calculating all conditional densities and performing a grid
search to find the maxima.

Remark 1.

The right side of (8) is already well-known: This is exactly the formula for the sigma
filter, firstly applied in Lee (1983) for digital image smoothing. However, in contrast to
the mean shift algorithm, which iterates (6) or (8) until the mode is found, the sigma filter
only runs the first loop of this iteration. Consequently, the sigma filter can be seen as
a one-step approximation to the conditional mode. An important property of the sigma
filter is that it is edge-preserving (Chu, Glad, Godtliebsen & Marron, 1998). The sigma
filter exploits the fact that the conditional mode has better edge-preserving properties
than the conditional mean, and therefore the close relationship of sigma filtering and the
mean shift is not surprising.

Remark 2.

The use of l(·) = −δ(·) in the minimization problem (1) yields the conditional mode. In
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practice, the delta function has to be approximated. This is possible by means of the
kernel function K2, since

δ(·) = lim
h2−→0

1
h2

K2

( ·
h2

)
.

Applying this for a fixed h2 gives

l(·) = − 1
h2

K2

( ·
h2

)
≡ − ck

h2
k

(( ·
h2

)2
)

(11)

and minimizing (1) yields the equation

a =
E

(
G

(
Y−a
h2

)
Y |X = x

)

E
(
G

(
Y−a
h2

)
|X = x

) . (12)

Thus, the right-hand side of (8) estimates the right-hand side of (12). Comaniciu & Meer
(2002) show that (11) corresponds (in the unconditional case) to location M-estimation.
Chu, Glad, Godtliebsen & Marron (1998) make use of this relationship by exploiting
local M-estimators for edge preserving smoothing and show improved performance of this
estimator compared to the sigma filter.

Remark 3.

It is well known that local linear smoothers perform distinctly better than local constant
smoothers, as pointed out by Fan (1992) and Hastie & Loader (1993). Fan, Hu & Truong
(1994) showed that the nice properties of local linear estimators carry over to any smooth-
ing problem of type (1) based on a convex loss function l(·) with a unique minimizer at
0. Although the negative δ-function obviously does not share this property, one might
still wonder if the local constant conditional mean shift, which we used, might be further
improved to give a local linear mode estimator. This simply requires replacing the weights
wi(x) in (6) by the corresponding weights for a local linear fit (Fan & Gijbels, 1996, p.
20, Fan & Yim, 2004), namely

wi(x) =
K1

(
Xi−x

h1

)
[Sn,2 − (Xi − x)Sn,1]

n∑
j=1

K1

(
Xj−x

h1

)
[Sn,2 − (Xj − x)Sn,1]

, (13)

where Sn,` =
∑n

i=1 K1

(
Xi−x

h1

)
(Xi−x)`. An example demonstrating the difference between

the local constant (7) and local linear (13) settings is provided in Fig. 5. It is clear
that the disadvantages of local constant mean estimators carry over to local constant
mode estimators. In particular, they are heavily biased at the boundary and for clustered
designs (Fig. 5 left). Although the local linear mode estimator corrects the deficiencies
of the local constant mode estimator in this example, it can be recommended only for
the case of functional dependence, i.e. where the mode is unique. In cases where the
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Figure 5: Comparison of a local constant and a local linear conditional mode estimator based on
mean shift (left: h1 = 0.2, h2 = 0.4; right: h1 = h2 = 0.2)

data structure is multimodal (Fig. 5 right), the local linear mode estimator behaves quite
erratically and gives non-smooth results. Thus, for the remainder of this paper we will
restrict attention to local constant mode estimators.

4 Assigning Probabilities

A crucial point is the evaluation of the relevance of a conditional mode. Intuitively, the
probability mass inside the basin of attraction of a conditional mode (in other words:
the probability mass between the neighboring valleys surrounding the mode) is a useful
measure for the relevance of a mode. Fig. 6 illustrates this concept for the speed-flow data
given a flow of 1400 vehicles/hour. The area between the left border and the valley contains
an estimated probability of 0.077, and the second mode corresponds to the probability
0.923. Thus, one obtains

M̂(1400) =

{
32.65 with est. prob. 0.077
59.18 with est. prob. 0.923.

To estimate these probabilities, it is necessary to find the low points of the valleys and
to integrate over the estimated conditional densities between them. Without too much
effort one can do the search for the minimum and the integration simultaneously. For
a given (local) mode ym at x, one descends from the (local) maximum f(ym|x) in small
steps of length δ, say, to the right (steps k = 0, 1, 2, . . .) as well as to the left (steps
k = −1,−2, . . .), and augments the integral in each step by δ · f(ym + kδ|x) until the
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Figure 6: Estimated conditional density at a flow of 1400 vehicles/hour. The bottom of the valley
at a speed of 43.00 mph is indicated by a vertical line.

minimum is reached, i.e the sequence (f(ym + kδ|x))k stops to fall. Note that the number
of steps until the next minimum to the left and to the right do not necessarily need to be
the same. Undoubtedly, there are more sophisticated tools that could be used to perform
integration and the search for the minima. However, although being approximated by a
step function, this integral is usually surprisingly accurate, since the approximation errors
on the left and on the right side of the maximum tend to cancel out. So the choice of
δ is not too crucial, it only influences the accuracy of the approximation. Fig. 7 shows
the probabilities obtained for the data from lane 2. At a flow = 1620 vehicles/hour the
two branches merge and are no longer distinguishable. At this point, the dashed line rises
rapidly and catches up with the solid one. This is certainly not a sign for a suddenly rising
probability of congested traffic. Beyond this point, there is no longer any dip to separate
the components, although the data may still be seen as a - not clearly separated - mixture
of the congested and uncongested regime.

For a given value x, storing the positions of the minima found while calculating the above
integrals gives a vector of conditional antimodes. An antimode can be seen as an ’an-
tiprediction - a value that is specifically identified as not likely to be seen’ (Cobb, 1998).
Conditional antimodes have previously received attention particularly in catastrophe the-
ory (Cobb & Zacks, 1985). In the present context, it is a straightforward step to connect
the conditional antimodes in the x-direction in order to obtain a smooth curve, which then
can be interpreted as a nonparametric antiregression or antiprediction curve, i.e. a curve
describing where the data are not to be expected. In the case of speed-flow data, one ob-
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Figure 7: Probabilities of the branches of smooth multimodal regression curves of a speed-flow
diagram

serves that this curve is also useful to classify the data into observations coming from the
congested or uncongested regime. Fig. 8 shows both of the antiregression curves obtained
by descending from the data cloud at the top (dashed line) as well as the corresponding
curve obtained by descending from the conditional modes of the cluster at the bottom. As
can be seen from the figure, the two curves fall (certainly) together, and nicely divide the
cars into those monitored in congested or uncongested situations, as long as a division is
possible. The concept of an antiregression curve deserves further attention and might be
useful in a wide range of other data situations, but this is not the topic considered here.

5 Bandwidth selection

Since the problem of conditional mode estimation is strongly related to that of conditional
density estimation, the bandwidth selectors developed in the latter context may be applied.
The first bandwidth selection rule, developed by Fan, Yao & Tong (1996), is based on the
RSC criterion (Fan & Gijbels, 1995). A further rule using bootstrapping was suggested by
Hall, Wolff & Yao (1999) in the context of bandwidth selection for the conditional distrib-
ution function. Their idea was transferred to conditional density functions by Bashtannyk
& Hyndman (2001) (hereafter BH). BH developed a variety of bandwidth selection rules,
the computationally fastest of which is the normal reference rule. Applying this rule to
the two lanes in Fig. 1, we obtain for the x−direction the bandwidths h1 = 133.48 and
h1 = 283.19 for lanes 2 to 3, respectively. For the y−direction, one gets h2 = 11.16 and
h2 = 10.56, respectively. Looking at boxplots of high density regions (Fig. 9 top), one
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Figure 8: Antiregresssion curve as an instrument for classifying congested or uncongested traffic.

notices that these bandwidths are obviously oversmoothing, as also observed by BH and
Fan & Yim (2004). This problem was already noted by Silverman (1986) in the context of
univariate density estimation, who suggested employing a correction factor of 0.85 to the
bandwidth selected by the normal reference rule. BH solved this problem in a less ad hoc
manner and implemented a ‘hybrid’ bandwidth selection method. This uses the normal
reference rule to select h2 initially, then uses a regression-based method to find h1 given
h2, and finally a bootstrap method to update h2 for fixed h1.

This ‘hybrid’ bandwidth selection rule (corresponding to the setting method=2 and deg=0

in function cde.bandwidths in the R package hdrcde) gives the bandwidths h1 = 108.08
and h2 = 3.10 for lane 2 and h1 = 199.56, h2 = 3.55 for lane 3. One sees from Fig. 9 that
these bandwidths give reasonable results. As we obtained similarly pleasing results with
this bandwidth selection tool for other data sets, we recommend this rule for multimodal
regression. One drawback is that the computation of the hybrid bandwidths can be quite
slow. In the special case of a data set with bimodal response, a helpful starting point
for further fine tuning may be obtained by calculating the normal reference bandwidths,
leaving the (less crucial) bandwidth h1 as it is, and scaling the bandwidth h2 by the factor
1/3. In our example, this gives nearly exactly the hybrid bandwidths for h2.

6 Discussion

We have introduced a simple method to find the conditional modes of a multivariate
density based on a conditional version of the mean shift procedure, and demonstrated
by means of speed-flow data that this gives a fully nonparametric multi-valued regression
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Figure 9: Top: HDR boxplots according to normal reference rule; middle: HDR boxpolts according
to hybrid rule; bottom: multimodal regression curves corresponding to the hybrid bandwidth
selector, for lane 2 and 3.
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tool. As the problem of finding the conditional modes is highly related to the problem of
conditional density estimation, we used some current research results from the latter area,
which turned out to be helpful for the bandwidth selection problem.

Problems with multi-valued output have received attention in various research areas from
both statistical and non-statistical perspectives. Beyond the various ideas arising from
maximizing the conditional density listed in Section 3, a number of topics are worthy
of mention: (1) Approaches based on mixtures of regression models, e.g. mixtures of
generalized linear models (Wedel & Kamakura, 1995). A simple tool to fit models of this
type is the R package flexmix developed by Leisch (2004). (2) ‘Multiple model regression
estimation’ by Cherkassy & Ma (2005): this fits parametric regression models consisting of
several regimes, where no prior assignment of points to regimes is required. The tool used
for estimation is the Support Vector Machine (SVM); see also Suykens, Gestel, Brabanter,
Moor & Vandewalle (2002) for related contributions from the machine learning community.
(3) Switching regression (Quandt, 1972). (4) Bayesian approaches (Hurn, Justel & Robert,
2003). (5) Branching curves or multicurves (Silverman & Wood, 1987). This is a fully
nonparametric approach based on smoothing splines, but every point is a priori assigned
to a certain branch. (6) Principal curves (Hastie & Stuetzle, 1989) have been successfully
applied on speed-flow data by Chen, Zhang, Tang & Wang (2004).

The dividing lines between the concepts (1) to (4) are rather thin, and there are many
overlaps. For instance, (4) can be seen as a Bayesian version of (3); (3) can be seen
as a special case of (2); and (2) itself could be reformulated to fit the framework of
mixture modelling as well, so that approaches (1) to (4) are actually all based on mixture
modelling. The essential difference to our work is that all these approaches, at least to the
best of our knowledge, only allow fitting of mixtures of parametric regression models. The
nonparametric alternatives (5) and (6) cannot be applied to the data situations considered
in this paper, because in the former case we do not have prior knowledge about which
point belongs to which branch, and in the latter case principal curves are not suitable for
prediction.

Berlinet, Gannoun & Matzner-Løber (2001) HCM (2000)
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d’estimateurs convergents du mode conditionnel. Canadian Journal of Statistics 26,
365–380.

Berlinet, A., Gannoun, A., and Matzner-Løber, E. (2001). Asymptotic normality of
convergent estimates of conditional quantiles. Statistics 35, 136–139.
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