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A general, six-dimensional computational method for the accurate calculation of rotationally and
vibrationally excited states of tetra-atomic molecules is developed. The resulting program is
particularly appropriate for molecules executing wide-amplitude motions and isomerizations. An
application to the Ar2HF van der Waals trimer is presented in which the HF intramolecular
stretching coordinate is separated out adiabatically and is not treated explicitly. Vibrational term
values up to about 100 cm21 with absolute convergence to better than 0.1 cm21 are reported. These
calculations employ more extensive vibrational basis sets and hence consider a much higher density
of states than hitherto. States that sample Ar–Ar–HF linear configurations and approach Ar–HF–Ar
linear configurations are characterized for the first time. Results for total angular momentumJ
50 and 1 provide the first accurate calculations of rotational constants for this system. The
rotational constants for the HF bending states of Ar2HF in the ground and first vibrationally excited
states of the HF monomer are in good agreement with experiment, confirming the accuracy of the
potential used in this work. ©2003 American Institute of Physics.@DOI: 10.1063/1.1545109#

I. INTRODUCTION

Recent interest in understanding wide-amplitude
~floppy! molecular motions has been stimulated by the drive
to develop theories of intermolecular forces, isomerization
and coherent control of chemical reactions. Methods for cal-
culating the rotation–vibration energy levels and wave func-
tions of floppy systems have advanced greatly in the last
decade but remain technically demanding and computation-
ally expensive even for molecules and complexes as small as
tetra-atomics.1–8

The accurate calculation of the~ro-!vibrational bound
states of the Ar2HF van der Waals complex is particularly
challenging. As well as possessing five floppy~intermolecu-
lar! vibrational modes, two linear structures~Ar–Ar–HF and
Ar–HF–Ar! are accessible at modest levels of excitation.
Both of these local minima lie about 75 cm21 above the
T-shaped global minimum structure. Successful solution of
this bound-state problem is vital to maximize the understand-
ing of the spectroscopy of this important prototype system
for the development of the theory of nonadditive~three-
body! intermolecular forces.9–16

The Ar2HF complex is ideally suited for the investiga-
tion of nonadditive forces in systems involving a molecular
constituent. The Ar2 and ArHF pair potentials are very accu-
rately known, having been determined by accurate fitting to
experimental data by Aziz17 and Hutson,18 respectively.
Moreover there is a high-quality experimental data set avail-
able that is sensitive to the three-body part of the intermo-
lecular potential. The experimental data include

microwave,19 mid-infrared9,13,20 and near-infrared15 spectro-
scopic observations. Investigations of the nonadditive forces
in the Ar2HF complex usingab initio electronic structure
calculations have included the applications of supermolecu-
lar Møller–Plesset perturbation theory by Szcze¸śniak, Chała-
sinski, and co-workers10,11 and symmetry-adapted perturba-
tion theory by Moszynski and co-workers.16

Hutson and co-workers2,12,14,21–23have developed and
tested a model of the nonadditive forces in Ar2HX ~where X
5 halogen! including dispersion, induction, exchange over-
lap and exchange multipole interactions. Ernesti and
Hutson14 found that their total-1 model~referred to hereafter
as the EH potential! reproduced well the vibrational band
origins and frequency shifts for Ar2HF, Ar2DF, Ar2HCl, and
Ar2DCl in the H/DX v50 and 1 states. The model has also
been extended to ArnHF clusters24 and shown to reproduce
the observed vibrational shifts forn53 and 4. However, the
bound-state calculations of Ernesti and Hutson for Ar2HF
were restricted to total angular momentumJ50. The rota-
tional constants were computed as expectation values based
on pure vibrational wave functions and hence did not include
Coriolis terms which are very large in some cases. Thus de-
tailed comparisons of the predictions based on Ernesti and
Hutson’s nonadditive potentials with observed rotational
constants have not been possible hitherto. One important ob-
jective of the present work is to address this issue by com-
puting rotationally excited (J.0) bound states of the Ar2HF
complex.

Ernesti and Hutson’s bound-state variational calculations
employed diatom–diatom~Jacobi! coordinates and a near-
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exact kinetic energy operator to describe the internal motion
of the Ar2HX complexes. The complete 5D intermolecular
potential was averaged over the vibrational motion of HX in
the adiabatically decoupled vibrational statevHF. The basis
set was carefully optimized to converge well the ground van
der Waals states and the fundamental HX bending excitations
~for eachvHF). However, the basis set was restricted to con-
figurations associated with the T-shaped~global! minimum.

Continuing advances in computing power and recent im-
portant developments in methodology for dealing with
floppy systems make it now feasible to compute bound-state
energies and wave functions of tetra-atomic molecules which
probe multiple minima and include rotational excitation.
However, as far as we are aware there has been only one
reported study of variational calculations on a rotationally
excited system with as many as five floppy vibrational
modes.25 Most recently Lee and McCoy7 have computed
variationally the 25 lowest vibrational (J50) states of the
Ne2SH and Ne2OH (Ã 2S1) complexes. These authors char-
acterized T-shaped and linear ‘‘isomers’’ with geometries
analogous to those expected to be accessible in Ar2HF.

In the light of these developments it is timely to extend
the theoretical study of the Ar2HF complex to include char-
acterization of vibrational states associated with the linear
isomers. To date no spectroscopic observations of such states
have been made~nor indeed of any of the ‘‘framework
modes’’ associated with heavy-atom vibrations about the
T-shaped configuration!. Nevertheless there are excited states
with these characteristics that lie close in energy to the states
that have been observed, and perturbations due to them could
well be important.

The structure of the remainder of this paper is as fol-
lows: Section II describes the theoretical methods that we
have developed and implemented to calculate the bound
states of floppy tetra-atomic systems. Section III outlines the
results for the pure vibrational (J50) states of Ar2HF. This
includes discussion of the global picture of vibrational states
involving all three local minima. The detailed investigation
of the rotationally excited HF bending vibrational states of
Ar2HF and the implications for the EH potential are dis-
cussed in Sec. IV. Section V concludes the paper.

II. COMPUTATIONAL METHOD

Coordinates based on orthogonal vectors have become a
very popular choice in dealing with wide-amplitude motions
in polyatomic systems. The generalized approach used in this
work was suggested by Chapuisat and Iung1 and developed
further in Refs. 26 and 27. Recently Mladenovic´ gave a very
concise account of the approach together with a detailed de-
scription of applications to some molecules.5 Fundamentally
we build on the results of Ref. 5, although computationally
our method is somewhat different.

One of the most attractive features of generalized or-
thogonal coordinates is the simplicity of the kinetic energy
operator,

T5 (
a51

3

2
\2

2ma
S ]2

]qa
2

1
2

qa

]

]qa
D 1Tang, ~1!

wherema are reduced masses,qa are the lengths of internal
vectorsqa and Tang is the angular kinetic operator given in
Eq. ~37! of Ref. 5. Perhaps even more important is the in-
variance of Eq.~1! under various choices of orthogonal vec-
tors. Several useful choices such as Radau, Jacobi, diatom–
diatom and orthogonal satellite vectors are considered in
Refs. 3 and 5. Once the scheme is chosen, the body-fixed
axis system is usually defined so that thez axis goes along
one of the vectors, for example,q3, and thexz plane is
defined byq3 andq1.

The disadvantage of Eq.~1! is that potentially it has two
types of singularities, both of which are connected withTang.
One singularity corresponds to the angle betweenq3 andq1

being zero orp ~so that the molecular plane is not defined!.
This can be cured by using a nondirect product angular
basis28—for a recent general discussion see, for example,
Ref. 29. Another singularity arises whenq3 is equal to zero
~so that thez axis is not defined!. Unfortunately, depending
on the choice of coordinates, one or both of these singulari-
ties is physically accessible for many floppy four-atom mol-
ecules. To deal with the latter type of singularity we have
employed spherical oscillator functions.30

Our treatment of the angular problem is essentially close
to that of Mladenovic´,5 who gave the matrix elements ofTang

in a parity-adapted angular basis. Unfortunately, the equa-
tions for the matrix elements in Ref. 5 contain two typo-
graphical errors. In addition, we have found it more conve-
nient to work with slightly different phase factors for the
angular basis. We therefore present the matrix elements be-
low. Our primitive angular basis functions are

ukKk jl ,Jp&5NKkk
kPj

uk2kKu@Yl
kkuJ,K,M &

1~21!J1p1K1kYl
2kkuJ,2K,M &], ~2!

wherek is an auxiliary number taking the values21 and
11, J and K are the usual rotational quantum numbers as-
sociated with the total angular momentum and its projection
on the body-fixedz-axis, j and l are angular momenta asso-
ciated with rotation ofq1 andq2, respectively,k is the pro-
jection of l ontoq3 , p is the total parity,NKk is a normaliza-
tion factor,Pj

k are associated Legendre functions of the angle
betweenq3 andq1 , Yj

k are spherical harmonics of the body-
fixed angles defining the direction ofq2 and uJ,K,M & are
symmetric top eigenfunctions. Whenk51 our angular basis
functions are the same as in Ref. 5, but they differ by a factor
(21)J1p1K whenk521.

It is useful to introduce radial functions

b15
\2

2m1q1
2

1
\2

2m3q3
2

, ~3!

b25
\2

2m2q2
2

1
\2

2m3q3
2

, ~4!

b35
\2

2m3q3
2

. ~5!

J andp are strictly conserved and are therefore omitted in the
formula below.
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The matrix elements diagonal inK are given by

^k,K,k, j ,l uTanguk,K,k, j ,l &

5b1 j ~ j 11!1b2l ~ l 11!1b3@J~J11!

22~K21k22kKk!#, ~6!

^k,K,k8, j ,l uTanguk,K,k, j ,l &

5b3 sign~k2kK !A11dK0dk0Cj ,k2kK
1 Cl ,k

1 dk8,k11

1b3 sign~k82kK !A11dK0dk1Cj ,k2kK
2 Cl ,k

2 dk8,k21 ,

~7!

^k851,K,k851,j ,l uTanguk521,K,k50,j ,l &

52b3Cj ,K
2 Cl ,0

2 , ~8!

whereClk
65Al ( l 11)2k(k61). The quantity sign(I ) takes

the value21 if I ,0 and11 if I>0. Inspection shows that
these matrix elements do not depend on the parity quantum
numberp. This allows the eigenvectors for theK.0 diago-
nal blocks to be reused in the construction of the matrix
elements for the off-diagonal blocks~see below!.

The matrix elements off-diagonal inK are given by

^k,K85K21,k8, j ,l uTanguk,K,k, j ,l &

52kb3CJK
2 @Cl ,k

2sign(k)dk8,k2k1sign~k2kK !

3A11dK1dk0Cj ,k2kK
sign(k) dk8,k#, ~9!

^k,K85K11,k8, j ,l uTanguk,K,k, j ,l &

52kb3CJK
1 @Cl ,k

sign(k)dk8,k1k1sign~k2kK8!

3A11dK0dk0Cj ,k2kK
2sign(k)dk8,k#, ~10!

^k851,K51,k, j ,l uTanguk521,K50,k, j ,l &

52b3CJ,0
1 Cj ,k

2 ~21!J1p, ~11!

^k851,K51,k11,j ,l uTanguk521,K50,k, j ,l &

52b3A11dk0CJ,0
1 Cl ,k

1 ~21!J1p, ~12!

^k851,K85K11,k851,j ,l uTanguk521,K,k50,j ,l &

52b3A11dK0CJ,K
1 Cl ,0

1 . ~13!

If K5k50 andJ1p is even then the last two equations are
the same and need be used only once.

The program suite31 developed to perform the present
study is capable of full six-dimensional~6D! rovibrational
calculations and has no limitation on the choice of orthogo-
nal vectors. After some consideration, we decided to use
diatom–diatom vectors for the application to Ar2HF. The
Ernesti and Hutson total-1 Ar2HF potential14 was con-
structed using these coordinates. The potential was explicitly
constructed so that HF vibrations are adiabatically separated
and therefore eachvHF state is treated separately. This effec-
tively corresponds to averaging ofq25r HF ~to reproduce
correctly the HF rotational constant for eachvHF) in Eq. ~1!
and reducing the number of degrees of freedom by one. The
present diatom–diatom coordinates are almost identical to
the ones used in Ref. 14 if one takes the Ar–Ar distancer

5q1 and the distance between the centers of mass of the two
diatomsR5q3; see the diagram in Fig. 1. The only essential
difference is in the axes embedding. The vectorq3 defines
the direction of thez axis and together withq1 defines thexz
plane.u1 is the angle between the two vectors. The orienta-
tion of vectorq2 is given by two anglesu2 andf; the angle
betweenq2 and q3 is u2 and f rotatesq2 aroundq3. The
angular momentum of Ar2 is denotedj Ar2

5 j and that of HF
is denotedj HF5 l here, whilek is the projection ofj HF onto
R. Note, however, that in most of the earlier literature it was
j HF that was denoted byj.12,14 Note also thatu1 andu2 here
correspond top2x and p2u respectively in Ref. 2 butx
andp2u respectively in Ref. 12.

A major advantage of Eq.~1! is that it helps separate
radial and angular coordinates because no mixed derivative
angular–radial operators are present. Thus if the radial mo-
tion is treated in the discrete variable representation
~DVR!32,33 the whole problem can be effectively constructed
from a set of angular subproblems. Furthermore the use of
the DVR approximation for the potential energy requires
only the angular integrals to be computed explicitly. Two
possible radial basis functions have been considered in the
present work: Morse oscillatorlike functions and spherical
oscillator functions. Morse oscillatorlike functions are de-
fined as34

b1/2Nna exp~2y/2!y(a11)/2Ln
a~y!, ~14!

wherey5a exp@2b(r2re)#, a54De /b, b5ve(m/2De)
1/2,

Ln
a(y) is a Laguerre polynomial,m is the reduced mass as-

sociated with radial distancer and Nna is a normalization
factor. The set$r e , ve , De% are treated as parameters to be
optimized, although they can be associated with the equilib-
rium distance, fundamental frequency and dissociation en-
ergy. In the case where the distancer can be zero, spherical
oscillator functions30 are a better choice,

A2b1/4Nnh11/2exp~2y/2!y(h11)/2Ln
h11/2~y!, ~15!

wherey5br 2, b5(mve)
1/2 and $h, ve% are treated as pa-

rameters.
The size of the primitive basis is necessarily very big. If

we had a pure DVR basis, we could use methods which do
not require explicit storage of the Hamiltonian matrix for
finding eigenvectors. Unfortunately the nondirect product
part of our basis cannot be transformed effectively to a DVR
and so integration of the angular potential function must be
performed. Recently Lee and McCoy7 had a similar problem.

FIG. 1. Coordinate system used for Ar2HF.
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They decided to use the implicit sequential diagonalization
and truncation approach.35 In the present work we use more
traditional explicit sequential diagonalization and truncation
~see, for example, Ref. 33!. The computation is performed in
several steps. First the angular kinetic energy operator is
separated into sub-blocks diagonal inK, Tang

K , and sub-

blocks off-diagonal inK with DK561, Tang
K8,K . The angular

problem associated withTang
K 1V is solved separately for ev-

ery K sub-block for all radial grid point pairs (R,r). HereV
is the full five-dimensional~5D! potential with fixedR and
r. Only eigenfunctions below a certain energy cutoff,Ecut

(1)

are selected for later use. Then the kinetic energy operator in
the radial coordinater is included and the respective matri-
ces are constructed in the angular plusr basis and solved for
eigenvectors for everyR point. Again only the lowest states,
this time belowEcut

(2) , are selected. Then the kinetic energy
operator inR is included and the full 5D vibrational matrix is
computed. During this step only the eigenvalues belowEcut

(3)

are found. ForK50 this gives the desired final vibrational
levels. ForK.0 it gives K-optimized eigenvectors for fur-
ther use in the final ro-vibrational step. As outlined above,
the contracted eigenvectors forp50 andp51 are identical
for the K.0 diagonal sub-blocks. Hence the contracted
eigenvectors forp50 can be used for bothp50 andp51 in
the final step. In this final step,DK561 sub-blocks are
included and rovibrational levels are computed.

Depending on the size of the angular basis, the compu-
tation of the three-dimensional angular integrals of the po-
tential function may be the most time-consuming part of the
calculation. Therefore it is important to make it as efficient
as possible. To facilitate this in the present case we have tried
expanding the potential in theJ50, totally symmetric angu-
lar functions defined by Eq.~2! at every radial pair and com-
puting the angular integrals analytically. This allowed re-
using the expansion for all symmetries. We found that this
strategy is useful when particularly accurate integrals are de-
sired. However for Ar2HF the best ratio of performance to
accuracy was found with direct integration of the potential
function using Gaussian quadrature on the minimal number
of quadrature points. This was achieved after implementing
an algorithm which takes into account the symmetry proper-
ties of the product of two primitive basis functions. The sum-
mation is performed only over half of the quadrature points
but it uses the symmetric part of the potential if the product
is symmetric and the asymmetric part if the product is asym-
metric. In choosing the number of quadrature points, we used
the minimum number of points required to maintain the or-
thogonality of the basis functions. These numbers arej HF

max

11, kmax11, and j Ar2

max11. Normally one would use 2j HF
max

11, 2kmax11, and 2j Ar2

max11 points, respectively. So the ap-

proximately twofold saving for every angular coordinate
gave an almost eightfold overall saving. This trick has been
used previously in expanding a function in a series of spheri-
cal harmonics.36 Furthermore, there is an additional twofold
saving forf. Although f is defined from zero to 2p, be-
cause of the inversion symmetry its effective range is from
zero top only.

To make further improvements one can compute only

once the integrals between differentk for all u1 andu2 grid
points and then reuse them in computing 2D integrals.7 In
addition to space-fixed inversion, which separates the states
of even and odd parity, the permutation of two Ar atoms is
also feasible.12 This symmetry separates blocks with even
and oddj Ar2

and therefore has a straightforward effect on the

whole matrix.
Ar2–HF can be considered as a relatively weakly bound

trimer in which the HF exhibits hindered rotation. The equi-
librium configuration is a near-isosceles triangle (R
52.9 Å , r53.7 Å ), but two linear configurations are also
accessible: Ar–Ar–HF and Ar–HF–Ar. ForvHF50 they are
located at 77 cm21 (R55.3 Å, r53.7 Å) and 74 cm21 (R
50.03 Å, r56.8 Å), respectively, above the absolute mini-
mum. To accommodate these configurations we used 42
Morse oscillatorlike basis functions defined by Eq.~14! $r e

55.2 Å, ve510 cm21, De5500 cm21% in r, sampling the
range from 2 to 8 Å, and 48 spherical oscillator functions
defined by Eq. ~15! $h50 or 1, ve510 cm21, De

5500 cm21% in R, sampling the range from 0 to 6 Å. The
parameters were chosen so that the Gaussian grid covers all
configurations of interest and the eigenvalues of the respec-
tive one-dimensional problems~with all other coordinates
fixed to their equilibrium values! are reasonably well con-
verged.

There is no problem in treating the Ar–Ar–HF linear
configuration in our approach since we use a coupled angular
basis. However, the Ar–HF–Ar configuration requires spe-
cial attention. The problem of the 1/R2 singularity is well
known in triatomic systems such as H3

1 and Ar3 ~if treated
using Jacobi coordinates for example!: the DVR quadrature
approximation breaks down for this term in the kinetic en-
ergy operator.37 The reader is referred to an excellent paper38

which explicitly considered the problem of singularities and
implications made by the choice of direct or nondirect prod-
uct bases. The conclusion of Ref. 38 is that strictly speaking
one needs a nondirect product angular–radial basis to ac-
count fully for the 1/R2 singularity. However frequently a
simpler direct product approximation works well.37,39 This
simpler approach involves the use of basis functions with
nonzero probability density atR50 if it is allowed by sym-
metry and basis functions with zero probability density at
R50 otherwise. If samplingR50 is important, it will mani-
fest itself in different energy levels computed using the two
types of basis functions.

The spherical oscillator functions~15! have nonzero
probability density atR50 if h50 and zero ifh.0. In fact
the Gaussian quadrature points inR never take exactly zero
values, but sample the area near it. Therefore we may use
h50 functions if the symmetry allows nonzero probability
density atR50 andh51 functions otherwise. In our imple-
mentation, there is also an option to compute 1/R2 ~required
in Tang) either in the DVR approximation or analytically.37

The term 1/r2, also present inTang, is always treated in the
DVR approximation, because the potential does not allow
geometries aroundr50 to be sampled.

Our calculations showed that changingh from 0 to 1 has
almost no effect for levels up to 100 cm21 above the zero-
point energy~ZPE!. However usingh50 and computing
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1/R2 analytically made the overall convergence of levels
much slower and the computation more demanding. This is
because of the spectral range of the 1/R2 term:38–40 as R
comes close to zero, 1/R2 has not only large diagonal matrix
elements but also large off-diagonal elements as well. Con-
sequently our diagonalization–truncation strategy becomes
less effective: we have to increase the energy cutoff. How-
ever increasing it brings in many more states because the
density of states is very high at largeR. Therefore in the
present work we decided to limit attention to vibrational
states below 100 cm21. All the calculations presented here
useh50 and treat 1/R2 in the DVR approximation. All the
J50 eigenvalues calculated using this approach agreed
within our level of convergence~0.1 cm21) with results us-
ing h51 and treating 1/R2 analytically. However, some
states above 100 cm21 begin to sampleR50 ~see below!
and we plan to treat them more accurately in a future work.

Dissociation alongr ~giving Ar 1 Ar 1 HF! requires
about 100 cm21 more energy than dissociation alongR ~giv-
ing Ar21HF). It therefore seems logical to treatr first in
our diagonalization truncation scheme. To ensure that proper
r functions are obtained, we chooseEcut

(1) to be above the
dissociation energy inr by 10 to 50 cm21. The second en-
ergy cutoff,Ecut

(2) , was chosen to be above the second disso-
ciation energy~along R) by 60 to 100 cm21. To construct
the angular basis we usedj Ar2

max552, j HF
max55, andkmax54.

This resulted in about 500 angular basis functions per sym-
metry block forK50 and up to about 900 forK51. Typi-
cally a full J50 calculation took several hours on a single
667 MHz XP/1000 Alpha processor andJ51 took from 10
hours to 2 days depending on the size of the basis~up to
10 000 contracted functions in the final diagonalization!.

III. VIBRATIONAL STATES OF Ar 2HF

Solving the angular problem for all radial configurations
results in sets of angular eigenstates~adiabats!. The energy
of the lowest angular state computed for a radial pair (r,R)
characterizes the accessibility of the radial configuration con-
cerned. It is instructive to consider the effective 2D potential
surface formed by the lowest adiabat. Figure 2 shows an
example forvHF51, A1 symmetry. The two linear configu-
rations are readily recognizable at approximately 100 cm21

above the equilibrium and are seen as local minima. How-
ever the Ar–Ar–HF configuration is more easily accessible
than Ar–HF–Ar because the barrier to it is lower. The den-
sity of angular states is very high at the Ar–Ar–HF configu-
ration and in fact is even higher than at the T-shaped con-
figuration because the angular anisotropy is lower.

The J50 levels computed forvHF50 and 1 are pre-
sented in Table I. We estimate that they are converged to
better than 0.1 cm21. We investigated increasing the radial
and angular primitive bases by about 20%, but it turned out
that the most crucial step to improve convergence was to
increase the energy cutoffs. Because we were constrained by
memory limitations, the computation was necessarily a com-
promise between truncation energies and the size of the
primitive basis. Fortunately DVR makes it easy to skip
points with unphysically high potential energies. Thus actu-

ally many points, such as very short-ranger points, were
omitted ~before the angular diagonalization at that point!.

Apart from the ground vibrational state of the complex,
so far only HF hindered rotor~or bending! states have been
observed experimentally, withvHF5113 andvHF53.15 This
is because it is the HF rotational motion that carries the os-
cillator strength for the transitions. Because of the high den-
sity of states, it was important to distinguish the HF bending
states from the framework modes. This was achieved in two
ways. First we computed the relative vibrational line
strengths of the transitions from the ground statevHF50 to
all computed states

RL5 (
a5x,y,z

^ i umau f &2, ~16!

wherei andf denote the initial and final states. Here we have
used the approximate dipole moment function given in
Ref. 2,

mz5mHFA4p/3 Y1
0 , ~17!

mx5mHFA4p/3 ~Y1
212Y1

1!
1

A2
, ~18!

my5mHFA4p/3 ~Y1
211Y1

1!
i

A2
. ~19!

It is important to note the selection rules governing the
dipole transitions. The operatormz transforms as theA1 rep-
resentation of the groupC2v , so that the only allowed tran-
sitions from the ground state are those to states of the same,
i.e., A1, symmetry. Sincemx is of B2 symmetry, it allows
only transitions toB2 states. Similarlymy allows transitions
to B1 states only. Only relative line strength calculations are
presented below, so we takemHF51.

In cases where an unambiguous assignment does not
emerge from the line strengths, we analyzed the probability

FIG. 2. Effective radial potential energy, constructed using the angular zero-
point energy at each radial configuration forvHF51. The contour energies
are given in cm21.
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density of the computed eigenfunctions. A very useful quan-
tity proved to be the two-dimensional probability density as a
function ofr andR ~integrated over the remaining degrees of
freedom!. Some examples for states ofA1 andB2 symmetry
are given in Figs. 3 and 4. The pure HF bending states have
no excitation in radial coordinates and are therefore localized
around the absolute minimum in the potential—see, for ex-
ample, state 10 in Fig. 3. This should be contrasted with
states 9 and 11. States 3 and 4 ofB2 symmetry have similar
appearance and strong intensity for bothvHF50 and 1. In
this case the final assignment of the in-planeP bend ~for

vHF51) has been made based on the rotational constants
~see below!.

The present calculations show two strongly interacting
B2 symmetry vibrational states with nearly equal vibrational
line strength at about 60 cm21 for Ar2HF in the vHF51
manifold. These states are separated by only 1 cm21. Only
one band has been identified experimentally.13 However, the
observed band is highly perturbed and only 60% of the re-
solved lines have been assigned.13 Some of the unassigned
lines might well be attributable to our second predicted vi-
brational state~at 61.1 cm21). Before drawing a firm con-
clusion on this point, however, the approximations associated
with our line strength calculations need further investigation.
The major approximation is associated with truncation of the
basis set: improvements in the basis set may change the rela-
tive energies of the two interacting vibrational states and thus
change the mixing between them. With a very much smaller
basis set, Ernesti and Hutson predicted only one strong vi-
brational transition to aB2 state in the region around 60
cm21.12,14The present calculations are definitely more accu-
rate than those of Refs. 12 and 14, but may not be fully
converged. In addition, we have so far computed only vibra-
tional rather than rovibrational line strengths, and the latter
would be very interesting because they would permit de-
tailed comparison with the experimental data.

The presentJ50 calculations agree very well with ear-
lier calculations.12,14 The HF bending states are usually
within 0.1 to 0.2 cm21 of the previous results. Comparison
of our Table I with Fig. 5 of Ref. 12 immediately demon-
strates that many states associated with the framework modes
are lower in energy in the present work and the density of
states quickly reaches one per cm21. This is because the
work of EH12,14 was primarily interested in HF bending
states and therefore did not use a large enough radial basis
set to permit Ar–Ar–HF linear geometries.

In the present work we clearly see that some states probe
the Ar–Ar–HF configuration, for example, state 16 in Fig. 3.
This state appears to be well localized in the linear isomeric
structure. In fact, due to permutation symmetry there is an
equivalent state ofB2 symmetry~state 10 in Fig. 4! at about
the same energy. States localized in a linear isomeric struc-
ture have also been reported in the Ar3 system.39

At yet higher energy, some states begin to sample the
Ar–HF–Ar configuration. In this respect it is interesting to
compare the radial distribution density for state 20 in Fig. 3
with the wave functions of the ‘‘horseshoe’’ states computed
for H3

1 by Tennyson and co-workers41,42 and for Ar3 by
Wright and Hutson.39 Here the HF molecule moves between
the two Ar atoms as they move apart to make way for it.

As an illustration of the complexity of some of the states
arising in this floppy system, state 15 in Fig. 3 shows an
irregular nodal structure and samples a very wide range of
radial configurations.

IV. ROTATIONALLY EXCITED HF BENDING STATES

The agreement between the vibrational energies com-
puted in this work and those obtained by EH for HF bending
states demonstrates that at least some HF bending states are

TABLE I. Vibrational energy levels for Ar2HF (vHF50 and 1! calculated
using the EH total-1 potential~Ref. 14!. All energies are given in cm21.
ZPE represents zero-point energy. RL represents relative line strength~in
units of mHF

2 ).

vHF50 vHF51

Energy RL3103 Energy RL3103

ZPE 2277.3 2 2291.9
A1

1 0.0 465.56 0.0 488.27
2 25.1 0.04 25.5 0.00
3 39.8 0.20 41.2 0.01
4 46.8 0.01 47.6 0.00
5 56.1 0.03 58.0 0.02
6 62.1 0.02 63.6 0.00
7 66.0 0.05 67.6 0.00
8 70.8 0.26 73.5 0.01
9 71.7 73.64a 78.4 0.04
10 76.7 0.00 79.5 48.90a

11 78.4 0.78 81.7 9.51
12 81.1 0.01 83.5 0.02
13 83.7 0.09 86.7 0.16
14 85.8 0.02 88.7 0.20
15 86.7 0.02 90.3 0.03
16 87.8 0.00 91.2 0.10
17 88.8 0.11 92.7 0.30
18 90.3 2.16 93.8 3.18
19 91.3 0.03 95.3 0.00
20 92.8 0.00 95.5 0.00

B2

1 29.7 7.40 30.5 8.90
2 54.4 0.33 55.7 0.97
3 59.3 123.32b 61.1 123.14b

4 60.3 104.46c 62.2 106.73c

5 74.2 0.74 77.1 0.73
6 76.7 0.01 78.2 0.06
7 82.3 1.31 84.1 1.92
8 82.8 0.01 86.2 0.06
9 85.6 0.07 88.1 0.19
10 86.5 0.04 90.7 0.04
11 87.7 0.04 91.9 0.03
12 89.9 0.01 94.0 0.00
13 92.5 0.01 96.4 0.02

B1

1 81.6 167.01d 87.7 171.99d

A2

1 107.5 114.3

aS bend.
bState strongly mixed with in-planeP bend.
cIn-planeP bend~strongly mixed with framework mode!.
dOut-of-planeP bend.
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weakly coupled to the framework modes. This encouraged us
to try to calculate rotational constants fromJ51 calcula-
tions, despite the lack of absolute convergence in the ener-
gies. It seemed reasonable to suppose that if vibrational
states are weakly coupled and relatively isolated then rota-
tional spacings might be much better converged than abso-
lute energies.

The rotational excitation fromJ50 to 1 splits every vi-
brational level into three rovibrational levels, which have
symmetries supplementing the representation of the vibra-
tional state in the fullC2v group. For example, if the vibra-
tional state isA1 then itsJ51 states will beA2 , B1, andB2.
Since there is actually just oneJ50 state ofB1 symmetry

below 100 cm21, and no states ofA2 symmetry, it was easy
to match the rovibrational states with the corresponding pure
vibrational states. If centrifugal distortion is neglected, the
three J51 states have energiesA1B, B1C, and A1C
above the correspondingJ50 states. This allows the direct
computation of the rotational constantsA, B, andC from the
rovibrational levels. The results are summarized in Table II.

Previous estimates of rotational constants in Ar2HF have
been obtained through calculations of expectation values in-
volving pure vibrational wave functions.12,14 This neglects
Coriolis effects. When the EH calculations and experiment
agree, indicating that the Coriolis effects are small or unim-

FIG. 3. Probability densities of selected vibrational states for Ar2HF vHF51, A1 symmetry calculated using the EH total-1 potential~Ref. 14!.

FIG. 4. Probability densities of selected vibrational states for Ar2HF vHF51, B2 symmetry calculated using the EH total-1 potential~Ref. 14!.
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portant, the present results are hardly any better than EH.
However, when there is a big discrepancy between EH and
experiment, the present calculations show much better agree-
ment. In particular, the two largest discrepancies in the ear-
lier work, for theA rotational constants of the in-plane and
out-of-plane P bends, are dramatically reduced in the
present work.

We have performed limited variations of the energy cut-
offs and the basis set~while also investigating convergence
of our vibrational results! and conclude that the computed
rotational constants should be accurate to better than 30
MHz.

HF bending states have also been observed in the near-
infrared spectra of Ar2HF in thevHF53 state by Klemperer
et al.15 We have extended our calculations to model these
states. However, for these states the potential energy surface
is less accurate and the comparison between theory and ex-
periment is not such a direct test of the computational
method. The different issues raised by the rather higher ex-
citation in the HF intramolecular mode will be discussed in a
separate paper.43

V. CONCLUSION

The vibrational spectrum of the Ar2HF van der Waals
trimer has been investigated up to about 100 cm21 above the
zero-point energy forvHF50 and 1. The reported energy
levels are converged to an absolute energy of better than 0.1
cm21. The present method treats fully the van der Waals
stretches and therefore gives a density of states much higher
than tackled previously for this system. This makes yet better
convergence somewhat difficult to achieve. However, we are
able to estimate rotational constants of the HF bending vi-
brational states fromJ51 levels, because the relative posi-
tions of rotational levels converge considerably faster than
the absolute energies. This is demonstrated by good agree-
ment between the calculated and experimental rotational
constants. The potential of Ernesti and Hutson is successful
in reproducing accurately rotational as well as vibrational
spectroscopic data.

It is not yet clear how successful our simple strategy is
in dealing with states that sample geometries aroundR50. It
seems likely that states similar to the horseshoe states in H3

1

and Ar3 do exist in Ar2HF. Indications of them can be seen
in the excited states of Fig. 3. Calculations on states that
probe linear geometries are interesting because they might
facilitate the observation of such states, and this would allow
further improvement of our understanding of nonadditive in-
termolecular forces. We plan to investigate this further in
future work.

The calculations reported here are not very demanding in
terms of modern computer power and the results are very
encouraging. Applications to many floppy tetra-atomic sys-
tems are envisaged including other Rg2HX clusters. More-
over the extension of our method and program suite to sys-
tems of two rare gas atoms and a rigid triatomic molecule
such as CO2 or OCS is not only straightforward but feasible.

TABLE II. Observed and calculated vibrational energies (cm21) and rota-
tional constants~MHz! for the van der Waals ground states and HF bending
states of Ar2HF.

Expt.a EHb Expt.–EH TWc Expt.–TW

vHF50, ground state (A1 state No. 1!
A 3576.5 3593.7 217.2 3578.1 21.6
B 1739.2 1740.0 20.8 1740.1 21.0
C 1160.9 1160.5 0.4 1165.9 24.9

vHF50, S bend (A1 state No. 9!
n 71.8 71.7
A 3553.7 3437.5
B 1743.4 1745.2
C 1156.4 1180.4

vHF50 d (B2 state No. 3!
n 59.3
A 3450.0
B 1734.5
C 1137.4

vHF50, in-planeP bende (B2 state No. 4!
n 60.1 60.3
A 3642.3 3365.3
B 1718.2 1740.0
C 1154.8 1126.2

vHF50, out-of-planeP bend (B1 state No. 1!
n 81.5 81.6
A 3539.1 3655.4
B 1737.1 1738.8
C 1152.3 1172.2

vHF51, ground state (A1 state No. 1!
A 3578.3 3593.6 215.3 3576.9 1.4
B 1742.7 1743.2 20.5 1745.5 22.8
C 1162.9 1162.2 0.7 1166.8 23.9

vHF51, S bend (A1 state No. 10!
n 79.5
A 3396.9
B 1747.7
C 1170.9

vHF51 d (B2 state No. 3!
n 61.1
A 3452.1
B 1736.5
C 1135.4

vHF51, in-planeP bende (B2 state No. 4!
n 62.4 62.0 0.4 62.2 0.2
A 3380.8 3662.9 2281.1 3375.7 5.1
B 1733.4 1715.2 18.2 1743.2 29.8
C 1120.5 1155.8 235.3 1125.7 25.2

vHF51, out-of-planeP bend (B1 state No. 1!
n 88.6 87.6 1.0 87.7 0.9
A 3702.2 3541.4 160.8 3678.8 23.4
B 1754.4 1737.2 17.2 1774.9 220.5
C 1154.4 1152.8 1.6 1171.8 217.4

aExperimental values taken from Ref. 13.
bReference 14.
cThis work.
dState strongly mixed with in-planeP bend.
eStrongly mixed with framework mode.
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