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ABSTRACT

We develop an analytic model to calculate the rate at which galaxy discs are heated by dark
matter substructures orbiting in their haloes. The model takes into account the internal structure,
mass function and accretion rate of satellites expected in the �CDM cosmology, as well as
the growth of the disc by accretion and mergers, but it ignores resonant heating of the disc
and the dynamical effects of spiral arms and bars. We calibrate this model against N-body
simulations and demonstrate that it is able to reproduce the N-body heating rates to within a
factor of 3 in the majority of cases. Our model gives the distribution of disc scaleheights for
galaxies of different luminosities. For L∗ spiral galaxies, it predicts a median disc thickness
of only 5 per cent of the radial scalelength if substructure is the only source of heating.
The median disc thickness increases to nearly 20 per cent of the radial scalelength when
heating due to gravitational scattering of stars by molecular clouds is also included. The
latter value is close to the thickness estimated observationally for the disc of the Milky Way
galaxy. The distribution of disc thickness predicted by the model is also consistent with a
recent observational determination for sub-L∗ galaxies by Bizyaev & Mitronova. Thus, the
observed thickness of the stellar discs of spiral galaxies seems to be entirely compatible with
the abundance of substructure in dark matter haloes predicted by the standard �-dominated
cold dark matter model of structure formation. In an�0 = 1 universe, our best model of galaxy
formation produces similar scaleheights, a consequence of the fact that similar amounts of
substructure are accreted by haloes during the lifetime of the disc in �0 = 1 and 0.3, �0 =
0.7 cold dark matter cosmologies.

Key words: Galaxy: disc – galaxies: fundamental parameters – galaxies: haloes – galaxies:
interactions – galaxies: kinematics and dynamics – dark matter.

1 I N T RO D U C T I O N

A generic prediction of hierarchical models of structure formation,
such as the cold dark matter (CDM) model, is that the dark mat-
ter haloes of galaxies and clusters should contain large amounts
of substructure, in the form of small, gravitationally bound sub-
haloes orbiting within the larger potential. This substructure arises
because large haloes are built up by mergers of smaller haloes where
the tidally stripped remnants can survive in favourable conditions.
Recently, it has been claimed that the CDM model predicts an order
of magnitude too many subhaloes around the Milky Way galaxy,
compared with what is inferred from the number of satellite galax-
ies (Klypin et al. 1999; Moore et al. 1999). Several authors have
now pointed out that this apparent discrepancy is readily explained
if some process [such as the heating of the intergalactic medium
(IGM) during reionization] is efficient at suppressing the forma-
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tion of galaxies in most of these subhaloes (Bullock, Kravtsov &
Weinberg 2000; Benson et al. 2002b; Somerville 2002). In this pic-
ture, galaxy haloes should be filled with many small subhaloes con-
taining negligible amounts of luminous material. A good test of
this idea is possible by searching for gravitational signatures of
subhaloes, thus bypassing the problem of relating subhaloes to the
visible material in satellite galaxies.

The most direct probe of substructure in dark matter haloes is
gravitational microlensing. Its properties are reasonably well un-
derstood theoretically (Mao & Schneider 1998; Metcalf & Madau
2001; Chiba 2002; Dalal & Kochanek 2002a, 2002b). Although the
interpretation of the current data sets remains controversial in some
cases, the observed microlensing rates appear to be consistent with
the abundance of substructure predicted by CDM.

An alternative constraint on the amount of substructure in haloes
may be obtained by considering the thickness of the stellar discs of
galaxies. Subhaloes on orbits that pass through or near to a galac-
tic disc perturb it gravitationally and deposit energy into it, gradu-
ally heating the disc and increasing its scaleheight. Since there are
other mechanisms that also heat stellar discs (but with uncertain
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efficiency), the observed thickness of galactic discs sets an upper
limit on the abundance of such substructure. The heating of galactic
discs by infalling satellites was invoked as a constraint on mod-
els of structure formation by Tóth & Ostriker (1992, hereafter TO).
They calculated this effect semi-analytically, and concluded that the
thinness of the Milky Way disc is inconsistent with the hierarchi-
cal build-up of galaxies in a high-density (�0 = 1) CDM universe.
This conclusion was disputed by Navarro, Frenk & White (1994)
whose cosmological simulations showed that many of the satel-
lites that are incorporated into a galactic dark halo do not actually
merge with the central galaxy. Subsequent numerical simulations of
mergers of single satellites with larger disc galaxies (e.g. Huang &
Carlberg 1997; Velázquez & White 1999) indicated that TO’s ana-
lytical estimates of the heating rate were somewhat too high, weak-
ening their constraint on structure formation models. More recently,
Font et al. (2001) have numerically simulated the heating of discs by
the ensemble of subhaloes predicted to exist within dark haloes in
the CDM model. Their simulations of Milky Way-like galaxies only
set an upper limit to the rate of disc heating by satellites, because of
numerical effects, but they conclude that this is less than the total
disc heating rate that is inferred observationally for the Solar neigh-
bourhood. They argue that the heating rates are low because the most
massive satellites, which are those that cause the most heating, are
few in number and because few satellites penetrate the inner regions
of the disc. Although their conclusions agree with those of Navarro
et al. (1994), they are limited by the fact that they only simulated
two realizations of the halo substructure.

In this paper, we develop a new semi-analytical model of disc
heating by halo substructure. Our calculation builds upon earlier
semi-analytical modelling of galaxy formation within the frame-
work of CDM cosmology (Cole et al. 2000), and on recently de-
veloped analytical models of the evolution of satellites within dark
matter haloes (Taylor & Babul 2001, 2004; Benson et al. 2002a;
Taffoni et al. 2003). The rate at which satellite haloes of different
masses are incorporated into the main halo is given by the galaxy
formation model. The satellite model then predicts how the masses,
radii and orbits of subhaloes evolve due to dynamical friction and
tidal stripping by the halo, disc and bulge of the host galaxy. In this
paper, we add a calculation of how much of the orbital energy of the
satellites that is lost by dynamical friction goes into increasing the
thickness and vertical motions of the galactic disc. The interaction
between the satellite and the disc is modelled in a simplified way,
ignoring details such as resonant interactions and the possible role
of spiral features and bars. We test and calibrate our analytical model
of satellite evolution against a new set of high-resolution N-body
simulations of single satellites merging with disc galaxies. We find
(as has also been shown by Taylor & Babul 2001; Taffoni et al. 2003)
that such an analytical model is able to provide a good reproduction
of the behaviour seen in the N-body simulations. We measure the
disc heating in the same simulations, and find that it is quite well
reproduced by our analytical model. We then apply this model of
heating by satellites within the framework of our semi-analytical
model of galaxy formation, in order to predict the distribution of
scaleheights for disc galaxies of different luminosities.

Both the N-body and semi-analytical approaches have advantages
and disadvantages when applied to this problem. N-body simula-
tions fully account for the non-linear interaction of substructure and
disc (e.g. for the excitation of global modes such as warps and bars
in the disc). However, they are limited by resolution and artificial nu-
merical heating and, because of computational cost, they are limited
to few (two, in the case of the best cosmological simulations of disc
heating to date, by Font et al.). The semi-analytical approach has

the advantage that it is not limited by resolution or artificial heating,
and it allows the calculation of a large number of realizations. Since
heating by substructure is a highly stochastic process, it is important
to account for the galaxy-to-galaxy variation in the heating rate by
calculating a large number of realizations. At present, this is only
possible with the semi-analytical approach.

The remainder of this paper is arranged as follows. In Section 2
we describe our analytical model for disc heating by subhaloes and
for the evolution of the disc scaleheight. In Section 3 we calibrate
and test our analytical model against numerical simulations of sin-
gle satellite–disc mergers. In Section 4 we present our predictions
for the distribution of scaleheights of disc galaxies in the CDM
model, and compare with observational data for the Milky Way and
for other galaxies. Finally, in Section 5 we present our conclusions.
Appendices detail derivations of various formulae related to dynam-
ical friction and disc energies and present convergence tests for the
N-body simulations.

2 M O D E L

2.1 Evolution of satellites and their orbits

We calculate the evolution of the masses, radii and orbits of satellites
using a development of the model presented in Benson et al. (2002a,
hereafter Paper I). That work, in turn, was based on the satellite evo-
lution model of Taylor & Babul (2001). Here we summarize the main
features of our model. The growth of the main halo is described by
a merger history tree, which is calculated by a Monte Carlo method
(Cole et al. 2000). When smaller haloes (in general containing one
or more visible galaxies) merge with the main halo, they become
satellite haloes. The satellite haloes are given initial orbits that start
close to the virial radius, but have a range of eccentricities consistent
with the distribution seen in the N-body simulations of Ghigna et al.
(1998). The satellite orbits are followed in the potential of the host
system; they evolve due to dynamical friction against the dark halo,
disc and bulge of the main galaxy. At the same time, the satellites
lose mass by tidal stripping, both ‘static’ tidal limitation and tidal
shocking. As a satellite is tidally stripped, its radius and internal
structure also change.

We have made a few improvements to our satellite orbit model
from that presented in Paper I. These are described in Appendix A.

2.2 Disc heating

2.2.1 Rate of heating

We now wish to calculate the rate at which a satellite halo heats
the disc of the galaxy in its host halo. The satellite experiences
dynamical friction against the disc, and the energy lost from the
orbital motion of the satellite by this mechanism goes into increasing
the energy of the disc. Working in the frame in which the centre of
mass of the central galaxy and its halo are at rest, the satellite injects
energy into the disc at a rate

P = −Fdf,disc · vsat, (1)

where Fdf,disc is the dynamical friction force exerted by the disc and
vsat is the velocity of satellite. (Note that while we typically expect
the satellite to lose energy to the disc, it is possible for the satellite
to gain energy from the ordered motions of the disc if Fdf,disc · vsat >

0. This occurs because the dynamical friction force depends, in our
approximation, on the relative velocity vector of the satellite and
the local disc stars. If the local disc velocity is sufficiently large, the
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Figure 1. The efficiency of energy transfer to vertical motions in the disc
as a function of the angle between the disc–satellite relative velocity and the
z-axis, θV0 . Results are plotted for several values of � as indicated in the
figure.

relative velocity vector may point in the opposite direction to the
satellite velocity vector, resulting in a transfer of energy from the
disc to the satellite.) This energy is initially injected in the form
of kinetic energy, but it is subsequently mixed between kinetic and
potential energies by the motions of the stars. We are interested in
the increase in the vertical energy of the disc, which is given by

Ėz = −εz Fdf,disc · vsat. (2)

We derive an expression for the efficiency factor ε z � 1 in
Appendix B3 by considering the increases in the vertical and hori-
zontal components of the velocity dispersion of the stars responsi-
ble for dynamical friction during scattering events. This expression
(B29) depends only on the Coulomb logarithm, ln �, and the an-
gle θV0 between the disc–satellite relative velocity and the z-axis.
We then simply integrate Ėz along the satellite orbit to determine
the net increase in the vertical energy of the disc.

Fig. 1 shows how ε z depends on the angle θV0 for a few rep-
resentative values of �. Note that εz = 1

3 when cos θV0 = 1√
3
,

independently of �. For small � the efficiency is greatest when
θV0 = 0◦ (approaching unity as� approaches zero) and smallest for
θV0 = 90◦ (approaching zero as� approaches zero). For large� the
trend is reversed, with ε z being smallest at θV0 = 0◦ (approaching
zero as� approaches infinity) and largest for θV0 = 90◦ (approach-
ing 1

2 as � approaches infinity). The transition between these two
regimes occurs for � ≈ 3.975, for which ε z is independent of θV0 .

We can understand the behaviour of ε z in simple terms. For ex-
ample, for θV0 = 0, the efficiency drops to zero as� becomes large.
In this case, vertical motions in the disc are parallel to the rela-
tive velocity vector of the satellite and the disc stars. Consequently,
only the 
Vm|| term (see equation B15) contributes to increasing
the energy in these vertical motions. As�, and hence the maximum
impact parameter, b, increases, energy transfer from the satellite
becomes dominated by large b scatterings. For large impact param-
eters, the increase in velocities (and hence energies) perpendicular
to the satellite motion dominates over that parallel to the motion,
since 
V m|| ∝ b−2 while 
V m⊥ ∝ b−1 (see equation B16). Con-
sequently, the efficiency of transfer to vertical motions in the disc
drops to zero as � becomes large.

The reversal of the trend of ε z with θV0 at�≈ 3.975 is also simple
to understand. For larger �, energy transfer is predominantly into
motions perpendicular to the motion of the satellite (as discussed
above). Thus, the efficiency of energy transfer to motions in the
vertical direction is greatest when the satellite moves perpendicular
to that direction (θV0 = 90◦). For smaller �, energy transfer occurs
mostly into the parallel direction, and so ε z is maximized for θV0 =
0◦. For � ≈ 3.975 energy transfers into perpendicular and parallel
directions are equal and so ε z is constant.

When cos θV0 = 1√
3
, the energy transferred to vertical motions

is always one-third of the increase in energy parallel to the satellite
velocity, plus one-third of the increase in the energies in the two
directions perpendicular to the satellite velocity. Thus, this energy
is always exactly one-third of the total energy transferred from the
satellite and hence εz = 1

3 independently of �.
It is worth considering, at this point, some of the simplifications

that go into our dynamical model of disc heating. Dynamical friction
is treated using Chandrasekhar’s approximation, which is clearly not
strictly applicable to our halo-plus-disc system. While this approxi-
mation has been shown to be a reasonable one for dark matter haloes
(Weinberg 1986; Bontekoe & van Albada 1987; Core, Muzzio &
Vergne 1997; Colpi, Mayer & Governato 1999; van den Bosch 1999;
Velázquez & White 1999), its validity when discs are included is less
clear. Importantly, this approximation ignores any possible resonant
interaction between the satellite and the disc.

A further simplification of our model is that the phase space dis-
tributions of halo dark matter and disc stars are assumed to be fixed,
with the exception that the disc vertical velocity dispersion and den-
sity profile are allowed to change with time. (We further assume that
the vertical motions of stars in the disc do not couple to radial and
azimuthal motions, which will be approximately true provided that
the disc remains thin.) In reality, all three components of the disc
velocity dispersion will be affected by substructure heating. How-
ever, the changes in the radial and azimuthal velocity dispersions
have only a small effect on the overall structure of the disc in the
majority of cases. Thus, our approach should be a reasonable first
approximation.

A final, important simplification is that we ignore some possible
interactions between the disc and the dark matter halo, e.g. those
driven by non-axisymmetric structures such as bars or warps in the
disc. This complex set of interactions could, in principle, result in
energy initially transferred from the satellite to the disc finding its
way into the halo dark matter. The efficiency with which this happens
will clearly depend upon the frequency with which substructure
excites bars and other global modes in the disc and is therefore
beyond the scope of our current calculations.

Given these simplifications it is important to test our analytic
calculations against N-body simulations of the disc heating process.
We perform such tests in Section 3.

2.2.2 Disc scaleheight and vertical energy

Having calculated the energy deposited into vertical motions of
disc stars, we now wish to calculate the resulting scaleheight of
the disc. We work throughout in the thin disc approximation, in
which the vertical extent of the disc is always assumed to be
small compared with its radial extent, and the non-circular veloc-
ities are assumed to be small compared with the circular veloc-
ity. In this approximation, the disc can be treated as being locally
plane-parallel, with the consequence that the vertical motions sepa-
rate from the motions in the plane, and there is a well-defined vertical
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energy which (in the absence of perturbations by satellites or other
objects) is conserved both for individual stars and for the disc as
a whole. The vertical energy given to a star by an encounter with
a satellite is initially in the form of vertical kinetic energy, but the
orbital motion of the star subsequently mixes this between vertical
kinetic and potential energies, while keeping the sum of the kinetic
and potential energies constant. In the thin disc approximation, the
total vertical energy per unit area of the disc, ez, can be written as
(TO)

ez = tz + wdd + wdh, (3)

where all quantities are surface energy densities, tz is the disc vertical
kinetic energy,wdd is the disc self-gravitational energy andwdh is the
gravitational energy due to the disc–halo interaction. The vertical
energy ez is defined to be zero in a state where the disc has zero
thickness and zero vertical velocities. Expressions for tz, wdd and
wdh are derived in Appendix C. Following TO, we assume virial
equilibrium and find

2tz − wdd − 2wdh = 0 (4)

and so

ez =
3

2
wdd + 2wdh. (5)

The density of our model discs in the vertical direction is propor-
tional to sech2 z/H d. For this density profile we find from equa-
tion (5) (TO)

ez =
3

2
πG2

d (R)Hd +
π

2

12
d(R)H 2

d

GMh(R)

R3
, (6)

where R is radius in the disc plane, d(R) is the disc surface mass
density, and Mh(R) is the mass in the (spherical) halo plus bulge
within radius R. Since the vertical kinetic energy per unit area is
tz = 1

2dσ
2
z , we also find from equation (4)

σ 2
z = πGd(R)Hd +

π
2

12
GMh(R)H 2

d /R3. (7)

This expression is used to calculate the vertical velocity dispersion
at each radius from the scaleheight Hd.1

To relate the radially dependent vertical energy per unit area to
the global total vertical energy, we make the assumption that the
disc scaleheight is constant with radius, since this is observed to
be a good approximation for real galaxies (e.g. de Grijs & Peletier
1997). We can then integrate equation (6) over the whole disc to find
the total vertical energy. Usingd = (M d/2π R2

d) exp(−R/Rd) for
an exponential disc of radial scalelength Rd we find

Ez =
3

16
MdV 2

d h +
π

2

12
MdV 2

d h2

∫ ∞

0

(

Vh

Vd

)2
exp(−x)

x
dx, (8)

where the fractional scaleheight h = H d/Rd, V 2
d = GM d/Rd and

V 2
h = GM h(R)/R. Integrating equation (7) gives a similar expres-

sion for the total vertical kinetic energy Tz. Once the total vertical
energy Ez is known, the above equation is easily solved for h and
hence Hd.

1 Note that here we differ slightly from VW by including the contribution
of the halo gravity to the disc vertical velocity dispersion. This is typically
a small, although not negligible, contribution over the bulk of the disc.

2.2.3 Local versus global heating

In Section 2.2.2 we made the assumption that the energy deposited
in the disc by satellites was distributed throughout the disc in such
a way as to produce a scaleheight that was independent of radius.
However, the increase in energy per unit mass caused by a satellite
passing through or near the disc will initially be greatest close to
the point of impact. Since satellite encounters frequently trigger
global modes of the disc it is not implausible that this energy quickly
becomes redistributed throughout the disc. However, it is interesting
to consider the opposite extreme in which energy is deposited at the
position of the satellite and remains there. We refer to these two
extremes as ‘global’ and ‘local’ heating. To study local heating we
accumulate the energy deposited by satellites in a narrow annulus of
the disc (in practice we use a Gaussian window function), centred on
the disc half-mass radius. We then assume that the specific energy
of disc material is proportional to the same window function and use
the relations of Section 2.2.2 to compute the resulting scaleheight
at the half-mass radius.

Observations of real galactic discs (de Grijs & Peletier 1997)
indicate that the scaleheight is reasonably constant with radius, at
least for late-type galaxies. For this reason we prefer the global
heating assumption, but also consider local heating as an interesting
comparison.

2.2.4 Further aspects

Below we detail how we deal with energy2 deposited in a gaseous
disc and how we treat galaxy mergers, gas accretion and star forma-
tion.

Gas in galaxy discs. Discs in our model in general consist of both
stars and gas. The gas is assumed to be in an infinitely thin layer
with zero velocity dispersion in the disc mid-plane. We include the
contribution of the gas to the disc gravitational potential and when
computing the disc scaleheight. With our choice of zero-points for
the energy, the vertical kinetic energy of the gas and also its self-
gravitational energy are both zero (because it is at z = 0), but the gas
contributes to the total energy per unit area of the disc ez through the
gravitational interaction energy between the gas and stars (see TO
for more details). We assume that gas and stars in the disc are heated
at the same rate per unit mass, but that the gas dissipates this energy
rapidly, so that energy deposited in the gas is effectively lost.

Adiabatic heating due to gas accretion. Gas accreted on to the
disc is assumed to initially have zero energy. However, the growth
of the disc surface density causes gravitational compression in the
vertical direction, which tends to increase the vertical energies of
disc stars. We follow TO and assume that gas infall occurs adia-
batically, adopting their equation (3.12) to describe the change in
energy of the disc stars due to adiabatic heating. In our model, gas
can also be lost from the disc due to feedback processes, resulting
in a decrease in the energies of stars. We account for this process
in the same way as for the adiabatic heating, simply changing the
sign of the effect. We find that these are minor effects and have little
impact on the predicted scaleheights of disc galaxies.

2 For convenience, we use the expression ‘energy’ to imply ‘disc vertical
energy’ from here on, unless explicitly stated otherwise.
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Star formation. When gas turns into stars, we assume that these
stars start out with zero energy, but then rapidly mix with the pre-
existing stellar population, conserving the total disc vertical energy.

Galaxy mergers. In a major merger all discs are destroyed, and so
we zero the energy of the resulting galaxy. In minor mergers, stars
from the satellite galaxy disc and bulge are added to the bulge of
the central galaxy. In the merger, the energy of the satellite disc is
lost, while that of the central galaxy disc is unchanged, unless the
infalling satellite contains gaseous material, which will contribute
to the adiabatic heating of the central galaxy disc.

2.2.5 Heating of discs by scattering by clouds

Substructure in the halo is not the only source of heating for discs.
Two other plausible mechanisms for disc heating are gravitational
scattering of stars by massive gas clouds (Spitzer & Schwarzchild
1953; Lacey 1984) and scattering of stars by spiral arms (Carlberg
& Sellwood 1985). The latter mechanism is inefficient at producing
any heating in the vertical direction, so we will focus on the first
mechanism. Lacey (1984) derived analytical expressions for the rate
at which scattering by clouds increases the vertical and horizontal
epicyclic energies of the stars. In general, these expressions depend
on the radial and vertical disc velocity dispersions, σ R and σ z , but,
acting by themselves, the clouds tend to drive the ratio σ z/σ R to
an equilibrium value. We calculate the rate of increase of vertical
energy per unit mass for the stars, ε z , using Lacey’s equation (39),
evaluated for the equilibrium σ z/σ R and in the limit in which the
scaleheight of the stars is larger than that of the clouds. This gives
(

dεz

dt

)

clouds

=
2G2c Mc ln�c ν

σ 2
z

α3
s (β)Ks(β), (9)

where  c is the surface density in clouds, Mc is the cloud mass,
ln�c is the Coulomb logarithm for scattering of stars by clouds and
ν is the vertical epicyclic frequency. α s(β) and K s(β) are functions
of β = 2�/κ which are tabulated by Lacey, � being the angular
velocity for circular orbits and κ the radial epicyclic frequency. We
obtain the total contribution of scattering by clouds to increasing
vertical energy by integrating equation (9) over radius:

Ėz,clouds =
∫ ∞

0

d

(

dεz

dt

)

clouds

2πR dR. (10)

Numerical simulations of heating by clouds agree fairly well with
the velocity dependence predicted analytically, (dσ 2/dt ∝ σ−2), but
have given somewhat conflicting results concerning the amplitude
of the effect; Villumsen (1985) found heating rates dσ 2/dt at a given
σ approximately 6 times lower than the analytical prediction, while
Hanninen & Flynn (2002) found rates 3–8 times higher.

Our galaxy formation model predicts the total mass of gas in the
disc of each galaxy as a function of time. We assume that the gas
is distributed radially in the same way as the stars, with a constant
fraction being in the form of giant molecular clouds. For our standard
case we will assume that 25 per cent of the gaseous mass of the disc
is in clouds (Granato et al. 2000), that they have mass-weighted
mean mass of M c = 6.6 × 105 M� (Lacey 1984) and typical radius
a c = 16 pc (Granato et al. 2000), and that β = 1.5. For each model
galaxy, we integrate the heating due to scattering from molecular
clouds over each time-step in the calculations, and add this energy
change to that which arises from interactions with satellites.

3 C A L I B R AT I O N U S I N G N - B O DY

S I M U L AT I O N S

As has been noted by several authors, the amount of heating caused
by a satellite is difficult to determine analytically since some of the
energy may drive global perturbations (e.g. warps) in the disc, and
satellites may trigger bar instabilities leading to an enhanced heating
rate. Furthermore, our approach to dynamical friction in the disc fol-
lows the methods of Chandrasekhar (e.g. Binney & Tremaine 1987,
section 7.1), which assume that each particle interacts with the satel-
lite only once. If the satellite orbital period is close to the rotation
period of the disc (or to some other resonance of the disc orbits),
this assumption fails. Instead, a single particle may interact with the
satellite multiple times on consecutive orbits. This problem should
therefore ideally be approached in terms of resonant interactions
between satellite and disc (Goldreich & Tremaine 1979; Donner &
Sundelius 1993; Wahde, Donner & Sundelius 1996; Weinberg &
Katz 2002). We retain the Chandrasekhar methods for their sim-
plicity, and show that they provide a reasonable approximation to
the dynamical friction due to discs in the regimes of interest.

3.1 N-body simulations

We begin by testing and calibrating our analytic calculations against
numerical simulations of disc heating. In principle, the simulations
of VW are ideal for this purpose. However, the central densities and
velocity dispersions of the King model satellites given by VW are too
low to be consistent with their assumed concentration parameters.
Thus, the satellites seem to be more weakly bound than the authors
intended. It is unclear a priori how this would affect the results and
we have therefore decided to repeat their calculations. This has two
other advantages.

(i) We can repeat each simulation without the disc component,
allowing us to separately constrain the contributions of the halo and
the disc to the dynamical friction experienced by the satellite.

(ii) We can perform convergence tests by increasing the number
of particles in the simulation in order to ensure that disc heating is
being estimated accurately.

We carry out the same set of simulations as VW. Briefly, each sim-
ulation consists of a galaxy containing a bulge, a disc and a dark
matter halo, plus a satellite object. Density profiles and the num-
ber of particles used for each component are listed in Table 1, while
other details of each simulation (type of satellite used, initial satellite
orbital parameters and whether or not a disc is included) are listed
in Table 2. Initial conditions are created using the techniques of
Hernquist (1993). The galaxy and satellite are then evolved sep-
arately, as described by VW, using the GADGET code (Springel,
Yoshida & White 2001a) to allow them to reach equilibrium.
We employ the new cell-opening criterion for tree walks of GAD-
GET (TypeOfOpeningCriteria = 1) with an accuracy of ErrTol-
ForceAcc = 0.001, together with TypeOfTimestepCriterion = 1
with ErrTolVelScale = 10.0. GADGET uses adaptive time-stepping.
We impose no minimum time-step size, but impose a maximum size
of MaxSizeTimestep = 0.01 (in the default internal units of GADGET).
All particles in the simulation are given a softening length of 0.110
kpc. With these choices, energy is conserved to better than 1 per
cent throughout the simulations. The two sets of initial conditions
are then superimposed and evolved for 4 Gyr.

The simulations are labelled G1S1 to G1S15 as in VW. We also
perform a simulation with no satellite, G1S0, to measure the two-
body heating rate in the disc. We repeat each simulation without
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Table 1. Properties of the galaxy and satellite models used in the N-body simulations. The first column specifies the component in
question. The second column gives the density profile, either in spherical coordinates (r), or cylindrical polar coordinates (R, z). The
values of the parameters of each profile are listed in column 3. The satellites are all described by King models (King 1966). For these,
we specify the core radius, rc, and the concentration c = log10r t/r c where r t is the tidal radius of the satellite. The final column lists the
number of particles used to represent each component in the standard case.

Component Density profile Parameters Number of particles

Halo ρh(r ) =
Mhα

2π
3/2rcut

exp
(

− r2/r2
cut

)

r2 + γ 2
M h = 7.84 × 1011 M� 687 008

γ = 3.5 kpc
r cut = 84 kpc
α = 1.076

Disc ρd(R, z) =
Md

4πR2
d Hd

exp(−R/Rd) sech2(z/Hd) M d = 5.6 × 1010 M� 163 840

Rd = 3.5 kpc
H d = 700 pc

Bulge ρb(r ) =
Mb

2π

a

r (a + r )3
M b = 1.87 × 1010 M� 16 384

a = 525 pc
Satellite S1 King model M s = 5.60 × 109 M� 32 768

r c = 1 kpc
c = 0.8

Satellite S2 King model M s = 5.60 × 109 M� 32 768
r c = 500 pc

c = 1.1
Satellite S3 King model M s = 1.12 × 1010 M� 32 768

r c = 875 pc
c = 1.0

Table 2. Properties and initial orbital parameters of the satellites in the
N-body simulations. Column 2 specifies the satellite model used (as de-
fined in Table 1). Column 3 lists θ i, the angle between the initial angular
momentum vector of the satellite and that of the disc. Column 4 lists the
circularity of the initial orbit of the satellite, ε J , while column 5 lists the
initial radial position of the satellite (which is the apocentre of its orbit), ra.
Column 6 specifies whether the simulation contains a disc or not (note that
θ i is undefined for discless simulations G2Sxx).

Model Satellite θ i ε J ra kpc−1 Disc?

G1S1 S1 45◦ 0.33 59.0 Yes
G1S2 S1 0◦ 0.55 55.0 Yes
G1S3 S1 45◦ 0.55 55.0 Yes
G1S4 S1 90◦ 0.55 55.0 Yes
G1S5 S1 135◦ 0.55 55.0 Yes
G1S6 S1 180◦ 0.55 55.0 Yes
G1S7 S1 0◦ 0.82 46.5 Yes
G1S8 S1 45◦ 0.82 46.5 Yes
G1S9 S2 0◦ 0.55 55.0 Yes
G1S10 S2 45◦ 0.55 55.0 Yes
G1S11 S2 90◦ 0.55 55.0 Yes
G1S12 S2 135◦ 0.55 55.0 Yes
G1S13 S2 180◦ 0.55 55.0 Yes
G1S14 S3 45◦ 0.55 55.0 Yes
G1S15 S3 135◦ 0.55 55.0 Yes
G2S1 S1 N/A 0.33 59.0 No
G2S2 S1 N/A 0.55 55.0 No
G2S7 S1 N/A 0.82 46.5 No
G2S9 S2 N/A 0.55 55.0 No
G2S14 S3 N/A 0.55 55.0 No

a disc component, labelling these G2S1 to G2S15 (note that in the
absence of a disc, only models G2S1, G2S2, G2S7, G2S9 and G2S14
are different). We also repeated all of these calculations with one-
half and one-quarter the number of particles, in order to test how

well the results have converged. The convergence tests are described
in Appendix D. They indicate that the convergence is good for the
evolution of the mass and orbit of the satellite, and adequate for the
increase in the vertical energy of the disc. Unless otherwise noted,
we show results from the highest resolution simulations.

Each simulation output is analysed in order to determine the posi-
tion, velocity and mass of the satellite (computed for those particles
which remain bound to the satellite), and the vertical kinetic energy
of the disc. We determine which particles are bound to the satellite
using the following algorithm.

(i) Begin by considering all the satellite particles that were bound
to the satellite at the previous time-step (or simply all satellite par-
ticles for the first time-step).

(ii) Compute the mean position and velocity, and the mass of the
satellite from these particles.

(iii) For each particle in this set, determine whether or not it is
gravitationally bound to the other particles in the set.

(iv) Retain only those particles that are bound and go back to step
(ii). Repeat until the mass of the satellite has converged.

To determine the vertical kinetic energy of the disc, Tz, at each
output time, we first locate the centre of mass of the disc and its
mean velocity. (Since the satellite mass is comparable to that of the
disc, the disc moves around significantly as the satellite passes by.)
We then rotate the system to the frame defined by the principal axes
of the disc inertia tensor, and sum the kinetic energies of particles
in the direction defined by the shortest axis (which corresponds to
the z-axis for an untilted disc). This rotation is necessary because
the disc can become tilted through its interaction with the satellite
(as also noted by VW). In the original frame (i.e. without rotation),
purely circular motions in a tilted disc appear as vertical energy.

One final step is necessary in order to obtain the increase in the
disc vertical energy due to the interaction with the satellite. Even
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in the absence of a satellite, the vertical kinetic energy of the disc
increases as the simulation proceeds due to numerical relaxation
(mainly two-body scattering), from 0.57 × 1014 M� km2 s−2 at
t = 0 to 0.64 × 1014 M� km2 s−2 at t = 4 Gyr, for our standard
particle number. This increase of 0.07 × 1014 M� km2 s−2 due to
two-body relaxation is comparable to the heating by the satellite in
many of the cases considered. Therefore, to obtain the increase in
vertical energy due to the satellite at time t, which we denote as

Tz(t), we subtract off the energy of the unperturbed disc (from
model G1S0) at the same time t. Based on runs of model G1S0 with
different random number seeds but the same number of particles,
the increase in Tz due to numerical relaxation is determined to an
accuracy of better than 0.005 × 1014 M� km2 s−2 in the standard
case, so the uncertainty in
Tz introduced by the subtraction is small
compared with 
Tz itself.

3.2 Comparison with analytic calculations

To test our analytical model of satellite orbital evolution and con-
strain its parameters, we adapt the analytical model so as to mimic
the set-up of each N-body simulation. Thus, we assume density pro-
files for host and satellite systems identical to those of the N-body
simulations. Taylor & Babul (2001) compared their model of satel-
lite galaxy orbital evolution to the orbital radii and satellite masses as
a function of time in the simulations of VW, finding generally good
agreement. We repeat their analysis here, using our own model of
satellite dynamics, extended to include the calculation of disc heat-
ing. We will use this comparison to fix the four free parameters
of our satellite orbit model, forb, f�,h, f�,d and εh. As described in
Appendix A, forb controls the time-scale on which tidally stripped
mass is lost from the satellite, while f�,h and f�,d are the factors that
appear in the Coulomb logarithms, �h and �d, for the dynamical
friction force due to the halo and disc, respectively. The parameter
εh controls the strength of gravitational shock-heating and is defined
in Benson et al. (2002a).

Using our satellite orbit model, each orbit is integrated for 4 Gyr.
Figs 2 and 3 show the orbital position and velocity and the remaining
bound mass and orbital energy of the satellite for models G2S2 and
G1S3, respectively, with our N-body results shown as open circles.
Fig. 3 also shows the energy deposited in the disc in model G1S3.
This is given by the vertical kinetic energy of the simulated disc
minus the vertical kinetic energy of the disc in model G1S0 which
contains no satellite. The subtraction removes both the initial energy
of the disc, and the energy gained by two-body relaxation during
the simulation. We indicate at the top of each figure the label of the
satellite model, the initial inclination of the orbit with respect to the
galaxy disc (θ i), the initial circularity (ε J ; the angular momentum of
the satellite divided by the angular momentum of a circular orbit with
the same energy) and the initial apocentric distance of the orbit (ra).
Where they are available, we show the results of VW as triangles.
Note that in the simulation of VW the satellite loses mass more
rapidly, due to the incorrect density profile used. For comparison,
we show, as dashed lines, the orbital radius and remaining bound
mass derived from the analytical calculations of Taylor & Babul
(2001) for the same model.

The results in Figs 2 and 3 are for the parameter combination
( forb, f�,h, f�,d, εh) = (2.5, 1.5, 3.0, 1.0). The values of forb and
εh are fixed by matching the mass-loss rates found in the simula-
tions with no disc component. The value of f�,h, which controls the
strength of the dynamical friction force due to the halo, is fixed by
matching the rate of decay of the orbital radius in models with no
disc (so that the orbital decay is caused entirely by the halo plus

bulge system). Finally, f�,d is fixed by matching the rate of orbital
decay in the models which include a disc. In these models, the disc is
the dominant source of dynamical friction throughout a substantial
fraction of the orbital evolution.

The parameter values that we have selected produce the best
agreement with the set of 15 models that were simulated. Generally,
we find quite good agreement with the numerical results, compa-
rable to that achieved by Taylor & Babul (2001).3 Our model uses
more general expressions for�h and�d than that of Taylor & Babul
(2001). If we treat those numbers as free parameters (instead of f�,h
and f�,d) we are able to achieve even better agreement with the
numerical simulations. However, our approach has the advantage
that�d and�h scale in a physically reasonable way when we apply
our model to very different satellite/host systems. In any case, or-
bital positions and velocities are typically matched accurately until
the final merging of the satellite (where it becomes difficult to de-
termine these quantities precisely in the N-body simulations). The
satellite mass as a function of time is typically matched to within
approximately 30–40 per cent. Table 3 lists several quantities – the
final change in the disc energy and the time at which the satellite
reaches 50 and 10 per cent of its original mass – from both analytic
and N-body calculations for comparison.

It is worth noting that the free parameters of our orbit model are
set without reference to the disc heating rate seen in the numerical
simulations. Thus, the heating rates we predict are entirely specified
by other considerations. The lower right-hand panel in Fig. 3 shows
the change in disc vertical kinetic energy from our analytic model
calculated as described in Section 2.2.2 and from the N-body sim-
ulation. We find that our analytic model reproduces the final disc
energy in the numerical simulations to better than a factor of 2 in
10 out of the 15 simulations (see Table 3) but, in extreme cases, the
difference can be a factor of 3 or more. Of the five models which do
not agree to within a factor of 2, one (G1S7) has a prograde satel-
lite orbit in the disc plane (θ i = 0◦), two (G1S4 and G1S11) have
polar orbits (θ i = 90◦), and two (G1S8 and G1S10) are on inclined
prograde orbits (θ i = 45◦).

For all five of the most discrepant cases, the analytical calcula-
tion predicts less heating than the N-body simulation. The largest
disagreement occurs for model G1S7 which has a prograde orbit
in the disc plane. Here, the analytical determination overestimates
the dynamical friction force in the disc as measured in the N-body
simulation. The satellite then becomes trapped in an orbit rotating
with the disc and there is no further energy transfer to the disc, re-
sulting in and underestimate of the heating in the analytic model by
a factor of 8. For the polar orbits (G1S4 and G1S11), mass loss in
the analytic model is too rapid and this again reduces the heating
rate compared with the N-body calculation. These two models un-
derpredict the N-body heating by a factor of approximately 3. For
the inclined orbits (G1S8 and G1S10), it is possible that the disc
is no longer well described by a single inclination (for example, it
may have become warped), leading to an overestimate of the energy
in the N-body simulations. (With the number of particles employed
in our simulated discs, the inclination of an unwarped disc can be
determined to very high precision, so there is very little inaccuracy
in the determination of the disc energy).

Fig. 4 compares the N-body and analytic results for the change,

Tz, in disc kinetic energy. The dashed line is the locus of perfect

3 It should be noted that Taylor & Babul (2001) were attempting to match
the simulations of VW, rather than our simulations, so that one should not
expect exact agreement of their results with ours.

C© 2004 RAS, MNRAS 351, 1215–1236



1222 A. J. Benson et al.

Figure 2. Evolution of the satellite and its orbit in the discless model G2S2. We compare the results from our analytical model (solid lines) with the analytical
model of Taylor & Babul (2001) (dashed lines) and with our N-body simulation (circles). Top left-hand panel: the orbital position and radius of the satellite as a
function of time. Top right-hand panel: the orbital velocity of the satellite and its components as a function of time. Lower left-hand panel: the remaining bound
mass of the satellite as a function of time. The dotted line shows the mass of the satellite if mass loss beyond the tidal radius is assumed to occur instantaneously
(i.e. forb = 0). Lower right-hand panel: the change in the specific orbital energy of the satellite as a function of time.

agreement between the two calculations, and the two dotted lines
indicate a factor of 2 discrepancy. The symbols, one for each of
the 15 simulations, G1S1 to G1S15, indicate through their orienta-
tion, shape and shading the orbital inclination, the orbital circularity
and the satellite model, respectively (as indicated by the key in the
figure).

Several of the N-body simulations show evidence of bar formation
in the central regions of the disc. This is particularly evident when
the satellite is on a prograde orbit in the disc plane. Bars may be
expected to enhance the transfer of energy to the disc, and may be
part of the reason why the analytic model (which does not allow for
bar formation) substantially underpredicts the amount of heating
in some cases (e.g. G1S5 and G1S7, of which the latter shows a
particularly strong bar in the N-body simulation).

The efficiency of vertical heating, ε z , is an important component
of our calculations. If we did not include this efficiency factor, the
predicted heating rates would be up to 4 times higher (depending

on the orbit – the effect is largest for near-circular prograde orbits
in the disc plane and polar orbits), with a factor of 3 being typical.

The inclusion of the θ dependence in the expression for �d (see
Appendix B2.2) tends to reduce the heating rate slightly. The effect
is small for most orbits, but it is of greater importance for orbits in the
disc plane, helping to improve the agreement with the simulations
in those cases. The use of an anisotropic disc velocity dispersion in
the dynamical friction force generally has an even smaller effect,
typically increasing the disc heating rate by a few per cent (although
in some cases the rate is decreased by an equally small amount).
Prograde orbits in the disc plane are, once again, most strongly
affected, with heating rates reduced by 20–40 per cent.

The galaxy in the N-body model contains a bulge of mass one-
third that of the disc. VW also performed simulations with bulges
of mass one-fifth and two-thirds that of the disc to examine the
influence of the bulge on the heating rate, finding that a more mas-
sive bulge reduced the amount of disc heating. Our analytical model
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Model G1S3 (S1, i = 45°, J = 0.55, ra = 55kpc)

Figure 3. Properties of the orbiting satellite and host halo galaxy disc in model G1S3. We compare the results from our analytic calculations (solid lines)
and those of Taylor & Babul (2001) (dashed lines), with those from our N-body simulation (circles) and those of Velázquez & White (1999) (triangles). Top
left-hand panel: the orbital position and radius of the satellite as a function of time. Top right-hand panel: the orbital velocity and speed of the satellite as a
function of time. Centre left-hand panel: the remaining bound mass of the satellite as a function of time. The dotted line shows the mass of the satellite if mass
loss beyond the tidal radius is assumed to occur instantaneously. Centre right-hand panel: the change in specific orbital energy of the satellite with time. Lower
right-hand panel: the vertical kinetic energy of the central galaxy disc. Filled symbols show the energy measured in the original coordinate frame of the disc,
whereas the open symbols show the energy measured in a frame that coincides with the principal axes of the inertia tensor of the disc at each epoch. The dotted
line shows the result obtained if the energies of the disc in each direction (R, φ, z) are assumed to reach equipartition.
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Table 3. Comparison of results from the analytic and N-body calculations of
satellite evolution. Column 1 lists the model number; column 2 lists the type
of calculation (analytic or N-body); column 3 gives the change in the disc
vertical kinetic energy generated by the satellite at the end of the simulation,
both in absolute units and as a percentage of the initial disc vertical kinetic
energy (values in parentheses). Where the analytic and N-body estimates of
the disc energy differ by more than a factor of 2, we show the values in bold
type. Columns 4 and 5 list the times at which the satellite reaches 50 and
10 per cent of its initial mass, respectively.

Model Type 
Tz (4 Gyr)
1014 M� km2 s−2 t50 (Gyr) t10 (Gyr)

G1S1 Analytic 0.133 (25 per cent) 1.24 2.01
G1S1 N-body 0.101 (18 per cent) 1.38 2.16

G1S2 Analytic 0.257 (49 per cent) 1.51 2.89
G1S2 N-body 0.342 (60 per cent) 1.69 2.08

G1S3 Analytic 0.184 (35 per cent) 2.20 3.19
G1S3 N-body 0.238 (42 per cent) 2.25 3.13

G1S4 Analytic 0.029 (5 per cent) 2.32 3.73
G1S4 N-body 0.101 (18 per cent) 2.54 3.53

G1S5 Analytic 0.032 (6 per cent) 2.24 3.77
G1S5 N-body 0.057 (10 per cent) 2.46 3.55

G1S6 Analytic 0.177 (33 per cent) 1.94 3.00
G1S6 N-body 0.090 (16 per cent) 2.21 3.14

G1S7 Analytic 0.056 (11 per cent) 2.70 >4.00
G1S7 N-body 0.443 (77 per cent) 2.22 2.28

G1S8 Analytic 0.096 (18 per cent) 3.23 >4.00
G1S8 N-body 0.324 (57 per cent) 3.72 4.03

G1S9 Analytic 0.272 (51 per cent) 1.92 3.30
G1S9 N-body 0.307 (54 per cent) 1.82 1.88

G1S10 Analytic 0.244 (46 per cent) 2.53 3.28
G1S10 N-body 0.588 (103 per cent) 3.01 3.35

G1S11 Analytic 0.114 (22 per cent) 2.86 3.59
G1S11 N-body 0.363 (63 per cent) 3.16 3.80

G1S12 Analytic 0.131 (25 per cent) 2.89 3.58
G1S12 N-body 0.229 (40 per cent) 3.26 4.06

G1S13 Analytic 0.507 (96 per cent) 2.32 2.62
G1S13 N-body 0.350 (61 per cent) 2.87 3.28

G1S14 Analytic 0.521 (98 per cent) 1.58 2.52
G1S14 N-body 0.873 (153 per cent) 1.62 1.90

G1S15 Analytic 0.438 (83 per cent) 1.78 2.09
G1S15 N-body 0.374 (65 per cent) 1.80 2.18

typically reproduces this trend, with approximately the same
strength.

To summarize, we are able to reproduce the rates of disc heating
seen in numerical simulations for the majority of the cases consid-
ered. Where the analytic approach ‘fails’ (we say ‘fails’, since the
N-body techniques have their own inadequacies and do not neces-
sarily represent the correct solution), it underestimates the heating
by a factor of 3 on average. In many of the discrepant cases, the in-
correct heating rate is a consequence of an incorrect estimate of the
disc dynamical friction force or tidal mass-loss rate, but in some of
the other discrepant cases, the reason is less obvious. It is worth em-
phasizing that our analytic calculation reproduces several important
trends observed in the N-body heating rates. For example:

(i) heating is greatly suppressed for satellites on polar orbits;
(ii) differences between heating rates for prograde and retrograde

orbits (which are not always in the same sense, depending on the
satellite type) are reproduced;

(iii) differences due to the concentration or initial mass of the
satellite are clearly reproduced.

Figure 4. A comparison between the analytic and N-body results for the
change in the vertical component of the disc kinetic energy,
Tz. The dashed
line is the locus of perfect agreement, with the two dotted lines indicating
factor of 2 discrepancies. The symbols, one for each of the 15 simulations,
G1S1 to G1S15, indicate through their orientation, shape and shading the
orbital inclination, the orbital circularity and the satellite model, respectively.

However, the trend of increased heating for more circular orbits,
seen in the N-body simulations, is not reproduced.

While it is clear that the analytic model does not match the
N-body heating rates perfectly, in the majority of cases, the dif-
ferences are compatible with the accuracy of the simulations them-
selves, as judged by the convergence tests. We conclude that, in
general, the analytic model provides a reasonable approximation to
the simulation results.

4 R E S U LT S

4.1 Scaleheight distribution for disc galaxies

Having demonstrated that our model can be used to calculate disc
heating rates with reasonable accuracy, we now proceed to apply
these calculations to galaxy formation in a cosmological setting.
Specifically, we implement this model of disc heating in the GAL-
FORM semi-analytic model of galaxy formation described by Cole
et al. (2000) and Benson et al. (2002a), based on a standard�CDM
cosmology with �0 = 0.3 and �0 = 0.7.4 This model follows the
growth of galactic discs in a merging hierarchy of dark matter haloes.
At each time the model predicts the mass and radial size of the galac-
tic disc forming at the centre of each halo. It also gives the rate at
which subhaloes are merging into each halo, which we take as in-
put for our calculations of satellite evolution and disc heating. We
assume that only direct progenitors of the halo cause heating (i.e.
subhaloes can heat the disc, but subsubhaloes are not considered).
This is to avoid double-counting of mass. We will consider briefly
below the effect of allowing all progenitors to heat discs.

Using this model, we generate a representative sample of galaxies
living in dark matter haloes spanning a wide range of masses. For
each galaxy, the model computes the usual properties predicted by

4 Benson et al. (2002c) describe small changes in the parameters of this
model, relative to those of Benson et al. (2002a), which we retain here.
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Figure 5. Normalized disc scaleheight distributions for spiral galaxies with M B − 5 log h � −19.5. Left and right-hand panels show results for global and
local heating, respectively. Solid lines show results from our full calculation, including heating from substructure and from scattering by molecular clouds.
The dotted line corresponds to ignoring the molecular cloud heating, while the dashed line corresponds to increasing the masses of individual clouds and
the total mass in clouds by a factor of 2 over our standard values. These results correspond to satellite orbits which are integrated until they reach a radius
(R 1

2 sat + R 1
2 host)/8. For comparison, the dot–dashed line shows the result when the integration is stopped when a radius (R 1

2 sat + R 1
2 host) is reached. The

vertical shaded strip shows the observationally allowed range for the scaleheight of the Milky Way galaxy, discussed in Section 4.4.

Figure 6. Normalized disc scaleheight distributions for spiral galaxies with −19.5 < M B − 5 log h � −17.0. Left- and right-hand panels show results for
global and local heating, respectively. Solid lines show results from our full calculation, including heating from substructure and from scattering by molecular
clouds. The dotted line corresponds to ignoring the molecular cloud heating, while the dashed line corresponds to increasing the masses of individual clouds
and the total mass in clouds by a factor of 2 over our standard values.

this type of modelling (masses, luminosities, etc., see Cole et al.
2000), and now also the vertical scaleheight of the galactic disc.
Figs 5 and 6 show the resulting distribution of disc scaleheights,
expressed in units of the disc radial scalelength, for galaxies with
M B − 5 log h � −19.5 (approximately L∗ and brighter galaxies)
and −19.5< M B − 5 log h � −17.0, respectively. We include only
spiral galaxies (which we define as any galaxy with a bulge-to-total
ratio measured in dust-extinguished B-band light less than 0.4).

We remind the reader that we define the dimensionless scale-
height, h = H d/Rd, in terms of the thickness parameter Hd in the
sech2 vertical density law and the radial exponential scalelength, Rd.
The disc thickness can be equivalently defined as H d = d/(2ρ 0),
where d is the disc surface density and ρ 0 the density at the
mid-plane. However, many authors prefer to use the exponential

scaleheight as the measure of disc thickness. Since sech2(z/H d) ∝
exp(−2z/H d) for z � H d, the exponential scaleheight that would
be measured for our assumed vertical profile is H d,exp = H d/2.

The left- and right-hand panels in Figs 5 and 6 show the scale-
height distributions for the global and local heating assumptions,
from which we see that the results are not very sensitive to this
choice. The figures also show the sensitivity of the results to two
other parameters, one numerical and the other physical.

The numerical parameter characterizes the galactocentric radius
at which the satellite is assumed to merge with the main galaxy and
stop heating the disc. In Cole et al. (2000) and in Paper I, we assumed
that two galaxies merge at the time when the separation of their
centres, R, equals the sum of their half-mass radii, R 1

2 sat + R 1
2 host.

However, once tidal stripping is taken into account, it would seem

C© 2004 RAS, MNRAS 351, 1215–1236



1226 A. J. Benson et al.

reasonable to allow the satellite to sink down to R = 0 and continue
heating the disc while it does so. However, for numerical reasons we
cannot integrate the satellite orbits down to R = 0. We have therefore
calculated the disc heating when the satellite orbit is followed down
to R = fheat(R 1

2 sat + R 1
2 host) for fheat = 1, 1

2 ,
1
4 and 1

8 . We find that

the distribution of scaleheights has converged for fheat = 1
8 , and

use this as our standard value in what follows. We show in Fig. 5
results for f heat = 1 (dot–dashed lines) and fheat = 1

8 (solid lines)
in both cases with disc heating by molecular clouds also included.
The differences in the scaleheight distributions are fairly small (they
are somewhat more significant if we do not include disc heating by
molecular clouds).

The physical parameter concerns the heating of the disc that re-
sults from scattering of stars by giant molecular clouds, computed
using equation (9). Our standard calculation (solid lines in Figs 5
and 6) includes heating by clouds with the parameters described
in Section 2.2.5 The figures also show the results when no clouds
are present (dotted lines) and when the masses of individual clouds
and the fraction of gas in clouds are both doubled (dashed lines).
Removing the clouds entirely results in a tail to very low h in the
height distribution. These galaxies experienced very little heating
by substructures, and so their thickness is almost entirely due to
heating by molecular cloud scattering. The peak of the distribution
is little changed, but the median scaleheight is significantly reduced
(see Fig. 7). Doubling the cloud mass (dashed lines) results in a shift
towards somewhat thicker discs without changing the shape of the
distribution.

Global and local heating are found to produce rather similar dis-
tributions of scaleheights. Note that we have shown the results for
local heating at the disc half-mass radius. Our local heating model,
in fact, predicts a trend of increasing scaleheight with disc radius;
we defer a detailed study of this radial variation to a future paper.

It should be noted that the tails of the distributions extend to h >

1, which is clearly unphysical. Our analytical calculation is based

Figure 7. The median fractional scaleheights, h = H d/Rd, of spiral galax-
ies as a function of absolute magnitude. The squares show the results for
heating by substructures only, and the circles for heating by substructures
and clouds together. In each case, the filled symbols are for global heating,
and the open symbols (offset slightly for clarity) for local heating. The error
bars indicate the 10 and 90 per cent intervals of the distribution of scale-
heights. For clarity, the error bars are suppressed for the local heating case,
but are similar to those for global heating.

on the thin disc approximation, h � 1, and so breaks down when
h ∼ 1. We interpret these objects as discs that have been heated
so much that they are no longer discs, and must instead resemble
a spheroidal or irregular galaxy. For these galaxies, our calcula-
tions break down, but we can safely assume that they are no longer
recognizable disc galaxies.

4.2 Other effects on the scaleheight distribution

We now discuss tests of various potential systematic effects in our
calculations.

Merger tree resolution. Our calculations typically resolve dark
matter substructures with mass greater than 5 × 109 h−1 M� in
every merger tree. Thus, we ignore the heating due to lower-mass
haloes. Increasing the resolution of to 109 h−1 M� results in no
significant increase in the amount of heating experienced by galax-
ies, indicating that our resolution is sufficient to estimate the total
heating rate. (Note that the heating produced by a satellite of mass
M should scale approximately as M2, making it relatively easy to
achieve convergence here provided the number of satellites, dN/d
ln M , varies with mass less steeply than M−2 at small mass. In fact,
numerical simulations indicate dN/d ln M ∼ M−0.7 for subhaloes,
Springel et al. 2001b.)

Effects of subsubhaloes. In our standard calculation, subsubhaloes
(i.e. haloes which reside inside a larger halo which subsequently
fell into a yet larger halo) do not contribute separately to the heating
of discs. (Note that this is different from our treatment of galaxy
mergers; the merging times of subsubhaloes are computed from
their own properties, not those of the subhalo in which they reside.)
An alternative approach would be to treat subsubhaloes (and higher
levels of the merging hierarchy) on an equal basis as subhaloes. To
avoid double-counting of mass in this case, we must remove the mass
bound to subsubhaloes when determining the mass of a subhalo. We
do this by scaling down the density profile of the subhalo so as to
remove this amount of mass before computing heating rates.

If we adopt this approach, we find that the distribution of scale-
heights is shifted to slightly larger values. Heating by subsubhaloes,
however, would only be important if these subsubhaloes survived
after their host had been tidally destroyed. While it is unlikely that
this would occur to any great extent, numerical simulations could,
in principle, answer this question.

Effect of cosmological model. Finally, we have repeated our cal-
culations in an �0 = 1 cosmology, using the τCDM parameter set
used by Benson et al. (2000a), but including the effects of photoion-
ization suppression.5 This model is not as successful at matching
the properties of z = 0 galaxies as our standard �CDM model. In
particular, galaxies are somewhat too faint to match the observed
luminosity function (by approximately 0.75 mag in the B-band),
forcing us to adopt an unphysical value of the mass-to-light ratio
normalization parameter, ϒ of 0.7. We find that the median scale-
height of L∗ disc galaxies is slightly smaller in this cosmology than
in our �CDM model. At first sight, this seems surprising, since, as

5 Note that Benson et al. (2000a) adopted an artificially high merger rate in
order to obtain a good match to the galaxy luminosity functions. With our
more detailed model of merging, we no longer have the freedom to adjust the
merger rate in this way. We find that, in this cosmology, our revised merger
model produces somewhat too few elliptical galaxies.
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noted by TO, there is more infall of substructure at late times in an
�0 = 1 cosmology, which would result in a larger rate of heating
at the present day. However, our model galaxies in this cosmology
are younger than their�CDM counterparts (due to the later growth
of structure and to the stronger feedback required in this model),
and so they have less time in which to be heated. These two effects
counteract each other.

The age of our Galactic disc has been estimated using studies of
white dwarfs. For example, Fontaine, Brassard & Bergeron (2001)
find an age of 11 Gyr for the Galactic disc. Since they assume a
constant star formation rate, this implies a mean stellar age of 5.5
Gyr for the disc stars. Our τCDM discs typically have a mean stellar
age of 4 Gyr, somewhat less than the true value. Consequently, our
model underestimates the amount of heating experienced by discs
in this cosmology, albeit only by a small factor.

We can understand the similarity of the disc scaleheights in the
two cosmologies in more detail by examining the growth histories
of the dark matter haloes hosting L∗ spiral galaxies. In our model,
haloes of present-day mass 2 × 1012 h−1 M� have, on average, as-
sembled half of their mass by redshifts of 0.45 and 0.91, respectively,
in the τCDM and �CDM cosmologies. The mean stellar ages of
L∗ disc galaxies (4.0 and 5.5 Gyr for τCDM and �CDM, respec-
tively) reflect this difference in halo assembly epoch. We find that
the host haloes on average accrete close to 25 per cent of their total
mass over these galaxy lifetimes in both cosmologies. Therefore,
the number of substructures infalling on to a galaxy over its life-
time is roughly the same in both cosmologies, consistent with their
similar disc scaleheight distributions. It should be borne in mind
that the discs in our �0 = 1 model are somewhat unrealistic (e.g.
they are too faint for a reasonable ϒ and, more importantly, too
young). An �0 = 1 model which produced realistic discs might
predict larger (or smaller) scaleheights. The important lesson to de-
rive from these considerations is that disc scaleheights depend on
the details of galaxy formation and on the cosmological model.

4.3 Scaleheights as a function of luminosity

In Fig. 7, we show the median value of h as a function of absolute
magnitude for spiral galaxies in our standard model. The squares
show the results for heating by substructure alone, and the circles
for heating by substructure and clouds together. The median scale-
height at all luminosities is much larger when heating by clouds is
included. However, the scatter in scaleheight at a given luminosity is
extremely large for the case of heating by substructures only, reflect-
ing the strongly stochastic nature of this process. Our calculations
predict that brighter galaxies should host thinner discs than fainter
galaxies (when measured in terms of the fractional disc thickness,
h = H d/Rd). This trend is apparent in calculations with and with-
out molecular clouds, and reflects a similar trend in the fractional
vertical energy, Ez/M discV 2

disc.

4.4 Comparison with the Milky Way galaxy

It has been conventional to compare predictions for disc scaleheights
with the observed value for the Milky Way galaxy. As a way of test-
ing models against the real Universe, this comparison has significant
drawbacks, since (i) the global parameters of the Milky Way (such as
the disc radial scalelength, total luminosity and bulge-to-disc ratio)
are, in fact, quite difficult to determine observationally and (ii) the
models predict a distribution of scaleheights at a given luminosity,
and this cannot be constrained well from a single measured point.
Therefore, we will make only a brief comparison with the Milky

Way here, before comparing with the distribution of scaleheights
measured for external galaxies.

The vertical scaleheight of the galactic disc in the Solar neigh-
bourhood has been measured from star counts. We use the recent de-
termination by Mendez & Guzman (1998) which, for a sech2(z/H d)
vertical profile, gives H d = 0.50 ± 0.08 kpc (corresponding to an
exponential scaleheight of 0.25 ± 0.04 kpc), somewhat smaller than
earlier determinations. The measurement of the radial exponential
scalelength of the galactic disc has, in the past, been a matter of more
disagreement. We use the models of the galactic mass distribution
by Dehnen & Binney (1998), which imply Rd = 3.0 ± 0.4 kpc.
Combining these, we find the fractional scaleheight of the Milky
Way stellar disc, h = H d/Rd = 0.18 ± 0.05. This range in h is indi-
cated as a shaded region in Fig. 5, from which one can see that the
scaleheight of the Milky Way is entirely typical of L∗ disc galaxies
in the model (with 35 per cent of galaxies predicted to have h >

0.18). We have repeated the comparison using the same definition
of ‘Milky Way-like’ galaxies as in Benson et al. (2002b), namely a
circular velocity at the disc half-mass radius between 210–230 km
s−1 and a bulge-to-total ratio by mass between 5–20 per cent. We
again find that the observed scaleheight of the Milky Way lies well
within the distribution of h predicted by the model (with 80 per cent
of such galaxies predicted to have h > 0.18).

4.5 Comparison with the observed scaleheight

distribution for other galaxies

The best way to test models of disc heating is by comparing with
the observed distribution of scaleheights for external galaxies. This
distribution has recently been measured in a complete sample of
disc galaxies, for the first time, by Bizyaev & Mitronova (2002).
They estimated the vertical and radial scalelengths of a statistically
complete sample of 60 edge-on galaxies using K-band photometry
from the 2MASS survey.

We compare the scaleheight distribution in Bizyaev & Mitronova
(2002) sample with our model predictions in Fig. 8. Since the

Figure 8. The normalized distribution of scaleheights, h, in the observa-
tional sample of Bizyaev & Mitronova (2002) compared with the prediction
of our model. Error bars on the observational data points indicate Poisson
errors. The model predictions are shown by solid and dashed lines for global
and local heating, respectively. The model galaxies have been weighted
to match the distribution of absolute magnitudes and morphological types
found in the observational sample.
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selection criteria for the observational sample are somewhat com-
plex, we weight model galaxies so as to match the distribution of
absolute magnitudes in the observational sample (which peaks in the
range −19< M B − 5 log h � −18), and select only those galaxies
with bulge-to-total luminosity ratios typical of the morphological
types found in the observational sample (which are mostly Sc spi-
rals). We see that the model provides quite a good match to the
observed distribution, with both distributions peaking around h =
0.2. The only significant discrepancy is that the model predicts too
many systems with large h � 0.4. However, it is not clear that such
thick galaxies would be recognized as disc galaxies. The conclu-
sions that can be drawn at present are limited by the relatively small
size of the current observational sample. However, this situation
should soon improve with the availability of data from large CCD-
based sky surveys, which will allow much more thorough tests of
the theoretical predictions.

5 D I S C U S S I O N

We have developed a model to calculate the rate of heating of galac-
tic discs by substructures orbiting in their haloes. To calibrate the
model, we performed N-body simulations of disc heating which we
tested for convergence. We find that the analytical model reproduces
the heating rates in the N-body simulations to within a factor of 3 in
most cases. One could perhaps improve the accuracy of the analyti-
cal model by treating the satellite–disc interaction in terms of a sum
of interactions with resonances in the disc (e.g. Donner & Sundelius
1993; Weinberg & Katz 2002). It is unclear, however, whether such
a calculation would ever be worth performing semi-analytically, i.e.
whether its computational cost would be any less than that of a full
N-body simulation. Nevertheless, it is clear from the calculations
presented here that N-body estimates of disc heating rates have their
own problems (e.g. very large numbers of particles are required in
the disc to determine the heating rate accurately), and so it may yet
prove worthwhile to pursue analytical estimates of disc heating.

We find that for galaxy formation in the standard �CDM cos-
mology, heating by substructure alone produces a distribution of
disc scaleheights which is very broad and skewed to low values,
with median fractional scaleheight, h = H d/Rd, around 0.05 for L∗
spiral galaxies. The width of the distribution reflects the stochas-
tic nature of the heating process, which is, in turn, related to the
distribution of orbital parameters of the satellites. Including the ad-
ditional heating generated by stars scattering from gas clouds in the
disc increases the median value of h significantly, to around 0.2.
The distribution is considerably less broad once the contribution
from gas cloud heating is included. Heating by clouds is treated as
a deterministic process here, with variations in the amount of heat-
ing for a given type of galaxy reflecting the distribution of ages of
galactic discs. The fractional scaleheight for the Milky Way galaxy,
estimated observationally to be around 0.2, is then entirely consis-
tent with our model expectations for a typical L∗ spiral galaxy. We
find that the predicted distribution of scaleheights for slightly sub-L∗
spiral galaxies agrees remarkably well with a recent observational
determination by Bizyaev & Mitronova (2002) based on data from
the 2MASS survey.

It is intriguing that for the L∗ galaxies considered here, satellites
and gas clouds give rise to comparable amounts of disc heating. A
simple order of magnitude estimate of the scaleheights produced
by these two processes illustrates why this is so. Using the expres-
sions given in this paper, we find (for parameter values typical of
Milky Way-like galaxies) that the fractional scaleheight generated

by scattering from giant molecular clouds is

h = 7.2 × 10−3

(
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×
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while that generated by dark matter substructures is

h = 0.16
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In the first equation, f is the fraction of the total disc mass in the form
of giant molecular clouds. In the second equation, V s is the typical
orbital velocity of satellites, rorb their typical orbital radius, fmass is
the fraction of the total halo mass in the form of substructures, fmax

is the mass of the largest substructure in units of the total halo mass
and we have assumed a distribution of substructure masses dN/dM

∝ M−1.7. In both cases t is the time for which heating has occurred.
To derive the second expression, we have assumed that substructures
heat the disc only over a fraction of their orbit approximately equal
to H d/r orb. Taking t ≈ 10 Gyr, these estimates imply h ∼ 0.1 –1 for
both heating mechanisms, confirming the coincidence that the two
contribute approximately equally to the scaleheight of Milky Way-
like discs (given the crude approximations made above and the fact
that we have ignored the stochastic nature of heating by satellites).
However, these two expressions have different dependences upon
the properties of the galaxies in question. Thus, we should not expect
the two to make equal contributions to the scaleheight of galaxies
dissimilar to the Milky Way. This may be seen in Fig. 7, where it
is clear that the heating by substructures is relatively less important
for lower luminosity galaxies. In conclusion, the fact that the two
heating mechanisms make similar contributions to the scaleheights
of Milky Way-like galaxies appears to be coincidental.

It is interesting to compare our conclusions with those of TO, who
found that the Milky Way disc could have accreted only up to 5 per
cent of its mass within the Solar circle within the past 5 Gyr without
becoming too thick. Our calculations show that the Milky Way halo
in fact accreted around 25 per cent of its mass (i.e. the total dark
mass of the halo) during this time. This is approximately 100 times
more than the TO limit. Discs in our model are able to remain fairly
thin despite this substantial accretion for two reasons. First, many
of the accreted subhaloes have orbits that do not take them close to
the central galaxy disc, and so they contribute almost nothing to the
heating of the disc. Fig. 9 shows the amount of energy transferred
to the disc of a Milky Way-like galaxy by individual dark matter
satellites as a function of their mass. At a fixed mass, the distribution
of heating energies has a bimodal distribution. Virtually all of the
heating energy is supplied by the satellites in the upper branch which
are those where the orbits take them close to the central galaxy disc.
These satellites are ‘trapped’ by dynamical friction and damage the
disc during an extended period; distant satellites, on the other hand,
have a negligible effect. The satellites that cause most of the heating
amount to only 6 per cent by mass. Thus, of the 5 × 1011 M�
infalling, only around 3 × 1010 M� contribute to heating the disc.
This is still 6 times larger than the TO limit (0.5 × 1010 M�).
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Figure 9. The energy contributed to disc heating by satellites as a function
of their mass in shown in the lower panel. Points show the results for a
large sample of satellites, for which we plot the heating energy supplied
(
Ez,disc) against the mass of the satellite (expressed in units of the mass of
the host system halo). At fixed mass, the distribution shows a bimodal form,
the dashed line indicates the approximate division between the two peaks
of the distribution. Crosses indicate the mean heating energy per satellite at
each mass, and the dot–dashed line shows an approximate fit to these points.
In the upper panel, we show the fraction of points at each mass which lie
above the dashed line in the lower panel.

The second difference with TO is that we find that tidal mass
loss in subhaloes substantially reduces the amount of heating ex-
perienced by the disc. This is in disagreement with TO, who found
that tidal mass loss reduced disc scaleheights by at most a factor of
2. If we do not allow satellites to lose mass, the peak of the scale-
height distribution is shifted to a value of h, which is approximately
10 times larger than our standard result. This, of course, reflects the
different density profiles that we assign to both the host and satellite
haloes (and which are significantly more extended than the objects
considered by TO), and the associated increase in the dynamical
friction time-scale in our model. In conclusion, our results are in
partial agreement with those of TO – haloes in our model accrete
much more mass in the past 5 Gyr than the TO limit, but little of
this mass ever contributes to heating the disc.

There is clearly a need for further study of the heating of galactic
discs. In particular, the importance of heating by satellite-triggered
bars and the extent to which heating is local or global are impor-
tant, yet poorly understood aspects of the problem. We believe that
analytical modelling of the type developed in this paper provides
a powerful means by which to estimate the degree of heating by
substructures and could easily incorporate any improvements in our
understanding of the physics of the process. Its particular strengths
are the ability to resolve fully all substructures contributing to the
heating and to compute many realizations of the heating process
rapidly, thus allowing the full distribution of scaleheights to be de-
termined. These features have allowed us to present predicted distri-
butions of galaxy scaleheights which will be tested by forthcoming
observational data.

In conclusion, the observed thickness of the stellar disc of the
Milky Way seems to be entirely consistent with the amount of sub-
structure in galactic haloes expected in a cold dark matter universe.

Stars scattering from giant molecular clouds and substructures pass-
ing through or near the disc produce similar amounts of heating. Dis-
tinguishing between these two contributions observationally might
be possible by means of the stellar age–velocity dispersion relation
in the Milky Way disc. An important extension of this work will
therefore be to examine model predictions for heating as a func-
tion of time within individual galaxies. The lowest values of h for
disc galaxies are set by the heating due to star-cloud interactions,
while the highest values are set by the heating due to substructures.
Thus, precise measurements of the disc scaleheight distribution can
potentially constrain these two processes.
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A P P E N D I X A : I M P ROV E M E N T S I N T H E

S AT E L L I T E E VO L U T I O N M O D E L

We detail here the changes in the model of satellite evolution pre-
sented in Paper I.

(i) As before, that mass of a satellite which has become unbound
due to tidal forces is lost gradually over a time comparable to the
orbital period. The fraction of the unbound mass lost in a small time-
step of duration δt was chosen to be proportional to δt/t orb, where
torb is an estimate of the orbital time-scale. In Paper I, we chose t orb =
2 π/ω, whereω is the instantaneous angular velocity of the satellite.
In the present work, we instead take torb = forb2π/

√
ωperiωapo, where

ωperi and ωapo are the angular velocity of the satellite at its most
recent pericentric and apocentric passages, and f orb is an adjustable
parameter which we expect to be of the order of unity. (Prior to
the first pericentric passage we revert to our previous definition
of mass loss time-scale, this makes little difference to our results
as typically very little mass loss occurs prior to this time.) The
advantage of this choice is that it produces smoother mass loss
histories (as shown in Section 4). Furthermore, when considering
cosmological distributions of satellites, we occasionally find orbits
that are near-radial. The above definition then prevents the mass-loss
rate from becoming arbitrarily small.

(ii) In Chandrasekhar’s formula for the dynamical friction force,
Taylor & Babul (2001) adopted fixed Coulomb logarithms of ln�=
2.4 for the dynamical friction force due to the combined halo/bulge
system and ln�= 0.5 for the force due to the disc. They found that
these values resulted in the best match to the results of the numerical
simulations of Velázquez & White (1999, hereafter VW), and we
adopted the same values in Paper I. Since we will be interested
here in a wide range of satellite and host halo masses, we adopt
more general definitions. For the halo and bulge systems we take
�h = f�,hr (v2

sat + σ 2
1D)/GMsat, where r is the orbital radius of the

satellite, M sat its mass, vsat the orbital velocity of the satellite, σ 1D

the one-dimensional velocity dispersion of the halo at radius r, and
f�,h is a parameter. Since �h � 1 is possible with this definition,

we replace the usual ln�h term in the expression for the dynamical
friction force (equation (20) of Paper I) with 1

2 ln(1+�2
h), the correct

form for small�h (Binney & Tremaine 1987). We also account for
the finite size of the satellite as described in Appendix B2. For the
disc we must account for the differing scalelengths in the radial and
vertical directions. A suitable expression for the Coulomb logarithm
is derived in Appendix B2.2, and depends on the disc scalelength
and velocity dispersions, the velocity of the satellite relative to the
disc, the angle this velocity makes with the disc plane, and on a
parameter, f�,d which plays a similar role to f�,h. These forms are
used throughout our calculations.

(iii) The disc is now treated as having an anisotropic velocity dis-
persion (σ R, σ φ , σ z) in the radial, azimuthal and vertical directions,
and this anisotropy is included in the calculation of the dynamical
friction force due to the disc (see Appendix B2.1). We adopt essen-
tially the same model for the disc velocity dispersion components as
VW. For the radial velocity dispersions, we set σ 2

R ∝ exp(−R/Rd)
(Lewis & Freeman 1989),6 where Rd is the disc radial scalelength,
and fix the normalization by assuming the disc to have a Toomre
Q-parameter of 1.5 at its half-mass radius, which results in Q ≈
1.5 at the Solar radius in a Milky Way-like galaxy disc (VW). The
azimuthal velocity dispersion is then determined using the epicyclic
approximation, σ 2

φ = σ 2
Rκ

2/4�2 (where κ is the epicyclic frequency
and � the orbital frequency of the disc). The vertical velocity dis-
persion at each radius is calculated from the vertical scaleheight Hd,
assumed constant with radius, using the expressions in Section 2.2.2
(the vertical scaleheight in turn is related to the disc vertical energy).
In the analytical disc-heating calculation, the radial and azimuthal
velocity dispersions are kept fixed in time, but the vertical velocity
dispersion evolves with the disc vertical energy.

(iv) When computing the dynamical friction force due to the disc,
we smooth the disc density to account for the finite size of the
satellite halo as did Taylor & Babul (2001). We smooth on a scale
equal to the current radius of the satellite after tidal limitation and
gravitational shock-heating.

(v) As the disc scaleheight will increase as a function of time
due to disc heating, we allow for a variable disc scaleheight in our
satellite orbit calculations. This affects both the dynamical friction
force due to the disc and also the gravitational forces exerted by the
disc.

(vi) Heating by gravitational shocks causes shells of material
within a satellite to expand before they become completely unbound.
Previously, this effect was included in the calculation of the tidal
mass loss, but not in the calculation of the final internal structure. We
now calculate the evolution of the internal density and circular ve-
locity profile assuming that the radii of shells of dark matter scale in
inverse proportion to their energy. We have repeated the comparison
we performed in Paper I of the distribution of peak internal circular
velocities of satellite haloes predicted by the semi-analytical model
with the results of cosmological N-body simulations. We find that
the same choice of initial satellite orbital parameters as in Paper I
still gives the best match to the N-body simulations.

A P P E N D I X B : DY NA M I C A L

F R I C T I O N F O R M U L A E

In this appendix we derive several formulae related to dynamical
friction which are employed in this work. For completeness, in

6 Note that VW contains an error in this equation, although the text of that
paper is correct.
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Figure B1. The geometry of a scattering event contributing to the dynam-
ical friction force on mass M (the satellite) due to a particle of mass m (a
background particle). Here, VM and VM are the velocities of M and m, re-
spectively, while V 0 is the relative velocity of the two and b is the impact
parameter for this scattering event.

Sections B1 and B2 we derive several well-known relations rele-
vant to dynamical friction. A more complete discussion of these
results can be found in Binney & Tremaine (1987) for example. We
consider a mass M moving through an infinite and homogeneous
sea of particles of mass m(� M), number density n and density
ρ = mn.

B1 Single scattering events

For a single scattering event we take the results of Binney &
Tremaine (1987, page 422). The scattering geometry is illustrated in
Fig. B1. The changes in the velocity parallel of M and perpendicular
to the initial relative velocity vector of the m and M , V 0, are:


V || =
2m

M

(

1 +
b2V 4

0

G2 M2

)−1

V0 (B1)

and


V⊥ =
2mV 3

0

GM2

(

1 +
b2V 4

0

G2 M2

)−1

b, (B2)

where b is the impact parameter and we have assumed the back-
ground particles to be much less massive than the object for which
the force is being calculated.

B2 Rate of change of velocity

We now envisage a sea of particles m with a distribution of velocities
given by f (V m). The contribution to the rate of change of velocity
in the parallel direction from particles with velocity V m is simply

dV ||

dt
= f (Vm)

∫ bmax

0

2πbnV0
V|| db. (B3)

This gives,

dV||

dt
= 2π ln(1 +�2)ρG2 M f (Vm)

V0

V 3
0

, (B4)

where � = bmaxV 2
0/GM . If M has a finite extent (corresponding

to replacing the lower integration limit of 0 with bmin), the above
equation still holds with an effective � given by

�eff =
(

1 +�2

1 + [bmin/bmax]2�2
− 1

)1/2

. (B5)

Throughout this work, we take bmin equal to half the current tidal
radius of the satellite.Clearly, the net change in the velocity of M

perpendicular to V 0 is zero by symmetry. Thus, the net rate of change
of velocity of M is

dV M

dt
= 2π ln(1 +�2)ρG2 M

∫

f (Vm)
(Vm − V M )

(Vm − V M )3
d3Vm . (B6)

The integral in the above equation has an identical form to inte-
grals used to find the gravitational force at position x0 due to a
density distribution, if we identify f (V m) ≡ Gρ(x), V m ≡ x and
V M ≡ x0.Thus, the power extracted from the body through dynam-
ical friction is given by,

Pscat = MV M ·
dV M

dt

= 2π ln(1 +�2)ρG2 M2

× V M ·
∫

f (Vm)
(Vm − V M )

(Vm − V M )3
d3Vm . (B7)

B2.1 Application to an arbitrary velocity ellipsoid

Binney (1977) derives an expression for the dynamical friction force
due to a system of particles with uniform density and Gaussian ve-
locity distribution with dispersion σ ⊥ in one direction and σ || in the
other two directions. Binney’s equation (A4) is trivially generalized
to the case where the velocity dispersions differ in all three direc-
tions. Combining this with his equation (A3) we find the following
expression for the dynamical friction force:

Fdf =
√

2π ln(1 +�2)ρG2 M2

√

(

1 − e2
φ

)(

1 − e2
z

)

σRσφσz

× (BRvRêR + Bφvφ êφ + Bzvz êz),
(B8)

whereρ is the background density, M the mass of the orbiting object,
(vR, vφ , vz) is the relative velocity vector of object and background
particles (in cylindrical polar coordinates since we will apply this
expression to a galaxy disc), êR, êφ, êz are the basis vectors of the
cylindrical polar coordinate system. The coefficients B are given by,

BR =
∫ ∞

0

dq
[

(1 + q)3
(

1 − e2
φ + q

)(

1 − e2
z + q

)]1/2

× exp

{

−
1

2

[

v2
R/σ

2
R

(1 + q)
+

v2
φ/σ

2
R

(

1 − e2
φ + q

)

+
v2

z

/

σ 2
R

(

1 − e2
z + q

)

]}

, (B9)

Bφ =
∫ ∞

0

dq

[(1 + q)(1 − e2
φ + q)3(1 − e2

z + q)]1/2

× exp

{

−
1

2

[

v2
R

/

σ 2
R

(1 + q)
+

v2
φ

/

σ 2
R

(

1 − e2
φ + q

)

+
v2

z

/

σ 2
R

(

1 − e2
z + q

)

]}

, (B10)

Bz =
∫ ∞

0

dq
[

(1 + q)
(

1 − e2
φ + q

) (

1 − e2
z + q

)3
]1/2

× exp

{

−
1

2

[

v2
R

/

σ 2
R

(1 + q)
+

v2
φ

/

σ 2
R

(1 − e2
φ + q)

+
v2

z

/

σ 2
R

(

1 − e2
z + q

)

]}

, (B11)
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Figure B2. The geometry used in calculating the Coulomb logarithm for
the disc. Scatterings through an annulus normal to V 0 (the relative velocity
of satellite and disc stars) are considered. p is a vector lying in this annulus
and parallel to the galaxy disc. Angles in the annulus, ψ , are measured from
p. Finally, θ is the angle between V 0 and the normal to the disc.

where 1 − e2
φ = σ 2

φ/σ
2
R and 1 − e2

z = σ 2
z/σ

2
R.

B2.2 Effective Coulomb logarithm for the disc

In calculating the dynamical friction force due to the disc we require
the Coulomb logarithm, 1

2 ln(1 +�2), where� is normally defined
as � = bmaxV 2

0/GM , where V 0 is the typical relative velocity of
the satellite and stars in the disc. We adopt V 2

0 = V 2
rel + (σ 2

R + σ 2
φ

+ σ 2
z )/3, where V rel is the relative velocity of the satellite and the

bulk disc motion, and σ R, σ φ and σ z are the three components of
the disc velocity dispersion.

When computing the dynamical friction force we sum the con-
tributions from all particles with impact parameter b by integrating
around an annulus of radius b normal to the relative velocity vec-
tor of the particles and the satellite. We define ψ as the angle of
a point on this annulus measured from a vector, p, which lies in
the plane of the annulus and which is parallel to the disc plane (see
Fig. B2). For the disc, the value of bmax, the upper limit of integra-
tion in equation (B3), will vary as a function of ψ . In the direction
corresponding to ψ = 0 (and ψ = π) the disc density distribution
has a characteristic length-scale of Rd (the exponential scalelength).
This will therefore correspond (approximately) to the largest impact
parameter scatterings occurring in that direction. In perpendicular
directions (ψ = π/2 and ψ = 3π/2) a more appropriate character-
istic length is r eff = Rd(cos2θ + h2 sin2θ )1/2, where θ is the angle
between the satellite–disc relative velocity vector and the z-axis, and
h the ratio of disc scaleheight to scalelength. Thus, the effective �
in direction ψ is

� =
f�,d Rdh′V 2

0

GM
, (B12)

where h′ = [ cos2ψ + (cos2θ + h2 sin2θ ) sin2ψ]1/2. If we account
for the finite size of the satellite then:

(1 +�2)eff =
1 +�2

1 + (bmin�/Rdh′ f�,d)2
. (B13)

The effective Coulomb logarithm is found by averaging over all ψ :
〈

1

2
ln(1 +�2)eff

〉

=
1

4π

∫ 2π

0

ln(1 +�2)eff dψ. (B14)

This integral is solved numerically.

B.3 Rate of increase of scattered particle velocity dispersion

We now wish to determine the rate of increase of the one-
dimensional velocity dispersion, measured in direction n̂, of the
particles m due to dynamical friction scatterings. Since the centre
of mass remains fixed during the scattering, m
V m + M
V M =
0. Therefore, to find the change in velocity of m we multiply the
equations (7-10a) and (7-10b) of Binney & Tremaine by −M/m.
Writing these in a more convenient form:


Vm⊥ = −2V0�
b

bmax

(

1 +�2 b2

b2
max

)−1

, (B15)


Vm|| = −2V0

(

1 +�2 b2

b2
max

)−1

, (B16)

for the components of velocity perpendicular and parallel to the
relative velocity vector V 0 as measured in the frame in which the
centre of mass of M and m is at rest.

Consider now the velocity of m in the frame in which the centre
of mass of the central galaxy and its halo is at rest. The velocity
changes are independent of frame so the final velocity of m in this
frame is:

V (f)
m = Vm +

V0

V0

Vm|| +

b

b

Vm⊥. (B17)

We are interested in the velocities in some direction n̂. The initial
and final velocities of m in this direction are:

V
(i)
m,n̂ = Vm · n̂, (B18)

V
(f)
m,n̂ = Vm · n̂ +
Vm|| cos θV0 +
Vm⊥ cos θb, (B19)

where θV0 and θ b are the angles between n̂ and V 0 and n̂ and b,
respectively. The change in the component of the kinetic energy in
direction n̂ is therefore


En̂ =
m

2

[


V 2
m|| cos2 θV0 +
V 2

m⊥ cos2 θb

+ 2
Vm||
Vm⊥ cos θV0 cos θb

+ 2Vm · n̂
(


Vm|| cos θV0 +
Vm⊥ cos θb

)]

. (B20)

To sum over all particles m, we first integrate around an annulus of
constant |b|. On this annulus, θV0 is constant and we can write the
vector b = b1 cosφ + b2 sinφ, where b1 · b2 = 0, |b1| = |b2| = b

and φ is a parameter (see Fig. B3). We then note that
∫ 2π

0

cos2 θb dφ =
∫ 2π

0

(

b1 · n̂

b

)2

cos2 φ

+
(

b2 · n̂

b

)2

sin2 φ

+ 2

[

(b1 · n̂)(b2 · n̂)

b2

]

sinφ cosφ dφ

= π

(

b1 · n̂

b

)2

+ π

(

b2 · n̂

b

)2

. (B21)

If we choose b1 to be parallel to the projection of n̂ into the plane
of the annulus then b1 · n̂/b = sin θV0 and b2 · n̂/b = 0, so
∫ 2π

0

cos2 θb dφ = π sin2 θV0 . (B22)
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Figure B3. Geometry used in computing the rate of increase of velocity
dispersion in direction n̂. Vectors b, b1 and b2 lie in the plane of the annulus.
Vector V 0 is normal to the annulus and vector n̂ lies in the plane of V 0 and
b1.

Using a similar approach, it is simple to show that
∫ 2π

0
cos θb dφ = 0. Thus, the change in energy becomes


En̂ =
m

2

(

2π
V 2
m|| cos2 θV0 + π
V 2

m⊥ sin2 θV0

+ 4πVm · n̂
Vm|| cos θV0

)

. (B23)

Substituting equations (B15) and (B16) we find


En̂ =
mV 2

0

2

[

8π

(

1 +�2 b2

b2
max

)−2

cos2 θV0

+ 4π�2 b2

b2
max

(

1 +�2 b2

b2
max

)−2

sin2 θV0

− 8π
Vm ·n̂

V0

(

1 +�2 b2

b2
max

)−1

cos θV0

]

. (B24)

To find the total energy change we multiply by the flux of particles
passing through the annulus, nV 0b db, and integrate over b from 0
to bmax. This gives

dEn̂

dt
= ρV 3

0 b2
max

[

2π cos2 θV0

1 +�2

+ π

(1 +�2) ln(1 +�2) −�2

�2(1 +�2)
sin2 θV0

− 2π

Vm · n̂

V0

ln(1 +�2)

�2
cos θV0

]

.
(B25)

We next average over the velocity distribution of V m . The total rate
of energy change is then

dEn̂

dt
=

∫

ρV 3
0 b2

max

[

2π cos2 θV0

1 +�2

+ π

(1 +�2) ln(1 +�2) −�2

�2(1 +�2)
sin2 θV0

− 2π

Vm · n̂

V0

ln(1 +�2)

�2
cos θV0

]

f (V) d3V .
(B26)

In general, it seems that this equation is not analytically solvable,
even if f (V m) is an isotropic Gaussian. However, if we are interested
in systems where random motions are much smaller than the bulk

motion (such as galaxy discs), then we can approximate f (V m) =
δ(V m − V d), where V d is the disc bulk velocity and δ is the Dirac
delta function. Note that V 0 = V m − V M where V M is the velocity
of M. For this case

dEn̂

dt
= ρV 3

0 b2
max

[

2π cos2 θV0

1 +�2

+ π

(1 +�2) ln(1 +�2) −�2

�2(1 +�2)

(

1 − cos2 θV0

)

− 2πvd cos θvd

ln(1 +�2)

�2
cos θV0

]

,
(B27)

where cos θV0 = vd cos θvd − vM cos θvM
. Here vd = V d/V 0 and θvd

is the angle between n̂ and V d, with similar definitions for vM and
θvM

. The efficiency of energy transfer to direction n̂ is then easily
found by dividing the above by the same expression summed over
three orthogonal directions (taking one of these to be parallel to V 0

simplifies the summation):

εn̂ =
[

2 cos2 θV0

1 +�2
+

(1 +�2) ln(1 +�2) −�2

�2(1 +�2)

(

1 − cos2 θV0

)

− 2vd cos θvd

ln(1 +�2)

�2
cos θV0

]

×
[

2

1 +�2
+ 2

(1 +�2) ln(1 +�2) −�2

�2(1 +�2)

− 2vd cos θvd

ln(1 +�2)

�2

]−1

.
(B28)

We are interested specifically in the vertical velocity dispersion
of a galactic disc. In this case V d lies in the disc plane, while n̂

is perpendicular to that plane. Consequently, cos θvd = 0 and the
above expression simplifies to

εẑ =
[

2 cos2 θV0

1 +�2
+

(1 +�2) ln(1 +�2) −�2

�2(1 +�2)

(

1 − cos2 θV0

)

]

×
[

2

1 +�2
+ 2

(1 +�2) ln(1 +�2) −�2

�2(1 +�2)

]−1

. (B29)

This expression is then used in equation (2) to calculate the vertical
heating rate of galaxy discs. Note that 0 � ε z � 1, as expected for
an efficiency factor.

A P P E N D I X C : D I S C S U R FAC E

E N E R G Y D E N S I T I E S

We here derive expressions for the different contributions to
the surface energy density of the disc. These are used in
Section 2.2.2

We assume a disc with a density structure

ρd(R, z) = (R)
sech2(z/Hd)

2Hd
, (C1)

with Hd constant with radius. Assuming that the disc is thin, H d

� R, the potential of the disc can be found by approximating the
density distribution as a set of infinite, homogeneous planes, such
that

φd(R, z) =
∫ ∞

−∞
2πGρd(R, z)|z − z′| dz′ + φd(R, 0)

= 2πG(R)Hd[ln cosh(z/Hd) + ln 2] + φd(R, 0).
(C2)

C© 2004 RAS, MNRAS 351, 1215–1236



1234 A. J. Benson et al.

Close to the disc plane, the z-component of the force due to the
spherical halo plus bulge is

Fh = −
GMh(R)

R3
z, (C3)

hence the potential due to these components is

φh(R, z) ≈
∫ z

0

GMh(R)

R3
z′ dz′ + φh(R, 0)

=
GMh(R)

2R3
z2 + φh(R, 0). (C4)

Referencing all energies to z = 0, we can neglect the final terms in the
above equations. We can now calculate the different contributions
to the disc vertical energy per unit area, where necessary using the
thin disc approximation H d � R. The gravitational self-energy of
the disc is then

wdd(R) =
1

2

∫ ∞

−∞
φd(R, z)ρd(R, z) dz

= πG(R)2 Hd. (C5)

Figure D1. Convergence tests for model G1S1. Results are shown for the standard simulation (circles), model G1S11/2 (which has half the number of particles
of G1S1; crosses) and model G1S11/4 (which has one-quarter the number of particles of G1S1; triangles). Points are connected by dotted lines to guide the
eye only – lines are not intended as a realistic interpolation of the points. Top left-hand panel: the orbital position of the satellite as a function of time. Top
right-hand panel: the orbital velocity of the satellite as a function of time. Lower left-hand panel: the remaining bound mass of the satellite as a function of
time. Lower right-hand panel: the change in the vertical component of the disc kinetic energy due to heating by the satellite as a function of time.

The disc–halo gravitational potential energy is

wdh(R) =
∫ ∞

−∞
φh(R, z)ρd(R, z) dz

=
π

2

24

G Mh(R)

R3
d(R)H 2

d
(C6)

and the kinetic energy of the disc is

tz(R) =
1

2
(R)σ 2

z (R). (C7)

A P P E N D I X D : C O N V E R G E N C E T E S T S

O N N - B O DY S I M U L AT I O N S

We repeated all the simulations of models G1S1–G1S15 with one-
half and one-quarter the number of particles, labelling these runs
G1S11/2, G1S11/4 etc. (In each case, we scaled the softening in
proportion to the mean interparticle separation.) Figs D1 and D2
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Figure D2. Convergence tests for model G1S5. Results are shown for the standard simulation (circles), model G1S51/2 (which has half the number of particles
of G1S5; crosses) and model G1S51/4 (which has one-quarter the number of particles of G1S5; triangles). The different panels are as for Fig. D1.

compare the results for two representative models (G1S1 and G1S5)
run with different numbers of particles. In both cases, the position
and velocity of the satellite are well converged up until the very final
stages of the life of the satellite (at which point it becomes difficult
to measure these quantities accurately from the simulation anyway).
The higher-resolution simulations lose mass from the satellite some-
what more rapidly at late times, but the differences are minor and
the mass-loss rate is well determined by the simulations.

The convergence behaviour seems poorer for the change in verti-
cal kinetic energy
Tz (in which the energy of the unperturbed disc
from model G1S0 has been subtracted off). For the model G1S5,
the difference in the final
Tz of (0.02 − 0.03) × 1014 M� km2 s−2

between the highest and lowest resolution runs could result mostly
from the error in the energy of the unperturbed disc that is subtracted
off, since the variation in this value between different realizations
is around (0.02 − 0.03) × 1014 M� km2 s−2 in the low-resolution
case. However, for model G1S1 the differences in
Tz between the
high- and low-resolution runs are much bigger than can be explained
by errors in the subtraction of the unperturbed disc contribution. In
this case, the behaviour of
Tz is not even monotonic as the number
of particles is increased. We have investigated this further by re-
peating some of the lowest resolution simulations using a different

sequence of random numbers in generating the initial conditions.
We find that this leads to significant variations in 
Tz, comparable
to those seen between the lowest resolution and higher-resolution
simulations. It therefore seems that the amount of disc heating by
satellites is sensitive to stochastic variations in the initial conditions,
over and above the two-body relaxation which heats the unperturbed
disc. Comparing the highest and lowest resolution runs, we find that
the error in the low-resolution estimate of 
Tz is ∼30 per cent for
model G1S5, but ∼100 per cent for model G1S1. The convergence
of
Tz with increasing particle number thus seems to depend on the
orbital properties of the satellite, with different numbers of particles
being required to achieve the same degree of convergence in differ-
ent cases. A more comprehensive study of convergence in a variety
of models will be required to address this question fully.

A P P E N D I X E : O R D E R O F M AG N I T U D E

E S T I M AT E S O F D I S C T H I C K N E S S E S

In this appendix we make order of magnitude estimates for the
thicknesses of discs resulting from heating by satellites and by stars
scattering from giant molecular clouds.
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E1 Heating by satellites

We assume a distribution of satellite halo masses dN/dM = AM−1.7,
where A is a constant, with a maximum mass of f max = 0.01 of the
total halo mass and making up a fraction f mass = 0.1 of the total
halo mass (consistent with numerical simulations; Springel et al.
2001b). Then,

A = 0.3 fmass M0.7
halo

/

f 0.3
max. (E1)

Taking the Chandrasekhar formula for dynamical friction (equa-
tion B6), the power deposited by a satellite is, to order of magnitude

P = 4π

G2 M2
s

Vs
ln�ρd. (E2)

Assuming that heating is effective primarily within one scaleheight
of the disc, then heating occurs overly a fraction of roughly H d/

2 π r orb of the orbit of the satellite, where rorb is the orbital radius.
Allowing for an efficiency of vertical heating ε z and integrating over
masses, the total energy transfer in time t is given by

E = 2t
G2

Vs
ln�

Md

4πR3
dh
εz

Rdh

rorb

∫ fmax Mhalo

0

AM−1.7
s M2

s dMs

= 2
G2

Vs
ln�

Md

4πR3
dh
εz

Rdh

rorb
0.3 fmass M2

halo fmax. (E3)

Equating to the energy of the disc, as given by equation (8) after
ignoring the contribution proportional to h2 as this is typically small,
and solving for h

h =
8

3π

0.3 fmass fmaxεz

GM2
halo ln�

Vs Rdrorb Md
t, (E4)

or

h = 0.16

(

fmass

0.1

)(

fmax

0.01

)(

εz

0.3

)(

Mhalo

1012 M�

)2 (

ln�

3

)

×
(

Vs

200 km s−1

)−1 (

Rd

3.5 kpc

)−1 (

rorb

200 kpc

)−1

×
(

Md

5 × 1010 M�

)−1 (

t

Gyr

)

. (E5)

E2 Heating by scatterings from giant molecular clouds

We begin with equation (10), which we approximate to order of
magnitude (replacing dε z/dt with ε z/t etc.) as

E = 2
G2 Md Mcc

σ 2
z

ν ln�cα
3
s (β)Ks(β)t . (E6)

Inserting equation (7) to eliminate σ z (we again ignore the contri-
bution proportional to h2) this reduces to

E =
2

π

GMd Mc

Rdh

c

d
ln�cνα

3
s (β)Ks(β)t . (E7)

Equating to the energy of the disc and solving for h results in

h2 =
32

3π

Mc

Md
f ln�cνα

3
s (β)Ks(β)t, (E8)

where f =  c/d. This can be expressed as

h = 7.2 × 10−3

(

f

0.025

)1/2 (

Mc/Md

3 × 10−5

)1/2 (

ln�

3

)1/2

×
(

ν

90 Gyr−1

)1/2 [

αS(β)

0.7

]3/2 [

KS(β)

0.15

]1/2 (

t

Gyr

)1/2

. (E9)
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