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Quantum random walks using quantum accelerator modes
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We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a
biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and
hence how momentum transfer that depends on the atoms’ internal state can be achieved. When combined with

microwave driving of the transition between the states, a different type of atomic beam splitter results. This
permits the realization of a biased quantum random walk through quantum accelerator modes.
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I. INTRODUCTION

Quantum accelerator modes are characterized by the effi-
cient transfer of large momenta to laser-cooled atoms by re-
peated application of a spatially periodic potential [1-3].
Quantum accelerator modes therefore constitute a potentially
versatile technique for manipulating the momentum distribu-
tion of cold and ultracold atoms. Following the observation
of quantum accelerator modes [1] there has been substantial
progress in developing a theoretical understanding of the
mechanisms and structure that underpin them [4,5]. This has
permitted the observation and categorization of higher-order
quantum accelerator modes [6], demonstration that the mo-
mentum is transferred coherently [7], observation of the sen-
sitivity of the dynamics to a control parameter [8], and char-
acterization of the mode structure in terms of number theory
[9].

Quantum random walks have received attention due to
their markedly nonclassical dynamics and their potential ap-
plication as search algorithms in practical realizations of
quantum information processors [10,11]. In this paper, we
report an investigation into the use of high-order quantum
accelerator modes to implement a quantum random walk in
the momentum space distribution of cold atoms [12]. This
method is more robust and easier compared with other recent
proposals for implementing quantum random walks using
ion traps [13], microwave or optical cavities [ 14], and optical
lattices [15], and should make feasible quantum random
walks of a few hundred steps. This would be a useful experi-
mental tool for information processing.

In this paper we first survey the experimental phenom-
enology and theoretical understanding of quantum accelera-
tor modes. We then discuss how the generation of specific
quantum accelerator modes can be experimentally con-
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trolled. Based on these techniques, we explain how internal-
state-dependent momentum transfer can be achieved, which
will permit coherent beam splitting. Finally, we show how
this could be applied to realize experimentally a biased quan-
tum random walk procedure.

II. OVERVIEW OF QUANTUM ACCELERATOR MODES
A. Observation of atomic quantum accelerator modes

Quantum accelerator modes are observed in the 5-kicked
accelerator system [3]. In the atom optical realization of this
system, a pulsed, vertical standing wave of laser light is ap-
plied to a cloud of laser-cooled atoms [1-8]. The correspond-
ing Hamiltonian can be written

2
H= §—m+mg2—ﬁ¢d[1 +cos(GH]D st —nT), (1)

where 7 is the vertical position, p is the momentum, m is the
atomic mass, g is the gravitational acceleration, 7 the time, T
the kicking pulse period, G=27/\,, Where Ay, is the spa-
tial period of the potential applied to the atoms, and ¢, quan-
tifies the kicking strength of laser pulses, i.e., the laser inten-
sity. This Hamiltonian is identical to that of the d&-kicked
rotor, as studied experimentally by the groups in Austin [16],
Auckland [17], Lille [18], Otago [19], London [20], and
Gaithersburg [21], apart from the addition of the linear gravi-
tational potential mgz; this linear potential is critical to the
generation of the quantum accelerator modes.

In the experiments performed to date to observe quantum
accelerator modes, cesium atoms are trapped and cooled in a
magneto-optic trap to a temperature of 5 uK. They are then
released from the trap and, while they fall, a series of stand-
ing wave pulses is applied to them. Following the pulse se-
quence, the momentum distribution of the atoms is measured
by a time of flight method, in which the absorption of the
atoms from a sheet of on-resonant light through which they
fall is measured. The quantum accelerator modes are charac-
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terized by the efficient transfer of momentum, linear with
pulse number, to a significant fraction (~20%) of the atomic
ensemble.

The spatially periodic potential experienced by the atoms
in the far off-resonant standing light wave is due to the ac
Stark shift. We can therefore write d)d:Q,%tp/ 86, [2], where
Q) is the Rabi frequency at the intensity maxima of the
standing wave, , is the pulse duration and &, is the red
detuning of the laser frequency from the 62S,,— 6°P,,
(|[F=4)—|F'=3)) D1 transition of cesium. In these experi-
ments, the standing wave light is produced by a Ti:Sapphire
laser; the maximum intensity of the laser beam is ~1
X 10* mW cm™. Within the regime where spontaneous
emission can be ignored [2], the detuning can be modified
over a range of order 30 GHz, so that the kicking strength
can be changed by roughly an order of magnitude. If J;
=27 %3057, ¢,=0.8.

Quantum accelerator modes may be observed in &-kicked
accelerator dynamics when T is close to values at which
low-order quantum resonances occur in the quantum
o-kicked rotor, i.e., integer multiples of the half-Talbot time
T,,=2mm/hG? (so named because of a similarity of this
quantum resonance phenomenon to the Talbot effect in clas-
sical optics). In the case of the Oxford experiment, T,
=66.7 us [22].

B. e-classical theory and high-order modes

In 2002 Fishman, Guarneri, and Rebuzzini (FGR) [4]
used an innovative analysis, termed the e-classical expan-
sion, to explain the occurrence and characteristics of the ob-
served quantum accelerator modes. This theoretical frame-
work predicted the existence of higher-order modes, which
was subsequently verified experimentally [6]. Our later dis-
cussion focuses on these higher-order modes, so we briefly
summarize the e-classical theory here.

In the S-kicked rotor, the spatial periodicity of the kicking
potential means that momentum is imparted in integer mul-
tiples of #G. This spatial periodicity also means that the
dynamics of any initial atomic momentum state are equiva-
lent to those of a state in the first Brillouin zone 0<p
<#hG, i.e., the momentum modulo #G. This is the quasimo-
mentum, and hence it is a conserved quantity in the kicking
process [23].

The presence of gravitational acceleration in the J-kicked
accelerator breaks this periodic translational symmetry.
Transforming to a freely falling frame removes the mgZ term
from the Hamiltonian; consequently quasimomentum conser-
vation is observed, in the freely falling frame. Conservation
of quasimomentum means that different quasimomentum
subspaces evolve independently. The FGR theory makes use
of this property to decompose the system into an assembly of
“B rotors” [4,5], where the quasimomentum=BAG and B
e[0,1).

The linear potential due to gravity makes its presence felt
by changing, relative to the case of the &-kicked rotor, the
phase accumulated over the free evolution between kicks.
This means that quantum resonance phenomena different
from those observed in the J-kicked rotor occur. For values
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of T close to €T ,,, where € € 7, certain states permit rephas-
ing, and hence, within any given quasimomentum subspace,
the projection of the initial condition onto states which are
appropriately localized within (periodic) position and mo-
mentum space are coherently accelerated away from the
background atomic cloud. The momentum of the accelerated
population increases linearly with the number of kicks, and it
is this which constitutes a quantum accelerator mode.

The closeness of the kicking period T to integer multiples
of the half-Talbot time T, is formalized in the FGR theory
by the smallness parameter e=27(7/T;,,—{). In the limit of
€— 0 it is possible to simplify the dynamics of the operator-
valued observables to a set of effective classical (or
pseudoclassical) mapping equations, separate but identical
for each independently evolving quasimomentum subspace,
or B rotor. If we define the parameters K= le| and Q
=gGT?/2, these mapping equations can be written

Jyi1 =J, —sgn(€)2mQ — K sin 6, (2a)

On1=0,+ Sgn(f)JnH mod(2), (2b)

where J, and 6, are the transformed momentum and position
variables, respectively, just before the nth kick. A quantum
accelerator mode corresponds to a stable island system, cen-
tered on a periodic orbit, in the stroboscopic phase space
generated by the mapping of Eq. (2). As the dynamics of
interest take place within stable islands and are therefore
approximately harmonic, the usefulness of this pseudoclassi-
cal picture actually extends over a broader range of € than
might otherwise be expected [5].

A given island system is specified by the pair of numbers
p, the order of the fixed point, and j, the jumping index, and
the quantum accelerator mode can be likewise classified.
Physically, p is the number of pulse periods a “particle” ini-
tially on a periodic orbit takes before cycling back to the
initial point in the reduced phase-space cell, while j is the
number of unit cells of extended phase space traversed by
this particle in the momentum direction per cycle, i.e., J,,
=Jy+2mnj. Transforming back to the conventional linear
momentum in the accelerating frame, after N kicks, the mo-
mentum of the accelerated atoms is given by

Py = zmv[l + sgn(e)Q] hG. (3)
p el

The first quantum accelerator modes to be observed were
those for which p=1 [1]. Since then, others with orders as
high as 23 have been observed [6]. We shall now focus on
these higher-order modes.

C. Coexistence of quantum accelerator modes

The phase space generated by application of the mappings
of Eq. (2) changes as the parameters K and () are varied. In
experiments to date, K and () have generally been varied
simultaneously by scanning 7, and hence also € [9]. The
structure of the phase space may also be altered by varying
¢,4, and hence K alone, or by varying g, and hence () alone.
Astute manipulation of these control parameters causes the
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phase-space structure to change from having one island sys-
tem, to having another island system, with distinct (p,j).
There may also be an intermediate regime where both island
systems coexist. The corresponding quantum accelerator
modes are then manifest, and different amounts of momen-
tum can be transferred to several classes of the atoms evolv-
ing from the initial ensemble. That different quantum accel-
erator modes dominate in different parameter regimes means
there is the possibility of quantum random walks, if one also
makes use of internal states of the trapped cold atomic
sample, which are subject to different control parameters. We
shall now consider some examples of the effect of altering

¢, and g.

D. Tuning the Kicking strength

We first examine the high-order quantum accelerator
mode close to the Talbot time, Tp=133.4 us, for the case of
a single initial quasimomentum state. We take the value (8
=0, and consider the case where T=132.0 us and the local
gravity value g=9.81 ms™2. We apply two different kicking
strengths to the atoms ¢,=0.87 and 2.47. The results of our
numerical simulations, shown in Figs. 1(a) and 1(b), demon-
strate that atoms evolving under ¢,=0.87 undergo a nega-
tive momentum transfer, while the atoms experiencing ¢,
=2.41 undergo a positive momentum transfer. The phase
maps given in Figs. 1(e) and 1(f), along with Eq. (3), show
that for the lower kicking strength the quantum accelerator
mode is (5, 2), while for the higher kicking strength the
quantum accelerator mode is (3, 1).

Within a given quasimomentum subspace, the values of J
available for the initial state are equal to (k+ 8)|€|, where k is
an integer. In the case of a narrow initial momentum distri-
bution, we expect the value of 3, offsetting the available
momentum spectrum, to affect the significance of that sub-
space’s contribution to a physically observable quantum ac-
celerator mode. Such an effect is clearly of decreasing rel-
evance as € vanishes [4,5]. This general observation is borne
out by numerical simulation.

For the case of a thermal atomic cloud, such as the 1
X 107 atoms at 5 uK with a Gaussian initial momentum dis-
tribution in which all 8 are populated more-or-less equally,
as used in our experiments, the dependence of the accelera-
tion on the kicking strength is shown in Figs. 1(c) and 1(d).
As expected, the (5, 2) and (3, 1) quantum accelerator
modes, respectively, are produced. For this system, we can
ask at which kicking strength the different quantum accelera-
tor modes appear. The variation of the population in each
quantum accelerator mode as a function of ¢,, deduced from
the numerical simulations, is shown in Fig. 2. When the
kicking strength is less than 1.27r, the atoms occupy the (5,
2) mode and the (3, 1) mode is absent. As one increases the
kicking strength, the (5, 2) mode gradually disappears while
the (3, 1) mode comes to dominate; on further increasing ¢,
the (5, 2) mode dies completely. There is a range of ¢,
centered on the value 1.67, where the quantum accelerator
modes coexist and atoms can be accelerated in two different
modes simultaneously, with different directions of momen-
tum transfer.
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FIG. 1. (Color online) Numerical simulation for the quantum
accelerator modes that are produced with g=9.81 ms™2, T
=132.0 us. In column 1 (a, ¢, e), ¢,=0.87 and the (5, 2) quantum
accelerator mode is produced; in column 2 (b, d, f), ¢,=2.47 and
the (3, 1) quantum accelerator mode results. (a) and (b) show the
momentum variation with the number of kicks for a single initial
plane wave with 8=0, (c) and (d) show the evolution of an atomic
cloud with initial temperature 5 uK, and (e) and (f) show strobo-
scopic Poincaré sections determined by Eq. (2), with T=132.0 us
(€=-0.135). The colorbar indicates the population, in arbitrary
units.

E. Tuning the effective gravitational acceleration

It is possible to vary the value of the effective gravita-
tional acceleration applied to the atoms in our experiment,
and hence (). This is accomplished by using an electro-optic
modulator to vary the phase difference between the down-
going and retro-reflected beams, and hence to move the pro-
file of the standing wave [3,8]. This allows us to reach other
parameter combinations that yield simultaneous acceleration
in different directions. For example, if we tune the effective
gravity to 20-10 ms™2 and choose a kicking period of T
=137.0 us, the occupied quantum accelerator mode is (5,
—4) for the atoms which experience ¢,=0.87 and (1,-1) for
those which evolve under ¢,=2.4m. The results of the cor-
responding numerical simulations are shown in Fig. 3.

Hence the momentum transferred by each kick can be
varied by properly selecting the effective gravitational accel-
eration, kicking period, and kicking strength in order to
single out particular quantum accelerator modes. We have
also found a large number of other conditions where atoms
are accelerated in different quantum accelerator modes, ac-
cording to the value of ¢,.
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FIG. 2. (Color online) Variation of the percentage of atoms in
the (5, 2) and (3, 1) quantum accelerator modes as ¢, changes. The
atomic ensemble is prepared at 5 uK, and T=132.0 us. The (5, 2)
mode (squares) appears with lower kicking strength, and (3, 1)
mode (circles) appears when the kicking strength increases. The
error bar illustrates the typical spread of population in a specific
quantum accelerator mode obtained from the simulation.

II1. INCORPORATION OF ELECTRONIC DEGREES OF
FREEDOM

A. Using an electronic superposition state

Within a given parameter regime, i.e., for particular val-
ues of ¢, and g, and restricting ourselves to a single plane
wave as the initial condition, it is not possible to optimally
occupy two quantum accelerator modes for simultaneous ac-
celeration. This can be understood by realizing that coexist-
ing quantum accelerator modes must necessarily occupy dif-
ferent regions of pseudoclassical phase space.

An efficient way to obtain simultaneous momentum trans-
fer in two directions is to start with a coherent superposition
of internal atomic states, to enable independent manipulation
of ¢, These internal states experience different kicking
strengths. This allows us to have a situation where the same
initial motional state experiences two different kicking
strengths, and maximally occupies two different quantum ac-
celerator modes, resulting in different momentum transfers to
the two electronic components of the superposition.

Considering two general electronic states |a) and |b), the
desired model Hamiltonian has the form [7]

),
(4)

where 7iw,, is the energy gap between |a) and |b), and H(¢)

n “ A hw
H,, = H(¢)|a)al + H(#)|b)b| + T“b<|b><b| ~|aXa

and I:I(¢Z) are equal to the atomic center of mass Hamil-
tonian of Eq. (1), with ¢,=¢% and ¢, respectively. In our
experiments, |a) correspond to the |[F=3,m;=0) substate of
the ground state of cesium, and |b) to the |F=4,mz=0) sub-
state; henceforth these substates will be denoted |a) and |b),
respectively. The 9.18 GHz difference between the transition
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FIG. 3. (Color online) Numerical simulation for the quantum
accelerator modes that are produced with g=20.10ms™>, T
=137.0 us. In column 1 (a, ¢, e), ¢,=0.87 and the (5, —4) quantum
accelerator mode is produced; in column 2 (b, d, ), ¢;=2.47 and
the (1, —1) (b, d, f) quantum accelerator mode results. (a) and (b)
show the momentum variation with the number of kicks for a single
initial plane wave with 8=0, (c) and (d) show the evolution of an
atomic cloud with initial temperature 5 uK, and (e) and (f) show
stroboscopic Poincaré sections determined by Eq. (2), with T
=137.0 us(e=0.336). The colorbar indicates the population, in ar-
bitrary units.

frequencies from the states |a) and |b) to any given excited
state means that atoms in the two internal states will experi-
ence different values of ¢, when exposed to laser light of a
particular intensity and detuning.

The population of cesium atoms in the states |a) and |b)
can be modified by a 9.18 GHz microwave pulse, resonant
with the |b)— |a) hyperfine transition [7]. For example, a
coherent superposition of |@) and |b) can be achieved experi-
mentally by applying a 77/2 microwave pulse to a sample of
atoms in state |b), in which they are trapped and cooled. The
intensity and detuning of the light creating the kicking po-
tential can be selected so as to apply the correct values of ¢,
to the states |a) and |b) to permit efficient population of the
required quantum accelerator modes. For example, with our
current experimental setup, it is feasible to have a value ¢,
=0.87 for state |a), while the corresponding value for state
|b) is ¢,=2.4m. Without any alteration to the effective value
of g, atoms in |b) state will be kicked in one direction [in the
(3, 1) quantum accelerator mode] while atoms in |a) state
will be kicked in the other [in the (5, 2) quantum accelerator
mode], as shown in Fig. 1. The transfer of momentum is
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FIG. 4. (Color online)(a) Momentum variation with number of
kicks, for =0, ¢,=2.27 for state |a) and ¢,=0.7 for state |b),
with 7=132.0 us and g=9.81 ms™2. A state-flipping microwave
pulse is applied after the 25th kick. The zoom-in around the switch
point is shown in (b).

therefore dependent on the internal state, which is just what
one needs for a beam splitter. This may well lead to a type of
interferometry based on this beam splitting mechanism and
will be the subject of future investigations.

B. State-dependent evolution

In this paper, however, we are focusing on the application
of the technique of simultaneous momentum transfer that
quantum accelerator modes provide to quantum random
walks. The state dependence of the momentum transfer per-
mits the state-dependent evolution required for a quantum,
rather than classical, random walk. With atoms initially in a
superposition of the |a) and |b) states, we can apply kicks to
accelerate the atoms in the two states in different directions.

To investigate how the methods of manipulating the inter-
nal state of the atoms permit momentum control, we numeri-
cally simulate a sequence in which we accelerate atoms in
state |b) for 25 kicks with ¢,=2.27r, and we then apply a 7
microwave pulse to pump all atoms from state |b) into state
|a), for which ¢,=0.77. T=132.0 us and g=9.81 ms™2 are
kept constant during the process. The results of the simula-
tion are shown in Fig. 4. After the switch, atoms in |b) cease
increasing momentum in their original direction and about
30% of them begin to accumulate momentum in the opposite
direction, corresponding to the quantum accelerator mode
with the lower kicking strength. Optimization of the effi-
ciency of transfer from one quantum accelerator mode to the
other needs a more detailed investigation, as we now discuss.

C. Optimizing the switch property

An ideal switch between different momentum transfer
modes requires the wave function of one quantum accelera-
tor mode to have an overlap with the other mode at the time
of switching. From the FGR analysis, this implies that better
switching efficiency will occur when the stable islands in
pseudoclassical phase space for the two quantum accelerator
modes overlap [9].

This is illustrated in Fig. 5, where g=7.26 ms™2, T
=131.0 us, ¢,=0.67r, and 3.8 for two different states. The
overlap between the stable islands for the lower kicking
strength [mode (1, 0), blue dots] and the higher kicking
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FIG. 5. (Color online) (a) Phase map of quantum accelerator
modes, with 8=0.1, T=131.0 us, g=7.26 ms~2, ¢,=3.87 for state
la) (red dots, ) and ¢;=0.67r for state |b) (blue dots). (b) Momen-
tum variation with number of kicks; a state-flipping 7 pulse occurs
after the 8th kick.

strength [mode (4, 1), red dots] in Fig. 5(a) is greater than
that in Figs. 1(e) and 1(f), or Figs. 3(e) and 3(f). This, as we
would expect, leads to a more efficient transfer of population
between the quantum accelerator modes when the atomic
internal state is flipped by a microwave pulse, as shown by
the comparison between Fig. 5(b) and Fig. 4(b). About 80%
of the atoms are successfully transferred from one mode to
the other.

The e-classical map thus provides the capability of using
the overlap criterion to search in parameter space to find the
best switching condition. A complete search of the relevant
phase space is a substantial enterprise, and will be part of a
longer term effort to optimize the operation of a practical
random-walker.

IV. NEAR-IDEAL BIASED QUANTUM RANDOM WALK

A. Quantum and classical random walks

We now turn to the implementation of a quantum random
walk using the state-dependent acceleration process we have
just described. The concept of a quantum random walk was
introduced by Aharonov et al. [10]. In different, subse-
quently introduced models of quantum random walks, the
Hadamard-style model is often discussed where a particle
evolves into a coherent superposition of moving one step to
the right and one step to the left along a line. As shown in
previous theoretical work [11], a particle with internal de-
grees of freedom is required to achieve this. In this model,
each step of the quantum random walk consists of a Had-
amard operation and a subsequent controlled-walk operation
S, which moves the atoms left or right, according to their
internal state. Assuming a particle with two internal states |a)
and |b), the walking operator is represented by

S=la)al ® X |m = 1)(m| +[b)b| ® X [m+ 1)(m|. (5)

The Hadamard operator, introduced to reshuffle the atoms in
the internal states after each step, reads

_(1 1) ¢
=\ _1) (©)

and acts such that Hl|a)=1/\2(|a)+|b)), H|bY=1/\2(|a)
~|b)).
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This is a quantum-mechanical rendering of the classical
random walk, where for each step, the particle moves left
with probability 1/2 and right with probability 1/2. With a
sufficient number of steps n, the time averaged position of
the particle approaches a normal distribution on the line,
with the standard deviation of \n.

However, in the case of a quantum random walk, the stan-
dard deviation increases with n. This essential difference of
the quantum random walk is due to the possibility of inter-
ference in quantum mechanics. Unlike the symmetric Gauss-
ian distribution in the population for classical random walks
in the limit of large n, the probability distribution of quantum
random walk has sharp peaks at high momenta, and may be
asymmetric, depending on the initial state. It is evident that
the interference pattern of a quantum random walk is much
more intricate than the Gaussian obtained in the classical
case.

In general one observes a two-peaked distribution. If all
atoms are initially in state |a) the position distribution drifts
to the left, i.e., the left-hand peak is larger. This asymmetry
comes from the fact that the Hadamard coin treats the two
directions, |a) and |b), differently. The walk operator multi-
plies the phase by —1 in the case of |b) only. This induces
cancellations for paths going rightwards (destructive interfer-
ence), whereas particles moving to the left interfere construc-
tively. Conversely, we can also cause the atoms to preferen-
tially drift to the right, with an initial condition having all
atoms in state |b) [11]. The probability at the even points is
zero between those nonzero probability of odd points, which
is also due to interference of |a) and |b) states.

B. Biased quantum random walks

With a quantum accelerator mode, we can apply a m/2
microwave pulse after each kick is equivalent to the “coin-
flipping.” As discussed above, different quantum accelerator
modes, specific to the different internal states, can cause dif-
ferent momentum transfer to the atoms with each alternative
kick, giving different walking speeds in the two directions.
This scheme then introduces different features from the Aha-
ronov model, and we therefore name this model a “biased”
quantum random walk in momentum space. In a biased
quantum walk, the “coined” state, which determines the di-
rection atoms move in by the extra degree of freedom of
“coin sides” (discussed in Ref. [10]), is the pair of hyperfine
states of the atoms and the momentum transfer per step, i.e.,
the walk speed, is determined by the order of quantum ac-
celerator modes. This can be altered [see Eq. (3)] by select-
ing different values of the parameters K and () that deter-
mine the acceleration. In this way atoms can be made to
perform a Hadamard-style quantum random walk in momen-
tum space [24].

It is important to note that atoms are divided to three
different classes in the case of quantum accelerator modes
considered here: two of them fall into two different accelera-
tor modes, thus obtaining different momentum changes in
each step, and the rest of the atoms are “left behind.” There
is an overall recoil in the opposite direction to the quantum
accelerator modes [25], but within this, the motion is diffu-
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FIG. 6. (Color online) The momentum distribution (in arbitrary
units) of the biased quantum random walk with a Hadamard coin
after 50 steps, starting in state |a)®|0) for (a) and (c), and state
|p)® |0) for (b) and (d). The parameter v, defined in Eq. (7), is O for
(a), (b) and 0.5 for (c), (d). The momentum increase is 0.25 units
per step to the negative direction and 0.1 units per step to the
positive direction.

sive rather than the coherent motion of quantum accelerator
modes. In order to understand better how such a system
could be used to realize a quantum random walk we propose
the following simplified model. Our model is a “biased quan-
tum random walk” for our coined quantum accelerator mode,
where atoms not only walk in two different directions, but
can be left behind.
The walk operator S then reads

S=(1-y(la)Xal & X k- 8,)k| +|b)b| @ 2 |k + &)K])
k k

+ v [k, (7)
k

where vy is the “leaving behind” amplitude. Related back to
the model system described by the quantum J&-kicked accel-
erator Hamiltonian, the integer k indicates the momentum
states (integer multiples of #G [26]), and &, and &, corre-
spond to the momentum increment per kick induced by two
different quantum accelerator modes (p;,j;) and (p,,j,).

The results of the numerical simulation of this biased
quantum random walk are shown in Fig. 6. Quantum accel-
erator modes increase the momentum of a group of atoms
linearly with the number of kicks, and this means that the
effective “diffusion” of the biased walk will also be linearly
proportional to the number of kicks, or “superdiffusive.” We
should expect atoms moving faster in one direction than the
other due to the difference in the walking speeds of the two
occupied quantum accelerator modes. Walks with nonzero
values of the parameter y have very different distributions
from those with y=0. In particular walks with y# 0 will fill
up the momentum gaps produced by a “pure” y=0 quantum
random walk.
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From Fig. 5 about 80% of atoms have a good switch from
one mode to another and 20% are left behind, for appropriate
values of B3, g, and ¢,. In this way, atoms could perform
quantum random walk for several steps. A future study to
perfect the switching property is necessary. The value of
such walks in search algorithms, and ways of varying 7, will
be the subject of future work. In this paper we simply want
to emphasis the potential interest and value of state-
dependent momentum transfer in quantum accelerator
modes, of the type we investigate here.

V. CONCLUSIONS

In conclusion, we have described a way to produce state-
dependent momentum transfer in a group of atoms. We be-
lieve that this offers a route to produce quantum random
walks in the laboratory with feasible experimental param-
eters. In particular, the next generation of experiments with
enhanced velocity selection will put practical realizations

PHYSICAL REVIEW A 73, 013401 (2006)

well within reach. The state-dependent walk controlled
through the parameters of the external perturbation is worthy
of investigation in its own right. There are three independent
control parameters in the basic d-kicked accelerator, namely,
the driving strength, the effective gravitational acceleration,
and the value of the commutator |e|. In an atom-optical con-
figuration these can all be tuned independently. There are
thus many parameter regimes available particularly when
considering the additional degrees of freedom offered by su-
perposition states. The full range of such phenomena, and
their relevance to quantum random walks, quantum reso-
nances, and quantum chaos in superposition states, awaits
exploration.
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