
A NEW PACKAGE FOR FITTING RANDOM EFFECT MODELS

A New Package for Fitting Random Effect
Models
The npmlreg package

Jochen Einbeck, John Hinde, and Ross Darnell

Introduction

Random effects have become a standard concept in
statistical modelling over the last decades. They
enter a wide range of applications by providing a
simple tool to account for such problems as model
misspecification, unobserved (latent) variables, un-
observed heterogeneity, and the like. One of the most
important model classes for the use of random effects
is the generalized linear model. Aitkin (1999) noted
that “the literature on random effects in generalized
linear models is now extensive”, and this is certainly
even more true today.

However, most of the literature and the imple-
mented software on generalized linear mixed mod-
els concentrates on a normal random effect distri-
bution. An approach that avoids specifying this
distribution parametrically was provided by Aitkin
(1996a), using the idea of ’Nonparametric Maximum
Likelihood’ (NPML) estimation (Laird, 1978). The
random effect distribution can be considered as an
unknown mixing distribution and the NPML esti-
mate of this is a finite discrete distribution. This can
be determined by fitting finite mixture distributions
with varying numbers of support points, where each
model is conveniently fitted using a straightforward
EM algorithm.

This approach is implemented in GLIM4 (Aitkin
and Francis, 1995). Despite being a quite pow-
erful tool, the current GLIM-based software is
computationally limited and the GLIM system is
no longer widely used. Though the alternatives
C.A.MAN (Böhning et al., 1992) and the Stata pro-
gram gllamm (Skrondal and Rabe-Hesketh, 2004)
cover parts of GLIMs capacities (in the latter case
based on Newton-Raphson instead of EM), no R im-
plementation of NPML estimation existed. The pack-
age npmlreg (Einbeck et al., 2006), which we wish to
introduce to the R community in this article, is de-
signed to fill this gap.

NPML estimation

Assume there is given a set of explanatory vec-
tors x1, . . . , xn and a set of observations y1, . . . , yn
sampled from an exponential family distribution1

f (yi|β,φi) with dispersion2 parameter φi. In a gen-
eralized linear model, predictors and response are
assumed to be related through a link function h,

µi ≡ E(yi|β,φi) = h(ηi) ≡ h(x′iβ),

and the variance Var(yi|β,φi) = φiv(µi) depends on
a function v(µi) which is entirely determined by the
choice of the particular exponential family. However,
often the actual variance in the data is larger than the
variance according to this strict mean-variance rela-
tionship. This effect is commonly called overdisper-
sion, reasons for which might be e.g. correlation in
the data or important explanatory variables not in-
cluded in the model. In order to account for addi-
tional unexplained variability of the individual ob-
servations, a random effect zi with density g(z) is in-
cluded into the linear predictor

ηi = x′iβ + zi .

The likelihood can be approximated by a finite mix-
ture

L =
n

∏
i=1

∫
f (yi|zi , β,φi)g(zi) dzi ≈

n

∏
i=1

{
K

∑
k=1

fikπk

}
,

where fik = f (yi|zk, β,φk), zk are the mass points
and πk their masses. The score equations, obtained
by setting the partial derivatives of the log-likelihood
` = log L equal to zero,

∂`

∂zk
= 0,

∂`

∂β
= 0,

∂`

∂φk
= 0,

turn out to be weighted versions of the single-
distribution score equations, with weights wik =
πk fik/∑l πl fil .

The weights wik can be interpreted as posterior
probabilities that the observation yi comes from com-
ponent k. The score equation for the mixture propor-
tions,

∂`− λ(∑ πk − 1)
∂πk

= 0,

gives the ML estimate π̂k = 1
n ∑i wik, which can be

nicely interpreted as the average posterior probabil-
ity for component k. The parameters β, zk and πk can
now be simultaneously estimated by the EM algo-
rithm, whereby the missing information is the com-
ponent membership of the observations:

E-Step Adjust weights wik = P(obs. i comes from
comp. k)

1In the present implementation, Gaussian, Poisson, Binomial, and Gamma distributed response are supported
2For binomial and Poisson models, φi ≡ 1. For Gaussian and Gamma models, the dispersion may be specified as constant, i.e. φi ≡ φ,

or as depending on the observation i. The theory in this section is provided for the most general case, i.e. variable dispersion.
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M-Step Update parameter estimates fitting a
weighted GLM with weights wik.

As starting values for the EM algorithm one uses
Gauss-Hermite integration points and masses. The
location of these starting points can be scaled in-
wards or outwards by means of a tuning parameter
tol, which is by default set to 0.5.

This procedure, and its straightforward extension
to random coefficient models, is implemented in the
function alldist, while variance component models
can be fitted with allvc; see Aitkin et al. (2005), pp
474ff and 485ff for details.

The function alldist

The main functions of this package are alldist and
allvc, the names of which were adapted from the
homonymous macros in GLIM4. The functions can
be used in a similar manner to the R function glm.

As an example for alldist, we consider data
from a study on lung cancer mortality presented in
Tsutakawa (1985). The data were recorded in the 84
largest Missouri cities from 1972-1981 and give the
number of lung cancer deaths of males aged 45-54 as
well as the city sizes3. The data were analyzed by
Tsutakawa (1985) and Aitkin (1996b), both authors
considering logit models of type

log
pi

1− pi
= zi ,

where zi is a random effect associated with the i−th
city and pi is its associated mortality rate. While Tsu-
takawa fitted a Poisson model with a normal ran-
dom effect, Aitkin opted for a binomial model with
an unspecified random effect distribution. We follow
Aitkin and will leave the random effect unspecified,
but as lung cancer death is a rather rare event (the
crude rate does not exceed 0.03 in any of the cities), it
seems natural to work with Poisson models. Hence,
one can write log(pi) = zi, or equivalently, in terms
of the means µi = ni pi,

log(µi) = log(ni) + zi ,

where the logarithm of the city sizes ni appears as
an offset. The two-point solution is then obtained
via the function alldist, using the same notation
as for a usual glm fit, except that the random term
and the number of mass points k=2 have also to be
specified. The resulting object (which we name, say,
missouri.np2) is of class ‘glmmNPML’ and its printed
output is given by

> print(missouri.np2)

Call: alldist(formula = Deaths ~1, random =
~1, family = poisson(link = "log"), data =

missouri, k = 2, offset = log(Size))

Coefficients:
MASS1 MASS2
-4.844 -4.232

Mixture proportions:
MASS1 MASS2

0.8461624 0.1538376
-2 log L: 355.3

One minor difference to a glm output is that the
disparity (−2 log L) is displayed instead of the de-
viance, but the latter one is immediately obtained via

> missouri.np2$dev
[1] 92.49207,

which is slightly better than the deviance 93.10 re-
ported in Aitkin (1996b) for the corresponding two-
mass point binomial logit model fitted with GLIM4.
As also observed by Aitkin, the disparity does not
fall significantly when increasing the number of
mass points further.

Empirical Bayes predictions (generally, h(x′iβ̂ +
ẑi) for the number of deaths per city can be obtained
by the use of fitted(missouri.np2), or equiv-
alently, missouri.np2$fitted.values, or equiva-
lently, predict(missouri.np2, type="response").
Dividing this quantity by missouri$Size, one ob-
tains estimated or ‘shrunken’ rates which can be
compared to the 6th column in Table 4, Aitkin
(1996b). The shrunken rates are less variable than
the crude rates and hence are useful for small area
estimation problems. The posterior probabilities wik
can be obtained from the fitted model (in analogy to
the 8th and 9th column of Table 4, Aitkin (1996b)),
via the component $post.prob. Further, ’posterior
intercepts’ for the construction of ’league tables’ are
stored in component $post.int — see Sofroniou
et al. (2006) for an example of their application.

Methods for most generic functions that
are applied to fitted model objects, such
as update(), coefficients(), residuals(),
fitted(), summary(), predict() and plot(),
have been defined for the glmmNPML class. In some
cases (the first four generic functions listed above)
the default method is used; in other cases (the last
three generics) explicit methods are provided. The
plot() function offers four different plots: (i) dis-
parity vs. EM iterations; (ii) EM trajectories; (iii)
Empirical Bayes predictions vs. true response; and
(iv) posterior probabilities against the residuals of
the fixed part of the GLM fit in the last EM itera-
tion. Plots (i) and (ii) are generated by default when
running alldist and are depicted in Fig. 1 for the
model fitted above.

3The data set missouri is part of this R package
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One observes that the EM trajectories converge
essentially to the fixed part residuals of cities no. 4
and 84 (in Tsutakawa’s list), which have populations
of 54155 and 22514, respectively, being much larger
than the majority of the other cities with only several
hundreds of inhabitants (For the very interested, the
numerical values associated with the disparity plot
and the EM trajectories, as well as the residuals plot-
ted vertically in the latter plot, are available in com-
ponent $Misc).

This was a simple example without any covari-
ates. In general an arbitrary number of fixed effects
can be specified, and the random component can be
an intercept (∼1) or a single variable giving a model
with a random slope and random intercept.
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Figure 1: Top: Disparity (−2 log L) trend; bottom:
EM trajectories. The vertical dots in the latter plot are
the residuals of the fixed part of the fitted random
effect model (Note that these residuals are not cen-
tered around 0, in contrast to the residuals of a simple
fixed effect model. The plotted residuals, generally
h−1(yi) − x′iβ̂, represent the random effect distribu-
tion and are on the same scale as the mass points).

The function allvc

The function alldist is designed to fit simple
overdispersion models (i.e. one has a random effect
on the individual observations). However, often one
wishes to introduces shared random effets, e.g. for
students from the same class or school, for the same

individual observed repeatedly over time (longitudi-
nal data), or in small area estimation problems. This
leads to variance component models, which can be
fitted in npmlreg using the function allvc. As an
example, let us consider the Oxford boys data from
Brush and Harrison (1990), which were analyzed
with NPML using GLIM4 by Aitkin et al. (2005).

The data set is part of the R package nlme (Pin-
heiro et al., 2005) and contains the heights of 26
boys, measured in Oxford on nine occasions over
two years. The boys, indexed by the factor Subject,
represent the upper level (primary sampling units,
PSU), and the particular measurements at different
time points correspond to the lower-level units (sec-
ondary sampling units, SSU).

As suggested by Aitkin et al. (2005), p. 495, we
fit a Gaussian model with unspecified random effect
distribution and K = 7 seven mass points,

(Oxboys.np7 <- allvc(height ~ age, random =
~1|Subject, data = Oxboys, k=7))$disparity
[1] 1017.269

which confirms the GLIM4 result. Aitkin et al. state
that for all models using K > 7 the fitted mass
points ‘are duplicated with the same total mass as
in lower-dimension models’, and hence consider this
7- mass point model as ‘sufficiently complex’. How-
ever, fitting for comparison a simple linear mixed
model with function lmer in package lme4 (Bates
and Sarkar, 2006)

(fm1 <- lmer(height ~ age + (1|Subject),
data = Oxboys, method = "ML"))

gives the MLdeviance, i.e. disparity, of 940.569. As
this model is based on a normal random effect dis-
tribution, NPML should be able to be superior, or
at least competitive, to this. Therefore, we went on
fitting models with K = 8 and K = 9 mass points,
yielding

(Oxboys.np8 <- allvc(height ~ age, random =
~1|Subject, data = Oxboys, k=8))$disparity
[1] 931.3752
(Oxboys.np9 <- allvc(height ~ age, random =
~1|Subject, data = Oxboys, k=9,
tol=0.3))$disparity
[1] 916.0921

For both models, all mass points are indeed distinct.
For instance, for the 9-mass point model one has

Estimate Std. Error
age 6.523719 0.05094195
MASS1 130.200174 0.16795344
MASS2 138.416628 0.09697325
MASS3 143.382397 0.09697225
MASS4 147.350113 0.07511877
MASS5 150.954327 0.06857400
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MASS6 153.869256 0.11915344
MASS7 156.178153 0.09676418
MASS8 159.521550 0.16795354
MASS9 164.883640 0.11876372

This increased performance compared to the
GLIM code is due to the installation of a ‘damping’
mechanism in the first cycles of the EM algorithm,
see Einbeck and Hinde (2006) for details.

Further increase of K does not yield major drops
in disparity, so we continue to work with nine mass
points, and extend the model by allowing the lin-
ear trend to vary across boys. The function call then
takes the form

(Oxboys.np9s <- allvc(height ~ age, random =
~age|Subject, data = Oxboys, k = 9,
tol=0.3))

The difference in disparities is

> Oxboys.np9$disparity - Oxboys.np9s$disparity
[1] 102.1071

on

> Oxboys.np9$df.res - Oxboys.np9s$df.res
[1] 8

degrees of freedom, showing clear heterogeneity in
the slope.

Summary

We have introduced the R package npmlreg, which
is in some parts a simple translation from the corre-
sponding GLIM4 code, but, in other parts, contains
substantial extensions and methodological improve-
ments. In particular, we mention the possibility to
fit Gamma models and to work with dispersion pa-
rameters varying smoothly over components, and, as
already noted, the installation of a damping proce-
dure. We note finally that for the sake of compara-
bility all implemented features are also available for
Gaussian Quadrature instead of NPML (leaving the
zk and πk fixed and equal to Gauss-Hermite integra-
tion points and masses). The R package is available
on CRAN. Future developments will include 3-level
models and multicategory responses.
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