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Abstract

We modify the first ISS model [1] by gauging a diagonal flavour symmetry. We add ad-
ditional multiplets transforming as fundamentals and anti-fundamentals under the gauged
flavour group. Their number is chosen such that the microscopic theory is asymptotically
free whereas in the Seiberg dual (w.r.t. the colour group) it changes to an infrared free
theory. Non perturbative effects within the flavour group can correct the location of the
supersymmetric vacuum. Statements about meta-stability of the susy breaking vacuum
would require a two loop calculation. For general couplings, the question whether gauging
flavour destabilises susy breaking remains open.
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1 Introduction

The idea of meta-stable susy breaking [2] has recently been realised in appealingly simple
models [1]. The underlying microscopic theory can be as simple as supersymmetric QCD
with a quadratic superpotential. There is a point in the field space of the theory where
a dual macroscopic description is in its perturbative regime and only susy breaking vacua
exist. The susy breaking scale is a function of a dynamically generated scale and a tree level
mass. At another point in moduli space the macroscopic theory is strongly coupled at the
susy breaking scale. Due to non perturbative corrections a supersymmetric vacuum exists
at that point. The tunnelling from the susy breaking to the susy preserving vacuum is,
however, highly suppressed and the mechanism is stable enough for all practical purposes.
The authors of [1] indicate that they would like to use their mechanism for direct mediation
of susy breaking.

In principle, one could also try to use it for breaking susy in a hidden sector and
mediate the breaking to the visible sector by one of the known mechanisms. Indeed, such
constructions have been put forward in [3]. In the present note, we investigate as a toy
model for this possibility a simple modification of [1], where the flavour group is gauged.
In order to avoid strong gauge couplings at the susy breaking point in field space we have
to add some colour singlets transforming non trivially under flavour. In the non super
symmetric vacuum there are fields which remain massless after one loop corrections.

The moduli space of supersymmetric vacua within this theory is not completely un-
derstood. With a certain amount of fine tuning on the flavour coupling we can keep non
perturbative corrections due to gauged flavour small at the susy breaking scale and com-
pute first order corrections of such effects to the location of the supersymmetric vacuum.
The first order correction can move the supersymmetric vacuum towards the non super-
symmetric one. Our calculation is only valid if these corrections are small. This is indeed
the case and hence the calculation is self consistent.

In the next section we review the model [1]. In section three we gauge the flavour
symmetry and add colour singlets transforming as fundamentals and anti-fundamentals
under the flavour group. We complete the electric-magnetic dictionary for this case. In
section four we discuss meta-stable susy breaking for the modified model. There are mass
squareds which could become negative at a two loop level. We compute corrections to
the location of the supersymmetric vacuum due to non perturbative effects in the gauged
flavour sector, in an approximation where these corrections are necessarily small. Finally,
we provide some concluding remarks. In spirit, the discussed model is similar to [4] where
gauged flavour has been considered in the context of quiver theories.

2 The ISS model

Several models for meta-stable supersymmetry breaking have recently been presented in [1],
and subsequently in [3–11]. Here, the focus will be on the first model in [1] which we briefly
review in the following. The model has two dual descriptions: One, the microscopic model,
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is appropriate for calculations in the ultraviolet region, since it is asymptotically free, and
has no further non renormalisable couplings. The dual description, or the macroscopic
model, is infrared free, and hence the adequate choice for investigating phenomena at
lower energy. In the macroscopic model, supersymmetry breaking occurs at lower energies,
where the perturbative description is reliable.

The microscopic model is an SU(Nc) gauge theory with Nf fundamentals, combined
into an Nf ×Nc matrix Q, and anti-fundamentals, written into an Nc ×Nf matrix Q̃, with

Nc + 1 ≤ Nf <
3

2
Nc. (1)

There is a tree level potential1

W = mTr
(

QQ̃
)

(2)

breaking the global SU(Nf) × SU(Nf ) flavour symmetry to its diagonal subgroup.
The Seiberg dual [12] (for reviews see e.g. [13–15]) of this theory has gauge group

SU(N) with
N = Nf − Nc, (3)

Nf quarks ϕ, Nf anti-quarks ϕ̃ and singlets Φ transforming as an adjoint plus singlet under
the diagonal flavour. The superpotential is

W = hTr (ϕ̃Φϕ) − hµ2TrΦ. (4)

The dictionary for the couplings and parameters reads [1]

Λ̂Nf = Λ
3Nc−Nf
c Λ̃

3N−Nf
c (−1)N , (5)

ϕ = q, ϕ̃ = q̃, h =

√
αΛc

Λ̂
, µ2 = −mΛ̂, (6)

Φ =
QQ̃√
αΛc

, (7)

where Λc and Λ̃c are the scales at which the colour couplings of the microscopic and
macroscopic theory diverge, respectively. The scale Λ̂ is an additional scale appearing in
the dual theory. Q, Q̃ are related to q, q̃ by Hodge duality on the baryons as in [13]. The
factor in (7) appears due to a rescaling giving Φ mass dimension one and removing an
order one factor α from the Kähler potential [1]. This will be of some importance in the
next section.

The major observation of [1] is the existence of a meta-stable non supersymmetric
vacuum in the perturbative regime of the macroscopic model,

Φ = 0 , ϕT = ϕ̃ =
(

11N , 0Nf−N

)

. (8)

1We do not introduce a general mass matrix breaking this symmetry completely, since later we want
to consider a model where the unbroken diagonal subgroup is gauged.
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In this vacuum, some fields have tree level masses of the order |hµ|. In particular TrNΦ
is classically massive, where the index N indicates that the trace is taken over the first N
diagonal entries. Other fields, the pseudo moduli, become massive at one loop of pertur-
bation theory. The Goldstone bosons of broken global symmetries remain massless.

In the supersymmetric vacuum, all matter fields are massive and Φ has the expectation
value

Φ =
Λ̃c

h

(

µ

Λ̃c

)
2N

Nf−N

11Nf
. (9)

Translated to the microscopic theory, this corresponds to

QQ̃ = m2

(

Λc

m

)

3Nc−Nf

Nc

11Nf
. (10)

At the supersymmetry breaking vacuum this VEV is zero. So, if the quark masses are well
below the strong coupling scale of the microscopic theory, the susy breaking vacuum and
the supersymmetric vacuum are well separated. This way, the tunnelling probability to
the supersymmetric vacuum can be suppressed parametrically.

3 Dualising Colour with Gauged Flavour Watching

We modify the microscopic model of the previous section by gauging the diagonal flavour
group SU(Nf ) and add colour singlets transforming under the fundamental and anti-
fundamental representation of SU(Nf ). We add k of such pairs, with

Nf + Nc < k < 3Nf − Nc. (11)

(Note that k > 3/2Nf is implied by (1).) So, altogether we have gauge group

SU (Nc) × SU (Nf ) , (12)

and

• one chiral multiplet, Q, in the
(

Nc, Nf

)

,

• one chiral multiplet, Q̃, in the
(

N c, Nf

)

,

• k chiral multiplets, ρ, in the (1, Nf),

• k chiral multiplets, ρ̃, in the
(

1, Nf

)

.

The one loop beta function coefficient of the flavour coupling is greater than zero, and
hence the microscopic theory is well defined in the UV region. For the tree level potential
we take

W = mTr
(

QQ̃
)

+ σTr (ρρ̃) , (13)
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where the mass sigma is taken to be far below the susy breaking scale, in order to ensure
that these degrees of freedom contribute to the running coupling at and above the susy
breaking scale. We assume2

Λf < Λc, (14)

where Λf is the scale at which the flavour coupling diverges. In the region where the flavour
coupling is still small whereas the colour coupling becomes large, we replace the theory by
an equivalent formulation. The dual theory is obtained by performing the same duality as
in the previous section on the colour group. One obtains a theory with dual gauge group

SU(N = Nf − Nc) × SU(Nf ). (15)

The dual spectrum consists of

• one chiral multiplet, ϕ, in the
(

N, Nf

)

,

• one chiral multiplet, ϕ̃, in the
(

N, Nf

)

,

• k chiral multiplets, ρ, in the (1, Nf),

• k chiral multiplets, ρ̃, in the
(

1, Nf

)

,

• one chiral multiplet Φ in the (1, 1) +
(

1, N2
f − 1

)

.

As before, the one loop beta function coefficient of the colour group is negative. If k
satisfies (11), the one loop beta function coefficient of the flavour group is less than zero.
Hence, the flavour group stays in its perturbative regime as long as none of the flavour
charged matter becomes massive.

Next, we need to identify the scale Λ̃f , at which the dual flavour coupling becomes
large. We propose that the relation is

Λ
3Nf−Nc−k

f Λ̃
−(3Nf−Nf−N−k)
f = Λ̂−NΛ

3(Nf−Nc)
c αNf 2−Nf . (16)

We have no strict derivation for (16). We can provide only some reasoning. The Λ̂ depen-
dence is fixed by imposing that Λ̂ parameterises unknown factors in the Kähler potential
for ϕ and ϕ̃ [1]. In the theory with ungauged flavour, discussed in the previous section,
there is a scaling symmetry of the superpotential and the matching relation (5) involving
dual quantities

ϕ → γϕ, ϕ̃ → γϕ̃, Λ̂ → γ2Λ̂, Φ → γ0Φ. (17)

Our proposal (16) respects that symmetry. Since Λc is used throughout, in order to obtain
canonical mass dimensions, we did so in (16) as well3. The α dependence is due to (7), and

2Here, and in the following, it should be understood that we compare real parts of dynamically generated
scales.

3Taking a flavour scale instead would mean that the relation alters its form upon giving one of the pairs
in the (1, Nf ) and

(

1, Nf

)

a large mass and integrating it out. Using Λ̃c would spoil the ‘symmetry’ (17)

unless it comes together with Λ̂ in an invariant combination. But such a combination is Λc.
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the anomalous rescaling of the adjoint. The numerical coefficient 2−Nf will be discussed in
the end of the fourth section.

For the dual tree level potential4 we obtain

W = hTr (ϕ̃Φϕ) − hµ2TrΦ + σTr (ρρ̃) . (18)

In the dual theory we are interested in a situation where the dual flavour coupling
diverges farther in the ultraviolet than the dual colour coupling

Λ̃c < Λ̃f . (19)

This condition is not invariant under the previously discussed scaling symmetry. One has
to supplement it with the requirement of canonical kinetic terms.

To see whether this involves some fine tuning we combine (5) and (16) into

Λ
2(Nf−Nc)
f

(

Λ̃f

Λf

)k+Nf+N−3Nf

=
(α

2

)Nf

(Λc)
2(Nf−Nc)

(

Λ̃c

Λc

)

N(Nf−3N)
Nf

. (20)

The hierarchy imposed by Λf < Λc and Λ̃f > Λ̃c implies

(α

2

)Nf

(

Λc

Λf

)2(Nf−Nc)
(

Λ̃c

Λc

)b̃f−
N

Nf
b̃c

> 1, (21)

with
b̃f = 3Nf − N − Nf − k, b̃c = 3N − Nf , (22)

being the (negative) one loop beta function coefficients of dual flavour and colour, re-
spectively. We require further that there is a region where electric and magnetic gauge
couplings are finite, i.e. Λ̃c/Λc > 1. The inequality (21) holds naturally, if the dual colour
coupling diverges fast enough, compared to the flavour coupling, for the exponent in (21)
to be positive. Otherwise some fine tuning on Λc/Λf is needed.

4 Meta-Stable Susy Breaking with Gauged Flavour?

As in [1] there is no supersymmetric vacuum in the perturbative regime. The potential
is minimised by (8). The colour group is broken completely whereas the flavour group is
broken to SU (Nf − N = Nc). Some of the classical moduli provide the missing degrees
of freedom for massive vector multiplets of broken flavour. Others acquire a D-term tree
level mass due to the equations of motion of the flavour gauge degrees of freedom. Our
condition that σ is smaller than the susy breaking scale means that at the susy breaking

4Note that a term Trρ̃Φρ would correspond to a non renormalisable coupling in the microscopic theory.
We do not consider this case.
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scale quantum corrections to the mass of ρ and ρ̃ dominate over the tree level mass σ.
Hence, ρ and ρ̃ can effectively considered to be massless. One loop quantum corrections
to their mass cancel since supersymmetry breaking is mediated only by gauge degrees of
freedom whose mass spectrum is classically fermion-boson degenerate [1]. If they are not
stabilised by higher order quantum corrections they can gain a vacuum expectation value
up to σTr 〈ρ̃ρ〉 being of the order of the susy breaking scale. The situation is similar to one
of the examples in [5] where it was concluded that the given information is not sufficient
for making statements about the stability of the vacuum. Instead of speculating about the
nature of higher order quantum corrections to the susy breaking vacuum, we try to get
insight into non perturbative flavour corrections to the supersymmetric vacuum.

To this end, we give a VEV to Φ. Then the bifundamentals ϕ, ϕ̃ become massive.
Below this mass both gauge groups become asymptotically free, if k < 2Nf . (As we will
see shortly the adjoint becomes also massive and below that mass the flavour group is
always asymptotically free.)

The supersymmetric moduli space of the colour sector is well understood [13,16]. Due
to the presence of the adjoint (traceless part of Φ) the flavour sector is more complicated.
There are some partial results in the literature [17–22]. It is, however, not obvious to us
how to use these results in the given situation. Therefore, we will impose the simplifying
assumption that the flavour group becomes strongly coupled at much lower energies than
the colour group5. We assume further, that non perturbative effects within the flavour
group can be neglected at the mass of the bifundamentals where the two theories decouple.

Due to instanton corrections within the colour group the superpotential (18) is supple-
mented by an additional contribution6

W np
c = N

(

Λ̃
−(Nf−3N)
c det hΦ

)1/N

. (23)

The traceless part of Φ acquires a mass

mN2
f
−1 = − h2

2Nf
TrhΦ

(

TrhΦ

Nf Λ̃c

)

Nf−3N

N

. (24)

After integrating out the traceless part, we fix Φ to be of the form

Φ = p11Nf
, (25)

and the masses of the bifundamentals become

mϕ = mϕ̃ = hp. (26)

5After decoupling the bifundamentals, the one loop beta function coefficients are: 3 (Nf − Nc) for the
magnetic colour group, and at most Nf −Nc for the flavour group. So, the colour coupling will diverge at
higher scales than the flavour one.

6For the case Nf = Nc + 1 see the discussion in [1].
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Assuming that the decoupling of the flavour group at hp occurs above the scale at which
the coupling becomes strong, we can treat its non perturbative effects separately. After
the adjoint and the bifundamentals decouple we obtain SU(Nf ) gauge theory with k pairs
of quarks and anti-quarks. Now, since 3Nf > k > 3/2Nf , the Seiberg dual of the flavour
theory is also asympotically free. However, we can still find a non trivial supersymmetric
vacuum by giving a vacuum expectation value to the dual of Trρρ̃. For this case, we can
adapt the result for the supersymmetric vacuum from7 (10)

ρρ̃ = σ2

(

Λ̃f,L

σ

)

3Nf−k

Nf

11k, (27)

where

Λ̃
3Nf−k
L,f = Λ̃

−(N+k−2Nf)
f (hp)N m

Nf

N2
f
−1

. (28)

Plugging this back into (27) we obtain

σρρ̃ = −1

2
σ

k
Nf

(

hN Λ̃
−(N+k−2Nf)
f

)
1

Nf
(

hNf Λ̃
3N−Nf
c

)
1

N

p
Nf

N
−

Nf +Nc

Nf 11k. (29)

In our approximation the superpotential becomes finally,

W = N

(

hNf Λ̃
−(Nf−3N)
c pNf

)1/N

− hµ2Nf p

−Nf

2
σ

k
Nf

(

hN Λ̃
−(N+k−2Nf)
f

)
1

Nf
(

hNf Λ̃
3N−Nf
c

)
1

N

p
Nf

N
−

Nf+Nc

Nf , (30)

where we have taken into account a contribution from gaugino condensation to the super-
potential (for details see e.g. [13] section 5.5).

The contribution in the second line of (30) has to be small compared to the contribution
in the first line, for our approximations to be consistent. Within this approximation the
F-term condition for Φ can be solved to leading order in the correction, yielding

Φ = Φ0

{

1 − C

(

σkhN Λ̃
−(k+N−2Nf)
f

)
1

Nf

Φ
−

Nf +Nc

Nf

0

}

, (31)

where Φ0 is the solution for the ungauged flavour case (9), and

C =
N

Nf

(

Nf + Nc

Nf
− Nf

N

)

. (32)

Note, that the correction term contains an Nfth root of unity.

7There could be also other supersymmetric vacua, we are interested in one giving an effect to our
considerations.
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In the microscopic language this corresponds to

QQ̃ =
(

QQ̃
)

0

{

1 − 2Cσ
k

Nf Λ

3Nf−k−Nc

Nf

f Λ

3Nc−Nf

Nf
c

(

QQ̃
)

−

Nf +Nc

Nf

0

}

, (33)

where
(

QQ̃
)

0

denotes the solution in the global flavour case (10).

With our choice of parameters there is indeed a small correction. If σ is taken to zero
the correction vanishes. Our treatment is valid if non perturbative effects in the flavour
sector are negligible at the mass of the bifundamentals, where magnetic colour and flavour
decouple.

Now, let us come back to the candidate for meta-stable susy breaking, discussed in the
beginning of this section. If the two loop effective mass squared for ρ and ρ̃ is negative
these fields would condense breaking the residual flavour symmetry. Some of the degrees
of freedom become part of a massive vector field. The ‘mesons’ ρρ̃ could condense further.
These are singlets under the gauged colour and flavour groups. The backreaction of such
a condensation would be suppressed. Therefore, it seems plausible that the ρρ̃ direction is
along a valley where the position of Φ and the hight of the potential walls stays effectively
constant. Flavour would return to a global symmetry which is spontaneously broken in
the meta-stable vacuum. On the supersymmetric side we have seen that the width of the
potential wall can be shortened by the condensation of ρρ̃. Since our approach is limited
to a situation where this shortening of the width is only a small percentage we cannot say
whether such effects could be significant for the life time of the meta-stable vacuum in the
case that flavour and colour interactions are of comparable strength at the susy breaking
scale.

Finally, let us come back to the relation (16) and reason for the numerical coefficient
2−Nf . Plugging our approximate solution (33) into (30) one obtains

W = Nc

(

Λ
3Nc−Nf
c mNf

)
1

Nc
+ Nf

(

Λ
3Nf−Nc−k
f mNcσk

)
1

Nf + . . . , (34)

where dots stand for terms higher order in σ which cannot be computed within our approx-
imation. The superpotential (34) is the sum of contributions from gaugino condensation
in the colour and flavour group with the correct numerical factors (see e.g. [13]). This
explains our choice in (16).

5 Conclusions

Modifying the models of [1] by gauging flavour can serve as a toy model for gauge mediation
of meta-stable susy breaking, where the hidden sector role is played by the colour gauge
theory whereas the flavour gauge theory acts as the visible sector. We found that in the
modified model it is much harder to derive exact results and make definite statements
about meta-stability. However, we were able to compute corrections to the location of the
supersymmetric vacuum due to non perturbative effects in the gauged flavour sector as
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long as these effects are small. These corrections shift the position of the supersymmetric
vacuum towards the non supersymmetric one. Ensuring that non perturbative effects in the
visible sector are highly suppressed at the susy breaking scale (as well in the supersymmetric
vacuum as in the non supersymmetric one) would keep these corrections small. We do not
know the first non trivial quantum corrections to some masses in the non supersymmetric
vacuum. This would require a two loop calculation. Moreover, we lack an exact knowledge
of the moduli space of supersymmetric vacua, for general couplings. In order to improve
the situation one could e.g. try to modify the matter sector transforming under flavour.
For instance, the models discussed in [4] have also product gauge groups and are under
better control. (However, also the authors of [4] restrict to a decoupled situation when
identifying the supersymmetric vacuum.) Also recent brane constructions [23, 24] may be
helpful.
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