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Abstract 

Most calculations of bedload transport in rivers, including those in numerical models of 
aggradation and degradation, are one-dimensional: all hydraulic and transport-rate 
calculations are averaged over the channel width. Because bedload transport laws are 
nonlinear, width-averaged calculations will underestimate the true bedload flux if there is any 
local spatial variation in either the bed or the flow. This paper analyses the effects on bedload 
transport capacity of spatial variation in applied (τ) and critical (τc) shear stress, separately 
and in combination. A simple but versatile statistical model is used to represent variability in 
τ, with allowance for differences between sand- and gravel-bed rivers and for below-bankfull 
flow. Bedload flux is shown to increase greatly with the variance of τ, especially in gravel-
bed rivers. Variability in τc through bed patchiness may increase, reduce, or make little 
difference to bedload flux depending on the correlation between τ and τc. Simple width 
averaging leads to severe underestimation of bedload transport in most conditions; some 
alternatives are considered. The findings have implications for sediment routing models but 
further research is needed to explore the issue fully. 

KEY WORDS:  bedload transport; sediment routing; numerical models; spatial variation; 
patchiness. 

 

Introduction 
Many rivers undergo transient or long-term aggradation or degradation because local bedload 
transport capacity does not equal supply. Sediment imbalances are sometimes the result of 
human activity affecting either capacity (e.g. flow regulation or meander rectification) or 
supply (e.g. deforestation or mine waste disposal), but can also arise naturally for such 
reasons as climate change, sea-level change, overloading from hillsides during extreme 
storms, and reduced capacity as slope declines towards base level.   

One of the ways to understand the behaviour of rivers in disequilibrium, and to predict the 
course of transient adjustment in specific circumstances, is to use a numerical sediment 
routing model (SRM hereafter). Such models compute at each of many time steps first the 
flow properties, then the transport capacity, at a series of nodes along the river. The channel 
long profile is then updated using the overall sediment continuity equation. Early SRMs 
(reviewed by Dawdy and Vanoni, 1986) represented the bed by a single grain size. This may 
be adequate for sand-bed rivers but is a severe simplification for gravel-bed rivers. In a newer 
generation of what may be called ‘fractional’ SRMs, designed for gravel-bed rivers, transport 
capacity is calculated separately for each size fraction of bed material. This allows 
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simultaneous updating of both bed elevation and bed grain size distribution at each node, the 
latter using a fractional continuity equation. Much of the impetus for developing fractional 
SRMs came from geomorphology and sedimentology, especially through attempts to 
understand the evolution of downstream-fining aggradational sequences in gravel-bed rivers 
(Parker, 1991; Hoey and Ferguson, 1994) and the rock record (Robinson and Slingerland, 
1998), but these models are now being applied to practical engineering and management 
problems of river response to disturbance (e.g. Talbot and Lapointe, 2002). Limitations in the 
accuracy of simple and fractional SRMs are therefore of potential significance to 
geomorphologists, sedimentologists, and engineers. 

Almost all SRMs are one-dimensional in the sense that they treat flow and sediment transport 
on a width-averaged basis. This simplifies the calculations, allows better temporal and spatial 
resolution with available computing power, and minimises input-data requirements. But it 
may be a weakness if lateral variability in hydraulic conditions and bedload transport rates is 
important in the real rivers to which 1-D models are applied. Flow strength may vary across a 
river because parts of the channel are deeper than others, through the retarding effect of bank 
friction, or because of flow structures inherited from upstream. Bedload transport rates will 
vary accordingly, and will also be affected by any local sorting of the bed into coarser or finer 
patches. In applications to straight, narrow canals or flumes (e.g. Cui et al., 1996) it may be 
reasonable to approximate the channel as rectangular and assume that lateral variation in 
processes is negligibly small, but this may less realistic when modelling natural river channels 
with bar-pool-riffle morphology (e.g. Hoey and Ferguson, 1994). For example, Wathen et al. 
(1995) and Powell et al. (1999) measured substantial lateral variation in bedload flux even in 
straight reaches of such channels. Failure to allow for bed patchiness or local spatial 
variability in flow strength may lead to underestimation of bedload fluxes (Paola and Seal, 
1995; Paola, 1996; Nicholas, 2000) and this could affect the results obtained by applying 
simple or fractional SRMs. The influence of lateral variability on a river's transport capacity is 
also an important consideration in the design of channelization and river-training projects. 

This paper investigates how well a 1-D treatment represents bedload transport in non-uniform 
channels. An idealised mathematical model is developed. Results obtained from it suggest 
that the total bedload flux with given mean flow and bed conditions is highly dependent on 
the degree of lateral variation around the mean conditions, and that 1-D computations can 
give extremely biased estimates of flux. Preliminary consideration is also given to possible 
ways to reduce this bias without moving completely away from a 1-D approach. 

Problem statement 
The root of the lateral-variation issue is the averaging of a nonlinear process: bedload 
transport. There are many different predictive formulae for the transport capacity q [L3L-1T-1] 
of bed material of a given diameter D under a specified fluid flow. The flow is usually 
quantified by the bed shear stress, τ. Some formulae use other flow properties, for example 
shear velocity or specific stream power, but the argument is essentially the same whichever is 
preferred and for definiteness I use shear stress below. There are many different τ-based 
bedload formulae, but they all predict that transport rate increases faster than linearly with τ, 
and is negligibly small when τ is less than some critical, quasi-threshold value τc which 
depends on D.  

Even if D, and hence τc, is the same everywhere within a channel reach, if τ varies across the 
channel the true total flux Q [L3T-1] conveyed by the river has to be obtained by integrating 
across the width w of the channel: 
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where x is lateral distance. The mean transport rate per unit width is then qav = Q/w. In 
constrast, a 1-D (width-averaged) estimate of the flux makes the assumption that qav = q(τav) 
where τav is the mean shear stress averaged across the channel. This mean stress is generally 
computed as τav = ρgRS where ρ is water density, g the acceleration of gravity, R the 
hydraulic radius (effectively the same as the mean depth in most rivers), and S the water-
surface slope. The width-averaged estimate of the total flux is 

Qa = w q(τav)  (2) 

It differs from the true flux Q given by eq.1 unless either the transport function q(τ) is linear, 
contrary to a huge mass of data, or the channel has laterally constant shear stress. With a 
nonlinear law, if τ varies across the channel the additional flux in high-τ parts of the channel 
outweighs the lower flux in low-τ parts, and the total flux Q is higher than Qa.  

Brownlie (1981) is reported as having recognised this as the likely reason why transport 
equations calibrated to flume data (laterally uniform conditions) under-predicted field 
measurements (laterally variable conditions). Paola (1996) analysed the problem in the 
context of braided rivers. By making assumptions about the spatial probability distribution of 
depth (used as a surrogate for τ) he showed the importance of confluence scour pools as 
conduits for bedload transport, and estimated that Q exceeded Qa by a factor of ~3. Nicholas 
(2000) modified Paola’s theory to allow for variable water discharge and applied it to a 
braided river in New Zealand. He showed that Qa underestimated Q by a factor of 2 to 3 at 
low flows, but much less so in large floods. 

Essentially the same argument applies to spatial variability in τc. With τ spatially uniform, but 
coarse and fine patches of bed material such that τc varies spatially, the nonlinearity of the 
transport law again means that the width-integrated bedload flux will exceed what would be 
calculated on a width-averaged basis using the mean value of τc. This was recognised by 
Paola and Seal (1995) as part of a wider discussion of the effects of bed patchiness on size 
selectivity in bedload transport. Their calculations suggested that the total flux can be several 
times greater than would be estimated using the grand-average grain size distribution. 

If both τ and τc vary spatially the situation becomes more complicated, and it is clear that 
different outcomes are possible depending on the sign and magnitude of the correlation 
between τc and τ. Random patchiness in a channel with variable τ ought to give even higher 
bedload flux than variance in just τ or just τc, but how much higher is not obvious. In the 
unlikely event of a negative correlation between τ and τc the capacity would be further 
increased. Conversely a positive correlation (which seems the likeliest scenario, since 
patchiness is usually caused by flow nonuniformity) must reduce spatial differences in 
transport rate because high-τ parts of the channel have relatively armoured beds, and low-τ 
areas have more mobile fine sediment. But it is not clear whether the effect on total bedload 
flux of lateral variation in τc will completely cancel out that of variation in τ. 

Analytical model 
These issues are investigated below using a mathematical model which has been designed to 
represent a wide range of generic circumstances, whilst being sufficiently simple that general 
analytical solutions can be derived rather than relying on numerical calculations for just a few 
scenarios. The four components of the model are a bedload transport law; a statistical model 
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for lateral variability in τ which allows different means and variances; a way of allowing for 
flow stage variation; and alternative representations of bed patchiness and thus variance in τc. 

Bedload transport function 
For definiteness in what follows a particular transport function is adopted. As in Paola (1996) 
and Nicholas (2000) the choice is the Meyer-Peter and Müller (MPM) equation, which is 
widely used as well as simple and mathematically tractable. Its performance in comparisons 
with field measurements has been uneven (Gomez and Church, 1989; Reid et al., 1996), 
perhaps according to degree of armouring, but it is no worse than some much more 
complicated functions. A different transport law would be expected to give qualitatively 
similar results.The MPM equation can be written in the form 

q = k (τ - τc)1.5  (3) 

for τ >τc, or q = 0 for lower stresses. The constant k depends on sediment density but not on 
grain size, which affects transport rate only through τc.  

In fractional SRMs different size fractions of bed material are treated separately. To achieve 
this a transport function like (3) is modified in two ways: the transport rate for each size 
fraction is assumed proportional to its availability in the bed, and the value of τc is varied 
between sizes to allow for selective transport. For simplicity the first part of the analysis 
below ignores the existence of a spread of sizes at each point in the river bed, but later on I 
introduce a distribution of τc values which can represent either intra- or inter-patch variation. 

Statistical model for spatial variation in shear stress 

Although the spatially-averaged mean shear stress τav on the bed of a river can be calculated 
from the mean depth, the local shear stress τ does not depend directly on local depth d but on 
the vertical velocity gradient near the bed. Even in straight flat-bottomed laboratory channels 
and canals there is a reduction in τ from the centreline towards the edges where velocity is 
reduced by bank friction (e.g. Knight et al., 1994). In natural channels the spatial variability 
of τ is increased by three further factors: variation in d both laterally across bars and talwegs 
and longitudinally over pools and riffles; planimetric convergence and divergence of flow, 
with consequent acceleration and deceleration, for example in braid confluences and 
diffluences; and secondary circulation, with τ higher where there is downwelling of relatively 
fast surface water than where there is upwelling of slow near-bed fluid. 

Just as τav depends on dav, so it seems likely that the variance of τ increases with that of d. 
Previous investigators (Paola, 1996; Nicholas, 2000) have therefore used depth data, which 
are readily obtainable, as a surrogate for information on spatial patterns of τ which are 
extremely hard to measure. It is recognised that some areas (e.g. riffles and bar heads) may 
have low d but high τ, and other areas the reverse (e.g. in the lee of bars), partly because of 
local differences in water-surface slope. This was well demonstrated by Lisle et al. (2000) 
using a quasi-3-D flow model to estimate the spatial pattern of τ in several gravel-bed reaches 
with alternate bars. Field measurements by Bathurst et al. (1979) in gravel-bed meander 
bends also show that maximum τ need not coincide spatially with maximum d. But both 
studies showed a positive correlation between d and τ, and as Nicholas (2000) pointed out, 
local deviations from τ ∝ d tend to cancel out so that the frequency distributions of τ and d are 
similar. 

Paola (1996) and Nicholas (2000) represented the spatial variability of d by the two-parameter 
gamma distribution, which is versatile and gave good fits to the braided-river data they were 
considering. They found, however, that the shape parameter of the distribution varied 
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systematically with flow level so that the distribution ought to be re-fitted for every flow level 
of interest. I have preferred to think in terms of a probability distribution of τ itself, and have 
developed a new model which makes it easier to consider the effects of change in flow level 
and is more amenable to an analytical treatment. 

The starting point is a probability distribution for the spatial distribution of shear stress during 
bankfull flow, denoted hereafter by τb. An assumption about how the distribution alters as 
stage falls is added later. The bankfull distribution is represented by a compound rectangular 
distribution with two parameters, one fixing the mean and the other the variance of τb. Shear 
stress is assumed to be below its mean value a in a proportion b of the total channel width 
(0 < b < 1), and to vary randomly (i.e. follow a uniform or rectangular distribution) between 0 
and a within that part of the channel. Shear stress is above average in the remaining 
proportion 1-b of the width, and is assumed to vary randomly between a and a maximum 
which has to be a/(1-b) in order that the overall mean stress is a. Thus the probability density 
function of τb is 
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The variance of τb in this model can be found to be a2b/3(1-b), so the coefficient of variation 
(standard deviation divided by mean) in percentage form is 
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This increases monotonically with b, which is therefore an index of spatial variability in 
bankfull shear stress. For example, the cv is 0, 29%, 58%, or 115% for b = 0, 0.2, 0.5, or 0.8. 

Figure 1 illustrates this distribution model in two different ways. Figure 1a shows cumulative 
distributions of τb for selected values of b. The distributions have a dog-leg shape with two 
linear segments, except for b = 0.5 when they have the same slope and there is a single 
uniform distribution of τb between 0 and 2a. As b increases so does the maximum shear 
stress, from 25% above the mean for b = 0.2 to twice the mean for b = 0.5 and five times for b 
= 0.8. Figure 1b represents these distributions as asymmetric channel cross sections which 
would give the same distributions if τb varied exactly as local depth. When the model is 
visualised in this way the parameter b is an index of channel shape: progressively closer to 
rectangular as b→0, but progressively non-rectangular as b→1 and the contrast grows 
between extensive shallow, low-τ areas and a narrow, deep, high-τ talweg. Low values of b 
correspond to flume- or canal-like conditions, with a wide area in which τb slightly exceeds 
the mean and a small area with much lower stress (e.g. near the banks). Higher values of b 
represent the much less uniform conditions associated with unconstrained natural planforms, 
with extensive areas of below-average τ (e.g. bar tops and margins, backwaters) and local 
areas of much higher τ (e.g. meander pools, braid confluences, and other talwegs). 

There appear to be no published data with which to check how representative this model is of 
natural rivers. However, two lines of evidence suggest it is not unrealistic. First, many of the 
depth distributions shown by Mosley (1982, 1983) and Nicholas (2000) have the dogleg 
character shown in Figure 1a. Also, in ongoing research I and colleagues are analysing 
acoustic doppler profiles of velocity at near-bankfull discharge in Fraser River, Canada. 
Distributions of shear stress estimated by fitting the law of the wall to the depth-averaged 

Ferguson2003Geomorphology.doc  page 5 



mean velocity, and also distributions of water depth, are fitted at least as well on average by 
the b-model as by a two-parameter gamma distribution. Values of b, estimated by matching 
moments, range from ~0.4 to ~0.7.  

Allowance for sub-bankfull flow 
The compound-rectangular statistical model just described is for the spatial distribution of 
shear stress at bankfull discharge. As discharge falls below bankfull, τ is expected to become 
lower everywhere in the channel, and to vanish in areas which become dry. The mean shear 
stress declines in direct proportion to the mean depth, and it seems reasonable in a generic 
model to suppose that the entire distribution of τ can be shifted. Thus it is assumed that the 
stress distribution continues to follow (4), but with τb replaced by 

τ = τb – fa   (6) 

where f is the fractional reduction in mean τ (and also mean depth) below its bankfull value. 
Note that this does not represent an assumption that the distribution retains the same shape at 
lower stages. Rather, for values f <1 a fraction fb of the width is now dry so that the 
distribution is progressively truncated from one end, becoming a single rectangular 
distribution for f >1. This treatment would be exactly correct if local shear stress was 
proportional to local depth.  

The relationship between f and water discharge can be established using Manning’s equation 
with constant values of n and slope. Eq. 6 then implies that the ratio R of water discharge at 
stage f to water discharge at bankfull is 

R = (1 - fb)(1 - f + f 2b/2)5/3   (7) 

This depends far more on f than on b, in a slightly nonlinear manner. Values of f = 0.4 and 0.8 
are used for illustrative purposes below; they correspond to discharges ~60% and ~90% 
below bankfull respectively. 

Representation of threshold for transport 

The simplest assumption about the critical shear stress τc is that it is the same everywhere in 
the channel. This case is considered first, but is relaxed later on. To keep the model 
nondimensional the constant value is specified as a fraction c of the mean bankfull shear 
stress; that is,  

τc = ca     (8) 

In alternative scenarios which allow for bed patchiness the mean value of τc continues to 
follow (8). Values of c are assumed to lie between 0 and 1 in the subsequent analysis, so that 
in bankfull conditions all areas with above-average shear stress experience some bedload 
transport as do some areas of lower τ to the extent that c <1.  

The ratio 1/c = τav/τc is a dimensionless transport stage in bankfull conditions. In gravel-bed 
rivers it has a typical value of 1.2-1.4 (e.g. Parker, 1978; Andrews, 1984; Paola, 1996), 
implying c ≈ 0.7-0.8. A value of 0.8 is used below as typical of gravel-bed rivers in the 
bankfull or near-bankfull conditions at which most bedload is conveyed. With increasing 
amounts of sand in the bed the value of c falls, tending to zero in large sand-bed rivers.  

Analysing the effect of lateral variation in τc requires making assumptions about the nature of 
spatial variability in grain size, and in particular to what extent it is correlated with shear 
stress. Field evidence on this is virtually nonexistent. Limited data do exist on the correlation 
of grain size and depth (e.g. Mosley, 1982, 1983; Seal and Paola, 1995), but no clear 
generalisations have emerged. Two limiting scenarios are therefore considered below: purely 
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random patchiness, and perfect fining upwards as in classical models of meander point bars. 
These cases correspond to correlations of 0 and 1 between τc and τb.  

Results 
I describe the implications of my model in stages, starting with the effect of lateral variation 
in shear stress on total bedload flux in channels with uniform beds and then moving on to the 
effect of bed patchiness.  

The effects are quantified using a general analytical solution for the width-integrated bedload 
flux in a channel with spatially variable τ and/or τc. This involves integrating the MPM 
equation (eq.3) across the channel. The distribution of τ-τc is given by eq. 4 with τb replaced 
by τb – (c+f)a (from eqs. 6 and 8). Then Q = w qav with the mean transport rate obtained as  

∫= max
0

5.1 )(y
av dyypykq  

where y denotes τ-τc and ymax = a/(1-b) – (c+f)a. For the case c + f <1 this integration yields 
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The first term inside the curly brackets quantifies the flux in parts of the channel which have 
below-average τ in bankfull conditions; the other two terms relate to areas of higher τ. If c+f 
>1, as can happen in gravel-bed rivers at sub-bankfull discharge, the first and third terms 
disappear. As b →0 eq. 9 converges on the width-averaged estimate of bedload flux, which is 
given as in eq. 2 by 

Qa = kw(τav - τc)1.5  =  kwa1.5(1 - c - f)1.5    (10) 

if c + f <1, or zero for higher values of c + f. 

According to the model, then, the total bedload flux in a river depends on the channel width w 
and mean bankfull shear stress a; the transport-rate coefficient k in the MPM equation; and 
the dimensionless parameters which characterise stress variance or channel shape (b), critical 
shear stress (c), and flow reduction below bankfull (f). The dimensional variables w, a and 
constant k determine the absolute levels of bedload flux, irrespective of channel character, and 
can be fixed when investigating the effects of b, c, f. For illustrative purposes below I set 
kwa1.5 = 1, so that all results are normalised relative to the bedload conveyance of bankfull 
flow in a sand-bed canal (eq.10 with c = f = 0). 

Effect of shear stress variance on bedload flux 
The width-integrated flux Q in a channel with no patchiness is plotted in Figure 2 as a 
function of the stress-variance index b. Although Q depends on both c and f as well as b, these 
parameters do not have unique effects since they occur only in the combination c+f. The full 
range of conditions is therefore covered by plotting curves of Q for different values of c+f, 
each of which could be made up of different combinations of c and f. 

Figure 2 shows that, whatever the value of c+f, Q increases considerably with b. The bedload 
conveyance is greater under non-uniform flow because the increase in specific flux q in parts 
of the channel with above-average shear stress is bigger than the decrease in q in parts with 
below-average stress. For bankfull sand-bed conditions (c+f = 0) the total flux Q increases by 
only about 40% from b = 0 to 0.8, but for bankfull gravel-bed conditions (c+f = 0.8) it 
increases by a factor of 8. The mid-range value b = 0.5 of the channel-shape or stress-variance 
index gives about a threefold increase in bedload conveyance compared to a uniform channel, 
which is about the same as Paola (1996) and Nicholas (2000) calculated for specific gravel-
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bed situations. The curve for c+f = 0.8 also describes a sand-bed river at low flow. When c+f  
>1, which corresponds to a gravel-bed river at below-bankfull flow, there is no bedload 
transport in near-uniform channels (b close to 0) because τ < τc everywhere, but in channels 
with higher b there is transport in the parts of the channel with highest τ so that the flux 
increases rapidly with b. The value of c+f makes rather less difference in high-b channels than 
in those which are more rectangular.  

Lateral variability in shear stress therefore makes a big difference to bedload transport 
capacity, but one which varies according to the precise conditions. The finding that the 
difference between Q and Qa depends on both flow stage and cross-section geometry is 
consistent with the calculations of Nicholas (2000) for specific field sites in New Zealand. It 
is noteworthy that the flux in a highly non-uniform gravel-bed channel can attain ~80% of 
that in a uniform sand-bed channel of the same width and mean τ, despite the much greater 
value of τc for gravel than sand.  

Eq.9 may also be used to assess the flow level at which significant bedload transport 
commences in channels with different degrees of lateral variation in τ. Figure 2 indicates that 
Q increases with increasing b for given c+f, and with decreasing c+f for given b. This implies 
that, for a given value of c (i.e. of  τav/τc), as the channel becomes less uniform (higher b) a 
given flux can be conveyed by a lower flow (higher f). To illustrate this, let ‘significant’ 
transport be defined as 10% of the flux conveyed at bankfull discharge in a channel with the 
same values of τav and τc but no variability in τ. For a sand-bed river (c = 0) significant 
transport begins at f ≈ 0.7 (~15% of bankfull discharge) for b = 0, but at progressively lower 
levels (f ≈ 0.9, 1.3, and >3) as b increases from 0.2 through 0.5 to 0.8. In a gravel-bed river (c 
= 0.8) significant transport requires near-bankfull flow (f ≈ 0.1) for b = 0, but again occurs at 
progressively lower levels (f ≈ 0.4, 0.5, >3) for b = 0.2, 0.5, and 0.8. The same total flux Q is 
conveyed in less and less width through an increase in the intensity of transport. This accords 
with the observation that in irregular natural channels, bedload continues to move at 
discharges well below bankfull.     

Effects of bed sorting and patchiness on bedload flux 

The results in Figure 2 are for channels with constant τc, implying spatially uniform grain 
size. For sand-bed rivers this may be a reasonable assumption if bedforms are fairly uniform, 
but the more diverse bed material in gravel-bed rivers is often sorted spatially into coarser or 
finer patches. There is also a size distribution at each point, with lower τc for the fine fractions 
than the coarse ones. 

The effects of intra-patch variation in τc, and of inter-patch variation that is spatially random, 
can be represented in my analysis by averaging solutions to eq.9 across a distribution of 
values of c. For illustrative purposes I have used an approximately normal distribution of 
values: c-2e, c-e, c, c+e, c+2e with weights 0.1, 0.2, 0.4, 0.2, 0.1 respectively. With e = 0 this 
reduces to eq.9; higher values of e, up to the limit e = c/2, represent more poorly-sorted 
sediment at a point and/or a greater degree of random patchiness across the channel. 

Figure 3 shows the results of this calculation for bankfull or near-bankfull flow in gravel-bed 
rivers (c = 0.8). Two curves are shown, one for e = 0.2 which implies that τc varies by +50% 
around its mean value and the other for e = 0.4 which implies the maximum possible variation 
of +100% in τc. In both cases the bedload conveyance of the channel is increased over that for 
uniform τc and the same variance in τ as indexed by b. The reduction in flux over coarser 
patches (or in the coarse tail of the size distribution at a point) is less than the increase in flux 
over finer patches (or in the fine tail of the distribution). The increase is greater for higher e, 
as expected, and is substantial in fairly uniform flow conditions (low values of b). In the 
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limiting case b = 0 the bedload conveyance is higher by a factor of ~1.5 for e = 0.2 and ~2.5 
for e = 0.4. But as b increases, the effect of bed variability becomes less and less important 
compared to the effect of flow variability, so that by b = 0.8 the increase in conveyance is 
only a few percent even for e = 0.4. It should be noted that 'increase' is used here relative to  
the true flux for the given degree of hydraulic variability (Q in Figure 3), not the width-
averaged estimate of the flux calculated using a single grain size (Qa). Figure 3 shows that Qa 
is always considerably lower than the true flux in a channel with random patches and/or 
grain-size distribution. 

Random patchiness is one end-member in the likely range of scenarios with different degrees 
of positive correlation between τ and τc. The other extreme, with a correlation of +1 instead of 
0, is perfect fining upwards of the kind predicted in the classical meander point-bar model in 
which both shear stress and grain size decrease systematically from the outer-bank pool to the 
top of the inner-bank point bar. This scenario can be represented in the present model by 
assuming that τc = cτ at all points, thus increasing from 0 to a maximum of ac/(1-b) while 
retaining the same mean value ca as in other scenarios. It follows that τ - τc = τb(1-c)–fa. The 
bedload conveyance of a channel with perfect fining upwards can therefore be calculated 
using eq.9 with the parameters a, c, f replaced by a' =a(1-c), c' =0, and f' =f/(1-c). 

Figure 3 shows that this scenario gives a very different result from random patchiness. The 
conveyance of the channel is drastically reduced, and varies much less with stress variance 
than in the no-patch or random-patch cases. It is therefore much closer to the width-averaged 
estimate Qa than in other scenarios. The physical explanation for this is that high-stress parts 
of the channel are armoured by coarse bed material. The reduction in flux in these areas far 
outweighs the gain in flux in low-stress areas with a fine bed. Put another way, the variance of 
the excess stress τ-τc is greatly reduced and so therefore is the bias in the width-averaged 
estimate of total conveyance.  

The range of possibilities between these two end-member scenarios is evidently very wide. A 
simple or weighted average of the random and fining-upwards cases would give a higher 
bedload flux than with no patches in near-uniform flow conditions (low b in Figure 3), but 
lower than with no patches in more variable flow conditions (high b). Calculations for 
scenarios with less-than-perfect fining upwards, or with a quasi-random range of below-
average values of τc where τ is below average and a range of above-average values of τc 
where τ is above average, yield a wide variety of curves depending on the precise 
assumptions. It seems safe to say that bedload conveyance in situations where both τ and τc 
vary spatially in a partly-correlated way will be higher than a width-averaged calculation 
would suggest; but by how much, and whether by as much as in the no-patch model, will 
depend on the circumstances.  

Alternatives to simple width-averaged estimation of bedload flux 
Researchers modelling downstream fining using fractional SRMs have generally treated 
channel cross-sections as rectangular, and used a single shear stress value and bed grain-size 
distribution (Hoey and Ferguson, 1994; Cui et al., 1996; Ferguson et al., 2001; Talbot and 
Lapointe, 2002). The width-averaged calculation is then on the lines of (10) above (Qa, the 
special case b = 0 of the general model) except that fluxes are calculated separately for each 
size fraction of the bed. Clearly there will be some underestimation of total flux (and also 
competence) if in reality the channel has above-average shear stress in some places. The bias 
is likely to be greatest in relatively wide sections where the mean stress estimated from the 
depth-slope product is low but there is substantial transport in one or more narrow talwegs. 
Ferguson et al. (2001) found that agreement between observed and simulated downstream 
fining and aggradation rate was better on the whole when the same width was used for every 
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section, on the argument that only part of a wide section is hydraulically effective. But the 
present model may be helpful in checking the merits of more sophisticated alternatives to 
simple width-averaging over the measured bankfull width.   

Non-fractional SRM applications have often used the actual channel cross-section at each 
node, calculated the water surface elevation and the corresponding wetted width, then applied 
the width-averaged transport calculation only over the wetted width. This makes no difference 
in bankfull conditions, but should be a step in the right direction when estimating bedload 
transport at lower stages. It can be treated analytically using the model of Figure 1, and yields 
a flux estimator 
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This reduces to (10) when f = 0. For f >0 it is a function of c and f separately, so cannot be 
plotted as a function only of b and c+f as in Figures 2 and 3. It gives a higher estimate than 
Qa, increasingly so for higher values of b. For gravel-bed conditions it always falls well short 
of the true flux as calculated using eq.9, but for sand-bed conditions it comes closer.  

It has been observed several times that bedload transport in braided gravel-bed rivers is 
concentrated in confluences and other talwegs, sometimes to the extent that transport 
elsewhere is negligibly small in comparison (Mosley, 1982; Carson and Griffiths, 1987; 
Paola, 1996). Transport in meandering channels is also concentrated in high-τ areas, not 
always in the deepest part of the pool because of the delayed crossover of flow, but at least 
near the talweg on the margin of the point bar (e.g. Dietrich and Smith, 1984). This suggests 
there may be merit in making use of the maximum depth, as well as the mean depth, in the 
calculation of τav for use in a width-averaged treatment of bedload flux. Talbot and Lapointe 
(2002), in an application of Hoey and Ferguson’s (1994) model, experimented with estimating 
shear stress from mean depth, maximum depth, or an average of these two, and found that the 
average of the two gave the best results. The equivalent in the present context is to use the 
mean of τav and τmax in the 1-D calculation. For c+f <1 this turns out to overestimate the true 
flux Q progressively with higher b. For c+f >1 it predicts zero flux for low b, underestimates 
Q for intermediate b, and overestimates for high b.  

Another possibility which turns out to work better is to ignore completely the shallow, low-τ 
parts of the channel and do a width-averaged calculation over the deeper areas only. Nicholas 
(2000) describes one such procedure that was developed by engineers in New Zealand. In the 
present model an obvious way to do such a calculation is to consider only the proportion 1-b 
of the width in which τ > τav. This gives an estimator 
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For b = 0 this reduces to the standard width-averaged estimator Q0, but for non-rectangular 
channels it gives a higher estimate than Qa for all but very low values of c+f.  

Figure 4 compares the simple (Qa, eq.10), wetted-width (Qw, eq.11), and deep-areas-only (Qd, 
eq.12) width-averaged estimators of bedload flux with the exact width-integrated flux (Q, 
eq.9) for different degrees of variability in τ as indexed by b. The plot shows fluxes for c = f = 
0, which represents a sand-bed river at bankfull discharge, and c+f = 0.8 which represents 
either a gravel-bed river at bankfull flow (c = 0.8, f = 0) or a sandier river at lower flow 
(c = 0.4 and f = 0.4, or c = 0 and f = 0.8). In all cases the width-averaged estimators under-
predict the actual flux for all non-rectangular channels (b >0), but there are clear differences 
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in the amount of bias both between methods and according to parameter values in the model. 
Qw increases with b for below-bankfull flows, so is more accurate than Qa which ignores the 
effect of channel shape. The degree to which Qw underestimates the true flux is less for higher 
reductions in flow level (compare the curves for c = 0.4, f = 0.4 and c = 0, f = 0.8). However, 
in all circumstances with f >0 Qd is higher than Qw and is closer to the exact flux Q, while still 
underestimating it. The one circumstance in which Qd is not the best of the estimators 
compared here is c+f <0.2, i.e. a sand-bed river at or close to bankfull level. As seen in the top 
part of Figure 4, in these conditions Qd dips slightly below Qa for intermediate shape factors, 
though neither estimator is seriously in error. 

For all gravel-bed cases, therefore, and also for sand-bed rivers below bankfull, it appears that 
ignoring the parts of the channel with low shear stress gives a more accurate indication of true 
bedload flux than does averaging over the bankfull width or the actual wetted width at the 
given discharge. This finding has implications for operational computations using SRMs. 

Which width-averaged estimator of bedload flux performs best on a patchy bed depends on 
the degree of correlation between the spatial variation in applied shear stress and that in 
critical shear stress. For random or near-random patchiness, it is clear from a comparison of 
Figures 3 and 4 that the deeper-areas average Qd remains much less biased than the bankfull 
or wetted-width averages Qa and Qw. However, in a channel with strong fining upwards, Qd 
will overestimate and Qw may get closer to the true flux. 

Discussion and conclusions 
Because bedload transport rate varies nonlinearly with excess shear stress τ-τc, the total 
bedload flux in a river depends not only on the mean values of τ and τc but also on their 
spatial variances within the domain of the calculation. The existence of spatial variation in 
flux has obvious implications for the design of bedload sampling programmes, but attention is 
restricted here to the implications for numerical calculations using bedload formulae. In some 
applications the calculation may be for a single cross section and only lateral variation 
matters, but in sediment routing models applied to long stretches of river the effective domain 
of the bedload calculation for section i is the channel area extending from midway between 
sections i-1 and i to midway between i and i+1. Local longitudinal variability, for example 
between pools and riffles, may then become relevant.  

Other things being equal, greater variability in either τ or τc leads to greater flux. But although 
the existence of this effect is undeniable, its magnitude is uncertain. There is virtually no 
empirical evidence; to the best of my knowledge nobody has measured bedload flux in either 
natural channels or flumes with the same mean values of τ and τc but different variances, and 
indeed there is very little data of any kind on within-channel variation in τ. In the absence of 
experimental data one has to fall back on calculations. Paola (1996) and Nicholas (2000) did 
so using general models fitted to specific flume experiments and field sites respectively, and 
using flow depth as an imperfect surrogate for shear stress. But to arrive at a wider assessment 
of the phenomenon one must either amass more and more such case studies, covering a wide 
range of conditions, or resort to a purely theoretical approach in which parameters indexing 
the amount and nature of spatial variability in τ and τc are varied while other river properties 
are kept constant. The latter approach has been taken here.  

By devising a model with a general analytical solution I have been able to investigate how 
total bedload flux depends on four key aspects of channel configuration: the degree of lateral 
variation in τ, represented by the parameter b in the model; the extent to which mean τc 

approaches mean τ, represented by c; the reduction in flow stage below bankfull, represented 
by f; and the nature and degree of bed patchiness, which determine the lateral variance of τc. 
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In turn, this allows an evaluation of the performance of width-averaged estimators of bedload 
flux as used in 1-D sediment routing models. There are three main conclusions.  

(1) With all else equal, bedload flux increases with the variance of τ. The effect is 
progressively stronger as c+f increases, which corresponds to moving from sand-bed rivers at 
bankfull flow to lower flows in sand-bed rivers, then bankfull flows in gravel-bed rivers, and 
finally lower flows in gravel-bed rivers. In the gravel-bed cases there can be at least a 5-fold 
difference in flux according to the variance of τ. This result is not surprising. The root of the 
phenomenon is the nonlinearity of the bedload transport law, and this is greatest when τ ≈ τc 
so that a small increase in τ makes the difference between no transport and some, or a low rate 
and a much higher rate. In terms of geometry rather than flow, a cross-section with one or 
more deep talwegs will have locally high transport rates per unit width, and this will have 
most effect on the total bedload conveyance when there is little or no transport over the rest of 
the width.      

(2) The effect of bed patchiness depends less on the variance of τc than on the degree of 
correlation between τc and τ. Random patchiness increases bedload flux, especially in 
channels without much lateral variation in τ where the flux may be doubled if there is a high 
degree of random variability; in more variable hydraulic conditions the effect is relatively 
small. In contrast, perfect fining upwards of bed material (and its corollary, armouring of 
talwegs) reduces bedload flux, more so in channels where there is substantial variation in τ. 
Real-world situations will fall somewhere between these end-member scenarios. In most 
situations this probably means the river will convey less bedload than it would without 
patches, but in near-uniform hydraulic conditions the opposite might apply. The limited field 
evidence in the literature (Mosley, 1982, 1983; Seal and Paola, 1995) suggests correlations 
between bed grain size and flow depth are weak, but these studies were all for braided rivers 
and may not generalise to other morphologies. There is a need for further field research on 
this issue. 

(3) Simple width-averaging over the full channel width severely underestimates bedload flux 
in channels with substantial lateral variation in τ, except when it is accompanied by a 
matching variation in τc on the lines of the classic point-bar fining-upwards model. Averaging 
only over the wetted width helps when flow is below the bankfull level, but merely reduces 
the degree of underestimation; estimates remain biased downwards to an appreciable extent. 
Averaging only over parts of the channel with above-average depth or τ does better than 
either of the more obvious approaches in almost all circumstances. 

Conclusions 1 and 2 are consistent with the results of Paola (1996) and Nicholas (2000), but 
qualify and extend them. Paola used a different, though equally general, analytical model 
which did not allow for variation in flow level. Since he only fitted his model to one data set 
(the braided-stream flume experiments of Ashmore, 1985) he was unable to generalise about 
the extent to which τ variance inflates bedload flux, though he proposed a factor of ~3 for 
Ashmore’s data. The present analysis is very much in the spirit of Paola’s work but the results 
show that lateral variation does not increase bedload conveyance by any fixed factor; it 
depends on all four aspects of the channel configuration that were identified above. Nicholas 
(2000) allowed for sub-bankfull flows but this necessitated re-fitting his statistical model for 
each water discharge of interest. His main conclusions were that higher variance of τ allowed 
significant bedload transport to begin at a lower water discharge and gave a higher flux than 
for a rectangular section at the same water discharge, but with progressive convergence of 
fluxes at extremely high flow levels. All three findings are supported by the present analysis, 
but with the qualification that the effects would be less pronounced for sand-bed rivers than 
for gravel-bed channels such as the one Nicholas was studying.         
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Conclusion 3 has implications for developers or users of both simple and fractional sediment 
routing models. The present analysis did not extend to fractional transport calculations, 
though work is in progress on this using numerical simulations rather than an analytical 
model. Preliminary results (Louise Sime, personal communication, 2002) suggest the effects 
on flux are qualitatively the same as in the single-size analysis: it increases with variability in 
τ, and may either increase or decrease with bed patchiness depending on the correlation with 
τ. This implies that standard 1-D calculations will tend to underestimate bedload flux. 
Underestimation by a constant factor would not be a great problem, since it would affect only 
the pace of aggradation or degradation and not the longitudinal pattern of change in bed 
elevation or of associated surface fining or coarsening. Moreover, in longer-term studies of 
downstream fining (e.g. Hoey and Ferguson, 1994; Robinson and Slingerland, 1998) the 
timescale of development may not be known precisely and the main interest is in spatial 
patterns. But the lateral variance of τ is likely to alter from section to section in most rivers, in 
which case patterns of aggradation/degradation could be mis-represented by width-averaged 
computations. The effects of spatial variability in τ and τc on the size selectivity of bedload 
transport also need to be investigated. Paola and Seal (1995) showed theoretically that bed 
patchiness can enhance size selectivity, but hydraulic variability could have the opposite 
effect since locally high shear stresses will maintain coarser sediment in transport than would 
be the case in a rectangular channel.  

There is obvious scope for investigating how the output from 1-D SRMs is affected by using 
alternatives to simple width-averaged transport calculations, and whether the changes are 
beneficial. In effect what is needed is a way of allowing for what in a 1-D model is sub-grid-
scale spatial variation in τ and τc. The present, single-size, analysis suggests that a width-
averaged transport calculation which ignores all parts of the channel that are shallower than 
the mean bankfull depth gives a good approximation to the true width-integrated bedload flux 
in most circumstances. It remains to be discovered whether it still does when applied to a 
local grain size distribution, as required in a fractional SRM, and whether the bedload size 
distribution is then simulated sufficiently well to give acceptable accuracy in predictions of 
surface fining or coarsening. There are also operational details to consider about just how 
such an approach would be implemented, including how to update the bed elevations defining 
the cross-section: is aggradation/degradation evenly distributed, or concentrated in the 
talweg? Likewise, how is patchiness to be updated without a fully 2-D model? Yet again 
further research is needed. Here as throughout, questions of whether and how to allow for 
lateral variability are seen to be central to a better understanding of the imperfections of 1-D 
sediment routing models. 
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