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Abstract. In the 1990s, Feder and Vardi attempted to find a large subclass of NP which exhibits
a dichotomy, that is, where every problem in the subclass is either solvable in polynomial-time or NP-
complete. Their studies resulted in a candidate class of problems, namely, those definable in the logic
MMSNP. While it remains open as to whether MMSNP exhibits a dichotomy, for various reasons it
remains a strong candidate. Feder and Vardi added to the significance of MMSNP by proving that,
although MMSNP strictly contains CSP, the class of constraint satisfaction problems, MMSNP and
CSP are computationally equivalent. We introduce here a new class of combinatorial problems, the
class of forbidden patterns problems FPP, and characterize MMSNP as the finite unions of problems
from FPP. We use our characterization to detail exactly those problems that are in MMSNP but
not in CSP. Furthermore, given a problem in MMSNP, we are able to decide whether the problem
is in CSP or not (this whole process is effective). If the problem is in CSP, then we can construct a
template for this problem; otherwise, for any given candidate for the role of template, we can build
a counterexample (again, this process is effective).
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1. Introduction. Descriptive complexity theory seeks to classify problems, i.e.,
classes of finite structures, as to whether they can be defined using formulae of some
specific logic, in relation to their computational complexity. One of the seminal results
in descriptive complexity is Fagin’s theorem [10], which states that a problem can be
defined in existential second-order logic if and only if it is in the complexity class NP
(throughout we equate a logic with the class of problems definable by the sentences
of that logic). In a relatively recent paper and based upon Fagin’s characterization
of NP, Feder and Vardi [15] attempted to find a large (syntactically defined) subclass
of NP which exhibits a dichotomy, that is, where every problem in the subclass is
either solvable in polynomial-time or NP-complete (recall Ladner’s theorem [22, 26],
which states that if P �= NP, then there is an infinite number of distinct polynomial-
time equivalence classes in NP). What emerged from Feder and Vardi’s consideration
was a (candidate) class of problems called MMSNP, defined by imposing syntactic
restrictions upon the existential fragment of second-order logic. Their focus on a
fragment of existential second-order logic was so that they might apply tools and
techniques of finite model theory to possibly obtain a dichotomy result.

The logic MMSNP is defined by insisting that formulae of the fragment SNP of
existential second-order logic must in addition be monotone, be monadic, and not
involve inequalities (full definitions follow later). Feder and Vardi considered the im-
position of combinations of these three restrictions (monadic, monotone, and without
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inequalities) and showed that under any combination, excepting the imposition of all
three restrictions, the resulting logic does not have a dichotomy (assuming P �= NP).
They were unable to make any similar claim about the logic obtained by imposing
all three restrictions. However, they proved that MMSNP properly contains CSP,
the class of combinatorial problems known as constraint satisfaction problems and,
further, that the two classes are closely related in a computational sense.

Theorem 1 (Feder and Vardi [15]). Every problem in CSP is definable by a
sentence of MMSNP, and every problem definable by a sentence of MMSNP is com-
putationally equivalent to a problem in CSP.

(By “computationally equivalent” above we mean that the MMSNP problem can
be reduced to the CSP problem by a randomized polynomial-time Turing reduction,
and the CSP problem can be reduced to the MMSNP problem by a polynomial-time
Karp reduction.)1

The class CSP of constraint satisfaction problems is of great importance in com-
puter science and artificial intelligence and has strong ties with database theory, graph
theory, and universal algebra (see, for instance, [7, 30, 18, 20, 21]). For example, it
is well-known that constraint satisfaction problems can be modeled in terms of the
existence of homomorphisms between structures [21], in that every constraint sat-
isfaction problem can be realized as the class of structures for which there exists
a homomorphism to some fixed template structure. The close relationship between
CSP and MMSNP prompted Feder and Vardi [15] to make explicit their conjecture
that every problem in CSP is either NP-complete or solvable in polynomial-time.
There are numerous results supporting this conjecture. For example, Schaefer [30]
proved that if the template structure corresponding to some constraint satisfaction
problem has size 2, then the conjecture holds, with Bulatov [3] recently extending
Schaefer’s result to templates of size 3. Also, Hell and Nešetřil [18] proved that the
conjecture holds for all constraint satisfaction problems involving undirected graphs.
Various other related dichotomy results have recently been determined; see, for ex-
ample, [4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 27, 28].

It is with the “border” between CSP and MMSNP that we are concerned in
this paper. Feder and Vardi exhibited specific problems in MMSNP that are not
in CSP, with their proofs relying essentially on counting arguments (they did not
examine in any detail the inclusion relationship between CSP and MMSNP as classes
of problems). We gave more examples of such problems in [25] although our proofs
were of a different nature; they involved the explicit construction of particular families
of graphs. We attempt in this paper to generalize the constructions in [25] so that we
might develop a method by which we can ascertain whether any problem definable in
MMSNP is in CSP or not. To this end, we give a new combinatorial characterization
of MMSNP as the class of finite unions of forbidden patterns problems (from the
class FPP). We use our new combinatorial characterization to answer the following
questions in the affirmative: “Can we characterize exactly those problems that are in
MMSNP but not in CSP?”; “given a problem in MMSNP, is it decidable whether it
is in CSP or not?”; and “if a problem in MMSNP can be shown to be in CSP then
can we construct a template witnessing its inclusion in CSP?”

As we shall see, forbidden patterns problems are given by representations that
involve a finite set of colored structures, and we introduce the key notion of a recoloring
between representations. The notions of a representation and a recoloring somehow
generalize the notion of a structure and a homomorphism. The concept of a recoloring,

1Gábor Kun has recently derandomized this computational equivalence.
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together with two notions that were implicitly present in the proof of Theorem 1 (the
notion of a template of a representation and of a Feder–Vardi transformation), allow
us to derive for any forbidden patterns problem a normal representation. Given
any normal representation, we are then able to decide (according to simple criteria)
whether the corresponding problem is in CSP or not. If it is in CSP, then we show how
to construct its template; if it is not, then we show how to construct a counterexample
to any potential template. Finally, we extend these results about problems in FPP
to answer the questions (about MMSNP) above.

We end this section with a brief word about MMSNP and our research direction.
The logic MMSNP has recently been shown to be related to constraint satisfaction
problems where the template is infinite. In particular, Bodirsky and Dalmau [2] have
shown that any problem in MMSNP that is nontrivial and closed under disjoint unions
can be realized as a constraint satisfaction problem with an ω-categorial template. As
regards our interest in the differences between MMSNP and CSP, there are numerous
decidability investigations into the relative expressibilities of different logics in the
literature, and we highlight a selection of these investigations here. In [1], Benedikt
and Segoufin extend the well-known result that on strings, it is decidable whether a
monadic second-order problem (that is, a regular language) is definable in first-order
logic, to trees. In [16], Gaifman et al. show that the problem of deciding whether
a given Datalog program is equivalent to one without recursion (and therefore to a
formula of existential positive first-order logic) is undecidable. Finally, one very recent
(and pertinent) result is that the problem of deciding whether a constraint satisfaction
problem is first-order definable is decidable; indeed, it is NP-complete [23]. It turns
out that first-order definable constraint satisfaction problems are forbidden patterns
problems with a single color (logically, they correspond to the first-order fragment of
MMSNP). The dual question (that asks, given such a forbidden patterns problem,
whether it is a constraint satisfaction problem or not) is directly related to a popular
notion in structural combinatorics, namely, that of a duality pair. Duality pairs have
been characterized by Tardif and Nešetřil [31].

This paper is organized as follows. In the next section, we formally define CSP
and FPP. In section 3, we recall the definition of Feder and Vardi’s logic MMSNP and
show how it relates to the class of problems FPP. In section 4, we introduce normal
representations and related notions. In section 5, we prove our main result, i.e., an
exact characterization of problems in FPP as to whether they are in CSP or not,
provided that they can be given by connected representations. Next, in section 6,
we extend this result to the disconnected case (this requires us to generalize normal
representations to what we call normal sets) and then extend our results from FPP
to MMSNP. Finally, in section 7, we conclude with some closing remarks.

2. Preliminaries. In this section, we give precise definitions of many of the
concepts involved in this paper. We define many well-known notions in a slightly
nonstandard way as many of these notions are extended very soon to analogous ones
for colored structures.

Structures. A signature is a finite set of relation symbols (with each relation
symbol having some finite arity). Let σ denote some fixed signature. A σ-structure A
consists of a nonempty set A, the domain, together with an interpretation RA ⊆ Am,
for every m-ary relation symbol R in σ. Throughout this paper, we only ever consider
finite σ-structures. Hence, in the following we simply write “a structure” instead of
“a finite σ-structure.” We denote structures by A,B, C, etc., and their respective
domains by A,B,C, etc., or alternatively by |A|, |B|, |C|, etc.
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Let A be a structure. We denote tuples of elements by s, t, etc., and we write
“let t in A” as an abbreviation for “let t be a tuple of elements of A.” Let R be
a relation symbol in σ. We feel free to specify only when it is relevant the precise
length of a tuple, and when we write “RA(t)” this automatically implies that the
tuple of elements t has the same length as the arity of the relation symbol R. We
write “a tuple RA(t)” as an abbreviation for “a tuple of elements t in A such that
RA(t) holds.” We always use R to refer to a relation symbol of σ unless otherwise
stated.

Let A and B be two structures. A homomorphism from A to B is a mapping
h : A → B such that for any relation symbol R in σ and for any tuple RA(t), we have
that RB(h(t)), where h(t) denotes the tuple obtained from t by a componentwise

application of h. To denote that h is a homomorphism from A to B, we write A
h
→B.

If, furthermore, h is onto (respectively, one-to-one), then h is an epimorphism (respec-

tively, a monomorphism), and we write A
h
։B (respectively, A

h
→֒B). If both A

h
։B

and A
h
→֒B, then we write A

h
→֒→B. If A

h
→֒→B and A

h−1

→B, then h is an isomorphism, and
we write A ≈ B. If there exists a homomorphism (respectively, a monomorphism) of
A to B, then we write A→B (respectively, A→֒B). When something does not hold,
we use the same notation but place a / through the symbol. For example, we write
A � B if it is not the case that A→B.

If A
h
→֒B, then A is a substructure of B, and if, furthermore, for any tuple RB(h(t)),

we have that RA(t) holds, then A is an induced substructure of B. If A
h
։B and every

tuple RB(t′) is in the image of h (more formally, there exists a tuple t in A such that

h(t) = t′ and RA(t) holds), then B is an homomorphic image of A. If A
h
→B, then

the homomorphic image of A under h, which we denote by h(A), is the substructure
of B that consists only of those tuples RB(t′) that are in the image of h.

A retract of a structure B is a structure A for which there are two homomorphisms

A
i
→֒B and B

s
։A such that s◦i = idA (where idA denotes the identity homomorphism

on A, so, in particular, if A is a retract of B, then A is isomorphic to an induced
substructure of B). Moreover, A is a proper retract whenever A �≈ B. If B does not
have any proper retracts, then B is automorphic (we use the terminology of [17]). An
automorphic retract of B is called a core. It is well known that a core is unique up to
isomorphism (see [17] or [19]).

Let A be a structure, let s and t be in A, and let n ≥ 1. A path of length n in A
joining s and t consists of n tuples RA

1 (t1), R
A
2 (t2), . . . , R

A
n (tn) such that each Ri is a

relation symbol in σ of arity at least two (these relation symbols need not be distinct
nor need the tuples), s occurs in t1, t occurs in tn, and for every 1 ≤ i < n, the tuples
of elements ti and ti+1 have a common element. If a path joins two distinct elements
s and t, then they are connected . A structure A is connected if and only if any two
distinct elements are connected.

Let B and C be two substructures of A and let x ∈ A. If
• B ∩ C = {x};
• B ∪ C = A;
• for every relation symbol R of σ that has arity at least two and for every

tuple RA(t), either RB(t) or RC(t) holds but not both;
• for every monadic symbol M and for every element y in B (respectively, C),

M(y) holds in B (respectively, C) if and only if M(y) holds in A; and
• each substructure B and C has at least one tuple R(t) (where R has arity at

least two),
then we say that A admits a decomposition with components B and C in the articu-
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lation point x, and we write A = B
x
32 C. If A is connected and does not admit any

decomposition, then A is biconnected .
Let A be a structure. A tuple RA(t) is said to be antireflexive if and only if no

element in t occurs more than once. A cycle of size 1 in A consists of one tuple RA(t)
that is not antireflexive. An element that occurs more than once in a cycle of size
1 is called an articulation point of the cycle. A cycle of size 2 in A consists of two
antireflexive tuples RA

1 (t1) and RA
2 (t2), for which we have that if R1 = R2, then t1

and t2 differ and which have at least two distinct common elements, each of which is
called an articulation point of the cycle. Let n > 2. A cycle of size n in A consists of
n tuples RA

1 (t1), R
A
2 (t2), . . . , R

A
n (tn) such that:

• for every 1 ≤ i ≤ n, the tuple RA
i (ti) is antireflexive;

• for every 1 ≤ i < j ≤ n, if j = i + 1 or (i = 1 and j = n), the tuples ti and
tj have one, and only one, common element ai,j ; otherwise, they have none;
and

• the elements ai,j , each of which is called an articulation point of the cycle,
are pairwise distinct.

Colored structures. Let T be a structure. A T -colored structure is a pair (A, a),

where A is a structure and A
a
→T . We call: T the target of (A, a); a the coloring ;

and A the underlying structure. Let (A, a) and (B, b) be two T -colored structures.
A T -colored homomorphism of (A, a) to (B, b) is a homomorphism A

h
→B such that

a = b ◦ h. All notions defined above extend to T -colored structures, so that colorings
are respected by morphisms. For example, a retract of a T -colored structure (B, b) is

a T -colored structure (A, a) for which there are two homomorphisms A
i
→֒B and B

s
։A

such that s ◦ i = idA, b ◦ i = a and a ◦ s = b. We use the same terminology but add
the prefix “T -colored,” e.g., as in “T -colored retract,” and we use the same notation,
e.g., (A, a)

h
→(B, b) for a T -colored homomorphism from (A, a) to (B, b). However, for

simplicity, we may drop the prefix T -colored when it does not cause confusion. At
times, we deal with different targets, and so to avoid confusion, we sometimes write
the target as a superscript, e.g., as in (A, aT ). We often refer to the elements of
|T | = T as colors. We shall use the following lemmas later on, but we include them
here so that readers can familiarize themselves with colored structures.

Lemma 2. Let (A, aT ) be a T -colored structure, let T ′ be a structure such that

T ′ e
→֒T , and let (A, aT

′

) be a T ′-colored structure, where aT = e ◦ aT
′

. If (A, aT ) is
automorphic, then (A, aT

′

) is automorphic.
Proof. Suppose that (A, aT ) is automorphic, and suppose that (B, bT

′

) is a proper

retract of (A, aT
′

). That is, we have that (B, bT
′

)
i
→֒(A, aT

′

) and (A, aT
′

)
s
։(B, bT

′

),
where s ◦ i = idB, aT

′

◦ i = bT
′

, and bT
′

◦ s = aT
′

(cf. the left commutative dia-
gram of Figure 1) so that (A, aT

′

) �≈ (B, bT
′

). We can compose the two T ′-colorings

B

A T '

B

T '
b

T '
b

T '
a

i

s
idB

B

A T

B

i

s
idB

Tb   = e o b T '

Tb   = e o b T '

Ta   = e o a T '

Fig. 1. Proof of Lemma 2.
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with e to yield T -colored structures, i.e., let aT := e ◦ aT
′

and bT := e ◦ bT
′

(cf.
the right commutative diagram of Figure 1). Thus, (B, bT ) is a retract of (A, aT ),
and so is isomorphic to (A, aT ). Thus, i is an isomorphism, with inverse s. Conse-
quently, (A, aT

′

) ≈ (B, bT
′

). But (B, bT
′

) is a proper retract of (A, aT
′

) which yields
a contradiction. The result follows.

The proofs of the next two lemmas are almost identical to analogous proofs in
[19], for example, but are included here to allow readers to familiarize themselves with
colored structures.

Lemma 3. The T -colored structure (A, aT ) is automorphic if and only if whenever

(A, aT )
f
→(A, aT ), we have that f(A, aT ) ≈ (A, aT ).

Proof. Assume that (A, aT ) is automorphic and also that (A, aT )
f
→(A, aT ). From

all such homomorphisms, choose g such that g(A, aT ) has a minimal number of ele-
ments and from those structures also a minimal number of tuples. Define h to be g
restricted to g(A, aT ).

Note that g(A, aT )
h
→g(A, aT ), and so h is one-to-one and onto, as otherwise

(A, aT )
h◦g
→ (A, aT ) contradicts the minimality of g. So, h is an isomorphism. Thus,

(A, aT )
h−1◦g
։ g(A, aT ) and g(A, aT )

i
→֒(A, aT ), where i is the identity on g(A, aT ). For

any x ∈ |g(A, aT )|, h−1 ◦ g ◦ i(x) = h−1 ◦ g(x) = h−1 ◦ h(x) = x. Hence, g(A, aT ) is a
retract of (A, aT ), and so g(A, aT ) ≈ (A, aT ). Consequently, f(A, aT ) ≈ (A, aT ) by
minimality of g.

Conversely, assume that whenever (A, aT )
f
→(A, aT ), we have f(A, aT ) ≈ (A, aT ).

Suppose that (B, bT )
i
→֒(A, aT ) and (A, aT )

s
։(B, bT ), with s ◦ i = idB. Define f :=

i ◦ s. Thus, f(A, aT ) ≈ (A, aT ), with i an epimorphism and s a monomorphism.
Consequently, (B, bT ) ≈ (A, aT ), and (A, aT ) is automorphic.

Lemma 4. Every T -colored structure has a T -colored core that is unique up to
T -colored isomorphism.

Proof. Trivially, every T -colored structure has a T -colored core. Suppose that
(A1, a1) and (A2, a2) are cores of (B, b) such that (A1, a1) �≈ (A2, a2). In particular:

• (A1, a1)
i1
→֒(B, b) and (B, b)

s1
։(A1, a1) such that s1 ◦ i1 = idA1

, b ◦ i1 = a1, and
s1 ◦ a1 = b; and

• (A2, a2)
i2
→֒(B, b) and (B, b)

s2
։(A2, a2) such that s2 ◦ i2 = idA2

, b ◦ i2 = a2, and
s2 ◦ a2 = b.

Then f1 := s2 ◦ i1 : (A1, a
T
1 ) → (A2, a

T
2 ) is a homomorphism as is f2 := s1 ◦ i2 :

(A2, a
T
2 ) → (A1, a

T
1 ). Hence, by Lemma 3, f2 ◦ f1(A1, a

T
1 ) ≈ (A1, a

T
1 ) and f1 ◦

f2(A2, a
T
2 ) ≈ (A2, a

T
2 ). Consequently, (A1, a

T
1 ) and (A2, a

T
2 ) are isomorphic, and the

result follows.
Patterns and representations. A structure (A, aT ) is a T -pattern whenever for

every y ∈ A, there exists a relation symbol R in σ and a tuple t in A in which y
occurs such that RA(t) holds (that is, every element occurs in some tuple in some
relation of A; i.e., A has no isolated elements). A T -pattern (A, aT ) is conform if
and only if A consists solely of an antireflexive tuple RA(t): That is, there exists a
relation symbol R in σ such that RA = {t}, where every element of A occurs in t

exactly once, and for every other relation symbol R′ in σ, we have R′A = ∅. We
denote conform patterns explicitly as in (R(t), aT ).

A representation is a pair (F , T ), where T is a structure, called the target , and
F is a finite set of T -patterns, called the forbidden patterns. If every forbidden
pattern in F is connected, then we say that (F , T ) is connected . Let (F , T ) be a
representation. A T -colored structure (A, aT ) is valid (respectively, weakly valid) with
respect to (F , T ) if and only if there is no forbidden pattern (B, bT ) ∈ F such that



138 FLORENT MADELAINE AND IAIN A. STEWART

(B, bT )→(A, aT ) (respectively, (B, bT )→֒(A, aT )). A structure A is valid (respectively,

weakly valid) with respect to (F , T ) if and only if there exists a homomorphism A
aT

→T
such that (A, aT ) is valid (respectively, weakly valid) with respect to (F , T ).

Constraint satisfaction problems. It is well-known that constraint satisfaction
problems can be modeled in terms of the existence of homomorphisms between struc-
tures [21]. Recall that the nonuniform constraint satisfaction problem with template
T , denoted by CSP(T ), is the problem defined as follows:

• instances: structures A (over the same signature as T );
• yes instances: those instances A for which A→T .

We denote by CSP the class of nonuniform constraint satisfaction problems. Note
that in [21], the adjective “nonuniform” was coined to distinguish such problems from
uniform constraint satisfaction problems where the template T is not fixed but may
range over a class of structures (all structures in general) and is part of the input.
Since we do not deal with uniform problems in this paper, from now on we drop the
phrase nonuniform.

Forbidden patterns problems. The forbidden patterns problem given by the repre-
sentation (F , T ), and denoted by FPP(F , T ), is the problem defined as follows:

• instances: structures A (over the same signature as T );
• yes instances: those instances A that are valid w.r.t. (F , T ).

We denote by FPP the class of forbidden patterns problems. If two representations
define the same forbidden patterns problem, then we say that the representations are
equivalent .

Remark 5. A problem in CSP is clearly monotone, i.e., closed under substructures.
Furthermore, it is closed under inverse homomorphisms. To see this, let B and T be
two structures. If B ∈ CSP(T ), then A ∈ CSP(T ) for any A such that A→B. It is
not difficult to check that if B ∈ FPP(F , T ), then A ∈ FPP(F , T ) for any A such
that A→B. Moreover, note that the containment problem, i.e., given two structures
T and T ′, decide whether CSP(T ) ⊆ CSP(T ′), is nothing other than the uniform
constraint satisfaction problem (as CSP(T ) ⊆ CSP(T ′) if and only if T →T ′).

Theorem 6. CSP � FPP.
Proof. The inclusion is clear, as a problem from CSP with template T can be

given equivalently as the forbidden patterns problem with representation (∅, T ). It
follows from counterexamples given in [15, 25] that this inclusion is strict.

This provokes the following question, which is intrinsic to this paper: When is a
forbidden patterns problem not a constraint satisfaction problem?

3. Feder and Vardi’s logic. The logic SNP is the fragment of existential
second-order logic, ESO, consisting of formulae Φ of the form ∃S∀tϕ, where S is
a tuple of relation symbols (not in σ), t is a tuple of (first-order) variables, and ϕ is
quantifier-free. Furthermore: Φ is in monadic SNP whenever S is a tuple of monadic
relation symbols; Φ is in monotone SNP whenever every occurrence in ϕ of a symbol
R from σ appears in the scope of an odd number of ¬ symbols; and Φ is in SNP
without inequalities whenever the symbol = does not appear in ϕ (either positively or
negatively). If one thinks about the intuitive properties of the existence of a homomor-
phism from one structure to another, one might find it plausible to consider imposing
some of the above restrictions on ESO. For instance, the existence (cf. the existen-
tial second-order quantifiers) of a homomorphism from an arbitrary source graph to a
fixed target graph is equivalent to finding a partition of the domain of the source graph
into sets (cf. the monadic restriction), one for each element of the target graph, so
that every edge of the source graph (cf. the universal prefix of first-order quantifiers)
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maps to an edge of the target graph (cf. the monotone restriction above, reflecting
that we are interested only in positive information, that is, about mappings of edges,
not about mappings of “nonedges”). The “without inequalities” aspect of MMSNP
comes about as homomorphisms do not distinguish between different elements.

Feder and Vardi considered the imposition of combinations of these three re-
strictions (monadic, monotone, and without inequalities) and showed that under any
combination excepting the imposition of all three restrictions, the resulting logic does
not have a dichotomy (assuming P �= NP). However, they were unable to make any
similar claim about the logic obtained by imposing all three restrictions, and they
observed that this logic subsumes CSP. This motivated the following definition.

Definition 7. Monotone monadic SNP without inequality (MMSNP) is the
fragment of ESO consisting of those formulae Φ of the following form:

∃M∀t
∧

i

¬
(

αi(σ, t) ∧ βi(M, t)
)

,

where M is a tuple of monadic relation symbols (not in σ), t is a tuple of (first-order)
variables, and for every negated conjunct ¬(αi ∧ βi):

• αi consists of a conjunction of positive atoms involving relation symbols from
σ and variables from t; and

• βi consists of a conjunction of atoms or negated atoms involving relation
symbols from M and variables from t.

(Notice that the equality symbol does not occur in Φ.)
Feder and Vardi showed that CSP is subsumed by MMSNP and, furthermore,

that MMSNP is computationally equivalent to CSP. (Theorem 8 is a more detailed
reformulation of Theorem 1 and is included for completeness.)

Theorem 8 (Feder and Vardi [15]). Every problem in CSP is definable by a
sentence of MMSNP, but there are problems in MMSNP that are not in CSP. However,
for every problem Ω ∈ MMSNP, there exists a problem Ω′ ∈ CSP such that Ω reduces
to Ω′ via a polynomial-time Karp reduction, and Ω′ reduces to Ω via a randomized
polynomial-time Turing reduction.2

(A more detailed proof of Theorem 8 than that in [15] can be found in [24].)
In the remainder of this section, we show that the logic MMSNP essentially

corresponds to the class FPP of forbidden patterns problems. Let us begin by looking
at some illustrative examples.

Example 9. Consider the signature σ2 = 〈E〉, where E is a binary relation symbol.
Define Φ1 as

∃C ∀x ∀y ∀z
(

¬
(

E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ C(x) ∧ C(y) ∧ C(z)
)

∧ ¬
(

E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ ¬C(x) ∧ ¬C(y) ∧ ¬C(z)
))

.

We can easily ascertain that Φ1 defines the forbidden patterns problem with repre-
sentation (F , T ), where |T | := {0, 1}, ET := |T |2, and F contains two forbidden
patterns, one for each negated conjunct, both having as the underlying structure a
directed triangle (domain {x, y, z} and relation E = {(x, y), (y, z), (z, x)}): In the first
forbidden pattern all vertices of this directed triangle are colored 0, whereas in the
second forbidden pattern the vertices are all colored 1 (the colorings are given by C
and correspond to x, y, z �→ 0 and x, y, z �→ 1, respectively, and the colors are the

2As mentioned earlier, Gábor Kun has recently derandomized this reduction.
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ET ET

Φ1
'Φ2

''Φ2

Fig. 2. Primitive sentence and representations.

names of the elements of the template). For simplicity, from now on we usually give
representations in a pictorial fashion. For example, the representation we have just
defined is depicted on the left in Figure 2; the top cell depicts the template, and the
other cells depict the forbidden patterns. Note that the template is not a colored
structure; however, to depict the homomorphisms from the forbidden patterns to the
template, we have colored the elements of the template accordingly.

It is not so clear to which forbidden patterns problem the following sentence
corresponds:

Φ2 := ∃C ∀x ∀y
(

¬
(

E(x, y) ∧ C(x)
)

∧ ¬
(

E(x, x) ∧ C(x) ∧ C(y)
))

.

However, it can be transformed into equivalent sentences as follows. First, we list
all possibilities for the monadic predicate, to ensure that we have “fully colored”
structures:

∃C ∀x ∀y
(

¬
(

E(x, y) ∧ C(x) ∧ C(y)
)

∧ ¬
(

E(x, y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

E(x, x) ∧ C(x) ∧ ¬C(y)
))

.

The last negated conjunct is comprised of two “independent” parts, namely, (E(x, x)∧
C(x)) and C(y), and does not correspond to a pattern (y does not appear in any atomic
σ-relation). We can rewrite the above formula as the disjunction of two formulae Φ′

2

and Φ′′
2 , where

Φ′
2 = ∃C ∀x ∀y

(

¬
(

E(x, y) ∧ C(x) ∧ C(y)
)

∧ ¬
(

E(x, y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

E(x, x) ∧ C(x)
))

and

Φ′′
2 = ∃C ∀x ∀y

(

¬
(

E(x, y) ∧ C(x) ∧ C(y)
)

∧ ¬
(

E(x, y) ∧ C(x) ∧ ¬C(y)
)

∧ ¬
(

¬C(y)
))

(we leave the fact that Φ2 can be so decomposed as a simple exercise). Now from
each formula we can extract a suitable representation: This is easy in the case of Φ′

2;
and, in the case of Φ′′

2 , note that the last negated conjunct essentially forces us to use
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a single color, so we can ignore all negated conjuncts which mention ¬C(z) for some
variable z. Finally, this leads to the representations depicted in the middle and on
the right in Figure 2, respectively.

The above examples motivate the following definition and proposition.
Definition 10. A sentence Φ of MMSNP, where Φ is as in Definition 7, is

primitive if and only if for every negated conjunct ¬(α ∧ β):
• for every first-order variable x that occurs in ¬(α∧β) and for every monadic

symbol C in M, exactly one of C(x) and ¬C(x) occurs in β; and
• unless x is the only first-order variable that occurs in ¬(α ∧ β), an atom of

the form R(t), where x occurs in t and R is a relation symbol from σ, must
occur in α.

Proposition 11. Every sentence of MMSNP is logically equivalent to a finite
disjunction of primitive sentences.

Proof. Let Φ be a sentence of MMSNP that is not primitive. Assume that Φ does
not satisfy the first property of Definition 10. Let ¬

(

α(σ, t) ∧ β(M, t)
)

be a negated
conjunct in Φ where there exists a (first-order) variable x that occurs in this negated
conjunct and a monadic symbol C in M such that neither C(x) nor ¬C(x) occurs in
β. Replace ¬(α ∧ β) in Φ by the conjunction of two negated conjuncts:

¬
(

α ∧ β ∧ C(x)
)

∧ ¬
(

α ∧ β ∧ ¬C(x)
)

.

This new formula belongs to MMSNP and is logically equivalent to Φ. We iterate this
process until the sentence satisfies the first property of Definition 10. Let Φ′ denote
this new sentence.

It may be the case that the second property does not hold for Φ′ because of a
negated conjunct of the form ¬

(

α(σ, t)∧β0(M, t)∧β1(M, x)
)

, where x does not occur
in t, where α(σ, t) may be empty, and where β1 is the conjunction of all atoms and
negated atoms of β involving symbols from M and the variable x (β0 is a conjunction
of the remaining atoms and negated atoms of β). Let Φ′′ = Φ′

1 ∨ Φ′
2, where

• Φ′
1 is obtained from Φ′ by replacing ¬(α∧ (β0 ∧ β1)) in Φ′ by ¬(α∧ β0); and

• Φ′
2 is obtained from Φ′ by replacing ¬(α ∧ (β0 ∧ β1)) in Φ′ by ¬β1.

First, note that Φ′
1 and Φ′

2 are both in MMSNP. Second, it is not hard to check that
Φ′′ is logically equivalent to Φ′. We iterate this transformation until each sentence in
the disjunction satisfies the second property of Definition 10.

We are now ready to state exactly what the correspondence is between MMSNP
and FPP.

Theorem 12. The class of problems captured by the primitive fragment of the
logic MMSNP is exactly the class FPP of forbidden patterns problems.

Proof. Let Φ = ∃M∀tϕ be a primitive sentence of MMSNP. We shall build a
representation (F , T ) from Φ. A conjunction χ(M, x) of atoms and negated atoms
involving only relation symbols from M and the sole first-order variable x, where for
each relation symbol C in M, exactly one of C(x) or ¬C(x) occurs, is referred to as
an M-color. So, associated with every negated conjunct ¬(α∧β) in Φ (more precisely,
with β in every such negated conjunct) and every variable occurring in this negated
conjunct is a unique M-color; in fact, β can be written as the conjunction of these
M-colors. Construct the structure T from Φ as follows:

• Its domain T consists of all M-colors χ(M, x) that are not explicitly forbidden
in Φ by some negated conjunct ¬(α∧ β) of ϕ having the form ¬χ(M, x), i.e.,
so that α is empty and β is the M-color χ; and

• for every relation symbol R of arity m in σ, set RT := Tm.
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Start with F := ∅, and for every negated conjunct ¬(α ∧ β) in ϕ, add to F the
structure (Aα, a

T
β ), where

• Aα is the structure defined as follows:
– the domain consists of all first-order variables that occur in the negated

conjunct ¬(α ∧ β); and
– for every relation symbol R in σ, there is a tuple RAα(t) if and only if

the atom R(t) appears in α;
• for every x ∈ |Aα|, set aTβ (x) := χ, where χ is the M-color of x in β.

(The fact that Φ is primitive makes these definitions well-defined.)
Let B be a structure such that B |= Φ. So, there exists an assignment Π : M → 2B

(where 2B denotes the power set of B) such that B |= ∀tϕ(Π(M), t) (here, ϕ(Π(M), t)
denotes the formula ϕ where every monadic predicate is instantiated as the subset of
B given by the assignment Π). Since Φ = ∃M∀tϕ is primitive, the formula ϕ is of
the form:

¬χ1(M, x) ∧ ¬χ2(M, x) ∧ · · · ∧ ¬χk(M, x) ∧ ψ(σ,M, t),

where k ≥ 0, and for every 1 ≤ i ≤ k, χi is an M-color (with all such M-colors
distinct) and ψ is a conjunction of negated conjuncts that are not M-colors.

The assignment Π induces a map πT from B to the set T that sends an element
u ∈ B to χ, where χ is the unique M-color for which χ(Π(M), u) holds (note that
χ �= χi for i = 1, 2, . . . , k, as ¬χi(Π(M), u) holds for all u ∈ B).

Let ¬(α∧ β) be a negated conjunct of ϕ, where α is nonempty, and suppose that

(Aα, a
T
β )

h
→(B, πT ).

Let R(x1, x2, . . . , xa) be an atom appearing in α. So, RAα(x1, x2, . . . , xa) holds
and consequently RB(h(x1), h(x2), . . . , h(xa)) holds. Thus, if t′ is the tuple of vari-
ables appearing in ¬(α ∧ β), then αB(h(t′)) holds. Also, πT ◦ h = aTβ and so

πT (h(t′)) = aTβ (t′). That is, βB(Π(M), h(t′)) holds. Thus (α ∧ β)B(Π(M), h(t′))
holds, which contradicts the fact that B |= Φ, witnessed by Π(M). Hence, B ∈
FPP(F , T ).

Conversely, suppose that B ∈ FPP(F , T ), witnessed by the homomorphism

B
πT

→T . Clearly, πT gives rise to an assignment Π : M → 2B , where u ∈ Π(C)
for some C ∈ M and u ∈ B, if and only if C(y) appears in χ(y), where πT (u) = χ.
Assume that B |= α(h(t′)) ∧ β(Π(M), h(t′)) for some map h : |Aα| → |B|, where
¬(α∧β) is a negated conjunct of ϕ, and t′ is the tuple of variables appearing in α∧β.

If RAα(x1, x2, . . . , xa) holds, then RB(h(x1), h(x2), . . . , h(xa)) holds. If β is of

the form
∧d

i=1 χ
i(xi), where t′ = (x1, x2, . . . , xd) and each χi is an M-color, then

χi(Π(M), h(xi)) holds for each i = 1, 2, . . . , d. However, by definition aTβ (xi) = χi,

and so πT (h(xi)) = aTβ (xi) for each i = 1, 2, . . . , d. Hence, (Aα, a
T
β )

h
→(B, πT ), which

yields a contradiction. Thus, B |= Φ, witnessed by the assignment Π(M), and the
implication follows.

Conversely, given a representation (F , T ), we shall build a corresponding primi-
tive sentence of MMSNP. Let M = {C1, C2, . . . , Ck} be a set of monadic predicates
that are not in σ such that k = ⌈log2 |T |⌉. To each element xi of |T |, we associate
some arbitrary M-color χxi

. Let χ|T |+1, . . . , χ2k denote the remaining M-colors (if

|T | < 2k). Let Φ = ∃M∀tφ, where ∀tφ is the universal closure of the conjunction of
the following negated conjuncts:

• If |T | < 2k, then for every i such that |T | < i ≤ 2k, we add the negated
conjunct ¬χi(y).
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• For each tuple R(i1, i2, . . . , ir) that does not hold in T , we add the negated
conjunct ¬(R(y1, y2, . . . , yr) ∧ χi1(y1) ∧ χi2(y2) ∧ · · · ∧ χir (yr)), where the
variables y1, y2, . . . , yr are pairwise distinct.

• For each forbidden pattern (A, aT ) in F , we add the negated conjunct ¬(α∧
β), where α is the conjunction of the tuples of F , and β is the conjunction
∧

x∈|A| χaT (x)(x).
The first type of negated conjunct ensures that we may use only the M-colors that
correspond to elements of T . The second type of negated conjunct describes that there
is a homomorphism to T . Finally, the last type of negated conjunct enforces that this
homomorphism is not compatible with any of the forbidden patterns. Consequently,
a structure B is a yes instance of the forbidden patterns problem with representation
(F , T ) if and only if B |= Φ. The formal proof of this equivalence is similar to that
of the first implication. This concludes the proof.

By Proposition 11, every forbidden patterns problem is described by a primitive
sentence of MMSNP. Since the disjunction of two sentences of MMSNP is logically
equivalent to a sentence of MMSNP, we get the following corollary from the above
theorem.

Corollary 13. The class of problems captured by the logic MMSNP corresponds
exactly to the class of finite unions of problems in FPP.

4. A normal form for problems in FPP. In this section, we introduce nor-
mal representations and show how any representation can be effectively rewritten into
an equivalent normal representation. The transformation is achieved through a com-
bination of different operations so as to enforce various properties. We shall make
clear later, in section 5, why we need these properties.

However, before we proceed, let us try and give some idea here of the direction of
travel by stating the properties we wish to enforce and our intended goal. We shall
state the properties again at the appropriate point in the text, as we do with the
definition and result stated below. Let (F , T ) be a representation. The properties
we wish to enforce upon (F , T ) are as follows.

(p1) Any structure is valid if and only if it is weakly valid.
(p2) Every pattern of F is automorphic.
(p3) It is not the case that (B1, b

T
1 )→֒(B2, b

T
2 ) for any distinct patterns (B1, b

T
1 )

and (B2, b
T
2 ) of F .

(p4) No pattern of F is conform.
(p5) Every forbidden pattern is biconnected.
(p6) The representation (F , T ) is automorphic.

We say that a connected representation for which properties p1 to p6 hold is a normal
representation. In the process of reducing our representation to a normal representa-
tion, we will show that this can be done by an effective procedure.

4.1. Our first batch of reductions. Let (F , T ) be a representation. We now
define a number of operations on representations so that we might enforce certain
properties. However, before we start, we wish our representation to have the following
property:

(p1) Any structure is valid if and only if it is weakly valid.
Let HF be the set of homomorphic images of the patterns from F , up to isomor-

phism. Recall that a forbidden pattern is a colored structure; hence, an homomorphic
image of a forbidden pattern (B, bT ) ∈ F is a colored structure (C, cT ) such that

there exists an epimorphism B
h
։C with the properties that:
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B C

T

Tb

h

Tc

Fig. 3. A commuting diagram.

• for each symbol R ∈ σ and for each tuple RC (̃t), there exists a tuple RB(t)
such that h(t) = t̃ and

• the diagram in Figure 3 commutes.
Lemma 14. The representation (HF , T ) is equivalent to (F , T ).

Proof. Let A be valid w.r.t. (F , T ), witnessed by A
aT

→T . Assume for contradiction
that (A, aT ) is not valid w.r.t. (HF , T ), and let (C, cT ) ∈ HF (defined from (B, bT ) ∈

F , using h as above) be such that (C, cT )
f
→(A, aT ). By composition, it follows that

(B, bT )
f◦h
→ (A, aT ). This yields a contradiction, and so (A, aT ) is valid w.r.t. (HF , T ).

Conversely, if A is valid w.r.t. (HF , T ), then A is valid w.r.t. (F , T ) since F ⊆
HF .

Lemma 15. The representation (HF , T ) satisfies p1.
Proof. Let (A, aT ) be weakly valid w.r.t. (HF , T ). Assume for contradiction that

(A, aT ) is not valid w.r.t. (HF , T ), and let (C, cT ) ∈ HF (defined from (B, bT ) ∈ F ,

using h as above) be such that (C, cT )
f
→(A, aT ). By construction, f(C, cT ) belongs

to HF , and f(C, cT )→֒(A, aT ). This yields a contradiction.
Conversely, if (A, aT ) is valid w.r.t. (HF , T ), then it is trivially weakly valid.

The result follows.
Our next property to enforce is the following:

(p2) Every pattern of F is automorphic.
Definition 16. Let (F , T ) be a representation, and let (F ′, T ) be the represen-

tation obtained by replacing a pattern of F with its core. We call this a core reduction
on (F , T ).

Note that Definition 16 is well-defined by Lemma 4.
Lemma 17. Let the representation (F ′, T ) be obtained from the representation

(F , T ) by a core reduction.
• (F ′, T ) is equivalent to (F , T ).
• If (F , T ) satisfies property p1, then so does (F ′, T ).

Proof. If (C, cT ) is the core of (B, bT ), then (B, bT )→(A, aT ) if and only if
(C, cT )→(A, aT ) for any structure (A, aT ). Hence, (F ′, T ) is equivalent to (F , T ).

Assume that (F , T ) satisfies property p1. Suppose that (A, aT ) is weakly
valid w.r.t. (F ′, T ). If (C, cT )→(A, aT ) for some (C, cT ) ∈ F ′, then we must
have that (B, bT )→(A, aT ) for some (B, bT ) ∈ F . As (F , T ) satisfies property p1,
(D, dT )→֒(A, aT ) for some (D, dT ) ∈ F . If (D, dT ) ∈ F ′, then we obtain a contradic-
tion; otherwise, the core of (D, dT ) is in F ′, and we still obtain that some forbidden
pattern of F ′ embeds into (A, aT ), yielding a contradiction. Hence, (F ′, T ) satisfies
property p1.

Our next property to enforce is the following:
(p3) It is not the case that (B1, b

T
1 )→֒(B2, b

T
2 ) for any distinct patterns (B1, b

T
1 )

and (B2, b
T
2 ) of F .
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Definition 18. Let (F , T ) be a representation, and let (B1, b
T
1 ) and (B2, b

T
2 ) be

distinct patterns of F such that (B1, b
T
1 )→֒(B2, b

T
2 ). Let (F ′, T ) be the representation

obtained by removing the pattern (B2, b
T
2 ) from F . We call this an embed reduction

on (F , T ).
Lemma 19. Let the representation (F ′, T ) be obtained from the representation

(F , T ) by an embed reduction.
• (F ′, T ) is equivalent to (F , T ).
• If (F , T ) satisfies property p1, then so does (F ′, T ).

Proof. Trivially, FPP(F , T ) ⊆ FPP(F ′, T ). If (B2, b
T
2 )→(A, aT ) (with ref-

erence to Definition 18), then (B1, b
T
1 )→(A, aT ) for any structure (A, aT ), and so

FPP(F ′, T ) ⊆ FPP(F , T ).
Assume that (F , T ) satisfies property p1. Suppose that (A, aT ) is weakly valid

w.r.t. (F ′, T ). If (B, bT )→(A, aT ) for some pattern (B, bT ) ∈ F ′, and so some pat-
tern in F , then we have that (A, aT ) is not weakly valid w.r.t. (F , T ). That is,
(C, cT )→֒(A, aT ) for some pattern (C, cT ) ∈ F . If (C, cT ) ∈ F ′, then we obtain a
contradiction; otherwise, (C, cT ) is the pattern removed by the embed reduction and
(D, dT )→֒(C, cT ) for some pattern (D, dT ) ∈ F ′. Thus, we still obtain a contradiction,
and (F ′, T ) satisfies p1.

Our next property to enforce is the following:
(p4) No pattern of F is conform.
Definition 20. Let (F , T ) be a representation, and let (R(t), πT ) be a conform

pattern of F . Let T ′ be the structure obtained from T by the removal of the tuple

R(πT (t)), and let e be the monomorphism T ′ e
→֒T defined by inclusion. Let F ′ denote

the set of patterns of F that are also T ′-patterns; that is, the patterns (B, bT ) ∈ F

for which bT (u) �= πT (t) for any tuple RB(u). The representation (F ′, T ′) has been
obtained from (F , T ) by a conform reduction.

Lemma 21. Let the representation (F ′, T ′) be obtained from the representation
(F , T ) by a conform reduction.

• (F ′, T ′) is equivalent to (F , T ).
• If (F , T ) satisfies property p1, then so does (F ′, T ′).

Proof. We denote a pattern (B, bT ) ∈ F that is also a T ′-pattern by (B, bT
′

) also,

where bT
′

is the homomorphism B
bT

′

→T ′ obtained directly from bT ; that is, bT = e◦bT
′

.

Assume that (A, aT
′

) is valid w.r.t. (F ′, T ′) and define aT := e◦aT
′

(so A
aT

→T and
aT (u) �= πT (t) for any tuple RA(u)). Suppose that some pattern (B, bT ) ∈ F is such
that (B, bT )→(A, aT ). Thus, (B, bT ) is actually a T ′-pattern, and (B, bT

′

)→(A, aT
′

),
which yields a contradiction.

Conversely, suppose that (A, aT ) is valid w.r.t. (F , T ). There are two cases:
either the map aT yields a homomorphism A→T ′, or it doesn’t.

Suppose that the map aT yields a homomorphism A
aT

′

→T ′; thus, aT = e ◦ aT
′

.
If (B, bT

′

) ∈ F ′ is such that (B, bT
′

)→(A, aT
′

), then we have that (B, bT )→(A, aT )
(where bT = e◦bT

′

, recall), which yields a contradiction. Thus, (A, aT
′

) is valid w.r.t.
(F ′, T ′).

Suppose that the map aT does not yield a homomorphism from A to T ′. There
must exist some tuple RA(t̂) such that aT (t̂) = πT (t). Define h : |R(t)| → |A|
as the map which takes t to t̂ (note that this is well-defined as t is antireflexive).

Consequently, (R(t), πT )
h
→(A, aT ), which yields a contradiction as (A, aT ) is valid

w.r.t. (F , T ). Hence, (F ′, T ′) is equivalent to (F , T ).
Assume that (F , T ) satisfies property p1. Suppose that (A, aT

′

) is weakly valid
w.r.t. (F ′, T ′) and that there exists a pattern (B, bT

′

) ∈ F ′ such that (B, bT
′

)→(A, aT
′

).
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Fig. 4. Depiction of tuples.

Define bT := e ◦ bT
′

and aT := e ◦ aT
′

. Thus, (B, bT ) ∈ F and (B, bT )→(A, aT ).
Hence, (A, aT ) is not weakly valid w.r.t. (F , T ). That is, (C, cT )→֒(A, aT ) for some
pattern (C, cT ) ∈ F . But as aT = e ◦ aT

′

, so (C, cT ) is also a T ′-pattern and so is in
F ′. This yields a contradiction, and the result follows.

Remark 22. Applying embed reductions clearly preserves property p2. Note also
that applying conform reductions preserves property p2. This follows directly from
Lemma 2.

Example 23. Consider a representation (F , T ) over the signature consisting of a
binary relation symbol E and a ternary relation symbol R. The domain of T consists
of two elements (or colors) ◦ and •, with ET = {◦, •}2 and RT = {◦, •}3.

Consider the conform forbidden pattern consisting of the single tuple R(x, y, z),
where both x and y take the color ◦ and z takes the color •. We depict this pattern
by the left diagram in Figure 4. In the case where x = y, we depict the pattern by
the right diagram in Figure 4.

The first (leftmost) column in Figure 5 depicts the four forbidden patterns in F

(the top three are such that R = ∅, and the bottom is such that E = ∅). The sec-
ond column depicts the representation (HF , T ), formed by adding all homomorphic
images of the forbidden patterns in F (up to isomorphism). In the third column, we
have performed core and embed reductions to obtain an equivalent representation
satisfying properties p1, p2, and p3. In the fourth column, we have performed con-
form reductions to obtain an equivalent representation satisfying properties p1, p2, p3,
and p4.

Note that, in general, starting from a representation satisfying property p1, if we
apply core, embed, and conform reductions arbitrarily, then after a finite sequence of
reductions, by the lemmas of this subsection, we will obtain an equivalent represen-
tation satisfying properties p1, p2, p3, and p4 (a simple induction suffices).

4.2. Feder–Vardi reductions. The reductions introduced so far do not suffice
for us to obtain the normal form for which we are aiming. We need to interleave
applications of these reductions with another reduction that we define now.

From now on, we make an important assumption regarding the representations
we deal with: Until otherwise specified, we assume them to be connected (we shall
deal with the disconnected case in section 6.1.1).

We say that a pattern is biconnected if its underlying structure is biconnected.
Our aim is to enforce the following property (using techniques inspired from the proof
of Theorem 8 in [15]):

(p5) Every forbidden pattern is biconnected.
Before proceeding, we need some definitions relating to the grouping together of

forbidden patterns. A compact T -structure {A, α} is a structure A together with a
map α : A → 2T so that every map aT : A → T with the property that aT (y) ∈ α(y),
for all y ∈ A, yields a T -colored structure (A, aT ). This notion is only a useful
shorthand to denote a set of colored structures, as a compact structure can be expanded
to obtain a set of colored structures, each with the same underlying structure; but we
shall need this notion later on when we prove the termination of a particular sequence
of transformations we employ towards the end of this section (this notion was not
necessary in Feder and Vardi’s original proof as the negated conjuncts correspond
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Fig. 5. Towards a normal representation: step one.

in general to partially colored structures; by choosing to work with fully colored
structures in our combinatorial setting, this is the price we have to pay). Bearing this
in mind, we can extend the definition of a representation to allow compact forbidden
patterns and call it a compact representation, with the problem defined by a compact
representation being the problem defined by the representation obtained by expanding
all of the compact forbidden patterns.

Clearly, we may assume that every representation is compact, by replacing every
forbidden pattern (A, aT ) by the compact forbidden pattern {A, α}, where for every
x in A, α(x) := {aT (x)}. We say that (A, aT ) is a forbidden pattern of the compact
representation (F , T ), and write (A, aT ) ∈ F , if it is one of the forbidden patterns
obtained by expanding one of the compact forbidden patterns. Notice that the notion
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Fig. 6. Feder–Vardi reduction.

of a decomposition involves only the underlying structure; thus it generalizes to com-
pact structures (of course, the definition of a decomposition in section 2 generalizes
to colored structures).

Definition 24 (Feder–Vardi reduction). Let (F , T ) be a compact representation

with F = G ∪ {{B, β}
x
32 {C, γ}}, and let K = β(x) = γ(x). The new sets K0 and

K1 are defined as {ki : k ∈ K} (that is, k0 and k1 are two new elements that stand as
copies of k) for i = 0, 1, and we assume that K, K0, and K1 are mutually disjoint.
Let T ′ be the structure obtained from T as follows:

• Replace K by K0 and K1 in |T |.
• Set RT ′

(t) whenever RT (̃t), with t obtained from t̃ by replacing every occur-
rence of an element k ∈ K by either k0 or k1 (where two different occurrences
of an element k might be replaced by k0 and k1; so, one tuple RT (̃t) with i
occurrences of elements of K gives rise to 2i tuples RT ′

(t)).
Let F ′ be the set of compact forbidden patterns induced from F as follows:

• The compact forbidden pattern {B, β}
x
32 {C, γ} is replaced by the two compact

forbidden patterns induced from the decomposition so that
– in the compact forbidden pattern {B, β0}, β0(x) = K0, and
– in the compact forbidden pattern {C, γ1}, γ1(x) = K1.

• Every remaining occurrence of a color k ∈ K in a compact forbidden pattern
(including the two described above) is replaced by both k0 and k1; that is,
every forbidden pattern obtained by expanding a compact forbidden pattern of
F is replaced by a set of forbidden patterns, one for each possible assignment
of k0 and k1 to occurrences of k.

We call (F ′, T ′) the Feder–Vardi reduction of (F , T ) with respect to {B, β}
x
32

{C, γ}.
Part of a Feder–Vardi reduction can be visualized as in Figure 6. Note that if

(F , T ) is a connected representation, then a Feder–Vardi reduction of (F , T ) is also
connected.

We reiterate that working with compact forbidden patterns is just, to some extent,
a notational convenience and that a Feder–Vardi reduction has the effect of “splitting”
a set of forbidden patterns in one go.

We also need to define the essential notion of a recoloring. Intuitively, a recoloring
is to a (compact) representation what a homomorphism is to a structure.
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Fig. 7. Proof of Proposition 26.

Definition 25 (Recoloring). Let (F , T ) and (F ′, T ′) be two compact represen-

tations. A recoloring r of (F ′, T ′) to (F , T ) is a homomorphism T ′ r
→T such that any

inverse image (A, aT
′

) of a forbidden pattern (A, aT ) of F is not valid w.r.t. (F ′, T ′),
where by “inverse image” we mean that r ◦ aT

′

= aT . We denote the fact that r is
a recoloring by (F ′, T ′)

r
→(F , T ) (we use the same notation as for homomorphisms

without causing any confusion). If, furthermore, r is onto (respectively, one-to-one),
then r is an epirecoloring (respectively, monorecoloring). If (F ′, T ′)

r
→֒→(F , T ) and

(F , T )
r−1

→ (F ′, T ′), then r is an isorecoloring, and we write (F , T ) ≈ (F ′, T ′).
The fact that for CSP, CSP(A) ⊆ CSP(B) whenever A→B, generalizes to FPP.
Proposition 26. Let (F , T ) and (F ′, T ′) be two compact representations. If

(F ′, T ′)→(F , T ), then FPP(F ′, T ′) ⊆ FPP(F , T ).

Proof. Let (F ′, T ′)
r
→(F , T ), and let C be a structure that is not valid w.r.t.

(F , T ). If C � T ′, then C is not valid w.r.t. (F ′, T ′), and we are done. Thus, let

C
cT

′

→T ′ and define cT := r ◦ cT
′

. By assumption, there exists a forbidden pattern

(A, aT ) ∈ F such that (A, aT )
f
→(C, cT ); so define aT

′

:= cT
′

◦ f , with the result
that aT = r ◦ aT

′

(see Figure 7). Since r is a recoloring, there exists a forbidden

pattern (B, bT
′

) ∈ F ′ such that (B, bT
′

)
g
→(A, aT

′

). This can be summarized by the
commuting diagram of Figure 7.

Hence, we can see that (B, bT
′

)
f◦g
→ (C, cT

′

), which proves that (C, cT
′

) is not valid
w.r.t. (F ′, T ′), and we are done.

Proposition 27. Let (F ′, T ′) be obtained from (F , T ) via a Feder–Vardi re-
duction, as in Definition 24. Then (F ′, T ′) and (F , T ) are equivalent.

Proof. Let T ′ r
→T be the homomorphism that identifies ki ∈ Ki for i = 0, 1, with

k ∈ K, and leaves all other elements fixed. We begin by proving that r is a recoloring.
By construction, the inverse images of any forbidden pattern of G belong to F ′.

So, it remains to check the inverse images of the patterns expanded from the com-

pact forbidden pattern {B, β}
x
32 {C, γ}. Assume without loss of generality (w.l.o.g.)

that we are checking an inverse image where x takes a color from K0. Consider the
substructure of the inverse image induced by B. By construction, this substructure
is one of the patterns expanded from the compact forbidden pattern {B, β0} (con-
structed as in Definition 24), which is a compact forbidden pattern of F ′. The case
when x takes a color from K1 is similar. Hence, r is a recoloring. By Proposition 26,
FPP(F ′, T ′) ⊆ FPP(F , T ).

Conversely, suppose that (A, aT ) is valid w.r.t. (F , T ). We construct a coloring
aT

′

from aT as follows:
• For any y ∈ A such that aT (y) �∈ K, set aT

′

(y) = aT (y);
• Suppose that aT (y) = k ∈ K. As (A, aT ) is valid w.r.t. (F , T ), there does

not exist a homomorphism from any forbidden pattern expanded from the
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Fig. 9. The second case.

compact forbidden pattern {B, β}
x
32 {C, γ} to (A, aT ). That is, there does not

exist (B, bT ) ∈ {B, β0} and (C, cT ) ∈ {C, γ1} such that both (B, bT )
hB→(A, aT )

and (C, cT )
hC→(A, aT ), with hB(x) = hC(x) = y. Thus

– if there exists (B, bT ) ∈ {B, β0} such that (B, bT )
hB→(A, aT ), with hB(x) =

y, then set aT
′

(y) = k1;
– otherwise, set aT

′

(y) = k0.

Suppose that (D, dT
′

)
h
→(A, aT

′

), where (D, dT
′

) is derived from some forbidden
pattern (D, dT ) of (some compact forbidden pattern of) G (according to the Feder–
Vardi reduction). Thus, we have the commutative diagram of Figure 8. This yields a
contradiction as (A, aT ) is valid w.r.t. (F , T ).

Suppose that (B, bT
′

)
h
→(A, aT

′

), where (B, bT
′

) is derived from the compact for-

bidden pattern {B, β}
x
32 {C, γ} (according to the Feder–Vardi reduction). Thus, we

have the commutative diagram of Figure 9. In particular, (B, bT )
h
→(A, aT ), where

(B, bT ) ∈ {B, β0}. Set h(x) = y. By definition of aT
′

, aT
′

◦ h(x) ∈ K1. However, by
definition of {B, β0}, b

T ′

(x) ∈ K0. The fact that bT
′

= aT
′

◦ h yields a contradiction.

Suppose that it is not the case that (B, bT
′

)
h
→(A, aT

′

) for any (B, bT
′

) derived

from the compact forbidden pattern {B, β}
x
32 {C, γ} (according to the Feder–Vardi

reduction) but that (C, cT
′

)
h
→(A, aT

′

) for some (C, cT
′

) derived from the compact

forbidden pattern {B, β}
x
32 {C, γ}. A contradiction follows by reasoning analogously

to the preceding case. Hence, we have that FPP(F , T ) ⊆ FPP(F ′, T ′).
Proposition 28. Let (F ′, T ′) be obtained from (F , T ) via a Feder–Vardi reduc-

tion, as in Definition 24. If property p1 holds for (F , T ), then it holds for (F ′, T ′).

Proof. Define T ′ r
→T to be the homomorphism that identifies ki ∈ Ki for i = 0, 1,

with k ∈ K, and leaves all other elements fixed. Let A be nonvalid w.r.t. (F ′, T ′).
Since (F , T ) is equivalent to (F ′, T ′), by Proposition 27, it follows that A is nonvalid

w.r.t. (F , T ). We may assume that A→T ′. Let A
aT

′

→T ′ and define aT := r◦aT
′

. As p1

holds for (F , T ), there exists (D, dT ) ∈ F such that (D, dT )
f
→֒(A, aT ). In particular,
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r ◦aT
′

◦f = dT ; so, r ◦dT
′

= dT when we define dT
′

:= aT
′

◦f . If (D, dT ) is a pattern

of G , then (D, dT
′

) ∈ F ′. If (D, dT ) is a pattern of {B, β}
x
32 {C, γ}, then a pattern

of either {B, β0} or {C, γ1} (where these are the compact forbidden T ′-patterns as
constructed in Definition 24) is a (colored) substructure of (D, dT

′

). Hence, regardless,

there exists (E , eT
′

) ∈ F ′ such that (E , eT
′

)
g
→֒(D, dT

′

). As dT
′

= aT
′

◦ f , we have

that (D, dT
′

)
f
→֒(A, aT

′

), and so (E , eT
′

)
f◦g
→֒(A, aT

′

). Consequently, if A is weakly valid
w.r.t. (F ′, T ′), then it is valid w.r.t. (F ′, T ′).

We define the rank of a (connected) compact structure to be the number of
applications of the operator 32 in order that all resulting compact structures are
biconnected. We associate with a compact representation a rank polynomial P (X) =
ΣiaiX

i, where ai is the number of compact forbidden patterns of rank i. Let (F ′, T ′)
be obtained from (F , T ) via a Feder–Vardi reduction, with P the rank polynomial
of (F , T ) and P ′ that of (F ′, T ′). It is easy to check that P ′ < P , where < denotes
the standard well-ordering of polynomials. Consequently, any sequence of Feder–
Vardi reductions is necessarily finite. It is in order to prove this finiteness that we
consider compact representations; given that we now that any sequence of Feder–
Vardi reductions is necessarily finite, we can now revert to dealing with standard,
as opposed to compact, representations. Of course, all of the results in this section
mentioning compact representations also hold for standard representations.

4.3. Enforcing p1 to p5. We now use the reductions developed so far to obtain,
from any connected representation, an equivalent representation satisfying properties
p1, p2, p3, p4, and p5. We remind the reader that we are still assuming all represen-
tations to be connected, and we note that all reductions so far defined preserve the
property of a representation being connected.

Definition 29. Let (F , T ) be a representation where every forbidden pattern of
F is automorphic and nonconform. Define

ρ(F , T ) = max{||(B, bT )|| : (B, bT ) is a forbidden pattern of F

that is not biconnected},

where ||(B, bT )|| is the number of tuples in B; that is, the sum of the numbers of
{||RB|| : R is a relation symbol of the underlying signature}, where ||RB|| is the num-
ber of tuples in the relation RB.

Consider the following process, starting with a (connected) representation (F , T ).
Replace (F , T ) with the representation (HF , T ), and so, by Lemmas 14 and 15,
(HF , T ) is equivalent to (F , T ) and satisfies p1. Perform a maximal sequence of core,
embed, and conform reductions and denote the resulting representation by (F1, T1).
In particular, every forbidden pattern of F1 is a core and nonconform, and so ρ(F1, T1)
is well-defined. If ρ(F1, T1) = 0, then halt.

Otherwise, perform a maximal sequence of Feder–Vardi reductions, followed by
a maximal sequence of core, embed, and conform reductions. Denote the resulting
representation by (F2, T2). In particular, every forbidden pattern of F2 is a core
and nonconform, and so ρ(F2, T2) is well-defined. Also, the sequence of reductions
performed in order to obtain (F2, T2) from (F1, T1) is such that:

• every forbidden pattern of F1 that is a biconnected (T1-colored) core gives
rise to forbidden patterns of F2 that are also biconnected (T2-colored) cores
(see Remark 22); and,

• any non-biconnected core of F1 is split into forbidden patterns, each of which
has strictly less tuples than the original non-biconnected core of F1.

That is, ρ(F2, T2) < ρ(F1, T1).
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Fig. 10. Applying our reductions.

By iterating this process, we eventually obtain a connected representation (F ′, T ′)
that is equivalent to (F , T ) and satisfies properties p1, p2, p3, p4, and p5.

Example 30. Consider a representation (F , T ) over the signature consisting of
two binary relation symbols E and F , where T and the forbidden patterns of F are
as in the first column of Figure 10 (we represent “E-edges” by solid arrowed lines and
“F -edges” by dashed arrowed lines).

As can be seen, (F , T ) satisfies properties p1, p2, p3, and p4. However, one
forbidden pattern is not biconnected, and so we perform a Feder–Vardi reduction so
that the resulting compact forbidden pattern is as depicted in the second column of
Figure 10. This messes up the aforementioned properties, and so we perform some
embed reductions to obtain the compact representation in the third column of Figure
10 (we have left the depiction of this representation in its compact form so that the
figure does not become cluttered). Finally, we perform some conform reductions to
obtain the representation in the fourth column of Figure 10 which is equivalent to the
original one and satisfies properties p1, p2, p3, p4, and p5.

4.4. Enforcing p1–p6. Given our notion of a recoloring of a representation, we
can define a retract of a representation as follows.

Definition 31. A representation (F ′, T ′) is a retract of the representation
(F , T ) if there exists a monorecoloring (F ′, T ′)

r
→֒(F , T ) and an epirecoloring

(F , T )
s
։(F ′, T ′) such that s◦r = idT ′ . We call a representation (F , T ) automorphic

if whenever (F ′, T ′) is a retract of (F , T ), then (F ′, T ′) ≈ (F , T ).
It is not difficult to see that given any representation (F , T ), there is an au-

tomorphic representation (F ′, T ′) that is a retract of (F , T ) (and thus defines the
same forbidden patterns problem by Proposition 26). We remark that the notion of
a “core” for representations does not possess the properties that it does in the case
of (colored) structures; e.g., it is not unique up to isorecoloring, but we resist the
temptation to go into further details here as this has no consequence on what follows.
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The next property we wish to enforce is as follows:
(p6) The representation (F , T ) is automorphic.

Suppose that (F , T ) is not automorphic and that (F ′, T ′)
r
→֒(F , T ),

(F , T )
s
։(F ′, T ′), and s ◦ r = idT ′ , with (F ′, T ′) automorphic. Define

F
′′ = {(A, aT

′

) : (A, aT ) ∈ F and aT = r ◦ aT
′

}.

Let (A, aT ) ∈ F , and let aT = r ◦ aT
′

. By construction, (A, aT
′

) ∈ F ′′ and as such
is not valid w.r.t. (F ′′, T ′). Thus, (F ′′, T ′)

r
→֒(F , T ). However, we also want to show

that (F , T )
s
։(F ′′, T ′).

Let (A, aT
′

) ∈ F ′′, and let (A, aT1 ) be such that s ◦ aT1 = aT
′

; i.e., (A, aT ) is an
inverse image of (A, aT

′

) via s. Also, because (A, aT
′

) ∈ F ′′, by definition there exists

(A, aT2 ) ∈ F such that aT2 = r ◦aT
′

. As (F ′, T ′)
r
→֒(F , T ), there exists (B, bT

′

) ∈ F ′

such that (B, bT
′

)
f
→(A, aT

′

). Hence, (B, aT1 ◦ f) is an inverse image of (B, bT
′

) via

s, and so there exists (C, cT ) ∈ F such that (C, cT )
g
→(B, aT1 ◦ f) (see Figure 11).

Thus, (C, cT )
f◦g
→ (A, aT1 ) and (F , T )

s
։(F ′′, T ′). In particular, (F ′′, T ′) is a retract of

(F , T ).
We need the notion of a recoloring to be transitive.
Lemma 32. If (F1, T1)

f
→(F2, T2) and (F2, T2)

g
→(F3, T3) are recolorings, then

(F1, T1)
g◦f
→ (F3, T3) is a recoloring.

Proof. Let (A, aT3) ∈ F3, and let (A, aT1)
g◦f
→ (A, aT3). As g is a recoloring of

(F2, T2) to (F3, T3), there exists a forbidden pattern (B, bT2) ∈ F2 for which (B, bT2)
h1

�

(A, f ◦ aT1). As f is a recoloring of (F1, T1) to (F2, T2), there exists a forbidden pat-

tern (C, cT1) ∈ F1 for which (C, cT1)
h2→(B, aT1 ◦ h1). The situation can be depicted as

in Figure 12. Consequently, (C, cT1)
h1◦h2→ (A, aT1), and (F1, T1)

g◦f
→ (F3, T3).

We have that (F ′′, T ′)
r
→֒(F , T ) and (F , T )

s
։(F ′, T ′), and consequently by

Lemma 32, the identity map on T ′ is an isorecoloring from (F ′′, T ′) to (F ′, T ′).
Thus, (F ′′, T ′) is automorphic.
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We now need to affirm the properties p1, p2, p3, p4, and p5 for (F ′′, T ′); we
deal with p1 first (note that if (F , T ) is connected, then so is (F ′′, T ′)). Assume
that A is not valid w.r.t. (F ′′, T ′). Consequently, by Proposition 26, A is not valid

w.r.t. (F , T ). Suppose that A
aT

′

→T ′. Thus, A
r◦aT

′

→ T . Hence, there exists (B, bT ) ∈ F

such that (B, bT )
f
→֒(A, r ◦ aT

′

); see Figure 13. So, (B, aT
′

◦ f) ∈ F ′′ and (B, aT
′

◦
f)→֒(A, aT

′

). Thus, A is not weakly valid w.r.t. (F ′′, T ′), and property p1 holds for
(F ′′, T ′).

Consider property p2. As every pattern of (F , T ) is automorphic, by Lemma 2,
so is every pattern of (F ′′, T ′).

Consider property p3. Suppose that (A, aT
′

), (B, bT
′

) ∈ F ′′ are distinct and such

that (B, bT
′

)
f
→֒(A, aT

′

). Thus, we have that (A, r ◦ aT
′

), (B, r ◦ bT
′

) ∈ F and also

that (B, r ◦ bT
′

)
f
→֒(A, r ◦aT

′

). This yields a contradiction as (F , T ) satisfies property
p3, and so (F ′′, T ′) satisfies property p3.

Trivially, (F ′′, T ′) satisfies properties p4 and p5.
Definition 33. We say that a connected representation for which properties

p1–p6 hold is a normal representation.
Consequently, we have proven the following result.
Theorem 34. Let (F , T ) be a connected representation. Then there is an effec-

tive procedure by which we can obtain a normal representation equivalent to (F , T ).
We end this section with a theorem crucial to what follows.
Theorem 35. Let (F , T ) be a normal representation. If F �= ∅, then the target

T is not valid w.r.t. (F , T ).
Proof. Assume for contradiction that (T , t) is valid w.r.t. (F , T ). If t is one-to-

one, then t is an isomorphism, and thus, as F �= ∅, there exists (A, aT ) ∈ F such
that t−1 ◦ aT is a homomorphism from (A, aT ) to (T , t). This yields a contradiction,
and so we may assume that t is not one-to-one.

Consider repeatedly applying the homomorphism t to obtain the homomorphism
tk : T → T for each k ≥ 1. For some k ≥ 1, it must be the case that t restricted to the
image of tk is one-to-one and thus an isomorphism. For such a k, denote the image
of tk by T ′ and the isomorphism from T ′ to T ′ induced by t by s. In particular, s−1

exists.
Suppose that there exists (A, aT ) ∈ F such that the image of aT is contained in

T ′. Clearly, the homomorphism s−1 ◦ aT : A → T is well-defined and is a T -colored
homomorphism of (A, aT ) to (T , t). This contradicts our assumption that (T , t) is
valid w.r.t. (F , T ). Consequently, for every (A, aT ) ∈ F , the image of aT is not
contained in T ′.

Consider the representation (∅, T ′). Trivially, (∅, T ′) is a retract of (F , T ), and
T ′ is not isomorphic to T (as t is not one-to-one). Thus, (∅, T ′) is a proper re-
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tract of (F , T ), which contradicts the fact that (F , T ) is automorphic. The result
follows.

5. A generic construction of counterexamples. We prove in this section
that any problem given by a normal representation (F , T ) for which F �= ∅ is not in
CSP. The proof involves a generic construction of a family of structures that provides,
in a sense, a counterexample for any candidate for the role of a template; such a family
of structures is called a witness family. The essence of the proof strategy employed
originated in the proofs in [25] that certain graph problems are not in CSP.

Definition 36 (witness family). Let (F , T ) be a representation. A family of
structures W is said to be a witness family for (F , T ) if and only if W ⊆ FPP(F , T )
and for any structure B (over the underlying signature), there exists W ∈ W such

that either W � B or for some W
h
→B, the homomorphic image h(W) does not belong

to FPP(F , T ) (the structure W is said to be a witness for B).
Lemma 37. If a representation (connected or otherwise) has a witness family,

then the problem given by the representation does not belong to CSP.
Proof. Let W be a witness family for some representation (F , T ). Assume for

contradiction that FPP(F , T ) = CSP(B) for some structure B. By definition, there

exists W ∈ W such that either W � B or for some W
h
→B, h(W) �∈ FPP(F , T ). Both

cases immediately lead to a contradiction.
We now state the main result of this section and a corollary.
Theorem 38. Let (F , T ) be a normal representation. If F �= ∅, then there is a

witness family for (F , T ).
Corollary 39. If (F , T ) is a normal representation for which F �= ∅, then

FPP(F , T ) �∈ CSP.
The remainder of this section is devoted to a proof of the above theorem and

corollary. Throughout the remainder of this section, (F , T ) is a normal representation
for which F �= ∅ and where the underlying signature is σ.

Opening up a structure. By Theorem 35, the structure T is not valid w.r.t. (F , T ).

Let tT be some homomorphism T
tT

→T (there is at least one such homomorphism: the
identity). As (F , T ) is normal, we may assume that some biconnected and non-
conform forbidden pattern (A, aT ) embeds into (T , tT ), via some embedding f . Let
(D, dT ) be identical to (T , tT ).

It is straightforward to show that any biconnected and nonconform pattern must
contain a cycle; choose one of minimal size, and let C be the image of this cycle under
f (and so C is a cycle). Let x be an articulation point of C, and let t be a tuple of
C that is incident with x (thus RD(t) holds for some relation symbol R). Introduce
a new element x′ into the domain of D.

• Suppose that C has size 1; i.e., t is not antireflexive. Replace the first occur-
rence of x in RD(t) with the new element x′ (leaving all other occurrences of
all elements as is).

• Suppose that C has size 2; i.e., C consists of the antireflexive tuples RD(t)
and RD

1 (t1), where t and t1 have at least two distinct elements in common
(one of which is x) and where if R = R1, then t and t1 differ. Replace the
solitary occurrence of x in RD(t) by x′.

• Suppose that C has size greater than 2. Replace the solitary occurrence of x
in RD(t) by x′.

The elements x and x′ of our amended structure are called plug points of sort
1. We define that dT (x′) = dT (x) and denote the amended T -colored structure by
(D, dT ) also.
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If there exists a forbidden pattern of F that embeds into (D, dT ), then we proceed
as above by choosing an appropriate cycle and an articulation point y of this cycle and
then “breaking” the cycle by introducing a new element y′ and amending a specific
tuple of D (note that if we have a cycle of size 1 or 2, then we may need more than
one amendment to “break” the cycle). Again, we define dT (y′) = dT (y) and denote
the amended T -colored structure by (D, dT ) also. As above, we refer to y and y′ as
plug points. If y was either x or x′, then y and y′ are plug points of sort 1; otherwise,
they are plug points of sort 2.

We proceed iteratively in this fashion until no forbidden pattern of F embeds into
(D, dT ), at each stage of the iteration fixing the sort of plug points to be inherited
from the corresponding articulation point or to be of a new sort (the smallest positive
integer as yet unused to describe sorts) if the corresponding articulation point had
not been assigned a sort. Note that this process terminates as ultimately we would
obtain a cycle-free structure (into which no forbidden pattern can embed).

Denote the resulting T -colored σ-structure by (G, gT ) and call it the gadget . Note
that (G, gT ) is valid w.r.t. (F , T ) as no forbidden pattern embeds into (G, gT ) (recall

that (F , T ) is normal). Note also that (G, gT )
r
→(T , tT ), where r is the homomorphism

which identifies plug points of the same sort and otherwise leaves elements fixed.
Preparing for plugging. Suppose that the gadget (G, gT ) has pi plug points of sort

i for i = 1, 2, . . . , k (and possibly other elements that have not been assigned a sort).
For each i = 1, 2, . . . , k, define the signature σi as consisting of the relation symbol
Pi of arity pi. For each i = 1, 2, . . . , k and each mi ≥ pi, define the σi-structure Qmi

i

to have domain {0, 1, . . . ,mi − 1} and relation P
Q

mi

i

i defined as

{(u1, u2, . . . , upi
) : u1 < u2 < · · · < upi

}.

Lemma 40. Fix b ≥ 2, fix i ∈ {1, 2, . . . , k}, and suppose that mi ≥ b(pi − 1) + 1.
For every mapping h : |Qmi

i | → {0, 1, . . . , b − 1}, there must exist at least one tuple

P
Q

mi

i

i (u1, u2, · · · , upi
) such that h(u1) = h(u2) = . . . = h(upi

).
Proof. Suppose otherwise for the mapping h. So, there exist at most pi − 1

distinct elements x of |Qmi

i | for which h(x) = j for any j ∈ {0, 1, . . . , b − 1}. Thus,
|Qmi

i | = mi ≤ b(pi − 1), which yields a contradiction.
Now define the signature σ to consist of the relation symbol P of arity p =

Σk
i=1pi. For any m1,m2, . . . ,mk for which mi ≥ pi, for each i = 1, 2, . . . , k, define

the σ-structure Q to have a domain consisting of the disjoint union of the domains
|Qm1

1 |, |Qm2

2 |, . . . , |Qmk

k | and relation PQ defined as

{(u1,u2, . . . ,uk) : ui ∈ |Qmi

i |pi and ui
1 < ui

2 < · · · < ui
pi

for each i = 1, 2, . . . , k}

(the notation is such that ui
j is the jth component of the tuple ui). So, in a sense,

Q is a sort of “amalgamation” of Qm1

i ,Qm2

2 , . . . ,Qmk

k (note that we have suppressed
the parameters “m1,m2, . . . ,mk” in the denotation of Q for ease of readability).

Lemma 41. Fix b ≥ 2 and suppose that mi ≥ b(pi−1)+1 for each i = 1, 2, . . . , k.
For every mapping h : |Q| → {0, 1, . . . , b − 1}, there must exist at least one tuple

PQ(u1,u2, . . . ,uk) such that h(ui
1) = h(ui

2) = · · · = h(ui
pi

) for all i = 1, 2, . . . , k.
Proof. The proof is immediate from Lemma 40.
The girth of a structure is the length of its shortest cycle (and so if there are no

cycles, then the structure has infinite girth). The following theorem is due to Feder
and Vardi [15] (and generalizes a result due to Erdös; see [15]).
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Theorem 42. Fix two positive integers r and s. For every structure B of size
n, there exists a structure B′ (over the same signature) of size na (where a depends
solely on r and s) such that:

• the girth of B′ is greater than r;
• B′ → B; and
• for every structure C of size at most s (over the same signature), B → C if

and only if B′ → C.
Furthermore, B′ can be constructed from B in randomized polynomial time.

Remark 43. We have already mentioned that Gábor Kun has derandomized Theo-
rem 1. To be more precise, he achieved this by giving a deterministic polynomial-time
algorithm for the B′ in the above theorem.

For each forbidden pattern (A, aT ) of F , define γA to be the length of the longest
cycle of A. Define γ to be the maximum of {γA : (A, aT ) ∈ F}.

Fix b ≥ 2. By applying Theorem 42, there is a σ-structure Q
′

of girth greater

than γ for which Q
′
→ Q and for which for every structure C of size at most b, Q → C

if and only if Q
′
→ C (of course, we assume that m1,m2, . . . ,mk satisfy the hypothesis

of Lemma 41).

Lemma 44. For every mapping h : |Q
′
| → {0, 1, . . . , b − 1}, there must exist at

least one tuple PQ
′

(u1,u2, . . . ,uk) such that h(ui
1) = h(ui

2) = · · · = h(ui
pi

) for all
i = 1, 2, . . . , k.

Proof. The condition in the statement of the lemma (and also the statement of
Lemma 41, with the same value b) is equivalent to there not being a homomorphism

from Q
′
to the σ-structure with domain {0, 1, . . . , b− 1} and relation

P = {0, 1, . . . , b− 1}p \ {(bp1

1 , bp2

2 , . . . , bpk

k ) : bi ∈ {0, 1, . . . , b− 1}

for every i = 1, 2, . . . , k}

(where bpi

i is the pi-tuple with each component equal to bi). The result follows by

Lemma 41 and the properties of Q
′
detailed above.

Building the witness family. Fix some σ-structure B of size b. We are now in a
position to build a σ-structure WB which will act as a witness for B (see Definition 36).

• Initialize the domain of WB to be that of Q
′
.

• For every tuple PQ
′

(u1,u2, . . . ,uk), where each ui ∈ |Q
′
|pi , plug a copy of

the gadget G by identifying the pi sort-i plug points of G with the pi “socket-

points” ui of |Q
′
| for each i = 1, 2, . . . , k.

All such copies of the gadget should be disjoint, except that two copies of the gadget
may have plug points in common within WB and except where the gadget (possibly)
contains a tuple RG(t) with every element of t a plug point. Let us label every tuple

of every relation RWB with the name of the tuple of PQ
′

to which the copy of the
gadget from which it comes corresponds. As just mentioned, there may be difficulties
where the gadget contains a tuple RG(t) with every element of t a plug point, as this
tuple might require more than one label. In such a case, simply arbitrarily choose one
label from the set of potential candidates. Finally, note that WB = WB′ whenever
|B| = |B′|; i.e., the definition of WB depends solely upon b and not on the tuples of B.

Proposition 45. The structure WB is a witness for B.

Proof. We begin by proving that there exists a homomorphism WB
wT

→T .

From above, Q
′
→ Q via some homomorphism q. Recall that the domain of Q

is the disjoint union of |Qm1

1 |, |Qm2

2 |, . . . , |Qmk

k |. Hence, we can partition |Q
′
| into
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disjoint subsets S1, S2, . . . , Sk, where for each i = 1, 2, . . . , k, Si = {u ∈ |Q
′
| : q(u) ∈

|Qmi

i |}. By definition of PQ, if PQ(u1,u2, . . . ,uk) holds, where ui is a pi-tuple of
elements, then ui ∈ Spi

i for i = 1, 2, . . . , k. In particular, in any copy of the gadget
G, plug points of sort i are always identified with “socket elements” from Si for

i = 1, 2, . . . , k. Consequently, the homomorphism G
gT

→T , under which plug points of
the same sort are always mapped to the same element of |T |, can be extended to a

homomorphism WB
wT

→T .
Suppose that (WB, w

T ) is not valid w.r.t. (F , T ). So, some biconnected, non-
conform forbidden pattern (A, aT ) embeds into (WB, w

T ). As no forbidden pattern
embeds into the gadget and each forbidden pattern is biconnected and nonconform,
there must exist a cycle C in WB of length less than γ and involving tuples from at
least two copies of the gadget within WB (we reiterate that each forbidden pattern
is biconnected, and so if there were no such cycles, then we would have an articula-
tion point) or equivalently, involving tuples labeled with at least two distinct tuples

of PQ
′

(according to our labeling process as detailed prior to the statement of this
proposition). However, the cycle C of WB yields a closed path of tuples in Q

′
(by

following the labels). Continuing, this closed path of tuples in Q
′
yields a cycle in Q

′

of length at least 2 and less than γ; this contradicts the fact that Q
′
has girth greater

than γ. Thus, (WB, w
T ) is valid w.r.t. (F , T ).

If WB �→ B, then we are done. So, suppose that WB
h
→B. The homomorphism

h induces a map ĥ : |Q
′
| → {0, 1, . . . , b − 1}, and so by Lemma 44, there exists a

tuple PQ
′

(u1,u2, . . . ,uk), where ui ∈ |Q
′
|pi and ĥ(ui

1) = ĥ(ui
2) = · · · = ĥ(ui

pi
) for

i = 1, 2, . . . , k. Thus, by construction of WB, h(WB) contains a homomorphic image of
the gadget G where all plug points of the same sort are mapped to the same element.

(⋆) Consequently, h(WB) contains a homomorphic image of the structure T , via
some homomorphism h̃.

Suppose that h(WB)
f
→T . So, T

f◦h̃
→T and, by Theorem 35, there exists a forbid-

den pattern (A, aT ) ∈ (F , T ) such that (A, aT )
f̃
→(T , f ◦ h̃). Hence, we have that

(A, aT )
h̃◦f̃
→ (h(WB), f), and h(WB) �∈ FPP(F , T ), as required.

Thus, we have proven Theorem 38. Lemma 37 immediately yields Corollary 39.

6. MMSNP versus CSP. We now deal with the disconnected case before turn-
ing to the more general situation involving MMSNP and CSP.

6.1. Normal sets of representations.

6.1.1. The disconnected case. We first turn to the situation when a represen-
tation is not necessarily connected. Let (F , T ) be a representation such that there
exists a disconnected forbidden pattern (A, aT ) ∈ F ; that is, (A, aT ) is the disjoint
union of two colored structures (B, bT ) and (C, cT ). Define F ′ = (F \ {(A, aT )}) ∪
{(B, bT )} and F ′′ = (F \ {(A, aT )}) ∪ {(C, cT )}. Trivially, we have that

FPP(F , T ) = FPP(F ′, T ) ∪ FPP(F ′′, T ).

By iterating this construction, we can transform (F , T ) into a set of connected repre-
sentations so that a structure is in FPP(F , T ) if and only if it is in at least one of the
forbidden patterns problems corresponding to the derived connected representations.

Next, we compute the normal representation of each connected representation,
just as we did in section 4. Finally, we enforce the following property on our set of
normal representations:
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(p7) For any two normal representations (F ′, T ′) and (F ′′, T ′′), we have that
(F ′, T ′) � (F ′′, T ′′).

This property is enforced by simply removing the normal representation (F ′, T ′)
from the collection should there exist another (different) normal representation
(F ′′, T ′′) for which (F ′, T ′)→(F ′′, T ′′).

Consequently, we may assume that any representation (F , T ) corresponds to a
collection N of normal representations (possibly containing only one such representa-
tion) for which property p7 holds; we call N the normal set corresponding to (F , T ).
By Proposition 26, the problem FPP(F , T ) is the union of the forbidden patterns
problems of the representations in the normal set N; that is,

FPP(F , T ) =
⋃

{FPP(F ′, T ′) : (F ′, T ′) ∈ N}.

6.1.2. Finite unions of forbidden patterns problems. The notion of a nor-
mal set extends naturally to finite unions of forbidden patterns problems: Given a
finite set of representations, we split every disconnected representation into a set of
connected representations as above, take the union of all of these sets, and simplify
these sets so as to enforce p7. We write FPP(N) for

⋃

(F,T )∈N
FPP(F, T ).

Proposition 46. Let N be a normal set that contains a representation (F ′, T ′)
such that F ′ �= ∅. Then T ′ is a no instance of FPP(N).

Proof. By Theorem 35, if T ′ is valid w.r.t. (F ′, T ′), then F ′ = ∅. Thus, T ′ is
not valid w.r.t. (F ′, T ′).

Suppose that T ′ is valid w.r.t. (F ′′, T ′′), where (F ′′, T ′′) is a representation in N

distinct from (F ′, T ′). That is, there exists a homomorphism r : T ′ → T ′′ such that
for every forbidden pattern (A′′, aT

′′

) ∈ F ′′, (A′′, aT
′′

) � (T ′, r). In particular, if
(A′′, aT

′′

) ∈ F ′′, then there does not exist a homomorphism aT
′

: A′′ → T ′ for which
r ◦ aT

′

= aT
′′

. Consequently, r is (trivially) a recoloring of (F ′, T ′) to (F ′′, T ′′).
This yields a contradiction, and so T ′ is not valid w.r.t. (F ′′, T ′′). The result
follows.

6.2. Finite unions.

Definition 47 (strong witness family). Let N be a set of representations. A
family of structures W is said to be a strong witness family for N if and only if
W ⊆ FPP(N) and for any finite set of structures {B1,B2, . . . ,Bn} (over the underlying
signature), there exists W ∈ W such that for every 1 ≤ i ≤ n, either W � Bi or for

some W
h
→Bi, the homomorphic image h(W) does not belong to FPP(N) (the structure

W is said to be a strong witness for B).
Lemma 48. If a set of representations N has a strong witness family, then the

problem FPP(N) is not a finite union of constraint satisfaction problems.
Proof. Let W be a strong witness family for some representation (F , T ). Assume

for contradiction that

FPP(N) =
⋃

(F,T )∈N

FPP(F, T ) =
⋃

1≤i≤n

CSP(Bi)

for some finite set of structures {B1,B2, . . . ,Bn}. By definition, there exists a strong
witness W ∈ W . Since W is a yes instance of FPP(N), we have that W ∈ CSP(Bi) for
some 1 ≤ i ≤ n. Hence, by definition of a strong witness, there is a homomorphism

W
h
→Bi such that h(W) �∈ FPP(N). However, h(W) ∈ CSP(Bi) = FPP(N), which is

absurd.
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We can extend the main result of the previous section to finite unions of forbid-
den patterns problems and, in particular, to disconnected representations. We first
deal with the case when the normal set corresponds to a finite union of constraint
satisfaction problems.

Theorem 49. Let N be a normal set of the form {(∅, T1), (∅, T2), . . . , (∅, Tn)}.
Then FPP(N) =

⋃

1≤i≤n CSP(Ti). Moreover, if

⋃

1≤i≤n

CSP(Ti) =
⋃

1≤i≤m

CSP(T ′
i ),

then the following hold:
(i) for every 1 ≤ i ≤ m, there exists 1 ≤ j ≤ n such that T ′

i →Tj;
(ii) for every 1 ≤ i ≤ n, there exists 1 ≤ j ≤ m such that Ti is the core of T ′

j ;
(iii) m ≥ n.
Proof. Property (i) follows directly from the fact that T ′

i ∈ CSP(T ′
i ). We now

prove (ii). Using a similar argument as above, there exists T ′
j such that Ti→T ′

j . By
(i), there exists some Tk such that T ′

j→Tk. By composition, Ti→Tk. Recall that, by
definition of the normal set, there is no homomorphism between any Ti and Tk for
any i such that 1 ≤ i < k ≤ n. Moreover, every Ti is automorphic. Thus, i = k,
and it follows that Ti is homomorphically equivalent to T ′

j . This proves that Ti is
the core of T ′

j . Property (iii) follows from (ii) since Ti and Tk, for any i, k such that
i �= k, cannot be the core of the same T ′

j ; otherwise, they would be isomorphic (by
uniqueness of the core). This concludes the proof.

We can now precisely characterize when a normal set does not give rise to a finite
union of constraint satisfaction problems.

Theorem 50. The following are equivalent:
(i) the normal set N contains a representation (F ′, T ′), with F ′ �= ∅;
(ii) the problem FPP(N) is not a finite union of constraint satisfaction problems;
(iii) there exists a strong witness family for N.
Proof. The implication (ii) =⇒ (i) is the contrapositive of the (trivial statement

in the) previous theorem. The implication (iii) =⇒ (ii) holds by Lemma 48. We
now prove that (i) =⇒ (iii).

The case when N is a singleton is a direct corollary of the proof of Theorem 38,
as the construction of a witness family can be easily adapted to obtain a strong
witness family. Indeed, as is pointed out just before the statement of Proposition 45,
the construction of WB depends only on the size of B. So, for a set of structures
B = {B1,B2, . . . ,Bn}, we build WBi

, where Bi is a structure with the largest domain

within this set. Now, for any structure C such that |C| ≤ |Bi|, if WBi

h
→C, then

h(WBi
) contains a homomorphic image of the structure chosen as a basis for our

gadget, namely, T ′ (see (⋆) in the proof of Proposition 45), which is not a yes instance
of FPP(N) (otherwise, T ′ would also be a yes instance of FPP(N), which would
contradict Theorem 35). This means that WBi

is a strong witness for B.
Suppose now that N is not a singleton. By Proposition 46, T ′ is not valid w.r.t.

(F ′′, T ′′) for any (F ′′, T ′′) ∈ N. Thus, we may choose T ′ as the basis of our gadget
and proceed as in the case of a singleton in order to get a strong witness family for
N.

6.3. The main result. We need a last definition before we can state the main
result of this paper. Let Φ be a sentence of MMSNP. We call a normal set of Φ the
normal set of the set of representations obtained from Φ as follows: First, Φ is logically
equivalent to a finite set of primitive sentences, which we can build effectively as in
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the proof of Proposition 11; second, each such primitive sentence captures precisely
a forbidden patterns problem (again, this is effective; see Theorem 12); finally, we
compute the normal set of this set of representations. The main result of this paper
is an exact characterization of the strict inclusion of MMSNP in CSP.

Theorem 51. Let Φ be a sentence of MMSNP. The problem defined by Φ is in
CSP if and only if its normal set consists of a singleton (∅, T ).

Proof. The result follows from the definition of the normal set of Φ and from
Theorems 49 and 50.

7. Concluding remarks. Building upon a previous attempt by Feder and Vardi
to provide a logical characterization of constraint satisfaction problems, we have in-
troduced a new class of combinatorial problems, the forbidden patterns problems,
and shown that they provide a combinatorial characterization of the logic MMSNP.
Furthermore, we have provided a complete classification as to when forbidden pat-
terns problems are in CSP, and there exists an effective procedure to decide whether
a given forbidden patterns problem (or problem described by a sentence of MMSNP)
is in CSP or not.

We end by describing two directions for further research. Tardif and Nešetřil [31]
have characterized duality pairs, which correspond essentially to forbidden patterns
problems with a single color (the target as only one element) that are also constraint
satisfaction problems. Their elegant proof relies on a correspondence between these
duality pairs and the notion of density (with respect to the partial order given by the
existence of a homomorphism). This correspondence exists essentially because one
can define the notion of the exponential of a structure (in graph theory, this notion
plays an important role in relation with Hedetniemi’s conjecture [29]). It turns out
that a notion of the exponential of a representation can also be defined [24]. In a
forthcoming paper, we will elaborate on this and delineate the relationship between
the two approaches.

Another direction for further research relates to the containment problem and
is as follows. A homomorphism problem is given by its template; hence, given two
homomorphism problems CSP(A) and CSP(B) over the same signature, it is decidable
whether CSP(A) ⊆ CSP (B). As a matter of fact, the containment problem for
homomorphism problems is nothing other than the uniform homomorphism problem,
known to be NP-complete (as we noted in Remark 5). We would like to extend
this result to the more general containment problem for forbidden patterns problems
(given by their representations). Indeed, Feder and Vardi proved in [15] that the
containment problem for MMSNP is decidable; hence by Theorem 13, it follows that
the containment problem for forbidden patterns problems is decidable. However, to
the best of our knowledge, nothing has been proved about the complexity of the
containment problem for MMSNP.

We know that the existence of a recoloring implies the containment of the corre-
sponding problems, and this provokes the following question: “Does the existence of
a recoloring correspond to the containment of the corresponding problems?” However,
we can answer this question negatively. Indeed, the major inconvenience of forbidden
patterns problems, in comparison with homomorphism problems, is that the inclusion
of two problems does not necessarily reduce to the question of the existence of a recol-
oring; for, in [24], an example is given where a representation is transformed into an
equivalent representation, using Feder–Vardi reductions, but such that the representa-
tions are not equivalent with respect to recolorings. However, we think that the right
notion of a morphism for representations should constitute a finite sequence of recol-



162 FLORENT MADELAINE AND IAIN A. STEWART

orings and Feder–Vardi reductions. More precisely, we believe that the following ques-
tion can be answered affirmatively: “Does the existence of a recoloring correspond to
the containment of the corresponding problems in the case of normal (connected) repre-
sentations?” In [24], a few restricted cases for which an affirmative answer to the above
question is obtained, and this leads us to propose the following conjecture (where for
any representation R, normal(R) is a normal representation equivalent to R).

Conjecture 52. Let R1 and R2 be two nontrivial connected representations.
FPP(R1) ⊆ FPP(R2) if and only if normal(R1) → normal(R2).

Acknowledgment. The first author thanks Etienne Grandjean for his continual
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[31] C. Tardif and J. Nešetřil, Duality theorems for finite structures (characterizing gaps and

good characterizations), J. Combin. Theory Ser. B, 80 (2000), pp. 80–97.




