
TMS can reveal contrasting functions of the dorsal and 

ventral visual processing streams. 
 

Amanda Ellison1 and Alan Cowey2 

 

 

1. University of Durham, Cognitive Neuroscience Research Unit, Wolfson 

Research Institute, Queen’s Campus, Stockton-on-Tees, TS17 6BH, UK   

 

2. University of Oxford, Department of Experimental Psychology, South Parks 

Road, Oxford, OX1 3UD, UK 

 

Address for correspondence: Amanda Ellison, as above 

Facsimile: +44-191-3340430 

Telephone: +44-191-3340430 

Email: amanda.ellison@durham.ac.uk 

 

Acknowledgements 

This research was supported by a Leverhulme Trust Research Grant (AE) and a UK 

Medical Research Council grant (AC).   

 



 2

 

Abstract: 

In order to investigate the functional specificity of the dorsal and ventral visual 

processing steams we used transcranial magnetic stimulation (TMS) to briefly disrupt  

one or the other while subjects performed three tasks, involving discrimination of 

colour or shape or relative position. TMS was delivered over right posterior parietal 

cortex (PPC) or right lateral occipital (LO) cortex, regions known to have visuo-

spatial and object processing properties respectively. LO but not PPC stimulation had 

a significant effect on reaction time when subjects were asked to make a 

discrimination of relative shape. PPC stimulation had a significant effect when 

subjects were asked to discriminate relative position of the same shapes.  Stimulation 

of LO also lengthened reaction times on the position task. There were no effects of 

stimulation at either site on colour discrimination. Results are discussed within the 

framework of how the dorsal stream and ventral stream are dissociated following their 

damage in neurological patients and possible ways in which they may interact in the 

normal brain. 
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Introduction 

Neurological patients with dorsolateral parietal damage and classical left hemineglect 

also have deficits in processing line bisection or landmark tasks (Harvey et al., 1995). 

However, if they are asked to point to the middle of the screen or a shape, they can do 

this accurately, presumably by making a discrimination based on shape rather than 

spatial extent and thereby recruiting their undamaged ventral stream (Bartelomeo et 

al., 2003), even though there is a visuomotor component to the task which may recruit 

dorsal function (Goodale & Milner 1992). The following study seeks to investigate 

the difference, if any, between the dorsal and ventral streams in how they process 

space, items in space, and colour.  

 

Much of the recent research investigating the differential function of the dorsal and 

ventral streams has focussed on the influential Goodale and Milner “what and how” 

model (1992). This theory was formulated in part by observations made in two 

neuropsychological conditions, optic ataxia and visual form agnosia. It was revealed 

that patients with damage to the ventral and ventro-lateral occipito-temporal regions 

could no longer recognise objects or estimate their size or shape but could physically 

manipulate them correctly (Milner et al., 1991; Carey et al., 1996). On the other hand, 

patients with dorsal damage centred on the angular and supramarginal gyri of the 

posterior parietal cortex demonstrate severe visuomotor deficits, dissociated from 

their preserved ability to recognise objects and perceive their shape and size etc. 

(Milner et al., 2001, Jeannerod et al., 1994; Perenin and Vighetto, 1988). 

 

The model of Goodale and Milner is a modification of the original two streams 

hypothesis of Ungerleider and Mishkin (1982), which established a distinction 

between “what and where” pathways for the ventral and dorsal streams respectively. 

There has been intensive subsequent investigation into interactions between “what 

and where” and “what and how” and the anatomical overlap of these systems as 

shown by neuroimaging techniques, which have been very successful in confirming 

the underlying basis of functional dissociations seen in neuropsychology. (Faillenot et 

al., 1997; James et al., 2003). These investigations indicate that object-oriented action 

and object recognition activate a common posterior parietal area. Hence, regardless of 

the task required, some aspects of object perception appear to be involved in the 

analysis of object properties. As Creem & Proffitt (2001) point out, this type of object 
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analysis appears to be distinct from an analysis performed in the ventral temporal and 

lateral-occipital cortex and is more consistent with theories that there is some object-

based analysis in the dorsal stream (Jeannerod, 1997; Milner & Goodale, 1995; 

Creem-Regehr & Lee, 2005).   

 

The present study attempts to delineate the perceptual dissociation of these two 

streams using transcranial magnetic stimulation (TMS) and three simple visual tasks 

involving a spatial, colour and form discrimination. TMS provides a means of briefly 

disrupting neural functioning, allowing us to probe the necessity of the region of 

interest in the processing of the task. As previously discussed, neuropsychology and 

neuroimaging have identified many areas of specialisation interacting in broad 

streams of processing in these domains. However, our aim is to investigate the 

differential involvement of two areas in these three tasks: right lateral-occipital area 

(LO) known to be an important region in object recognition in the ventral stream 

(Ferber et al, 2005, Avidan et al., 2003, Lerner et al., 2002; Kourtzi & Kanwisher, 

2001) and an area of right posterior parietal cortex (PPC) known from many studies to 

have visuospatial specialisation (Avidan at al., 2003, Ellison et al., 2003; Bjoertomt et 

al., 2002). As these areas are part of the established processing streams, if either is 

involved in the processing of a task, a deficit in performance should be demonstrated 

following disruption by TMS. 

 

It could be predicted that as spatial considerations are important in the perception of 

shape, right dorsal PPC will be just as involved as ventral LO in the shape task. 

Equally, as the task is presented in distributed space, right PPC may have a role on 

these grounds. Another factor that may influence involvement of PPC in this task is 

the nature of the performance indicator. Subjects are asked to press a button related to 

which item matches a foveally fixated comparison item, which is an action based on 

perception. If these two acts (one perceptual, one motor) are in any way linked, one 

would expect PPC involvement in all tasks. However, due to the regional spatial 

specificity of TMS, if LO is the only critical area involved in the processing of this 

task, then a dissociation between involvement of LO and PPC would be expected.  

 

The other two tasks involve a visuospatial allocentric discrimination (relative position 

or distance) and a colour matching task. One would predict little involvement of the 
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LO site in the distance discrimination and little involvement of PPC in the colour task 

(unless the action to be taken upon this discrimination drives PPC involvement in  

accordance with the Goodale and Milner (1995) model). Colour recognition and 

naming in visual-form agnosia patients is usually spared (Aglioti et al., 1999; Milner 

& Heywood,1989) allowing patients the ability to use this information for implicit 

perception of shape (Kentridge, Heywood & Milner 2004). However, we are 

particularly interested in the possible role of LO in the use of colour information for 

discrimination in normal neural processes.  

 

Methods 

Subjects 

Eight healthy subjects, aged 19-23, with normal or corrected to normal vision (all 

right handed; 4 female, 4 male), participated in all three tasks. Subjects gave their 

signed informed consent in accordance with the Declaration of Helsinki and with the 

approval of Durham University Ethics Advisory Committee, and could leave the 

experiment at any point. Subject selection complied with current guidelines for rTMS 

research (Wassermann, 1998).  

 

Stimuli 

All stimuli were presented on a 32cm x 24cm VDU driven by a Pentium-4 PC 

programmed in E-Prime (Psychology Software Tools, Inc). Subjects were seated  57.5 

cm away from the screen with the centre of the screen at eye level. The subjects’ head 

and trunk sagittal midline was aligned with the centre of the screen, and head position 

was controlled by a chinrest. Eye movements and eye blinks were not continuously 

monitored, given our earlier experiments in which TMS in these regions did not affect 

either of them. Also, direct observations by the experimenters, which readily reveals 

blinks and saccades during the half second period of stimulus presentation and TMS, 

showed no such effects. 

 

Visual Tasks 

Three visual tasks were used (see Figure 1). The threshold for 80 per cent correct 

performance in each task had first to be determined. In all tasks one item was 

presented in the centre of the screen with two items presented at a lateral, left,  

eccentricity, one either side of the horizontal midline as detailed below (see Figure 1). 
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In each task, every trial began with 500ms central fixation cross (0.5º x 0.5º) after 

which the three stimuli were presented for 500ms, one of them replacing the fixation 

cross. The background colour was a uniform grey with a luminance of 30cd/m2. There 

was a 4 second interval between trials. The difficulty of the task was titrated by 

making it progressively more or less difficult according to the following rule. 

Difficulty was modulated after each set of five trials. After five consecutive correct 

responses difficulty was increased by one step (steps are described in detail below in 

the description of each task). If two or more incorrect responses out of five were 

made, the difficulty was decreased by one step. Performance was deemed stable when 

performance reached 80% correct (4 out of five) in two subsequent sets.  

 

Distance Task:   

Stimuli were presented as green (11 cd/m2) squares of 1º x 1º with one square 

presented in the centre of the screen. The other two items were presented 5º to the left 

of the vertical midline. One square (either the top or the bottom) was always 3º above 

or below the horizontal midline. The other square was initially presented at a vertical 

eccentricity of 4 degrees from the horizontal meridian and progressively it approached 

it in 0.2º steps until the threshold for 80% correct was reached. The experimental 

value of the distance of the furthest object from the centre was then set at 0.2º more 

than the threshold value found. The subject was asked to respond by indicating which 

item was closest to the item in the centre by pressing the bottom button on a keypad if 

the bottom item was closest and the top button if it was the top item. The top square 

was the closer item in 50% of trials, at random. See Figure 1. 

 

FIGURE 1 ABOUT HERE 

 

Shape task: 

Two shape sets comprised this task. The first set used an outlined central square (1º x 

1º) and in the other set the central shape was an outlined oblong of equal area, 

subtending 1.47º x 0.69º. Stimuli were presented in the same format as the distance 

task but position was fixed 5 degrees to the left of the vertical midline and 4º either 

side of the horizontal midline (see Figure 1). The non-identical shape differed from 

the central shape by 0.5º in the x and y axis (in order to maintain equal area) initially. 

It approached the shape of the central item in 0.1 degree steps until threshold was 
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reached at 80% correct. On half of the trials, at random, the central shape was the 

square and on the other half it was the oblong. The experimental value of the shape 

different from that in the centre was then set at 0.1º larger than the threshold value 

found. The subject was asked to respond by indicating which item was the same shape 

as the item in the centre by pressing the bottom button on a keypad if the bottom item 

was identical and the top button if it was the top item. The top item was the same 

shape in 50% of trials (see Figure 1). 

 

Colour task: 

All three items used in this task were a coloured square subtending 1º x 1º. Stimuli 

were presented in the same manner as the shape task with position of squares fixed 5º 

to the left of the vertical midline and 4 degrees either side of the horizontal midline 

(see Figure 1). Two colour sets were used, in the first the central colour was bluish (x 

= .208, y = .265) and in the second set was purple (x = .173, y = .084). Non-identical 

colours differed from the central colour in increasingly small steps, as shown in 

Figure 2, until threshold was reached at 80% correct.  

 

FIGURE 2 about here 

 

Half the trials, at random, used the first colour set with the other half comprising the 

second colour set. The experimental value of the colour that differed from that in the 

centre was then set at one step higher than the threshold value found. The colours in 

each set were not photometrically isoluminant (which is difficult to achieve with E-

prime) but at threshold performance the luminance difference between the sample and 

the odd-one-out was just below 10 per cent for the blues and just above for the 

purples. Given the notorious difficulty of judging the relative brightness of different 

colours and the subsequent statements of all subjects, when asked, that their 

judgments were based on colour, we can be confident that the task was not being 

solved on the basis of small luminance differences. The subject was asked to respond 

by indicating which item was the same colour as the item in the centre by pressing the 

bottom button on a keypad if the bottom item was identical and the top button if it 

was the top item. The top item was the same colour in 50% of trials. See Figure 1. 
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TMS 

A Magstim™ SuperRapid machine was used to apply pulses at 10Hz for 500ms at 

65% of the stimulator’s maximum power (i.e. 1.3 Tesla) using a 70mm figure-of-eight 

coil held in place by the experimenter and placed tangential to the skull, with the 

handle pointing backward, parallel to the horizontal and the mid-sagittal plane. This 

magnetic intensity is greater than the threshold intensity required to induce movement 

(over motor cortex) or the perception of phosphenes (over primary visual cortex, V1) 

in all of the subjects but did not produce phosphenes when delivered over LO or PPC. 

The TMS train of 5 pulses began at stimulus onset in each case. If the experimenter 

detected any head movement the coil was always repositioned, even if both head and 

coil probably moved in unison.  

 

Two sites of stimulation were used, a right ventral stream site (LO) and a right dorsal 

stream site (PPC). The dorsal site was chosen as an area of posterior parietal cortex 

(PPC) known to be involved in difficult conjunction visual search tasks that engage 

dorsal functions. To this effect it was identified by using a hunting procedure with the 

hard conjunction task, as described in Ashbridge et al. (1997) in which 10 trials of 

single-pulse TMS are given to each site in a 3 x 3 grid (each point 1 cm apart) around 

a central point 9 cm dorsal to the mastoid-inion and 6cm lateral to the right. The 

“hotspot” for activation is denoted by a roughly 100ms increase in reaction time 

compared to the trials in which no TMS was administered. The position of this area as 

co-registered with cortical position using BrainSight software (Rogue Research™) is 

shown in Figure 1. The ventral site was chosen in relation to area right V5 (generally 

corresponding to 3cm above the mastoid-inion and 5cm lateral to the right) which was 

precisely identified by localising the area where a train of TMS pulses (10Hz, 500ms) 

elicited the strongest and most salient moving phosphenes (see Schenk et al., 2005) at 

the lowest TMS intensity. The ventral site LO was then calculated to be 1-1.5cm 

caudal on the skull in a direct line towards the inion in accordance with various 

anatomical and functional maps (e.g. van Essen et al., 2001) and co-registration with 

structural MRI using frameless stereotaxy (BrainSight™). This area can be seen to 

correspond well with lateral occipital cortex (LO) (see Figure 1). 
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Trials were administered in six blocks of 20 trials (per task) each randomised across 

subjects to minimise either order or practice effects; two blocks with TMS over PPC 

on each trial, two blocks with TMS over LO on each trial and two blocks of sham 

TMS. In sham TMS, a non-discharging coil was placed over either the PPC or LO site 

whilst the discharging coil was placed a few cm above it so that the subjective 

experience of the noise associated with a TMS pulse was the same as was the tactile 

experience of a coil placed on the head. However, no effective pulse was administered 

to the brain. The testing session usually lasted no more than 1.5 hours. 
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Results 

Thresholds: 

The mean threshold achieved across subjects in the distance task was a difference of 

0.43 ± 0.10 degrees for 80% correct. This led to a fixed distance of 0.63 ± 0.10 for the 

furthest square in the experimental task. In the shape task, performance reached 

threshold at a 0.12º ± 0.02º difference in shape, leading to a fixed 0.21º ± 0.02º 

difference in the experimental session. A threshold difference of 35 ± 5 units was 

achieved in the colour task meaning the difference in colour was fixed at 52.5 ± 3.66 

units in the experimental task. Although the colours were not initially isoluminant, the 

final colours determined by prior titration differed only slightly in luminance. Also, 

all subjects confirmed that their judgement was based on the colour of the targets. 

Across all three tasks the chosen stimulus values corresponded to about 90% correct 

in each subject to maximise the possible effect of TMS on reaction time in each task 

without encountering the problem of ceiling effects. 

 

Effect of TMS: 

A two factor (Task [distance, shape, colour] x TMS [LO, PPC, sham]) ANOVA 

revealed a main effect of task (F(2, 14) = 5.183, p = 0.021) and TMS (F(2, 14) = 20.203, p 

< 0.001) and a significant interaction between task and TMS (F(4, 28) = 5.510, p = 

0.002). A corrected α of 0.0025 was used in the post-hoc Bonferroni tests, reflecting 

the two comparisons done within each task (sham v PPC and sham v LO). These 

revealed significant differences between sham and LO TMS for the shape task (t = -

4.009, df = 7, p = 0.005) and between sham and PPC TMS for the distance task (t = -

4.241, df = 7, p = 0.004) . TMS over LO also induced a significant increase in 

reaction time in the distance task (t = -3.371, df = 7, p = 0.012). No significant 

differences were seen in the colour task at either site (see Figure 3). 

 

FIGURE 3 about here 
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Discussion: 

The results show that posterior parietal cortex has an influential, possibly vital role in 

the processing of a task requiring a spatial discrimination (distance task) but not one 

that requires a discrimination based on either shape or colour features. Conversely, the 

ventral stream is clearly involved in the processing of a shape discrimination but, 

apparently paradoxically, not colour discrimination.  

 

Whilst it was not unexpected to demonstrate involvement of right PPC in the 

processing of a visuospatial task, the involvement of the ventral stream cannot be 

ignored. If LO has a specialisation for perceptual shape as neuropsychological 

(Goodale et al., 1994) and functional neuroimaging (Kourtzi & Kanwisher, 2001, 

Malach et al., 1995) results indicate, then it is reasonable to assume that some shape 

based processing must contribute to how the brain computes the distance 

discrimination. This reinforces the dissociation reported by Barolomeo and colleagues 

(2003) that when patients with neglect are asked to point to the middle of a screen or 

shape they are unimpaired, presumably as a result of the functional processing of 

shape in their intact ventral stream. Taken together, these findings evince the 

contribution of shape processing to the processing of space. 

 

Our tasks did not require visuomotor manipulation of the visual target, unlike many of 

the neuropsychological dissociation studies of dorsal and ventral streams  (Milner et 

al, 1991; Goodale et al, 1994). However they did require a motor action based on a 

cognitive perceptual decision. Nonetheless, this motor component was not sufficient  

to involve PPC in the shape task, and so it is reasonable to assume that the 

involvement of this region in the distance task was visuospatial in nature. Indeed, as 

Grafton et al. (1992) suggested, there may be functionally distinct portions of the 

superior posterior parietal lobe that are necessary for integrating visual cues with 

movement selection and that it is damage to these regions that causes the visuomotor 

problems seen in parietal patients with neglect. In contrast, the inferior parietal lobule 

may be more responsible for directed visual attention and may be more involved in 

“where” functions. Due to the focal nature of TMS disruption, these functions can be 

teased apart for each stimulated site.  
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Our results show that there are regionally separable processes in the brain for shape 

based discrimination and a less clear dissociation for a spatial discrimination. 

Following a neuroimaging study, Fink et al., (1997) suggested that “object-based and 

space-based attention share common neural mechanisms in the parietal lobe”. If this 

were the case, we should have seen involvement of right PPC in both the object and 

spatial discriminations, which we did not. Instead, the current disruption study 

suggests that spatial discrimination recruits a mechanism used in object processing 

but not vice-versa. Furthermore, these mechanisms occur in disparate regions of 

cortex, namely right PPC and LO. Future experiments should investigate how and 

what these areas contribute to spatial processing perhaps by looking at the timing of 

their involvement. Any differences uncovered here might shed some light on this 

surprising result and go some way to investigating how PPC and LO work together in 

the processing of this task.  

 

Stimulation of neither PPC nor LO had an effect on the processing of the colour task. 

Although it could be argued that subjects were solving the colour task on the basis of 

small unavoidable luminance differences between the colours, as mentioned under 

methods, this cannot be correct because PPC stimulation should have disrupted such 

luminance judgements. The simplest explanation is that it is another area, such as 

ventro-medial human V4, which is the most indispensable area for the processing of 

colour, although lesions to area V4 alone in monkeys have only slight effects on 

colour discrimination and are certainly not sufficient to produce achromatopsia 

(Cowey & Heywood, 1995). It would seem that co-operation between areas is 

required to process colour fully, both cortically and sub-cortically (Cowey & 

Heywood, 1995; Heywood et al., 1992; Zeki & Marini, 1998; Bartels & Zeki, 2000) 

However, although patients with visual shape agnosia caused by damage to the 

ventral stream are usually unimpaired in colour naming and recognition (Aglioti et al., 

1999; Milner & Heywood 1989), we were interested in the role of LO in the use of 

colour information for discrimination in normal neural processes. However, such an 

involvement may only be uncovered if the shape discrimination is made to be 

contingent upon colour discrimination.  

All the effects reported here involved the lengthening of reaction times; percentage 

correct performance was not altered. We are now exploring a variety of other displays 
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together with briefer stimulus presentations in order to determine whether 

performance as well as reaction time can be selectively impaired. 
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Figure legends 

 

Figure 1: Tasks used (distance, shape and colour) and anatomical localisation of 

magnetic stimulation sites (right LO and right PPC). 

 
Figure 2: CIE diagram showing the position in colour space of the eight bluish 

stimuli (top cluster) and the eight purplish stimuli (bottom cluster). For each cluster 

the dot at the left is the foveally fixated stimulus and the dot at the right is the colour 

most different from it. Intervening dots show the colours of smaller hue difference. It 

should be noted that the bluish stimuli are less saturated (closer to the centre of CIE 

space) than the purples.      

 

Figure 3: Reaction times compared for each task at each site of stimulation. 
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