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Calculating energy levels of isomerizing tetra-atomic molecules.
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A general, six-dimensional computational method for the accurate calculation of rotationally and
vibrationally excited states of tetra-atomic molecules is developed. The resulting program is
particularly appropriate for molecules executing wide-amplitude motions and isomerizations. An
application to the AyHF van der Waals trimer is presented in which the HF intramolecular
stretching coordinate is separated out adiabatically and is not treated explicitly. Vibrational term
values up to about 100 c¢m with absolute convergence to better than 0.1 érare reported. These
calculations employ more extensive vibrational basis sets and hence consider a much higher density
of states than hitherto. States that sample Ar—Ar—HF linear configurations and approach Ar—HF—Ar
linear configurations are characterized for the first time. Results for total angular moméntum
=0 and 1 provide the first accurate calculations of rotational constants for this system. The
rotational constants for the HF bending states gft#% in the ground and first vibrationally excited
states of the HF monomer are in good agreement with experiment, confirming the accuracy of the
potential used in this work. @003 American Institute of Physic§DOI: 10.1063/1.1545109

I. INTRODUCTION microwave!® mid-infrared"**?°and near-infrareld spectro-
scopic observations. Investigations of the nonadditive forces
Recent interest in understanding wide-amplitudein the Ar,HF complex usingab initio electronic structure
(floppy) molecular motions has been stimulated by the drivecalculations have included the applications of supermolecu-
to develop theories of intermolecular forces, isomerizatiorlar Mgller—Plesset perturbation theory by S&mak, Chata-
and coherent control of chemical reactions. Methods for calsinski, and co-worket§!! and symmetry-adapted perturba-
culating the rotation—vibration energy levels and wave func+ion theory by Moszynski and co-workef%.
tions of floppy systems have advanced greatly in the last Hutson and co-workef$?!4?1-Zhave developed and
decade but remain technically demanding and computatiortested a model of the nonadditive forces in,lAX (where X
ally expensive even for molecules and complexes as small as halogen including dispersion, induction, exchange over-
tetra-atomics 8 lap and exchange multipole interactions. Ernesti and
The accurate calculation of th@o-)vibrational bound Hutsort* found that their total-1 moddteferred to hereafter
states of the AIHF van der Waals complex is particularly as the EH potentialreproduced well the vibrational band
challenging. As well as possessing five flopjaytermolecu-  origins and frequency shifts for AHF, Ar,DF, Ar,HCI, and
lar) vibrational modes, two linear structuresr—Ar—HF and  Ar,DCI in the H/DX v =0 and 1 states. The model has also
Ar—HF—An) are accessible at modest levels of excitation.been extended to AHF clusteré* and shown to reproduce
Both of these local minima lie about 75 crhabove the the observed vibrational shifts for=3 and 4. However, the
T-shaped global minimum structure. Successful solution obound-state calculations of Ernesti and Hutson fogH%
this bound-state problem is vital to maximize the understandwere restricted to total angular momenturs 0. The rota-
ing of the spectroscopy of this important prototype systentional constants were computed as expectation values based
for the development of the theory of nonadditivéaree-  on pure vibrational wave functions and hence did not include
body) intermolecular force$-® Coriolis terms which are very large in some cases. Thus de-
The Ar,HF complex is ideally suited for the investiga- tailed comparisons of the predictions based on Ernesti and
tion of nonadditive forces in systems involving a molecularHutson’s nonadditive potentials with observed rotational
constituent. The Arand ArHF pair potentials are very accu- constants have not been possible hitherto. One important ob-
rately known, having been determined by accurate fitting tgective of the present work is to address this issue by com-
experimental data by AztZ and Hutsort® respectively. puting rotationally excitedJ>0) bound states of the AfF
Moreover there is a high-quality experimental data set availeomplex.
able that is sensitive to the three-body part of the intermo-  Ernesti and Hutson’s bound-state variational calculations
lecular potential. The experimental data includeemployed diatom-diatontJacobj coordinates and a near-
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exact kinetic energy operator to describe the internal motionvhereu , are reduced masses, are the lengths of internal
of the Ar,HX complexes. The complete 5D intermolecular vectorsq, and T, is the angular kinetic operator given in
potential was averaged over the vibrational motion of HX inEq. (37) of Ref. 5. Perhaps even more important is the in-
the adiabatically decoupled vibrational statg-. The basis variance of Eq(1) under various choices of orthogonal vec-
set was carefully optimized to converge well the ground vartors. Several useful choices such as Radau, Jacobi, diatom—
der Waals states and the fundamental HX bending excitationdiatom and orthogonal satellite vectors are considered in
(for eachv ). However, the basis set was restricted to con-Refs. 3 and 5. Once the scheme is chosen, the body-fixed
figurations associated with the T-shagdgtbba) minimum. axis system is usually defined so that thaxis goes along
Continuing advances in computing power and recent imone of the vectors, for example, and thexz plane is
portant developments in methodology for dealing withdefined byg; andq;.
floppy systems make it now feasible to compute bound-state The disadvantage of E€L) is that potentially it has two
energies and wave functions of tetra-atomic molecules whiclypes of singularities, both of which are connected Wi},
probe multiple minima and include rotational excitation. One singularity corresponds to the angle betwggandq,
However, as far as we are aware there has been only ormeing zero orr (so that the molecular plane is not defiped
reported study of variational calculations on a rotationallyThis can be cured by using a nondirect product angular
excited system with as many as five floppy vibrationalbasi€®—for a recent general discussion see, for example,
modes®® Most recently Lee and McCdyhave computed Ref. 29. Another singularity arises wheg is equal to zero
variationally the 25 lowest vibrationall&0) states of the (so that thez axis is not defined Unfortunately, depending
Ne,SH and NgOH (A 23 ") complexes. These authors char- on the choice of coordinates, one or both of these singulari-
acterized T-shaped and linear “isomers” with geometriesties is physically accessible for many floppy four-atom mol-

analogous to those expected to be accessible jhRAr ecules. To deal with the latter type of singularity we have
In the light of these developments it is timely to extend €mployed spherical oscillator functio. . _
the theoretical study of the AHF complex to include char- Our treatment of the angular problem is essentially close

acterization of vibrational states associated with the lineafo that of Mladenovi¢ who gave the matrix elements B,
isomers. To date no spectroscopic observations of such statésa parity-adapted angular basis. Unfortunately, the equa-
have been madénor indeed of any of the “framework tions for the matrix elements in Ref. 5 contain two typo-
modes” associated with heavy-atom vibrations about thegraphical errors. In addition, we have found it more conve-
T-shaped configurationNevertheless there are excited stateshient to work with slightly different phase factors for the
with these characteristics that lie close in energy to the statedngular basis. We therefore present the matrix elements be-
that have been observed, and perturbations due to them codRiv. Our primitive angular basis functions are
well be important. . _ ki [K— K F vk

The structure of the remainder of this paper is as fol- | «KKil.p) = Nicii P} ‘[Y' [3.K.M)
lows: Section Il describes the theoretical methods that we +(_l)~]+p+K+kYrKk|\],_K,M>], 2)
have developed and implemented to calculate the bound
states of floppy tetra-atomic systems. Section Il outlines th&Vhere « is an auxiliary number taking the valuesl and
results for the pure vibrational0) states of AjHF. This ~ T1, J andK are the usual rotational quantum numbers as-
includes discussion of the global picture of vibrational state$ociated with the total angular momentum and its projection
involving all three local minima. The detailed investigation ON the body-fixed-axis, | and| are angular momenta asso-
of the rotationally excited HF bending vibrational states ofciated with rotation ofy, anda,, respectivelyk is the pro-

Ar,HF and the implications for the EH potential are dis-j€ction ofl ontoqs, p is the total parityN is a normaliza-
cussed in Sec. IV. Section V concludes the paper. tion factor,P}‘ are associated Legendre functions of the angle

betweeng; andqq, Y}‘ are spherical harmonics of the body-
fixed angles defining the direction @f and|J,K,M) are
IIl. COMPUTATIONAL METHOD symmetric top eigenfunctions. Wher=1 our angular basis
Coordinates based on orthogonal vectors have becomefdnctions are the same as in Ref. 5, but they differ by a factor
very popular choice in dealing with wide-amplitude motions (—1)’"P"¥ whenx=—1.
in polyatomic systems. The generalized approach used in this It is useful to introduce radial functions
work was suggested by Chapuisat and fuagd developed 52 52

further in Refs. 26 and 27. Recently Mladenogive a very = +—, 3
concise account of the approach together with a detailed de- 2,u1q§ 2,u,3q§
scription of applications to some molecufeBundamentally
we build on the results of Ref. 5, although computationally h? h?
our method is somewhat different. b2:2,u2q2 + 2usq2’ 4
One of the most attractive features of generalized or- 2 s
thogonal coordinates is the simplicity of the kinetic energy 52
operator, b= 5 (5)
21305
w2 [P 2
T=> - —t— |+ Tang (1)  Jandpare strictly conserved and are therefore omitted in the
a=1 24a\0g;  Ya 9a formula below.
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The matrix elements diagonal K are given by
(1, KK, J 1 Tang 16, KK, 1)
=bqj(j+1)+bol(1+1)+bs[I(I+1)
—2(K2+k?—kKK)], (6)
(r, KK Tand 6, K K1)
= by sign(k— kK) V1+ 8080Cj ke Cifk ks k1
+ g signk’ — xK) V1+ 808 Cj i ek Cricdir k-1
(7
(k'=1K,k'=1,,l |Tand k=—1K,k=0,,l)
=—b3Cj kC o, ()
whereC; = I(1+1)—k(k=1). The quantity sigr( takes

Kozin et al.

FIG. 1. Coordinate system used for M.

=(; and the distance between the centers of mass of the two
diatomsR=q3; see the diagram in Fig. 1. The only essential
difference is in the axes embedding. The vedagrdefines

the direction of the axis and together with; defines thexz

the value—1 if I<0 and+1 if I=0. Inspection shows that pjane. g, is the angle between the two vectors. The orienta-
these matrix elements do not depend on the parity quantuiion of vectorq, is given by two angleg, and ¢; the angle

numberp. This allows the eigenvectors for tte>0 diago-

betweenq, andqs is 0, and ¢ rotatesq, aroundqs. The

nal blocks to be reused in the construction of the matrixangylar momentum of Aris denoted ., = and that of HF

elements for the off-diagonal blocksee below.
The matrix elements off-diagonal K are given by

(), K'=K=1K',j,1|Tand &, K k,j,1)
= — kbsCo[ C; $9"@ 5\ +sign(k— kK)
X 1+ 81 80C Rk S ], 9
(K, K =K+1K',j, 1| Tand 6, K K,j, 1)
= — kbsCH[CPP"® 8y ey o+ SigNK— KK )
X1+ 6000C; 290 B i,
<K’=1,K=1,k,j,||TandK= —-1K=0k,j,I)
=—b3CjCi(—1)""P, (11

(10

<K’=1,K=1,k+ 1) ,||TandK= —1,K=0k,]j ,|>
= —bgV1+ 8oCyCilu(—1)7P,
<K’=1,K'=K+ 1,k/=1,j,||TandK=—1,K,k=0,j,|>

= _bg\/1+ 5KOC‘]+,KCIJ,FO'

12

(13

is denotedj ye=1 here, whilek is the projection of = onto

R. Note, however, that in most of the earlier literature it was
jur that was denoted by'?* Note also tha®; and 6, here
correspond tor— y and 7— 6 respectively in Ref. 2 buy
and 7— 6 respectively in Ref. 12.

A major advantage of Eq.l) is that it helps separate
radial and angular coordinates because no mixed derivative
angular—radial operators are present. Thus if the radial mo-
tion is treated in the discrete variable representation
(DVR)*23the whole problem can be effectively constructed
from a set of angular subproblems. Furthermore the use of
the DVR approximation for the potential energy requires
only the angular integrals to be computed explicitly. Two
possible radial basis functions have been considered in the
present work: Morse oscillatorlike functions and spherical
oscillator functions. Morse oscillatorlike functions are de-
fined as*

BYNng exp(—y/2)y T D2LA(y), (14)

wherey=a ex—B(r—rg)], a=4D./B, B=w(u/2D)*?,
L7 (y) is a Laguerre polynomialy is the reduced mass as-
sociated with radial distance and N,,, is a normalization

If K=k=0 andJ+ p is even then the last two equations arefactor. The sefr., w., D} are treated as parameters to be

the same and need be used only once.

optimized, although they can be associated with the equilib-

The program suit® developed to perform the present rium distance, fundamental frequency and dissociation en-

study is capable of full six-dimension&D) rovibrational

ergy. In the case where the distancean be zero, spherical

calculations and has no limitation on the choice of orthogo-oscillator function®’ are a better choice,

nal vectors. After some consideration, we decided to use 14 Sy P12
diatom—diatom vectors for the application to,MIF. The V2B N1 @X —yl2)y ! DR R y),
Ernesti and Hutson total-1 AHF potential* was con- wherey=pgr?, B=(uwe)*?
structed using these coordinates. The potential was explicitlyameters.

constructed so that HF vibrations are adiabatically separated The size of the primitive basis is necessarily very big. If
and therefore eachy ¢ state is treated separately. This effec-we had a pure DVR basis, we could use methods which do
tively corresponds to averaging @f,=r,e (to reproduce not require explicit storage of the Hamiltonian matrix for
correctly the HF rotational constant for eaehe) in Eq.(1)  finding eigenvectors. Unfortunately the nondirect product
and reducing the number of degrees of freedom by one. Thpart of our basis cannot be transformed effectively to a DVR
present diatom—diatom coordinates are almost identical tand so integration of the angular potential function must be
the ones used in Ref. 14 if one takes the Ar—Ar distapce performed. Recently Lee and McCldyad a similar problem.

(15

and{7, w.} are treated as pa-
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They decided to use the implicit sequential diagonalizatioronce the integrals between differdafor all 6, and 6, grid

and truncation approachi.In the present work we use more points and then reuse them in computing 2D integfdls.
traditional explicit sequential diagonalization and truncationaddition to space-fixed inversion, which separates the states
(see, for example, Ref. 33The computation is performed in of even and odd parity, the permutation of two Ar atoms is
several steps. First the angular kinetic energy operator iglso feasiblé? This symmetry separates blocks with even
separated into sub-blocks diagonal K Tgng, and sub- and oddj Ar, and therefore has a straightforward effect on the

blocks off-diagonal irk with AK=+1, TK . The angular ~whole matrix.
problem associated withy,,+V is solved separately for ev- Ar,—HF can be considered as a relatively weakly bound
ery K sub-block for all radial grid point pairsR,p). HereV  trimer in which the HF exhibits hindered rotation. The equi-
is the full five-dimensional5D) potential with fixedR and  librium configuration is a near-isosceles triangleR (
p. Only eigenfunctions below a certain energy cut@l) =29 A, p=3.7 A), but two linear configurations are also
are selected for later use. Then the kinetic energy operator iaccessible: Ar—Ar—HF and Ar—HF—Ar. Fog,z=0 they are
the radial coordinate is included and the respective matri- located at 77 cm* (R=5.3 A, p=3.7 A) and 74 cm* (R
ces are constructed in the angular piusasis and solved for =0.03 A, p=6.8 A), respectively, above the absolute mini-
eigenvectors for everiR point. Again only the lowest states, mum. To accommodate these configurations we used 42
this time belowE?), are selected. Then the kinetic energy Morse oscillatorlike basis functions defined by E#i4) {r
operator irRis included and the full 5D vibrational matrix is =5-2 A, @e=10 cm *, D,=500 cm '} in p, sampling the
computed. During this step only the eigenvalues bdii@ range from 2 to 8 A, and 48 spherical oscillator functions
are found. FoK=0 this gives the desired final vibrational defined by Eq. (15 {#=0 or 1, w.=10cm*, D
levels. Fork >0 it gives K-optimized eigenvectors for fur- =500 cm '} in R, sampling the range from 0 to 6 A. The
ther use in the final ro-vibrational step. As outlined aboveparameters were chosen so that the Gaussian grid covers all
the contracted eigenvectors fpr=0 andp=1 are identical cpnfiguratipns of interest and thg eigenvalues of th.e respec-
for the K>0 diagonal sub-blocks. Hence the contractedtiVe one-dimensional problem@vith all other coordinates
eigenvectors fop=0 can be used for both=0 andp=1 in fixed to their equilibrium valugsare reasonably well con-
the final step. In this final step\K=+1 sub-blocks are Vverged. . _ _
included and rovibrational levels are computed. There is no problem in treating the Ar—Ar—HF linear
Depending on the size of the angular basis, the Compu(;onﬂguratmn in our approach since we use a couplgd angular
tation of the three-dimensional angular integrals of the poPasis. However, the Ar—HF-Ar configuration requires spe-
tential function may be the most time-consuming part of thetia! attention. The problem of the F%? singularity is well
calculation. Therefore it is important to make it as efficient<nOWn in triatomic systems such ag Hand Ag (if treated
as possible. To facilitate this in the present case we have tri¢ding Jacobi coordinates for exampléhe DVR quadrature

expanding the potential in the=0, totally symmetric angu- approximation7 breaks down for this term in the kinetic en-
lar functions defined by Ed2) at every radial pair and com- €79Y operato?’ The reader is referred to an excellent paper

puting the angular integrals analytically. This allowed re_Which explicitly considered the problem of singularities and

using the expansion for all symmetries. We found that thidmPlications made by the choice of direct or nondirect prod-
strategy is useful when particularly accurate integrals are delct bases. The conplusmn of Ref. 38 is that SF”Ctly sP eaking
sired. However for AJHF the best ratio of performance to one needs a ”O”d'regt p_)roduct_ angular—radial basis to ac-
accuracy was found with direct integration of the potentialCount fully for the 1R® singularity. However frequently a
function using Gaussian quadrature on the minimal numbet" ) ) , )
of quadrature points. This was achieved after implementingg_lImpler approagh mvolvgs the use O.f basis functions with
an algorithm which takes into account the symmetry proper- onzero probal_alllty def‘s"y ER.:O ifitis allow_e_d by sym-
ties of the product of two primitive basis functions. The sum-metry and basis funciions with zero probability density at

mation is performed only over half of the quadrature pointsR:o otherwise. If samplin@®=0 is important, it will mani-

but it uses the symmetric part of the potential if the productfeSt ftself in qmeren_t energy levels computed using the two
types of basis functions.

is symmetric and the asymmetric part if the product is asym- . . .
y! . y P prod y The spherical oscillator functiongl5) have nonzero
metric. In choosing the number of quadrature points, we used

the minimum number of points required to maintain the Or_probablllty.densny arR=0 if 77.:0 and zero if>0. In fact
thogonality of the basis functions. These numbers 4 the Gaussian quadrature pointsRmever take exactly zero

11, K™% 1, andjT®+ 1. Normally one would use 2 va_lues, bu'g sample the area near it. Therefore we may use
2 _ ) 7n=0 functions if the symmetry allows nonzero probability
+1, k™41, and 317+ 1 points, respectively. So the ap- density atR=0 andz=1 functions otherwise. In our imple-
proximately twofold saving for every angular coordinate mentation, there is also an option to comput@?l(required
gave an almost eightfold overall saving. This trick has beern T, either in the DVR approximation or analyticafly.
used previously in expanding a function in a series of spheriThe term 142, also present IMang, is always treated in the
cal harmonics® Furthermore, there is an additional twofold DVR approximation, because the potential does not allow
saving for ¢. Although ¢ is defined from zero to 2, be- geometries around=0 to be sampled.
cause of the inversion symmetry its effective range is from  Our calculations showed that changindrom 0 to 1 has
zero tor only. almost no effect for levels up to 100 crhabove the zero-
To make further improvements one can compute onlypoint energy(ZPE). However usingz=0 and computing

impler direct product approximation works we&l*® This
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1/R? analytically made the overall convergence of levels
much slower and the computation more demanding. This is
because of the spectral range of th&®2lterm8-%° as R
comes close to zero, Rf has not only large diagonal matrix
elements but also large off-diagonal elements as well. Con-
sequently our diagonalization—truncation strategy becomes
less effective: we have to increase the energy cutoff. How-
ever increasing it brings in many more states because the
density of states is very high at larg® Therefore in the
present work we decided to limit attention to vibrational
states below 100 cnt. All the calculations presented here
use»=0 and treat ] in the DVR approximation. All the
J=0 eigenvalues calculated using this approach agreed
within our level of convergencé.1 cm ) with results us-
ing »=1 and treating R? analytically. However, some
states above 100 cm begin to sampleR=0 (see below 3 y r r
and we plan to treat them more accurately in a future work. 1 2 8 4 5 6
Dissociation along (giving Ar + Ar + HF) requires R/Angstrom
about 100 cm* more energy than dissociation aloRggiv- FIG. 2. Effective radial potential energy, constructed using the angular zero-
ing Ar,+HF). It therefore seems logical to treatfirst in point energy at each radial configuration fgi==1. The contour energies
our diagonalization truncation scheme. To ensure that propé¥e given in cm'.
p functions are obtained, we choo&?!) to be above the
dissociation energy ip by 10 to 50 cm*. The second en-
ergy cutoff, E2), was chosen to be above the second disso@lly many points, such as very short-rangepoints, were
ciation energy(alongR) by 60 to 100 cm®. To construct ©Omitted (before the angular diagonalization at that ppint
the angular basis we usq@éxz 52, jM¥=5 andkM™=4, Apart from the ground vibrational state of the complex,

This resulted in about 500 angular basis functions per sym=2 far only HF hindered rotoor bending states have been

metry block fork =0 and up to about 900 fdf=1. Typi-  CPServed experimentally, with,-= 1 andvyye=3."° This
cally a full J=0 calculation took several hours on a singleis because it is the HF rotational motion that carries the os-

667 MHz XP/1000 Alpha processor adé-1 took from 10 cillator strengt.h for tr_]e transitions..Bt_acau_se of the high dgn—

hours to 2 days depending on the size of the baspsto sity of states, it was important to d|st|n_gU|sh the HF bepdmg

10000 contracted functions in the final diagonalization states from the framework modes. This was achieved in two
ways. First we computed the relative vibrational line
strengths of the transitions from the ground state=0 to

Ill. VIBRATIONAL STATES OF Ar ,HF all computed states

p/Angstrom

Solving the angular problem for all radial configurations _ : 2
results in sets of angular eigenstatasiabats The energy RL_QEW (ilpal )", (16
of the lowest angular state computed for a radial pajR{ ) _— )
characterizes the accessibility of the radial configuration con\-Nhere' andf denot_e the |n|F|aI and final states. Here we ha\(e
cerned. It is instructive to consider the effective 2D potentialused the approximate dipole moment function given in
surface formed by the lowest adiabat. Figure 2 shows arﬁzef' 2,
example forvye=1, A; symmetry. The two linear configu- w,= A3 Y9, (17)
rations are readily recognizable at approximately 100 tm
above the equilibrium and are seen as local minima. How- 4 oo 1
ever the Ar—Ar—HF configuration is more easily accessible Mx=preNATI3 (Y _Yl)ﬁ’ (18)
than Ar—HF—Ar because the barrier to it is lower. The den-
sity of angular states is very high at the Ar—Ar—HF configu-

_ i
ration and in fact is even higher than at the T-shaped con-  #y=mupV4m/3 (Y1 '+ Y%)E- (19
figuration because the angular anisotropy is lower.
The J=0 levels computed foo=0 and 1 are pre- It is important to note the selection rules governing the

sented in Table I. We estimate that they are converged tdipole transitions. The operatpr, transforms as thé, rep-
better than 0.1 cm'. We investigated increasing the radial resentation of the grou@,, , so that the only allowed tran-
and angular primitive bases by about 20%, but it turned ousitions from the ground state are those to states of the same,
that the most crucial step to improve convergence was tae., A;, symmetry. Sinceu, is of B, symmetry, it allows
increase the energy cutoffs. Because we were constrained loyly transitions toB, states. Similarlyu, allows transitions
memory limitations, the computation was necessarily a comto B, states only. Only relative line strength calculations are
promise between truncation energies and the size of thpresented below, so we takg-=1.

primitive basis. Fortunately DVR makes it easy to skip In cases where an unambiguous assignment does not
points with unphysically high potential energies. Thus actu-emerge from the line strengths, we analyzed the probability
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TABLE |. Vibrational energy levels for AHF (vy=0 and 2 calculated vue=1) has been made based on the rotational constants
using the EH total-1 potentigRef. 14. All energies are given in cnt.

ZPE represents zero-point energy. RL represents relative line stréngth (See below . ) )
units of x2) The present calculations show two strongly interacting
HF/ - . . . . .
B, symmetry vibrational states with nearly equal vibrational
vrr=0 onr=1 line strength at about 60 cm for Ar,HF in the vye=1
Energy RLX 10° Energy RLX 10° manifold. These states are separated by only 1'cn®nly

one band has been identified experimentdllijowever, the

ZZE —2r3 - —291.9 observed band is highly perturbed and only 60% of the re-
1 0.0 465.56 0.0 488.27 solved lines have been assignédsome of the unassigned
2 25.1 0.04 25.5 0.00 lines might well be attributable to our second predicted vi-
3 39.8 0.20 41.2 0.01 brational statgat 61.1 cm'). Before drawing a firm con-
‘5‘ gg-i 8'8;, ;‘g-g 8-82 clusion on this point, however, the approximations associated
6 62.1 0.02 636 0.00 with our line strength calculations need further investigation.
7 66.0 0.05 67.6 0.00 The major approximation is associated with truncation of the
8 70.8 0.26 73.5 0.01 basis set: improvements in the basis set may change the rela-
9 717 73.62 78.4 0.04 tive energies of the two interacting vibrational states and thus
i’ ;g-z 8-(7)3 ;?-3 42-?;’ change the mixing between them. With a very much smaller
12 811 0.01 835 0.02 ba5|_s set, Erngs_tl and Hutson pr_edlcted on_Iy one strong vi-
13 83.7 0.09 86.7 0.16 brational transition to &éB, state in the region around 60
14 85.8 0.02 88.7 0.20 cm 1.121%The present calculations are definitely more accu-
15 86.7 0.02 90.3 0.03 rate than those of Refs. 12 and 14, but may not be fully
1‘75 g;-g 8-22 g;s 8-;8 converged. In addition, we have so far computed only vibra-
18 90.3 216 93.8 318 tional rather than rovibrational line strengths, and the latter
19 91.3 0.03 95.3 0.00 would be very interesting because they would permit de-
20 92.8 0.00 95.5 0.00 tailed comparison with the experimental data.
The preseng=0 calculations agree very well with ear-
?2 so.7 10 s 6.90 lier calculations®!* The HF bending states are usually
5 544 0.33 o5 7 0.97 within 0.1 to 0.2 cm* of the previous results. Comparison
3 59.3 123.39 61.1 123.14 of our Table | with Fig. 5 of Ref. 12 immediately demon-
4 60.3 104.48 62.2 106.78 strates that many states associated with the framework modes
5 74.2 0.74 77.1 0.73 are lower in energy in the present work and the density of
6 76.7 0.01 78.2 0.06 states quickly reaches one per ¢t This is because the
7 82.3 1.31 84.1 1.92 2.14 L . :
8 828 0.01 86.2 0.06 work of EH'%1* was primarily interested in HF bending
9 85.6 0.07 88.1 0.19 states and therefore did not use a large enough radial basis
10 86.5 0.04 90.7 0.04 set to permit Ar—Ar—HF linear geometries.
1 87.7 0.04 91.9 0.03 In the present work we clearly see that some states probe
g ggg 8-81 2‘6‘-2 g-gg the Ar—Ar—HF configuration, for example, state 16 in Fig. 3.
: ' ' ' This state appears to be well localized in the linear isomeric
B, structure. In fact, due to permutation symmetry there is an
1 81.6 167.04 87.7 171.99 equivalent state 0B, symmetry(state 10 in Fig. #at about
the same energy. States localized in a linear isomeric struc-
/1*2 075 as ture have also been reported in the; Aystent®
i : At yet higher energy, some states begin to sample the
a3 bend. Ar—HF—Ar configuration. In this respect it is interesting to
PState strongly mixed with in-pland bend. compare the radial distribution density for state 20 in Fig. 3
‘In-planell bend(strongly mixed with framework mode with the wave functions of the “horseshoe” states computed

d - -
Out-of-planell bend. for H by Tennyson and co-workédfs’? and for Ar by

Wright and Hutsort® Here the HF molecule moves between

density of the computed eigenfunctions. A very useful quan{n€ two Ar atoms as they move apart to make way for it.
tity proved to be the two-dimensional probability density as a _ AS an illustration of the complexity of some of the states
function ofp andR (integrated over the remaining degrees of&rising in this floppy system, state 15 in Fig. 3 shows an
freedom. Some examples for states Af andB, symmetry wregular npdal §tructure and samples a very wide range of
are given in Figs. 3 and 4. The pure HF bending states havedial configurations.

no excitation in radial coordinates and are therefore localized

around the absolgte minimum_in the potential—see, for €Xjy. ROTATIONALLY EXCITED HF BENDING STATES
ample, state 10 in Fig. 3. This should be contrasted with

states 9 and 11. States 3 and 4Bgfsymmetry have similar The agreement between the vibrational energies com-
appearance and strong intensity for botf=0 and 1. In  puted in this work and those obtained by EH for HF bending
this case the final assignment of the in-pldiebend (for  states demonstrates that at least some HF bending states are
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A1 sym, state #9, E= 78.4 cm-1 A1 sym, state #10, E= 79.5 cm-1 s "A1 sym, state #11, E= 81.7 cm-1

p/Angstrom

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
L A1 sym, state #15, E= 90.3 cm-1 T A1l sym, state #16, E= 91.2 cm-1 et A1 sym, state #20, E= 95.5 cm-1

£
R A\ 6
j=2]
c
<
Q 5 5
44 44
3 . . . . "3 : . . : . " 3 T T - - - -
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
R/Angstrom R/Angstrom R/Angstrom

FIG. 3. Probability densities of selected vibrational states feHfrv,-=1, A; symmetry calculated using the EH total-1 potentRéf. 14.

weakly coupled to the framework modes. This encouraged uselow 100 cm?, and no states ok, symmetry, it was easy
to try to calculate rotational constants frods=1 calcula-  to match the rovibrational states with the corresponding pure
tions, despite the lack of absolute convergence in the ene(iprational states. If centrifugal distortion is neglected, the

gies. It seemed reasonable to suppose that if vibrationtheerl states have energigs+B, B+C, and A+C

states are weakly coupled and relatively isolated then rOtaébove the correspondini=0 states. This allows the direct

Hﬁga;nsfrzicéggs might be much better converged than abs(?:-orﬁputfe\tion of the rotational constamtsB, anqc frgm the
The rotational excitation from=0 to 1 splits every vi- rovibrational levels. The results are summarized in Table II.
brational level into three rovibrational levels, which have  Previous estimates of rotational constants it have
symmetries supplementing the representation of the vibra2een obtained through calculations of expectation values in-
tional state in the fullC,, group. For example, if the vibra- Volving pure vibrational wave functior$:* This neglects
tional state isA; then itsJ=1 states will beA,, B;, andB,.  Coriolis effects. When the EH calculations and experiment

Since there is actually just one=0 state ofB; symmetry agree, indicating that the Coriolis effects are small or unim-

B2 sym, state #3, E= 61.1 cm-1 “-B2 sym, state #4, E= 62.2 cm-1 ‘B2 sym, state #10, E= 90.7 cm-1
|8 |8

p/Angstrom

1 2 4 5 6 1 2 4 5 6

4 5 6 1 2

3 3 3
R/Angstrom R/Angstrom R/Angstrom

FIG. 4. Probability densities of selected vibrational states foHfrv =1, B, symmetry calculated using the EH total-1 potentRéf. 14.
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TABLE II. Observed and calculated vibrational energies (&nand rota- portant, the present results are hardly any better than EH.
tional constant$MHz) for the van der Waals ground states and HF bending However. when there is a big discrepancy between EH and
states of AyHF. L .

: experiment, the present calculations show much better agree-

Expt? EHP Expt.—EH TWE Expt.—TW ment. In particular, the two largest discrepancies in the ear-
~ lier work, for the A rotational constants of the in-plane and
vye=0, ground state (A, state No. 1 . .
A 35765  3593.7 172 35781 16 out-of-plane I1 bends, are dramatically reduced in the
B 1739.2 1740.0 -0.8 1740.1 -1.0 present work.
C 1160.9 1160.5 0.4 1165.9 -4.9 We have performed limited variations of the energy cut-
offs and the basis séwhile also investigating convergence
vue=0, X bend @, state No. 9 of our vibrational resulisand conclude that the computed
v 718 L7 rotational constants should be accurate to better than 30
A 3553.7 3437.5
B 1743.4 1745.2 MHz.
I 1156.4 1180.4 HF bending states have also been observed in the near-
infrared spectra of AHF in thev =3 state by Klemperer
vpe=01¢ (B, state No. 3 et al’® We have extended our calculations to model these
v 59.3 states. However, for these states the potential energy surface
A 3450.0 is less accurate and the comparison between theory and ex-
B 1734.5 : ; . :
c 1137.4 periment is not such a direct test of the computational
method. The different issues raised by the rather higher ex-
vue=0, in-planell bend® (B, state No. 4 citation in the HF intramolecular mode will be discussed in a
v 60.1 60.3 separate papéf.
A 3642.3 3365.3
B 1718.2 1740.0
C 1154.8 1126.2
V. CONCLUSION
vye=0, out-of-planell bend B, state No. 1
Z 3583;'.51 36%1‘,;3 The vibrational spectrum of the AdF van der Waals
B 17371 1738.8 trimer has been investigated up to about 100 ¢rabove the
C 1152.3 1172.2 zero-point energy fowy-=0 and 1. The reported energy
levels are converged to an absolute energy of better than 0.1
vie=1, ground state (A, state No. ] cm L. The present method treats fully the van der Waals
A 3578.3 3593.6 -15.3 3576.9 1.4 : ! .
B 1742.7 1743.2 05 17455 o8 stretches and therefore gives a density of states much higher
c 1162.9 1162.2 07 1166.8 —39 than tackled previously for this system. This makes yet better
convergence somewhat difficult to achieve. However, we are
able to estimate rotational constants of the HF bending vi-
vne=1, = bend @, state No. 1p brational states frond=1 levels, because the relative posi-
Z 33;96'3 tions of rotational levels converge considerably faster than
B 1747.7 the absolute energies. This is demonstrated by good agree-
C 1170.9 ment between the calculated and experimental rotational
constants. The potential of Ernesti and Hutson is successful
vpe=1¢ (B, state No. 3 in reproducing accurately rotational as well as vibrational
Z 3 4212'.11 spectroscopic data.
B 1736.5 It is not yet clear how successful our simple strategy is
c 1135.4 in dealing with states that sample geometries ardriad. It
seems likely that states similar to the horseshoe stateg in H
vye=1, in-planell bend® (B, state No. 4 and Ar; do exist in ApHF. Indications of them can be seen
Z 3322';’ 36%252 _28ff 3376;'72 5012 in the excited states of Fig. 3. Calculations on states that
B 17334 17152 18.2 17432  —98 probe linear geometries are interesting because they might
c 1120.5 1155.8 -353 1125.7 -52 facilitate the observation of such states, and this would allow
further improvement of our understanding of nonadditive in-
vue=1, out-of-planell bend B, state No. 1 termolecular forces. We plan to investigate this further in
v 88.6 87.6 1.0 87.7 0.9 future work.
A 8702.2 35414 160.8 3678.8 23.4 The calculations reported here are not very demanding in
B 1754.4 1737.2 17.2 17749  -205
c 1154 4 1152 8 16 11718 174 terms of modern computer power and the results are very
encouraging. Applications to many floppy tetra-atomic sys-
:E)é?:rrg:fgtﬂvalues taken from Ref. 13. tems are envisaged including other JRX clusters. More-
This work. over the extension of our method and program suite to sys-
dState strongly mixed with in-planBl bend. tems of two rare gas atoms and a rigid triatomic molecule

eStrongly mixed with framework mode. such as CQor OCS is not only straightforward but feasible.
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