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Simple plasticity-based prediction of the undrained settlement of shallow
circular foundations on clay

A. S. OSMAN* and M. D. BOLTON*

A kinematic plastic solution has been developed for the
penetration of a circular footing into an incompressible
soil bed. In this solution, the pattern of deformation
around the footing is idealised by a simple plastic defor-
mation mechanism. Strain-hardening behaviour and non-
linear stress–strain characteristics are incorporated. This
application is different from conventional applications of
plasticity theory as it can approximately predict both
stresses and displacements under working conditions.
This approach therefore provides a unified solution for
design problems in which both serviceability and safety
requirements are based directly on the stress–strain be-
haviour of the soil. The design strength that should limit
the deformations can be selected from the actual stress–
strain data recorded from a carefully specified location,
and not derived using empirical safety factors. The
validity of this design approach is examined against non-
linear finite element analyses and field measurements of
foundations on clay under short-term loading.

KEYWORDS: clays; deformation; design; footings/foundations;
plasticity; theoretical analysis

Une solution plastique cinématique a été développée pour
la pénétration d’une assise circulaire dans un lit de sol
incompressible. Dans cette solution, la forme de la défor-
mation autour de l’assise est idéalisée par un simple
mécanisme de déformation plastique. Nous incorporons le
comportement de déformation-durcissement et les carac-
téristiques de contrainte-déformation non linéaire. Cette
application est différente des applications convention-
nelles de la théorie de plasticité car elle peut approxima-
tivement prédire les contraintes et les déplacements en
conditions de travail. Cette approche offre donc une
solution unifiée aux problèmes de conception dans les-
quels les besoins de commodité et de sécurité sont basés
directement sur le comportement contrainte-déformation
du sol. La force nominale qui devrait limiter les déforma-
tions peut être sélectionnée d’après la contrainte réelle –
données enregistrées depuis un emplacement soigneuse-
ment spécifié et non dérivées en utilisant des facteurs de
sécurité empiriques. Nous examinons la validité de cette
approche de design par rapport aux analyses d’éléments
finis non linéaires et aux mesures sur le terrain des
fondations sur de l’argile sous charges à court terme.

INTRODUCTION
Designers have to check that shallow foundations will
neither penetrate the soil subgrade in a bearing capacity
failure, nor settle excessively. Bearing failure is checked
using plasticity theory, whereas settlement is usually checked
using elasticity. Conventionally, the calculations for settle-
ment in saturated clay are divided into two components:
immediate settlements due to deformation taking place at
constant volume, and the consolidation settlement accompa-
nying the dissipation of pore water pressure (Skempton &
Bjerrum, 1957). Excessive total or differential settlements
are a main cause of unsatisfactory building performance.
Although this is sometimes due to unexpected consolidation,
the inadequacy of linear elasticity to describe the earlier
phase of undrained settlement leads to significant uncertain-
ties. This paper proposes a resolution of the latter problem.

Circular shallow foundations are usually designed on the
basis that the net imposed load under working conditions
should not exceed the ultimate net imposed load that would
cause collapse, divided by a safety factor. Estimation of the
collapse load in the geotechnical design of circular footings
is well established from plasticity theory. Several techniques
based on stress characteristics, and on upper- and lower-
bound theorems of limit analysis, have been used to calcu-
late bearing capacity factors for circular footings.

Levin (1955) presented an upper-bound solution for the
problem of the indentation of a smooth circular punch on a

half-space of a perfectly plastic material that obeys Tresca’s
yield criterion. In this solution, the geometry of Hill’s plane
strain mechanism (Hill, 1950) was used to simulate contin-
uous axisymmetric displacements. Shield (1955a) presented
a complete solution for a smooth circular footing on a
purely cohesive soil, and Eason & Shield (1960) extended
the same solution to the case of a perfectly rough footing.
Cox et al. (1961) solved a number of cases of the circular
surface footing on c–� weightless soil. Cox (1962) extended
these solutions by including the soil weight. Houlsby &
Wroth (1983), Kusakabe et al. (1986) and Tani & Craig
(1995) considered the bearing capacity problem of a circular
footing on cohesive soil whose undrained strength varies
with depth. Shield (1955b) presented upper- and lower-
bound solutions for the average bearing pressure at failure
of a circular footing on a semi-infinite layer of elastic-
perfectly plastic cohesive soil resting on a rough rigid base.
Chen (1975) solved the problem of indentation of a circular
cylinder of finite dimensions by a flat-ended rigid circular
footing.

Butterfield & Harkness (1971) considered the stepped
mobilisation of shear strength in rigid plastic Mohr–Cou-
lomb material under strip loading. Shear strain is assumed to
be concentrated in the slip lines, and the soil is modelled as
rigid until the instant it yields completely. Although this
technique was able to calculate the proportional displace-
ment within the plastic mechanism, it was unable to relate
ground displacement to shear strain in the soil. In current
design practice a reduction factor on peak strength of the
soil is introduced to account for the need to predict displace-
ment. However, it is not possible to relate the shear strain
(based on the reduced strength mobilisation) to ground
displacement other than empirically.

Linear elasticity is often used to calculate displacements.
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However, the stress–strain behaviour of soil is highly non-
linear from very small strains (Jardine et al., 1984; Burland,
1989; Houlsby & Wroth, 1991). The finite element analyses
conducted by Bolton & Sun (1991) for centrifuge tests on a
bridge abutment showed the importance of using a non-
linear elasto-plastic model in order to predict properly the
displacements and stresses on the abutment. Jardine et al.
(1986) showed that the non-linearity of stress–strain behav-
iour has a dominant influence on the form and scale of the
displacement distribution around shallow foundations.

Bolton & Powrie (1988) and Osman & Bolton (2004)
proposed a new design approach for retaining walls based
on the theory of plasticity and the mobilisable soil strength
concept. The proposed design method treats a stress path in
a representative soil zone as a curve of plastic soil strength
mobilised as strains develop. Strains are entered into a
simple plastic deformation mechanism to predict boundary
displacements. Hence the proposed mobilisable strength de-
sign (MSD) method can satisfy both safety and serviceabil-
ity in a single step of calculation. This paper presents an
MSD solution for the bearing capacity problem of a shallow
circular footing in undrained conditions.

PLASTIC DEFORMATION MECHANISM FOR
CIRCULAR FOUNDATIONS

This solution is based on plasticity theory. However,
instead of a rigid perfectly plastic material, which is gen-
erally used in simple plastic analyses, strain-hardening be-
haviour is incorporated. In this solution, the ground
displacement is related to shear strain in the soil. The key
advantage of this technique is that the settlements of circular
footings can be predicted directly from the stress–strain data
of a triaxial test on a characteristic soil sample. This
solution therefore provides a rational procedure for selecting
design parameters, because the strength that limits the
ground deformation is chosen with respect to the stress–
strain behaviour of the soil and the level of acceptable
deformations under working conditions.

The well-known Prandtl mechanism (Fig. 1) for plane
strain indentation is used first, but only to create a boundary
for the continuous displacement field that is taken to exist
beneath a circular punch. Within this boundary there are
three zones of distributed shear. These regions are required
to shear and deform compatibly and continuously with no
relative sliding at their boundaries. Strains and compatible
displacements are developed according to the stress incre-
ment and equilibrium condition. Outside this region, the soil
is taken to be rigid. This represents the rapid increase of soil
stiffness away from the near-field plastic deformation.

It is possible to satisfy compatibility by considering the
kinematics of each of the three soil zones.

Figure 2 shows the active zone OAF. If there is no volume
change, the following condition should be satisfied

@u

@ r
þ u

r
þ @v

@z
¼ 0 (1)

where u and v are the radial and vertical displacement
respectively, r is the radial distance from the centreline of
the footing, and z is the depth below the ground surface.

Axisymmetry conditions imply that u ¼ 0 at r ¼ 0. If the
variation of v is independent of r, then the radial displace-
ment u can be given by

u ¼ � r

2

@v

@z

� �
(2)

The vertical displacement v might be assumed to be given
by

v ¼ a1z2 þ a2z þ a3 (3)

where a1, a2 and a3 are constants.
Here, v has a maximum value of � at z ¼ 0 and decreases

to zero at z ¼ D/2. If displacements in the adjoining fan
zone are assumed to have no radial component with respect
to the fan centre, and if there is no slippage between the
zones, then tangential displacement along the boundary OF
in the active zone must be zero.

Therefore the radial and vertical components of displace-
ments in the active zone can be given by

u ¼ �4�

D 2
zr þ 2�

D
r (4)

v ¼ 4�

D 2
z2 � 4�

D
z þ � (5)

In each of the remaining zones, the soil is assumed to move
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Fig. 2. Active zone OAF
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Fig. 1. Plastic deformation mechanism for shallow circular foundation on clay
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along lines parallel to the outer rigid boundary (Fig. 3) with
displacements decaying with 1/r in order to satisfy the
incompressibility condition. Table 1 shows the components
of the displacement in each zone.

Determination of strains
Strains can be found from the first derivative of displace-

ments. Applying axisymmetric conditions

�r ¼ � @u

@ r
ªrŁ ¼ 0

�Ł ¼ � u

r
ªŁz ¼ 0

�z ¼ � @v

@z
ªzr ¼ � @v

@ r
� @u

@z

(6)

The principal strains are given by

�1 ¼ 1
2

��Ł þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
Ł þ ª2

rz � 4�r�z

q� �
�2 ¼ �Ł

�3 ¼ 1
2

��Ł �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
Ł þ ª2

rz � 4�r�z

q� � (7)

where �1 and �3 are the major and the minor principal strain
respectively, and �2 is the intermediate principal strain.

Average shear strain
As all displacements are proportional to the vertical

displacement � of the foundation, and all spatial dimensions
are proportional to the diameter D of the foundation, it

follows by dimensional reasoning that all strain components
are proportional to �/D.

The engineering shear strain �s can be defined as the
difference between the major and minor principal strains
(equation (7))

�s ¼ j�1 � �3j (8)

The average shear strain mobilised in the deforming soil can
be calculated from the spatial average of the shear strain in
the whole volume of the deformation zone (Fig. 1). This
procedure gives

�s,mob ¼

Ð
vol

�s dvolÐ
vol

dvol

¼ Mc

�

D
(9)

in which Mc can be shown to take the value of 1.35 (Osman,
2005).

Hypothesis
The displacement pattern beneath circular footings is

idealised by the plastic deformation mechanism shown in
Fig. 1. This displacement field links the average shear strain
mobilised in the soil, �s,mob, to the normalised footing
settlement �/D (equation (9)). The shear stresses in the soil
are related to the external loading of the footing by the usual
bearing capacity coefficient (Nc)

�mob ¼ Nccmob (10)

where �mob is the average applied bearing pressure, and cmob

is the shear stress mobilised in the soil.
A relation between applied bearing pressure and the

displacement of the footing can be established if the relation
between shear stresses and shear strains can be obtained,
such as from a carefully chosen undrained triaxial test.

The compromise of the new approach is therefore to
couple together an equilibrium solution based on the mobili-
sation of a constant shear stress, cmob, with a kinematic
solution based on the creation of an average mobilised shear
strain, �s,mob. Fig. 4 illustrates the method of estimating the
load–settlement curve directly from a stress–strain curve.
This makes it clear that the non-linearity of the representa-
tive stress–strain curve is to be taken as identical to that of
the normalised load–displacement curve of the foundation.
Plasticity theory is used to obtain the linear transformation
of the axes through the normalisation factors Mc and Nc.

Of course, in a real footing problem, soil elements would
differ in their past stress history, and in their response to differ-
ent stress paths induced by the new loading. Different elements
would have different non-linear stress–strain responses and
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Fig. 3. Displacement field in the fan and passive zones

Table 1. Displacement field for shallow foundation on clay
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would mobilise different shear stresses. Nevertheless, for the
purpose of obtaining a simple calculation, it was considered
best to employ a unique representative stress–strain curve. A
weighted average approach is adopted to select a representative
shear strain that mobilises the required shear strength. The
usefulness of this hypothesis will be demonstrated in the
following sections.

Consistency of the proposed plastic deformation mechanism
To demonstrate the plausibility of the chosen mechanism,

limit analysis calculations will now be carried out using the
proposed displacement field to derive an upper bound to the
collapse load, taking the soil to be ideally plastic with
constant strength cu. The results are to be compared with
existing plasticity solutions.

For a Tresca material, the upper-bound calculation is
calculated from the following equation (Shield & Drucker,
1953)

�
�

4
D 2 _�� ¼ _WW ¼ _DD ¼ 2

ð
vol

cuj _��1j dvol þ
ð

s

cuj˜vjds (11)

where _WW is the work done by the vertical load � on the
footing, _�� is the downward incremental displacement of the
footing, _DD is the total energy dissipation, cu is the undrained
shear strength, s is the surface domain, ˜v is the jump in
displacement increment across the discontinuity, and _��1 is
the largest principal plastic strain increment.

As the distributed shear zones in Fig. 1 have been proved
to shear and deform compatibly and continuously with no
relative sliding at their boundaries, there is no displacement
discontinuity. Accordingly,ð

s

cuj˜vjds ¼ 0

The largest principal plastic strain increment _��1 can be
calculated from the displacement increments at collapse
following equations (7) and (8) rewritten in terms of incre-
mental plastic strains and incremental displacements at
collapse. As is the case with the classical solutions, with

which a comparison will shortly be made, changes of overall
geometry due to finite deformation will be ignored.

The bearing capacity factor Nc is calculated by equating
the energy dissipation and the work done. The Nc value
calculated using this technique for a smooth circular footing
is 5.86. The computation is detailed in Osman (2005). This
value is only 3% higher than that calculated by Shield
(1955a) and Houlsby & Wroth (1983), which was 5.69.
Although this close correspondence cannot be taken as proof
that the selected displacement field is adequate, its consis-
tency is encouraging. It must, however, be recognised that
alternative plastic mechanisms have been proposed by others
seeking solutions to the bearing capacity of circular founda-
tions. For example, Kusakabe et al. (1986) followed Levin
(1955) in adapting Hill’s (1950) plane strain mechanism for
solution in axial symmetry. Although Levin’s solution offers
Nc ¼ 5.84 for the bearing capacity of a smooth circular
punch, which is slightly better than the authors’ solution of
5.86, Levin’s displacement field (Fig. 5) gives zero displace-
ment at every point beneath the centreline of the footing,
which seems physically unreasonable. The selection of a
mechanism that is adequate to represent both equilibrium
and kinematics can be taken only following an independent
verification using finite element analysis.

COMPARISON WITH FINITE ELEMENT (FE) ANALYSIS
A series of axisymmetric finite element analyses has been

performed to predict the displacement of a circular footing
in the short term in which undrained soil conditions are
assumed. Accordingly, excess pore pressure is not allowed to
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Fig. 4. Calculation procedure in the MSD method
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Fig. 5. Levin’s mechanism for shallow smooth circular founda-
tion on clay
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dissipate during the analysis. In the finite element simula-
tion, the Strain Dependent Modified Cam Clay (SDMCC)
soil model (Dasari & Britto 1995; Dasari, 1996) was used.
The analyses were carried out using ABAQUS/STANDARD
version 6.2 software (Hibbit, Karlsson & Sorensen Inc.,
2001).

The Strain Dependent Modified Cam Clay (SDMCC) soil
model

The SDMCC soil model can simulate the variation of
stiffness with strain and the development of hysteresis inside
the Modified Cam Clay (MCC) yield surface, which controls
large-strain behaviour through the MCC flow rule.

Figure 6 shows a typical variation of shear modulus in
SDMCC. At very small strain (,10�5) the tangent shear
modulus G is constant for any given overconsolidation ratio
(OCR) and mean normal stress p9, and is given by

Gmax ¼ Ap9n1 OCRm1 (12)

where A, n1 and m1 are constants.
At small strains (10�5 , �q , 10�2) the tangent shear

modulus is taken to be in the form of

G ¼ Bp9n2 OCRm2�b2

q (13)

where B, n2, m2 and b2 are constants.
Unloading–reloading loops are modelled by Masing’s rule

(Masing, 1926). The stiffness–strain curve during the subse-
quent unloading and reloading is given by

G ¼ Bp9n2 OCRm �rev � �q

2

� �b2

(14)

where �rev is the reference strain corresponding to the point
of the last reversal and �q is the current deviatoric strain.

Bulk modulus is a function of mean normal effective
stress (p9), OCR and volumetric strain (�v)

Kmax ¼ Cp9n3 OCRm3 (15)

K ¼ Cp9n4 OCRm4�b4

v (16)

where C, n3, m3, D, n4, m4 and b4 are constants. The
derivation of the various parameters was explained by Dasari
(1996) and Bolton et al. (1994).

Table 2 lists the 19 soil parameters used in the analysis.
These parameters are selected to fit a typical triaxial stress–
strain curve of undisturbed London Clay (Fig. 7).

The FE mesh
The soil was modelled using eight-node axisymmetric

consolidation elements. The mesh domain was sufficiently
large to eliminate boundary effects so that the changes in
stresses and displacements remote from the footing were
negligible. The footing was taken to be rigid and smooth.
Smaller elements were used near the footing where the
changes of stresses and strains are significant. The bottom
boundary was restrained from both horizontal and vertical
movements, and the left- and right-hand boundaries were
restrained horizontally. Details of the finite element mesh are
shown in Fig. 8.

In situ conditions
The stress history of the soil was assumed to comprise

one-dimensional consolidation followed by the removal of an
effective overburden pressure of 1100 kPa to create a heavily
overconsolidated clay. The lateral earth pressure coefficient
at rest (K0) up to the passive limit is then calculated using
the following equation (Mayne & Kulhawy, 1982)

K0 ¼ KncOCR sin � (17)

where � is the critical state angle of friction of the soil
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Fig. 6. Typical variation of soil stiffness with strain in SDMCC
soil model

Table 2. Parameters for SDMCC soil model

Slope of one-dimensional compression line in v–ln p9 space, º 0.161
Slope of unload–reload line in v–ln p9 space, k 0.062
Slope of critical state line in q–p9 space, M 0.89
Void ratio on critical state line at p9 ¼ 1 kPa, ecs 1.45
Poisson’s ratio, � 0.2
Parameters for shear modulus

A 319
n1 1.0
m1 0.2
B 5.6
n2 1.0
m2 0.2
b2 �0.362

Parameters for bulk modulus
C 304
n3 1.0
m3 0.2
D 1.147
n4 1.0
m4 0.2
b4 �0.488
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(� ¼ 22.88 in this FE simulation). Knc is the coefficient of
earth pressure for normally consolidated soil and is assumed
to be given by Wroth’s empirical method (Wroth, 1975)

Knc ¼ 1 � sin� (18)

The K0 profile thereby derived is shown in Fig. 9. The water
table was taken at the ground level.

Results of SDMCC analysis
Figure 10 shows soil displacement vectors at a footing

carrying a bearing pressure � of 100 kPa. This figure shows

that significant soil movement occurred mainly within the
boundary of the Prandtl mechanism, so that the proposed
plastic deformation mechanism of Fig. 1 can reasonably
approximate the deformation pattern beneath the smooth
circular footing in the FE analysis. In comparison, Levin’s
(1955) mechanism shown in Fig. 5 is clearly unsuitable for
predicting displacements, even though it was acceptable for
predicting collapse loads.

It is well known that in soil there is no unique relation-
ship between strains and stresses. The stress–strain relation
in soil is complicated, and subject to many factors such as
stress history due to loading, unloading and reloading proce-
dures (Atkinson et al., 1990; Wood, 1990; Viggiani &
Atkinson, 1995). The proposed plastic deformation mechan-
ism discussed earlier was derived for a material with con-
stant cu value and a unique stress–strain relation. In this
finite element validation, Fig. 11 shows the variation of the
in situ shear modulus with depth and the undrained strength
profile of the simulated London clay. Ideally, the geometry
of the deformation mechanism should be optimised accord-
ing to the rate of increase of shear strength with depth
(Houlsby & Wroth, 1983; Kusakabe et al., 1986; Tani &
Craig, 1995), and consequently the compatibility factor Mc

should vary. The following validation will demonstrate that a
simpler approach is sufficiently accurate. A soil element at
some characteristic depth will be selected to provide the
representative stress–strain relation and the constant cu value
to be used in the assumed zone of plastic deformation. The
representative location beneath a pad of diameter D is taken
in MSD to be at 0.3D, close to the centroid of the plastic
deformation zone at 0.273D. This location is marked in Fig.
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11, making it clear that the FE simulation refers to site
conditions in which soil strength and stiffness increase
markedly with depth.

An FE simulation of an undrained triaxial test with a
stress history identical to that of an element at depth 0.3D
(i.e. 1.8 m) in Fig. 8 was used to plot the representative
stress–strain curve. This FE simulation would be replaced in
practice by the triaxial data of undisturbed samples or by a
pressuremeter test. Fig. 12 shows the representative stress–
strain curve used in the MSD calculations.

The MSD calculation process, for comparison with the FE
procedure, is set out below.

Suppose that a smooth circular footing of diameter D ¼
6 m is loaded vertically with 100 kPa. Then the change in
mobilised shear stress ˜cmob is

˜cmob ¼ �mob

Nc

¼ 100

5:69
¼ 17:57 kPa

Considering axial symmetry, the change in mobilised devia-
toric stress is twice the change in shear stress

˜qmob ¼ 2 3 17:57 ¼ 35:15 kPa

From the stress–strain curve (Fig. 12) the corresponding
axial strain in the undrained compression test is 0.25%. The

engineering shear strain �s is equal to 1.5 times the axial
strain �a.

Thus

�s ¼ 1:5�a ¼ 1:5 3 0:25% ¼ 0:375%

From the plastic deformation mechanism (equation (9)), the
immediate settlement � can be calculated as follows

� ¼ �s D

1:35
¼ 0:00375 3 6000

1:35
¼ 17 mm

Figure 13 shows a comparison between MSD calculations
and FE predictions for footing bearing pressure up to
240 kPa. The MSD calculations were based on stress–strain
data from an undisturbed soil sample taken at a depth of
0.3D of the deformation mechanism. This figure shows that
the straightforward MSD calculations fall within 10% of the
FE analysis throughout.

Figure 14 shows MSD calculations based on stress–strain
curves obtained from ‘samples’ at various depths compared
with the FE analysis. This figure confirms that stress–strain
data from an undisturbed soil sample taken at a character-
istic depth of 0.3D can best be used in the prediction of
undrained settlement of a shallow foundation on soil with
the particular stress–strain characteristics used in this FE
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validation. Further validation, using the published evidence
from field studies, will be undertaken in the next section.

These FE analysis results have shown clearly that the
MSD approach captures the effects of the non-linear non-
homogeneous soil response. It has not been necessary to fit
an elastic modulus to the stress–strain behaviour. Indeed, it
has not been necessary to fit any mathematical expressions
to the raw stress–strain data of the simulated representative
sample.

BACK-ANALYSIS OF A LOADING TEST ON A STIFF
FOOTING AT BOTHKENNAR
Site location and soil properties

The Bothkennar soft clay test site is a facility for large-
scale experimental research. It is owned and managed by the
UK government through the Engineering and Physical
Science Research Council (EPSRC). It lies approximately
midway between Edinburgh and Glasgow, and borders onto
the River Forth in Scotland. The site has an area of 11 ha
and 20 m depth of soft saturated soils, and has an uncompli-
cated soil profile, which facilitates back-analysis and the
interpretation of field experiments. An extensive site investi-
gation was performed and documented by various authors
(Institution of Civil Engineers, 1992). Pad loading tests were
carried out by Jardine et al. (1995) to investigate bearing
capacity and load–displacement behaviour under short-term
and long-term conditions.

The soil profile under the pad footings is summarised in
Fig. 15, and the undrained strength profile is shown in Fig.
16.

Field tests
Two reinforced concrete pads were cast in 0.8 m deep

excavations. Pad A was 2.2 m square and pad B was 2.4 m
square. As it is common in bearing capacity calculations to
treat circles and squares of equal areas as being equivalent
(Skempton, 1951), the equivalent diameters of pad A and
pad B are 2.48 m and 2.71 m respectively. However, there is
no theoretical justification for this assumption. The aim of
test A was to study the short-term behaviour and the ulti-
mate bearing capacity of rigid foundations under vertical
loads; the long-term behaviour under maintained load was
examined in test B. In this study the settlement of pad A
only is compared with MSD prediction.

Pore water pressure dissipation during loading
Jardine et al. (1995) compared the pore pressure measured

under the centreline of pads A and B with the results of
non-linear FE analysis, and concluded that that the upper
silty strata (z/D , 0.5) showed pore water pressure dissipa-
tion during loading pause periods. However, the conditions
were practically undrained on the centreline beneath z/D ¼
0.5D. The constitutive model used in this comparison (the
LPC2 model of Jardine et al., 1986), does not account for
anisotropy, sensitivity or layering of the natural soils.

The field dissipation rate invariably slows dramatically
once large-strain yield stresses are exceeded (Jardine et al.,
1995).

Surface settlement during loading
Figure 17 shows the profile of ground surface settlement

measured during loading to failure. The bearing pressure is
represented in terms of the mobilised load factor Lf , which
is defined as the ratio of current bearing pressure to the
ultimate capacity found in test A. These load factors were
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Fig. 15. Soil profile at Bothkennar (after Jardine et al., 1995)
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plotted with axes r/D and �r/�c (ratio of radial distance from
the centre of the footing to its diameter, and ratio of soil
settlement to the settlement of the pad’s centre point,
respectively). The ground surface displacement appears to
diminish rapidly with radial distance, as anticipated by the
proposed plastic deformation mechanism shown in Fig. 1.
However, settlement rather than heave was observed adjacent
to the pad. If this observation can be relied upon, it might
arise from partial drainage in the upper soil layers.

MSD calculations
Assumptions. The behaviour of Bothkennar clay may be

described at various levels of sophistication. However, the
MSD method aims to provide a simplified model of the
complex reality for use in design and decision-making. The
approximation should be good if the mechanism is appro-
priate; overall function is more important than local details.
The following assumptions have been made in the back-
analyses of the pad footing tests using the MSD method.

(a) The soil is laterally homogeneous and vertically
consistent, although it is permitted a vertical profile
of strength and stiffness dictated by variable over-
consolidation ratios.

(b) The average shear stress induced in the zone of
deformation is deduced from standard bearing capacity
coefficients applied to estimate working loads.

(c) The displacements are controlled by the average soil
stiffness in the zone of the deformation, through the
assumption of a plastic deformation mechanism and the
selection of a representative stress–strain curve.

The plastic deformation mechanism in the MSD method
is derived for a surface footing. However, the pad footing at
Bothkennar is embedded at a depth of 0.8 m (z/D ¼ 0.32).
Brinch Hansen’s (1970) depth correction factor fd was
adopted to account for embedded depth z in the calculation
of the mobilised strength in MSD of a foundation of width
D. The bearing capacity factor Nc should be increased by
factor fd.

fd ¼ 1 þ 0:4z

D
(19)

For back-analysis of pad A the correction factor fd of 1.13
was accordingly adopted. The bearing capacity factor for a
rough circular surface is 6.05 (Eason & Shield, 1960);
applying the depth correction factor gives an overall bearing
capacity factor Nc of 6.83. No comparable adjustment was
made to the plastic deformation mechanism apart from

recognising that the representative depth below ground sur-
face should be increased.

Stress–strain behaviour. The representative sample in the
MSD calculations should be taken at a depth of 0.3D below
the base, which in this case is about 1.5 m below the ground
surface. Although it is routine in design practice to monitor
the footing settlement and ground deformations around
structures, it is much less common to take representative
samples for testing from shallow depths, even when
designing footings. Fig. 18(a) shows triaxial compression
data for different depths of Bothkennar soft clay, and Fig.
18(b) shows triaxial extension stress–strain data. No triaxial
data at the required shallow depth (1.5 m) are reported in the
literature. Engineering judgement is therefore needed to
estimate stress–strain behaviour at the required characteristic
depth. It should be borne in mind that, at the characteristic
depth, the peak undrained shear strengths in compression and
extension are 20 kPa and 10 kPa respectively (Fig. 15), the
soil will be less stiff at shallower depth, and the Sherbrooke
sampler produced higher-quality samples than other samples
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in Bothkennar soft clay (Hight et al., 1992). These three
considerations were used to select the representative stress–
strain curves adopted in the MSD calculation and indicated in
Fig. 18.

Comparison of the results. Figure 19 shows the MSD
calculations compared with the field measurements. Although
there is a larger discrepancy at high bearing pressures
(possibly due to consolidation as discussed earlier), the
results show a good agreement in the prediction of the
settlements up to 20 mm. In the MSD method, the def-
ormation is assumed to be controlled by the average soil
stiffness. Data of both triaxial compression and extension
should be taken into account. Triaxial compression of a
vertical core of soil fits the deformation beneath the
centreline of the footing. A triaxial extension test only
approximately reproduces the rotation in the principal
compressive strain direction in the soil outside the footing.
In general, the soil deformation does not conform exactly to
either, and the designer must decide whether to base a
prediction on the average mobilised stress–strain curve or on
the lower of the two. Figs 18 and 19 demonstrate that the

MSD method places this judgement in the hands of the
designer in an extremely transparent fashion.

Décourt (1992) proposed that the allowable settlement of
a shallow foundation should be taken as 0.75% of the
diameter of the loading surface, which gives a settlement of
18.6 mm in the present case. This corresponds to an applied
load of 60 kPa. The mobilised undrained shear strength was
therefore about 10 kPa, which represents about 50% of the
undrained strength cu measured in compression tests. This
example shows that serviceability checks can be more
critical than collapse checks. Satisfaction of serviceability
limits usually leads to the satisfaction of safety require-
ments.

BACK-ANALYSIS OF A LOADING TEST ON A RIGID
FOOTING AT KINNEGAR
Ground conditions

The field experiment on a vertically loaded shallow foun-
dation at the Kinnegar site reported by Lehane (2003) has
been back-analysed using the MSD method. The Kinnegar
site is located on the south side of Belfast Lough in North-
ern Ireland.

Figure 20 shows that the soil conditions in the vicinity of
the footing test at Kinnegar comprise �1 m of topsoil and
fill followed by a thin (0.75 m) deposit of sandier estuarine
soil overlying soft estuarine clayey silt, which is known
locally as sleech, to a depth of approximately 8.5 m. The
water table was at a depth of 1.4 m. The base of the footing
was located at a depth of 1.6 m below the ground surface.

Figure 21 shows the results of anisotropically consolidated
undrained triaxial compression and extension tests for sam-
ples taken from between 4.5 m and 4.8 m depth reported by
Lehane (2003).

MSD calculations
In the MSD calculations the square footing is treated as a

circular footing of equivalent area, with a diameter of
2.26 m. The footing is treated as a rough footing in the
MSD calculations. Following Eason & Shield (1960), the
bearing capacity factor Nc for a rough circular pad is taken
to be 6.05. Applying Brinch Hansen’s (1970) depth correc-
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tion factor (1.28 in this case), the overall Nc value is given
as 7.76.

In the MSD method, the characteristic depth is 0.3 times
the footing diameter: that is, about 0.68 m measured from
the bottom of the footing or 2.28 m below the ground
surface. Lehane (2003) estimated that the mean effective
stresses p90 between depths of 0.5 m and 1.75 m below the
foundation varied from about 25 � 5 kPa to 35 � 5 kPa.
Therefore the mean effective stress p90 at the characteristic
depth is taken to be 25 kPa. The triaxial compression and
extension stress–strain data at this stress level were repro-
duced using the shear modulus data of Fig. 20(b). The
deviatoric stress axis is scaled to bearing pressure by divid-
ing the deviatoric stress by 2 to calculate the shear strength
mobilised in the soil, which in turn is multiplied by the
bearing capacity factor (Nc ¼ 7.76). The axial strain axis �a

is scaled to the relative displacement axis by multiplying by
1.5 to obtain the engineering shear �s. Then it is divided by

1.35 to obtain settlement diameter ratio (�/D), as indicated
by equation (9).

Figure 22 compares the observed and predicted load–
settlement response. Several conclusions can be drawn from
this case history.

(a) The observed load–settlement curve is non-linear from
the earliest stages of loading.

(b) Soil anisotropy can have a significant influence on the
settlement of shallow foundations on soft clay. The
reason for this is that large variations in the inclination
of the major principal stress to the vertical occur in
the deformed zones directly beneath and adjacent to the
footing. Therefore there will be large differences in the
mobilised undrained strengths beneath the footing.

(c) It is important to take account of soil anisotropy
observed through laboratory and field experiments if
more accurate predictions are to be made of the
settlement of shallow foundations on soft clay.

(d ) MSD calculations that assume isotropic soil behaviour,
and use either the triaxial compression or triaxial
extension data, offer bounds for the predicted footing
settlement. The average load–settlement curve plotted
by taking the average values of the calculated
settlement based on extension and compression data
conforms well to the measured data. Therefore the
effect of anisotropy in settlement calculations in the
MSD method can apparently be handled simply and
rather accurately by taking the average soil stiffness.

CONCLUSIONS
Conventional bearing capacity theory has been extended

by including plastic deformation mechanisms with distribu-
ted plastic strains. The proposed plastic deformation me-
chanism uses the well-known Prandtl solution for indentation
to set the boundaries of a plastic zone of deformation
beneath a circular punch. Within this zone, a continuous
displacement field has been imposed to avoid discontinuities
and cracks and to satisfy incompressibility. Accordingly, this
solution can be used to derive an upper bound to the
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collapse load. The feasibility of this mechanism can be
judged by the fact that this approach overestimates the
penetration resistance of a rigid-plastic material by a circular
smooth punch by only 3% compared with the published
solution widely regarded as correct. The usefulness of this
solution, however, is that it can be applied to create an
appropriate relation between penetration force and displace-
ment of materials that are strain-hardening. This technique
can provide a unified solution for design problems. It offers
simple hand calculations, which can give reasonable results
for load–settlement behaviour of shallow foundations, when
compared with complex FE analyses.

The selection of soil parameters for design is sometimes
difficult, because the properties of shallow and deep soil
elements are quite different. The selection of a characteristic
stress–strain curve is obviously necessary in design, but is
difficult to decide upon. However, for the purposes of
designing shallow footings in consistent soils, displacements
can be assumed to be controlled by the average soil stiffness
in the zone of deformation. Stress–strain data from an
undisturbed soil sample taken at the mid-depth of the
deformation mechanism, 0.3D below a foundation base of
diameter D, can be used to obtain the load–settlement curve
of a shallow circular foundation. Calibration against FE
analyses demonstrated the accuracy of this approach even
when there were significant variations of soil stiffness and
strength with depth.

The back-analysis of Bothkennar and Kinnegar loading
tests shows that MSD can be used by an engineer to obtain
quite accurate estimate of settlements in the serviceability
range. They also confirm that serviceability checks can be
more critical than collapse checks. Satisfaction of service-
ability limits can lead consequently to the satisfaction of
safety requirements.

Soil anisotropy can have a significant influence on the
settlement of shallow foundations on soft clay. The effect of
anisotropy can be handled in the MSD method by taking the
average soil stiffness from extension and compression triax-
ial data, providing a simple prediction that should be suffi-
ciently accurate for practical purposes.
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NOTATION
A, B shear modulus parameters in Strain Dependent

Modified Cam Clay soil model
b shear exponent in Strain Dependent Modified Cam

Clay soil model
C bulk modulus parameter in Strain Dependent

Modified Cam Clay soil model
cu undrained shear strength

cmob mobilised shear strength
D diameter of circular footing
_DD total energy dissipated

ecs void ratio on critical state line at p9 ¼ 1 kPa
fd depth correction factor for bearing capacity
K bulk modulus

Kmax maximum bulk modulus
Knc coefficient of earth pressure for normally

consolidated soil
Ko lateral earth pressure coefficient at rest
K p passive earth pressure coefficient
L f mobilized load factor
m overconsolidation exponent in Strain Dependent

Modified Cam Clay soil model

M slope of critical state line in q-p9 space
Mc compatibility factor
Nc bearing capacity factor
p9 mean normal effective stress
q deviatoric stress

qmob mobilised deviatoric stress
r radial distance
s surface domain in energy dissipation calculations
u radial displacement in the plastic deformation

mechanism for circular footing
v vertical displacement in the plastic deformation

mechanism for circular footing
_WW work done by external loads on the footing
z depth

ªrŁ, ªzŁ, ªzr shear strain in r-Ł, z�Ł and z-r planes respectively
� settlement of shallow foundation
_�� incremental downward displacement of shallow

foundation
˜� displacement jump across a discontinuity line

�1, �2, �3 major, intermediate, and minor principal strain
respectively

�a axial strain in triaxial test
�q deviatoric strain (¼2/3 ( �1 � �3) in triaxial test)

�r , �z , �Ł radial, vertical, and circumferential strain
respectively

� rev reference strain corresponding to the point of last
reversal in the Strain Dependent Modified Cam Clay
Soil Model

Cam Clay model
�s engineering shear strain (¼ �1 � �3)
_��1 the largest principal strain increment
k slope of unload-reload line in v-ln p’ space
º slope of one-dimensional compression line in v-ln p’

space
v Poisson’s ratio
� bearing pressure of footing
� angle of critical state friction
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No. 3, 323–340.

Jardine, R. J., Potts, D. M., Fourie, A. B. & Burland, J. B. (1986).
Studies of the influence of non-linear stress–strain characteristics
in soil–structure interaction. Géotechnique 36, No. 3, 377–396.
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4, 168–178.

Tani, K. & Craig, W. H. (1995). Bearing capacity of circular
foundations on soft clay of strength increasing with depth. Soils
Found. 35, No. 4, 21–35.

Wood, D. M. (1990). Soil behaviour and critical state soil mech-
anics, 1st edn. Cambridge: Cambridge University Press.

Wroth, C. P. (1975). In situ measurement of initial stresses and
deformation characteristics: state-of-the-art review. Proceedings
of the conference on in situ measurement of soil properties,
Raleigh, NC, Vol. 2, pp. 181–230.

Viggiani, G. & Atkinson, J. H. (1995). Stiffness of fine-grained soil
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