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1 Introduction

One of the fundamental results of finite model theory is Immerman’s char-
acterization [10,11] of the complexity class NL (non-deterministic logspace)
as the class of problems definable in transitive closure logic augmented with
a built-in successor relation, (±TC)∗[FOs]. Essentially, by “built-in successor
relation” we mean that any sentence of the logic has access to a successor
relation on the universe of the (finite) structure in which it is interpreted (and
where this successor relation does not necessarily come as part of the struc-
ture). So that our sentences should define problems, i.e., sets of structures
closed under isomorphism, we only ever consider the invariant sentences; that
is, those sentences with the property that every (appropriate) structure ei-
ther satisfies the sentence no matter which successor relation is chosen or it
doesn’t satisfy the sentence no matter which successor relation is chosen. Un-
fortunately, the property of being an invariant sentence is not decidable, even
for first-order logic with a built-in successor relation [7], and so one should not
really say that one has a truly “logical” characterization of NL. The general
question of whether complexity classes such as NL and P (polynomial-time)
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actually possess “logical” characterizations is the subject of much research in
finite model theory (see, for example, [5] and [13]).

Immerman proved yet more: he actually produced a normal form for the sen-
tences of (±TC)∗[FOs]. As observed in [14], this normal form result can be
re-interpreted as a result about the expressive power of a very simple class
of program schemes in the presence of a built-in successor relation. A pro-
gram scheme of NPS takes a finite structure as input and is essentially a
non-deterministic while-program with a constant number of variables, these
variables taking values from the universe of the input structure, and where
the tests in any while-instruction are quantifier-free first-order formulae (these
are “poor tests”, in the parlance of [12]; as opposed to “rich tests” which are
first-order formulae). If we allow the program schemes of NPS to additionally
have access to a built-in successor relation then we denote the resulting class
of program schemes by NPS(succ). Re-interpreting Immerman’s result yields
a characterization of NL as the class of problems accepted by the program
schemes of NPS(succ) (a similar result, though in a different context, was
derived earlier in [8]).

The question arises as to whether this very simple class of program schemes
NPS can be augmented with other different built-in relations so as to yield
a characterization of NL; and it is this question that provides the initial mo-
tivation for this paper (other studies arising from similar motivations can be
found in, for example, [6] and [15]). Our choice of other built-in relations to
consider is influenced by what has been studied already in other contexts in
finite model theory. In particular, in [1] it is proven that first-order logic aug-
mented with the built-in relations ≤, a linear order, and BIT , a binary relation
such that BIT (i, j) holds iff “the ith bit of the binary representation of the
natural number j is 1”, characterizes the complexity class AC0. As remarked
in, for example, [2], this logic is equivalent to the extension of first-order logic
with the built-in binary relation ≤ and the built-in ternary relations +, an
addition, and ×, a multiplication. Hence, the four built-in relations we shall
consider are succ, ≤, + and ×. In fact, we completely classify the relative
expressibilities of the program schemes of NPS augmented with these built-in
relations, as is depicted in Fig. 1 (a bold line joining two classes indicates that
the upper class is more expressive than the lower class, and a dashed line that
the classes are incomparable).

Whilst, admittedly, the scenario described above is rather esoteric, it turns
out that as well as the above classification, we can actually obtain analogous
classifications for both bounded-variable infinitary logic, Lω

∞ω, and its existen-
tial fragment, ∃Lω

∞ω. The logic Lω
∞ω features widely in finite model theory: for

instance, transitive closure logic, least fixed point logic and partial fixed point
logic are all fragments of Lω

∞ω (see, for example, [5]). The classification for
extensions of ∃Lω

∞ω is exactly that in Fig. 1 with “NPS” replaced by “∃Lω
∞ω”,
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and “NL =” omitted. The classification for Lω
∞ω is as follows.

NL = NPS(succ) = NPS(+,×)

NPS(+) NPS(×,≤)

NPS(≤) NPS(×)

NPS

Figure 1. How the classes of program schemes relate.

Theorem 1 Lω
∞ω ⊂ Lω

∞ω(×) ⊂ Lω
∞ω(succ) = Lω

∞ω(+) = Lω
∞ω(≤).

Our classifications follow from Proposition 5 where our basic methodology is
to exhibit problems in certain program-scheme classes which are not defin-
able in certain infinitary-logic classes, and to use the simple observation that
a program-scheme class is a fragment of the analogous infinitary-logic class.
In order to prove our inexpressibility results for Lω

∞ω, we use well established
pebble games. Let us remark that if we allow first-order tests in the program
schemes of NPS, i.e.,“ rich tests”, then we obtain a result identical to Theo-
rem 1 except with “NPS” replacing “Lω

∞ω”.

2 Program schemes and logics

The reader is referred to [5] for details of any finite model theoretic concepts
and notions not covered here. Any program scheme is defined to be over some
fixed signature, with a signature τ being a finite tuple 〈R1, . . . , Rr, C1, . . . , Cc〉,
where each Ri is a relation symbol, of some fixed positive arity di, and where
each Cj is a constant symbol (function symbols are not allowed in our signa-
tures). A program scheme ρ ∈ NPS(τ) is a finite sequence of instructions of
one of the following types):

• atoms consist of: the variables {xi : i = 1, 2, . . .}; the constant symbols of
τ ; and the constant symbols 0 and max (which we ensure do not occur in
any signature)

• assignment instructions are of the form:
· var := atom, where var denotes some variable and atom some atom
· guess(var), where var denotes some variable
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• test instructions are of the form WHILE t DO i1, i2, . . . , ik OD, for some
k ≥ 0 and instructions i1, i2, . . . , ik, where t is a boolean combination of
boolean tests , or their negations, of the form:
· y1 = y2, where y1 and y2 are atoms
· R(y1, y2, . . . , yd), where R is a d-ary relation symbol of τ and y1, y2, . . . , yd

are atoms
• input/output instructions are of the form input(x1, x2, . . . , xm) and output

(x1, x2, . . . , xm), where x1, x2, . . . , xm are the input/output variables.

The first (resp. last) instruction of any program scheme is the input (resp.
output) instruction, and any program scheme has exactly one input and one
output instruction. Also, the input/output variables are exactly those variables
involved in any program scheme. Without loss of generality, we may assume
that there is available an IF . . . THEN . . . (ELSE . . .) FI instruction (see [14]).

A program scheme over the signature τ = 〈R1, . . . , Rr, C1, . . . , Cc〉 takes as
input a finite structure S over τ , or τ -structure, where S = 〈{0, 1, . . . , n −
1}, RS

1 , . . . , R
S
r , C

S
1 , . . . , C

S
c 〉, with |S| = {0, 1, . . . , n−1} the universe of S, and

with each RS
i ⊆ |S|di and each CS

j ∈ |S|: we also write |S| to denote the size
n of S (this causes no confusion; and nor does our choice of leaving out super-
scripts denoting the structure in which a relation symbol, etc., is interpreted).
We denote the class of all structures over some signature τ by STRUCT(τ).
The interpretation of some program scheme ρ over τ in a τ -structure S of
size n should be obvious except that we require: that the initial values (from
|S|) of the input/output variables are given; that the constant symbols 0 and
max are interpreted arbitrarily but differently in S (we assume all structures
have size at least 2); and that any instruction guess(xi) nondeterministically
assigns some value of |S| to the variable xi. We say that ρ accepts S, and
write S |= ρ if, and only if, with the input/output variables initially all set
at 0, there exists a computation of ρ on input S such that ρ halts with the
input/output variables all set at max.

As things stand, acceptance of a structure by a program scheme depends upon
the interpretation of 0 and max, and as such is clearly unacceptable. We could
remedy this situation by insisting that every structure S always comes with
its own constants 0 and max; but this would force us to consider natural ob-
jects like graphs unnaturally, i.e., by supplying two additional distinguished
vertices. We remedy this discrepancy by only ever considering certain pro-
gram schemes. Henceforth, we only consider program schemes ρ for which the
following is true: for every τ -structure S (where τ is the underlying signature
of ρ) and for every 0, 0′,max,max′ ∈ |S| for which 0 
= max and 0′ 
= max′,
(S, 0,max) |= ρ iff (S, 0′,max′) |= ρ. That is, we only ever consider program
schemes with 2 built-in constants . Consequently, the set of structures accepted
by a program scheme ρ constitute a problem; that is, a set of finite structures,
over some fixed signature, which is closed under isomorphism. We write NPS
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to denote the class of program schemes {ρ ∈ NPS(τ) : τ some signature} (with
the above proviso on each ρ), and also write NPS to denote those problems
accepted by some program scheme of NPS (the same goes for other classes of
program schemes defined later).

Just as we augmented program schemes with two built-in constants, so we
can augment them with built-in relations. For example, to say that a pro-
gram scheme has a built-in successor relation is to say that a program scheme
has available: a binary relation succ that is always interpreted as a successor
relation on the universe of an input structure, i.e., as a relation of the form
{(u0, u1), (u1, u2), . . . , (un−2, un−1)}, where the input structure has size n; and
also two constant symbols 0 and max that are always interpreted as the least
and greatest elements of the successor relation, i.e., as u0 and un−1, respec-
tively. Just as before, we only ever consider those program schemes with a
built-in successor relation which define problems, i..e, those program schemes
ρ, over the signature τ , such that for every τ -structure S and for every pair of
successor relations succ and succ′ (with associated “least” and “greatest con-
stants”), (S, succ, 0,max) |= ρ iff (S, succ′, 0′,max′) |= ρ. We denote the class
of problems accepted by program schemes with a built-in successor relation
as NPS(succ).

A built-in linear-order ≤ is defined as was a built-in successor, and we write
≤ (u, v) as u ≤ v; a built-in addition is defined by allowing a program scheme
access to a ternary relation + that is always interpreted as an “addition” on
the universe of some input structure, and we write +(u, v, w) as u + v = w;
and a built-in multiplication is defined by allowing a program scheme access
to a ternary relation × that is always interpreted as a “multiplication” on the
universe of some input structure, and we write ×(u, v, w) as u × v = w. The
built-in constants 0 and max are the least and greatest elements of the linear
order ≤, addition + and multiplication ×, respectively.

We use pebble games to prove our separation results. Let τ be some signature.
The k-pebble infinitary game on the τ -structures S and T is played by two
players, Spoiler and Duplicator, as follows. The board consists of the two struc-
tures S and T , and there are k pairs of pebbles {p1, q1}, {p2, q2}, . . . , {pk, qk}.
A move of the game consists of Spoiler picking up some pebble pi (resp. qi),
which may or may not have previously been played, and placing it on some
element of |S| (resp. |T |): then Duplicator picks up pebble qi (resp. pi) and
places it on some element of |T | (resp. |S|). Spoiler wins after a move has been
made if the substructure of S induced by the elements upon which pebbles are
currently placed (and any constants) is not isomorphic to the substructure of
T induced by the elements upon which pebbles are currently placed, where the
isomorphism is that given by mapping the element of |S| upon which pebble pi

is currently placed (if indeed it has been so placed) to that of |T | upon which
pebble qi is currently placed and mapping a constant of S to the correspond-
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ing constant of T (also, if this mapping is not well-defined then Spoiler wins).
The game may be infinite. We say that Duplicator has a winning strategy in
the k-pebble infinitary game on S and T if no matter how Spoiler moves,
Duplicator can prolong the game indefinitely (we prefer to leave the notion of
a “winning strategy” intuitive rather than define it rigorously).

The k-pebble infinitary game classifies definability in the logic Lk
∞ω, which

is defined as follows: Lk
∞ω is the fragment of the logic L∞ω with at most k

variables, where the logic L∞ω is first-order logic where infinite conjunctions
and disjunctions may be formed. Bounded-variable infinitary logic is defined
as Lω

∞ω = ∪kLk
∞ω. The existential fragment, ∃Lω

∞ω, of Lω
∞ω consists of all

those formulae not involving the universal quantifier ∀. It is easy to see that
NPS ⊆ ∃Lω

∞ω (and also in the presence of built-in relations).

Theorem 2 [3,9] Let τ be some signature and let S and T be τ -structures.
The Duplicator has a winning strategy in the k-pebble infinitary game on S
and T iff S and T agree on all sentences of Lk

∞ω. Moreover, the Duplicator
has a winning strategy in the restricted k-pebble infinitary game on S and T
where Spoiler only ever plays in S iff S and T agree on all sentences of ∃Lk

∞ω.

We close this section with some historical remarks. Program schemes were ex-
tensively studied in the seventies, without much regard being paid to resources,
before a closer complexity analysis was undertaken in, mainly, the eighties (see
[12] and the references therein). In the late eighties, program schemes were de-
veloped to work on finite structures [14], mindful of advances in descriptive
complexity theory. We feel that the links between program schemes, logics for
programs, dynamic logic, etc., and the logics studies in finite model theory,
particularly those involving generalized quantifiers, have not been considered
in the past as fully as they might have been, and that this is an interesting
prospective area of research.

3 The basic results

Let the signature τ = 〈U,E,C,D〉, where U is a unary relation symbol, E
is a binary relation symbol and C and D are constant symbols. Define the
problem BP as consisting of all those τ -structures such that there is a path in
the digraph described by E from vertex C to vertex D of length at most ν,
where ν = |{u : U(u) holds}|.

Theorem 3 BP ∈ NPS (≤) \ Lω
∞ω(×).

PROOF. The following program scheme ρ ∈ NPS(≤) accepts BP:
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input(x,y,u,v)

IF C 
= D THEN

guess(u)

WHILE ¬U(u) DO guess(u) OD

guess(x)

WHILE ¬E(C,x) DO guess(x) OD

WHILE x 
= D DO

guess(v)

WHILE ¬U(v) ∨ v ≤ u DO guess(v) OD

guess(y)

WHILE ¬E(x,y) DO guess(y) OD

u := v

x := y

OD

FI

x, y, u, v := max

output(x,y,u,v)

Suppose that BP is definable by a sentence ψ ∈ Lk
∞ω(×), for some k.

Lemma 4 For every k, there exists an n such that there are at least k distinct
primes greater than n/2 and less than n.

PROOF. From Tchebychev’s Theorem [4, p.55], if Π(x) denotes the number
of primes not exceeding x then:

0.92
x

ln x
≤ Π(x) ≤ 1.22

x

ln x
,

for all sufficiently large x, and so Π(2x) − Π(x) → ∞ as x→ ∞. �

Let n be such that {p1, p2, . . . , p2k+2} is a set of distinct primes, each of which
is greater than n/2 and less than n: given k, such an n exists by Lemma 4.
Define the τ -structure S = 〈{0, 1, . . . , n− 1}, US, ES, CS, DS〉 as follows:

US = {p1, p2, . . . , pk+1}, ES = {(i, i+ 1) : i = 0, 1, . . . , k + 1}
CS = 0, DS = k + 1.

Let T be defined exactly as was S except that pk+1 
∈ UT . Note that S ∈ BP
but T 
∈ BP. Let the relation symbol × and the constant symbols 0 and
max be interpreted as the natural multiplication on |S| = |T |, 0 ∈ |S| = |T |
and n − 1 ∈ |S| = |T |, respectively. By hypothesis, (S,×, 0,max) |= ψ and
(T,×, 0,max) 
|= ψ.
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Consider the following winning strategy for Duplicator in the k-pebble Ehren-
feucht-Fräıssé game on (S,×, 0,max) and (T,×, 0,max). Write V S = {pk+2,
pk+3, . . . , p2k+2}, V T = {pk+1, pk+2, . . . , p2k+2}, W S = |S| \ (US ∪ V S) and
W T = |T | \ (UT ∪ V T ).

• If Spoiler plays on an unpebbled element in US (resp. UT , V S, V T ) then
Duplicator plays on an unpebbled element in UT (resp. US, V T , V S).

• If Spoiler plays on a pebbled element in US (resp. UT , V S, V T ) then Du-
plicator plays on the corresponding pebbled element in UT (resp. US, V T ,
V S).

• If Spoiler plays in W S (resp. W T ) then Duplicator plays on the element of
the same name in W T (resp. W S).

Theorem 2 yields a contradiction. �

Proposition 5 (i) NPS (succ) = NPS (+,×)(= NL) and ∃Lω
∞ω(succ) =

∃Lω
∞ω(+,×).

(ii) NPS (≤) ⊆ NPS (+) and ∃Lω
∞ω(≤) ⊆ ∃Lω

∞ω(+).
(iii) There are problems in NPS (succ) which are not in ∃Lω

∞ω(≤).
(iv) There are problems in NPS (+) which are not in ∃Lω

∞ω(≤).
(v) There are problems in NPS (×) which are not in ∃Lω

∞ω(+).
(vi) There are problems in NPS (+) which are not in ∃Lω

∞ω(≤,×).

PROOF. (Sketch)
(i) and (ii) Simple exercises.
(iii) and (iv) The problem ODD consisting of all those structures of odd
size over the empty signature τε is in NPS(succ) and NPS(+). A simple
Ehrenfeucht-Fräıssé game on two sufficiently large τε-structures Sn and Sn+1,
the first of odd size n and the second of even size n + 1, yields that ODD 
∈
∃Lω

∞ω(≤) (take the natural linear orders in Sn and Sn+1, and let Duplica-
tor’s winning strategy be given by the function f : |Sn| → |Sn+1| defined as
f : i �→ i, for all i ∈ {0, 1, . . . , n− 2}, and f(n− 1) = n).
(v) The problem PERF1 consisting of all those structures over the signa-
ture τε whose size is 1 plus a perfect square is in NPS(×). Let p be a suf-
ficiently large even number. A simple Ehrenfeucht-Fräıssé game on two τε-
structures Sp2+1 and S2p2+1 of sizes p2 +1 and 2p2 +1, respectively, yields that
PERF1 
∈ ∃Lω

∞ω(+) (take the natural additions in Sp2+1 and S2p2+1, and let
Duplicator’s winning strategy be given by the function f : |Sp2+1| → |S2p2+1|
defined as f : i �→ 2i).
(vi) The problem ODD is in NPS(+). A simple Ehrenfeucht-Fräıssé game
on two τε-structures S3 and S4 of sizes 3 and 4, respectively, yields that any
problem in ∃Lω

∞ω(×) which contains S3 must contain S4 (take the natural
multiplications in S3 and S4 and the natural linear orders in S3 and S4, and
let Duplicator’s winning strategy be given by the function f : |S3| → |S4|
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defined as f(0) = 0, f(1) = 1 and f(2) = 3.) �
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