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Abstract

For many large-scale data sets it is necessary to reduce dimensionality to the point
where further exploration and analysis can take place. Principal variables are a
subset of the original variables and preserve, to some extent, the structure and
information carried by the original variables. Dimension reduction using principal
variables is considered and a novel algorithm for determining such principal variables
is proposed. This method is tested and compared with eleven other variable selection
methods from the literature in a simulation study and is shown to be highly effective.
Extensions to this procedure are also developed, including a method to determine
longitudinal principal variables for repeated measures data, and a technique for
incorporating utilities in order to modify the selection process. The method is further
illustrated with real data sets, including some larger UK data relating to patient
outcome after total knee replacement.

Key words: Variable selection, Principal components, Partial correlation, Partial
covariance, Utility, Longitudinal data, Repeated measures

1 Introduction

The focus of this paper is on dimension reduction of a multivariate data set,
constrained by the need to retain only a subset of the original variables for
further investigation. Following [1], we shall term such a subset the principal
variables (PVs) for the data set, under specified criteria. The particular advan-
tage of employing PVs for dimension reduction is that any remaining variables
can be discarded. Principal component analysis (PCA) is highly effective at
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providing a reduced-dimension representation, but typically still requires all
the original variables. McCabe [1] discusses the deficiencies of PCA methods
in this context, and lays the groundwork for generating PVs under a number of
optimality criteria. The selection of subsets of original variables, for example
for applications in regression modelling, has a long and ongoing history [2].
The approach described here is not tied to any such application, but was mo-
tivated by the need to reduce dimension before carrying out longitudinal chain
graph modelling. Such a requirement is increasingly a feature of many appli-
cation areas, particularly those involving very large data sets with thousands
of variables.

We begin in Section 3 by describing existing techniques for selecting PVs.
In Section 4 we show that the usual spectral decomposition leads to an al-
ternative criterion for variable selection. In Section 5 we describe a stepwise
algorithm for variable selection using this criterion. In Section 6 we show how
the method can be extended to take into account utilities expressed over the
variables, and we discuss constructing PVs in the situation where there are re-
peated measurements on the full set of variables. In Section 7, scree-type plots
are introduced to help decide on the appropriate number of PVs to describe
adequately the original data set. Simulation studies showing the methodology
to be generally superior to extant methods are shown in Section 8. An example
from the literature and a case study are provided in Section 9. Algorithms are
presented in an appendix.

2 Preliminaries

In what follows, we suppose that we collect n observations on a p−dimensional
measurement vector into the n× p data matrix X. Suppose that the sample
covariance and correlation matrices are respectively Σ and R. Our aim is to
select some subset of m PVs, m < p, which best (in some sense) represents the
original variables. Suppose that we partition the set of variables V into subsets
V (1),V (2). It will be helpful to consider partitioning Σ correspondingly as

Σ =



Σ11 Σ12

Σ21 Σ22


 .

Then, the partial covariance matrix for V (2) given V (1) is

Σ22.1 = Σ22 −Σ21Σ
−1
11 Σ12, (1)

and the partial correlation matrix, R22.1, is obtained by scaling Σ22.1 so that
diagonal elements are unity. If we begin with a correlation matrix R, then we
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further define the unscaled partial correlation matrix:

S̃22.1 = R22 −R21R
−1
11 R12. (2)

3 Existing techniques

Jolliffe [3,4] discusses various ad hoc techniques for PV selection based on
PCA. His methods B1, B2, B4 associate a single variable with each of the
PCs of Σ (or, by choice, R). Jolliffe’s method B3 was shown in [3] to dismiss
the wrong variables from data of a very simple type; it is not considered here.
The associated variable is that which has the largest absolute loading in the
PC under consideration. Methods B1 and B2 correspond to a backward elim-
ination procedure where the variables associated with the final components
are excluded until only m remain: method B1 iteratively repeats the PCA on
each remaining subset of variables, whereas method B2 depends only on an
initial PCA. Method B4 corresponds to forward selection by associating and
retaining variables with high loadings in absolute value on the first m PCs.
These methods were shown to be both fast and efficient via a simulation study.
However, the mechanism of selection can be seriously unreliable because it de-
pends only on loadings, while neglecting not only variances of variables and
components but also the patterns of correlations between them [5].

McCabe [1] considered twelve apparently different criteria used to drive vari-
able selection processes, and showed that all twelve correspond to one of the
following four criteria:

M1. max |Σ11| ≡ min |Σ22·1| ≡ min
∏

i

λi, (3)

M2. min tr (Σ22·1) ≡ min
∑

i

λi, (4)

M3. min ||Σ22·1||2 ≡ min
∑

i

λ2
i , (5)

M4. max
k∑

i=1

ρ2
i , with k = min(m, p−m). (6)

Here, Σ11 is the covariance matrix for the selected subset of PVs; Σ22·1 is the
conditional covariance matrix of the variables not selected given those selected;
|A| and tr (A) are the determinant and trace of the matrix A, respectively;
||A||2 is the squared norm (

∑ ∑
a2

ij); λi are the eigenvalues of Σ22·1; and
the ρi are the canonical correlations between the variables not selected and
those selected. As McCabe points out, after the selection of the principal
variables Σ22·1 represents the information left in the remaining unselected
variables and so it is quite plausible that three of the optimality criteria should
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be functions of this matrix. Only for M2 can we find near-optimal subsets
by stepwise selection using results from [6] involving variable variances and
squared multiple correlation coefficients - we call this method M2S. Optimal
subsets under the other criteria can be found only by exhaustive evaluation of
all candidate subsets. This rapidly becomes computationally infeasible as the
number of variables increases.

Recent work by Al-Kandari and Jolliffe [7,8] has investigated and compared
the performance of some of the McCabe and Jolliffe methods discussed above
on simulated data of varying degrees of dependence among the variables. They
also introduced methods M∗

1,M
∗
3, which were variants of McCabe’s M1, M3

whose criteria replaced the partial covariance matrix by a partial correlation
matrix. They evaluated the selection methods on these different artificial data
sets and assessed them using a variety of different performance measures.
Their results showed that the efficiency of the various selection methods is
dependent on the performance criterion and furthermore that it may not be
wise to rely on a single method for variable selection.

Beale et al.[9] discuss a method for discarding variables based upon multiple
correlation (method A1). They suggested retaining the subset of m variables
which maximises the minimum multiple correlation between the m selected
variables and any of the remaining variables. At the time this method was
found to be too slow to be practically useful [4,9], as it requires exhaustive
enumeration and evaluation of all subsets of size m. Jolliffe instead proposed
an alternative stepwise version (A2) whereby at each stage the variable with
the highest multiple correlation with the remaining variables was excluded
until only m variables remain [4].

Krzanowski [10] proposed an approach (KP) based on Procrustes Analysis:
this method intends explicitly to preserve the multivariate structure of the
original data in the final variable subset, rather than selecting a set which
seeks to maximise some variance measure over the variables. To assess variable
subsets, the data points were first transformed to principal component space
using a PCA of all the variables. They were then transformed to a PCA-space
based on a reduced subset of the variables, and the sum of squared differences
between data points in these two configurations was used to evaluate the
variable subset.

De Falguerolles et al.[11] proposed a method based on graphical Gaussian
models (DF). This seeks to choose as a subset those variables which appear
to form a highly connected hub within a graphical model: the selected variables
then should have many connections to other variables and should leave the
unselected variables conditionally independent given those selected. To do this
they seek the variable subset that minimises the deviance of this hypothesised
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model from the saturated model via the expression:

D2 = −n log
(∣∣∣S̃22·1

∣∣∣ /
∣∣∣diag(S̃22·1)

∣∣∣
)
,

where n is the sample size and S̃22.1 is defined in (2). Such an approach
is likely to miss important structure: for example, independent variables are
unconnected with others, and will be dismissed from selection.

4 An alternative criterion

Consider the (p×p) correlation matrix R, which we shall assume full rank for
convenience. It can be expressed in terms of its spectral decomposition as:

R =
p∑

i=1

λiaia
T
i = AΛAT ,

where λ1 ≥ λ2 ≥ · · · ≥ λp > 0 are the ordered eigenvalues of R and a1, . . . , ap

the associated eigenvectors. A is then the (p× p) orthonormal matrix whose
columns are the ai and Λ is the (p × p) diagonal matrix with entries λi.
Suppose that we focus on criterion M3, which utilises ||R||2. We may write
this in a number of different but equivalent forms, two being:

||R||2 =
p∑

i=1

λ2
i (7)

=
p∑

j=1

p∑

i=1

(λiaji)
2 =

p∑

j=1

hj =
p∑

j=1

(
p∑

i=1

r2
ij), (8)

where

hj =
p∑

i=1

r2
ij =

p∑

i=1

(λiaji)
2. (9)

Decomposition (7) makes plain that the first PC provides the linear combina-
tion of original variables with maximum contribution to ||R||2, and with the
remaining PCs giving progressively less. This is the basis for Jolliffe’s vari-
able selection methods B1, B2, B4: method B4 selects variables which have
high loadings on the most important PCs, and methods B1 and B2 reject
variables with high loadings in the least important PCs. Decomposition (8)
suggests that we may instead examine the values h1, . . . , hp, which are the
sum of the squared correlations between variable vj and other variables. Large
values of hj are obtained when variable vj has, on average, high loadings on
important PCs. As the values {hj}p

j=1 combine information from both the
eigenvalues and the loadings, we would expect choices based on them to be
more robust to the sensitivity issues raised by selection via single loadings on
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important PCs [5].

5 Stepwise selection using h and partial covariance

A simple reduced-dimension representation is obtained by choosing the m
variables with highest values of hj, such that

∑m
j=1 hj reaches some predeter-

mined proportionate threshold. A more sophisticated approach is to select the
best variable v(1), compute the partial covariance matrix for the unselected
variables, given v(1), and apply the same strategy iteratively until the spec-
ified threshold is reached. By using the partial covariances of the variables
under consideration given those already selected, we eliminate the effects of
those chosen variables from subsequent analysis and so compensate for them
when determining the next variable for selection. This allows us to account
for and exploit the multivariate correlation structure that may exist among
the variables. By iteratively taking the partial covariance given the subset of
selected variables, we ensure that at each stage of selection process we choose
a variable which captures aspects of the variation that are not represented by
those variables already selected.

The stepwise selection scheme is as follows. We typically begin with the cor-
relation matrix, R, rather than the raw covariance matrix, Σ, in order to
remove initial scale effects. We determine the hj values for each variable vj for
j = 1, . . . , p. We identify that variable with the largest hj value and select it.

We then form the unscaled partial correlation matrix S̃22.1 using (2) for the
remaining variables given the variable(s) we have already selected. The pro-
cess then repeats: we calculate h values, identify candidate variables, select
the best variable and compute a partial correlation matrix for the remain-
ing candidates. The full algorithm is presented in Figure A.1, and labelled H
henceforth.

Once the first variable is selected and we have transformed to partial form, it
is not sensible to re-scale the resulting partial covariance matrix to correlation
form. The reason for this is that the rescaling artificially inflates the h scores
for variables highly correlated with those already selected. The consequence
is that correlated blocks of variables would then be selected in preference to
independent variables, whereas our desire is to reduce dimension and preserve
structure - further details may be found in [12]. Consequently, the H method
does not dismiss uncorrelated variables. In general, it selects a single vari-
able from each block of correlated variables before proceeding to select the
uncorrelated variables. Continuing selection past this point would introduce
redundancies into the selected subset. Rescaling at each stage to partial corre-
lation form (as in methods M∗

1,M
∗
3) rather than using S̃ tends to dismiss the

uncorrelated variables in favour of selecting many variables from a correlated
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block.

6 Extensions

6.1 Repeated measures principal variables

For some applications we obtain repeated measurements on the variables of
interest. For example, patients are routinely monitored for the same set of
variables before, during, and after treatment. We can apply a dimension re-
duction technique at each time point, but it is often preferable to determine
a single subset of longitudinal PVs to represent the full time spectrum.

One of the main difficulties in generating temporal PCs is to account for both
the temporal and multivariate nature of the data, namely correlation struc-
ture among variables at one time point and their associations between time
points. Methods based on stationary time series [4] are typically inappropri-
ate: stationarity is often an unreasonable assumption, and there are typically
too few time points. Berkey et al. [13] discuss a longitudinal principal com-
ponents regression model which performs PCA on the various observations of
a single variable over time and then uses the resulting PCs as predictors in
a linear model. However, this method ignores the multivariate nature of the
data. Functional data analysis [14] can be used to determine functional, and
thus temporal, forms for PCs, but only where there are many observations.

Here we adopt a method proposed by Prvan and Bowman [15], based on
the nonparametric time-dependent PCA. Suppose we have a data matrix X
containing n cases xi, i = 1, . . . , n. Each xi is observed at a time point ti ∈ T ,
where T is the set of all time points at which data is observed. In the case of
repeated measures data, the same case will be repeatedly observed at different
time points. First, we choose a focal time θ. We associate with each xi a weight
ωi defined as:

ωi = ω(ti, θ, σ) = φ

(
ti − θ

σ

)
, (10)

where σ is a bandwidth parameter and φ(·) is the standard Normal density
function. We then construct a weighted mean x̄ω(θ) and a weighted covariance
matrix Sω(θ) as:

x̄ω(θ) =
1∑n

i=1 ωi

n∑

i=1

ωixi, (11)

Sω(θ) =
1∑n

i=1 ωi

n∑

i=1

ωi(xi − x̄ω(θ))(xi − x̄ω(θ))T . (12)
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The weighted correlation matrix Rω(θ) is found by re-scaling Sω(θ) in the
usual way. This yields a matrix of correlations over the variables in the data
relative to a particular time point θ. This method allows all the data to influ-
ence the value of the mean and variance at time θ. Data observed at a time
close to θ have a strong influence on x̄ω(θ) and Sω(θ), whereas data observed
at more distant times exert a weaker influence. The magnitude of the effect of
temporally adjacent data and the distance in time over which it applies is gov-
erned by the bandwidth parameter σ. The choice of σ is typically subjective
and is based on the plots discussed in [15].

To determine an overall subset of longitudinal PVs, we construct Rω(ti) for
each time point ti for which we make a measurement. We calculate hj,ti (9)
for each variable vj at each time point ti. A simple guide to the selection value
of each variable across all time points is then the total hT

j =
∑

i hj,ti . All of
the correlation matrices are then updated to partial covariance form given the
variable we have selected. The full temporal algorithm is detailed in Figure
A.2, and labelled henceforth as HT.

This procedure is reasonable for determining longitudinal PVs if we believe
that the multivariate structure is preserved across time points, excepting ran-
dom fluctuation. This could be checked formally by sphericity-type tests [2],
as long as we were prepared to make further distributional assumptions. In-
formally, we can examine the plots used for choosing σ [15] to assess this.
When the multivariate structure changes over time, more PVs will need to be
extracted to adequately represent the data at all time points. Furthermore, if
the sample size is not constant at all time points, it may then also be advis-
able to weight the h statistics to reflect this. The precise impact of variation
in structure and sample sizes across time points is an area for future research.

6.2 Utility information

For some applications, it may be useful for external information to influence
the selection process. Such information typically attaches to specific variables.
For example, in a medical context a clinician will have an opinion on the
relative merit of particular measurements for diagnosis or monitoring of a
patient: some measurements may be deemed clinically more useful than others;
some may be easier to measure than others. It is straightforward to incorporate
such information into the selection algorithms presented here.

We will suppose that information concerning the desirability of retaining a
variable in the final subset is expressed on a utility scale. Suppose that utility
uj is the utility for retaining variable vj. A simple way of modifying the selec-
tion process is then to replace hj by hU

j = ujhj and to select at each stage the
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variable with maximum hU
j . When there are multiple utility scales, we employ

utilitarianism [16], whereby individual utilities are simply summed. Thus from
several utility vectors u(1), . . . , u(r), we construct u∗ =

∑
k u(k) to aggregate

the individual components and then consider the product u∗jhj for selection.
This extends easily to constructing longitudinal PVs.

7 Diagnostics: scree plots

The scree plot [17] is a popular method for assessing the number of PCs
which represent non-random structure in the data. The variances for the PCs
are plotted in descending order of magnitude and one looks for the PC beyond
which the variances decrease in a linear fashion. The components beyond this
point are taken to be consonant with random noise. An equivalent plot can
be drawn for the selection procedure outlined above. We have a choice of
diagnostics to plot. First, if we select variable v(`) at stage ` with an associated
value of h(`), then we may plot h(`) vs. `. Note that if we start with a correlation
matrix R, then variables with h(`) < 1 convey less information than a single

independent quantity. Secondly, we may plot tr
(
S̃

(`)

22·1

)
or ||S̃(`)

22·1||2 as the

selection procedure continues. Thirdly, we may plot the cumulative proportion
of the total variability explained. This is expressible in terms of tr

(
S̃22·1

)
. We

thus plot at stage `:

π` =
(
1− tr

(
S̃

(`)

22·1

)
/tr (R)

)
, (13)

where R is the initial correlation matrix, and S̃
(`)

22·1 is the matrix (2) given
selection of v(1), . . . , v(`). Equivalently, we could produce a similar plot using
|| · ||2 instead of tr (·) since the squared norm is intimately related to the
selection process.

8 Simulation results

8.1 Simple models

A Monte Carlo simulation study was performed to compare some of the selec-
tion methods discussed in Section 3. This study was the same as that proposed
and used by Jolliffe [3], and later Krzanowski [10]. The study was performed in
four parts, each part testing performance on a simulated data set conforming
to a different pre-determined model. Each part was then repeated 500 times,
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each time re-simulating the data to allow sample variation. Models were con-
structed so that some variables were linear combinations of the others plus
random noise: such variables are redundant. Given this knowledge of the data
structure, we may determine which variables should be selected. Each returned
subset may thus be classified as “Best”, “Good”, “Moderate” or “Bad”: see [3]
for details of the model specification and subset classification. All calculations
were run in R for Windows version 2.1.1 [18] on a Pentium IV 2.4GHz PC
with 1.5Gb RAM.

For each iteration of the simulation on a particular model, a data set of size
n = 100 was generated containing between six and ten variables. These data
conformed to the models I–IV defined by Jolliffe [3]. The structure of these
models is such that the first contains a set of three pairs of variables; the second
is a pair, a triple and a single independent variable; the third is effectively three
pairs though with stronger correlations elsewhere; and the fourth is composed
of a single variable, a pair, a triple and a quadruple. The first three models
have three substantive variables, whereas the fourth has four.

For each generated data set, we applied twelve of the different selection meth-
ods: 11 taken from those in Section 3, plus the method H proposed here.
The results are presented in Table 1 in the form of the percentage of different
classes of subsets returned by the various selection methods over 500 simula-
tions under the four models. Some of the methods (M1, M2, M3, A1, DF)
are exhaustive in nature and hence require significant, normally infeasible,
computation to enumerate and evaluate all subsets. Method M∗

3 proposed in
[8] was also tested on these data but returned a “Bad” subset for every run
on each of the models; those results are therefore omitted from the table. This
failure is likely attributable to the problems of re-scaling to correlation form
discussed in Section 5.

Method M1 appears inferior to M2, M3. With regard to methods based
on PCA, method B1 shows a poorer overall performance than B2 due to
its failures under Model IV and relatively poor performance on Model III.
This is unexpected as B1 repeated the PCA at each stage, which is assumed
preferable to performing it only once as in B2. However, it is likely the case
that re-performing the PCA on the reduced subset of variables is not sufficient
to accommodate for the removal of each variable. Performing the PCA on
the partial covariance/correlation matrix may serve to boost the performance
here. However, both methods retain subsets that are “Good” or better for
more than 90% of the simulations. Method B4, a forward selection method,
is slightly more inconsistent.

Method A1 consistently ignores single independent variables due to their low
predictive power and negligible impact on the multiple correlation and so dis-
plays poor performance on models II and IV . Methods DF and M2S display
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similar behaviour, though less consistently rejecting the independent variable.
A2 performs quite well and with consistency. Krzanowski’s Procrustes method
KP is generally very good, rather better indeed than originally reported [10],
and seems the best stepwise method for Model III.

The proposed method H performs generally very well: in 83% of cases pro-
ducing the “Best” subsets, and never returning a subset worse than “Good”,
and with performance better than that of McCabe’s optimal solution M1. Its
performance on Model III is not quite as good as for some other methods.
However, H is overall the best stepwise variable selection method of those
studied.

8.2 Structured models

Krzanowski’s KP method aims at determining a subset which preserves the
original structural features of the data. To test this method he performed a
modified version of the simulation performed above by building additional
structure into the data and examining whether the selected subsets contained
variables which conveyed this structure. Following the configuration of the
models from the previous study, additional structure (single outlier, weak
groups, strong groups) was added to a different number of variables (1,2,3) in
the data (see [10] for details). Variable selection was then carried out on these
modified data, selecting subsets of the appropriate dimension. Each subset was
then examined to determine how many of the structure-bearing variables were
present. Running this simulation 100 times for each combination of the type
of structure, amount of structure and model type using method H generated
the results presented in Table 2. Krzanowski’s results are presented alongside
for comparison.

The reasoning behind performing this simulation with structured data is to
ascertain whether the ‘structure’ inserted into several variables is preserved
in the reduced subset through the selection of these structure-laden variables.
As the strength of the structure in the data increases, it becomes increasingly
likely for method KP to select structure-bearing variables, especially for weak
and strong groups. However, for the H method we find that for both weak and
strong groups on two or three variables typically only one structure-bearing
variable is selected. The effect of adding this structure to the data is equiv-
alent to there being an underlying latent variable representing the structure
with the variables themselves being noisy realisations of the latent variable.
Procedure H detects the introduced structure as a correlated block, extracts
a single representative variable and leaves the other structure variables effec-
tively redundant and undesirable for selection. The results also show that of
the methods examined, KP is quite sensitive to contamination by outliers.
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Table 2
The number of times a structure-bearing variable is selected for each model with
additional structure.

Type Num. str. Num. of Model Overall

vars. in str. vars. I II III IV

data selected H KP H KP H KP H KP H KP

Single 1 0 47 0 48 0 2 9 0 0 24.25 2.25

Outlier 1 53 100 52 100 98 91 100 100 75.75 97.75

2 0 0 0 0 0 3 2 0 0 0.75 0.5

1 99 6 98 15 83 75 55 97 83.75 48.25

2 1 94 2 85 14 23 45 3 15.5 51.25

3 0 0 0 0 0 0 0 0 0 0 0

1 98 6 44 20 78 6 0 0 55.0 8

2 2 84 49 72 21 84 100 100 43.0 85

3 0 10 7 8 1 10 0 0 2.0 7

Weak 1 0 46 0 48 0 0 0 0 0 23.5 0

Groups 1 54 100 52 100 100 100 100 100 76.5 100

2 0 0 0 0 0 0 0 0 0 0 0

1 100 0 100 0 100 0 100 0 100 0

2 0 100 0 100 0 100 0 100 0 100

3 0 0 0 0 0 0 0 0 0 0 0

1 100 0 100 0 100 0 93 0 98.25 0

2 0 1 0 0 0 11 7 100 1.75 28

3 0 99 0 100 0 89 0 0 0 72

Strong 1 0 42 0 32 0 0 0 0 0 18.5 0

Groups 1 58 100 68 100 100 100 100 100 81.5 100

2 0 0 0 0 0 0 0 0 0 0 0

1 100 0 100 0 100 0 100 0 100 0

2 0 100 0 100 0 100 0 100 0 100

3 0 0 0 0 0 0 0 0 0 0 0

1 100 0 100 0 100 0 100 0 100 0

2 0 0 0 0 0 0 0 0 0 0

3 0 100 0 100 0 100 0 100 0 100

9 Variable selection applied to real data

9.1 Aphids data

This data set consists of 19 variables measured on 40 winged aphids: these
data have often been examined in a variable reduction setting [19,10,4,20]. A
correlation plot [21] is shown in Figure 1. The minimum number of variables
required to describe adequately the data was suggest by Krzanowski [10] to
be four using a cross-validatory approach. We shall thus extract four PVs: the
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Fig. 1. Correlation plot for the correlation matrix of the aphids data set.

Table 3
Selected four-variable subsets for Jeffer’s aphid data using various selection methods

Variable % tr (R) % ||R||2

2 3 5 6 7 8 9 11 12 13 14 16 17 18 19

M1 × × × × × 82.2 98.3

M2 × × × × 89.8 99.8

M3 × × × × 89.8 99.8

M2S × × × × 86.0 99.3

B1 × × × × 81.7 98.1

B2 × × × × 85.5 99.3

B4 × × × × 89.1 99.7

A1 × × × × 79.6 98.6

A2 × × × × 78.2 96.6

KP × × × × 86.3 99.5

DF × × × × 86.4 99.5

H × × × × 89.1 99.7

results are summarised in Table 3, with corresponding value of the percentage
variance in terms of tr (R). Overall, there is little practical difference in the
subsets returned by the different methods, with each returning a subset that
represents 80–90% of the variation. The exhaustive procedures M2, M3 do
best, closely followed by stepwise procedures H, and B4.

9.2 Knee replacement data

This data set consists of data on 599 patients who underwent a total knee
replacement procedure between 1987 and 1997 [22]. There are 19 repeated
measurement variables representing patient status (see Table 4). These mea-
surements were collected through a series of up to four consultations between
the patient and clinician and occurred pre-operatively and then at one, five
and ten years post-operatively. Not all patients remained in the study up to
the 10-year point. The number of patients under study were (599, 599, 239,
86) at (the pre-operative assessment, one year, five years, ten years). Many of
the variables are ordinal, for example pain is scored on a five-point scale. We
have assumed in such cases that it is reasonable to treat these as interval-scale
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Table 4
Variables for the knees data, with two utility scores.

Name Util Ease Util Use Description

Weight 9 7 Patient weight
PainF 7 8 Pain frequency
PainS 6 9 Pain severity
PainN 7 7 Night pain
Stab 5 6 Stability
WAb 8 5 Walking ability
WA 8 3 Walking aids
SD 6 7 Sitting down
RU 6 8 Rising up
Stand 5 4 Standing
GU 4 7 Going up stairs
GD 4 5 Going down stairs
FCont 4 5 Fixed contracture
Flex 4 7 Flexion
ExLag 4 5 Extension Lag
HipAb 4 4 Hip Abduction
OKF 4 4 Flexion of other knee
OKFC 4 6 Fixed contracture of other knee
OHAB 4 4 Abduction of other hip

data.

Correlation plots for the data at each time point are presented in Figure 2.
Visually, the correlation structure displays some similarity over the four time
points, perhaps with more noise at later time points, possibly due to the reduc-
tion in the sample size. There are two or three blocks of higher correlation. This
is unsurprising: the clinical measurements contain several near surrogates, for
example there are some different walking-ability measurements, several mea-
surements of different aspects of pain, in addition to technical measurements
such as angles of knee flexion. Thus, we would expect to see blocks of variables
with high internal correlation.

Assessments of the intrinsic dimensionality (for a review, see [23]) of the data
were varied. Kaiser’s rule [24] using eigenvalue thresholds of 1 and 0.7 gave
dimensions of 7 and 16 respectively. At least 75% of the variation is explained
by the first 4 PCs at all time points. A scree plot [17] shows that the first
PC is very important, and that there is a linear trend in the plot starting at
the 7th component, suggestion dimension 6 or 7. The ‘broken stick’ method
[25], suggests an intrinsic dimensionality of 7. Velicer’s method [26] suggests
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(b) 1-year post-operative (n = 559)
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(c) 5-year post-operative (n = 239)
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Fig. 2. Absolute value correlation plots of the repeated measurements in the knees
data observed at each of the four time points

a dimension of 13. For illustration, we will extract variable subsets of size 7.

9.2.1 Reducing the pre-operative data

We first illustrate basic variable selection. Subsets derived from the alternative
methods are shown in Table 5, together with the corresponding percentages of
tr (R) and ||R||2 that are explained, and the computer time involved. Method
A1 was excluded from this analysis due to its prohibitively slow execution
time and its previously poor performance. For the stepwise selection methods
M2S, B4, H, and A2 the variables are listed in the order of their selection, the
results for the other variable selection or reduction methods are unordered.
The exhaustive methods M1, M2, M3, and DF required the enumeration
and evaluation of all 50388 possible seven-variable subsets. The KP method
requires computation for many (n × n) matrices, which in this example has
over 350000 elements.
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Most of the extracted subsets convey more than 55% of tr (R)and 75% of
||R||2. The exceptions are methods M1, B1 and A2: these have previously
been judged rather inferior to other methods. Otherwise, there appears no
great difference between the quality of solutions returned by the exhaustive
optimal methods and the stepwise non-optimal methods. There is much over-
lap in the composition of the subsets returned. In terms of the variable group-
ings that were seen in the correlation plots in Figure 2, we observe that all
subsets contain one variable from the tightly correlated pair (Sitting Down,
Rising Up) and all methods but the poorly performing M1, M2S, B1 and
A2 return a subset containing one variable from the pair (Going Up Stairs,
Going Down Stairs). Similarly, all methods return at least one of the three
pain score measurements with methods M2S, A2 and KP both returning
two. Method H has marginally the best performance of the non-exhaustive
methods.

9.2.2 Longitudinal extraction

As a precursor to finding longitudinal PVs, we first apply stepwise variable
selection procedure H separately to the data set for each time point. The aim is
to provide baselines to which we may compare the final longitudinal PVs. The
results of these variable selections are presented in the top four rows of Table
6. There is substantial agreement between the variables selected at each time
point, suggesting that the underlying multivariate structure is preserved over
time. The merit of these subsets, as defined by the percentage trace or squared
norm of the original correlation matrix, is listed in the final two columns of
Table 6. We can see that the extracted subsets for later time points explain
a greater percentage of variation at that time point. A clinical interpretation
is that the better performance for the post-operative data is likely due to the
fact that the pain scores are somewhat more correlated post-operatively.

Next, the temporal selection method HT was applied to all four time points
simultaneously to obtain a single subset for all the data. Visual examination
of smoothing plots for the temporal PCA (see Section 6.1) suggested using
a smoothing bandwidth of σ = 1 year. The longitudinal PVs extracted are
listed in the bottom row of Table 6. The performance of this subset is listed
in terms of the percentage variation of the original (unsmoothed) correlation
matrices of the data at each time point. The performance on the data from
each time point is encouraging, and slightly exceeds that of the individual
subsets for the 1- and 5-year data. This is likely due to certain combinations
of variables yielding better results than would be expected when running a
simple stepwise procedure. Performing an exhaustive search would, of course,
identify these best combinations, but would suffer from the problems involved
with exhaustive methods. The matrix of partial variances of the remaining
variables of the knees data given the selected 7-variable subset is illustrated
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Fig. 3. Correlation plot of the partial covariance matrix of the remaining variables
of the knees data given the seven chosen variables.

in Figure 3. It is approximately diagonal, reflecting the fact that most of
the covariances have been captured, and suggesting that these variables are
approximately conditionally uncorrelated given the variables we have selected.

Plots illustrating the temporal selection process are given in Figure 4. The
first graph plots the score of each selected variable, with the different time
points represented by different lines. The progress of the overall score (the solid
black dashed line) is of a sharp initial decrease followed by a straightening out.
The progress for the individual time points is more noisy. The interpretation
is, for example, that the fourth variable is clearly a good choice for the 10-
year data (indicated by ×) and a poorer choice for the pre-operative data
(◦). The percentage trace plot is constructed using the original correlation
matrices for the data rather than the temporally smoothed matrices in order
to more adequately assess the performance at the different time points. The
information gain is rapid for the first few variables extracted, and then tails
off. We commented above on the higher percentages of variation explained for
the 10-year measurements.

9.2.3 Utility-based longitudinal PVs

A clinician provided two sets of utilities regarding these data. In each case, the
utility scale is 0–10, with 0 representing undesirability: such a utility would
prevent a variable from selection. A score of 10 would force a variable into the
selection. The utilities are given in Table 4. The first utility (Util Ease) is a
subjective measure of the ease with which the measurement is collected. The
second (Util Use) is the perceived clinical usefulness of each measurement for
patient diagnosis and monitoring.

Application of the temporal variable selection procedure to the knees data
using these utilities yield the variable sets given in the final row of Table
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Fig. 4. Two scree plots produced from application of temporal variable selection
procedure HT to the knees data

6. Comparison with the other temporal results demonstrates that there are
differences between these variable subsets and those obtained without utility
information. This is expected, as the selection procedure now balances the raw
gain in information with a variable’s desirability.

In terms of performance, we typically find that there is a lower percentage
trace and squared norm explained by these variables when compared to the
original longitudinal subset. The utility information is, to an extent, overriding
the information from the data to allow the procedure to select a variable with
lower information content, but higher utility. Typically the percentage trace is
reduced by between 1% and 8%. We can, of course, extract further variables
if we need to reach a pre-specified variance reduction threshold.

The percentage trace plot in Figure 5(a) shows a pattern similar to that of
Figure 4(b), although with a shallower and less smooth ascent attributable to
the use of utilities to adjust our selections. The plot in Figure 5(b) displays the
difference between the percentage of the squared norm we explain when using
the standard temporal method and the utility-based method - essentially the
“loss” of information due to the use of utilities to adjust the selection process.
In this example, this loss is negligible.

10 Discussion and Concluding Remarks

We have introduced a novel method for the extraction of PVs which largely
outperforms extant methods. Further, the proposed method is easily extended
to the determination of PVs for repeated measures data, and to the incorpora-
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Fig. 5. Plots for the application of utilities in variable selection from the knees data.

tion of utilities concerning the desirability of retaining certain variables. The
methodology is straightforward to apply and interpret. Whilst the new basic
method is an improvement on others, its advantage is in its extensibility and
in its ethos, which is to focus attention on actual variables. Our results imply
that there will be only minor differences between the proportions of variation
explained by the first m PCs and the best m PVs, selected by a reasonable
method such as H, and that such differences diminish as m increases.

Whether or not the determination of PVs is the best approach to dimension
reduction for large data sets depends on purpose. For our purpose, which is
to take the reduced-dimension representation as input to graphical modelling
of the relationships between pre-operative and post-operative measurements
(and for which the partial covariance structure is directly relevant [27]), such
dimension reduction appears the only possibility. Elsewhere, huge data sets
are being constructed in areas such as credit scoring, complex manufacturing,
and image analysis for astronomical data. For which the recent developments
concerning CUR decompositions may form a possible means to dimension
reduction [28]. These are likely to be cruder approximations, but may have
potential for enormous data sets.
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A Algorithms

A.1 H: The iterative algorithm using h values and partial covariance

(1) Let V
(`)
1 be the set of selected variables at stage `. Similarly, let V

(`)
2 be the

set of unselected variables at stage `. Furthermore, denote the variable
selected at stage ` by v(`).

(2) Set V
(1)
1 = ∅, V

(1)
2 = V , and S̃

(1)

22·1 = R.
(3) For ` = 1, . . . ,m

(a) Calculate hj (j = 1, . . . , p − `) from S̃
(`)

22·1. Select variable v(`) with
the largest hj.

(b) Set V
(`+1)
2 = V

(`)
2 \ {v(`)} and V

(`+1)
1 = V

(`)
1 ∪ {v(`)}.

(c) Update S̃
(`)

22·1 to S̃
(`+1)

22·1 using:

S̃
(`+1)

22·1 = S̃
(`+1)

22 −
S̃

(`+1)

21

(
S̃

(`+1)

21

)T

s̃(`)
,

where

S̃
(`+1)

22 = Cov[V
(`+1)
2 ],

S̃
(`+1)

21 = Cov[V
(`+1)
2 , v(`)],

and further S̃
(`+1)

22 , S̃
(`+1)

21 are simply submatrices of S̃
(`)

22·1, and s̃(`) is

the partial variance of v(`) on the diagonal of S̃
(`)

22·1.

A.2 HT: The modified algorithm which incorporates a temporal aspect

(1) Set V
(1)
1 = ∅, V

(1)
2 = V . For each time point t (t = 1, . . . , T ): set

S
(1)
ω,22·1(t) = Rω(t), which is the smoothed correlation matrix for time

point t.
(2) For ` = 1, . . . ,m

(a) For each time point t (t = 1, . . . , T ): using S
(`)
ω,22·1(t) calculate the hj,t

for each variable vj (j = 1, . . . , p− `).
(b) Calculate hT

j =
∑

t(hj,t). Select variable v(`) which maximises hT
j .

(c) Set V
(`+1)
2 = V

(`)
2 \ {v(`)} and V

(`+1)
1 = V

(`)
1 ∪ {v(`)}.

(d) For each time point t: update S
(`)
ω,22·1(t) to S

(`+1)
ω,22·1(t) as above.
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