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Abstract

We present a simple formula for all the conserved charges of soliton theories,

evaluated on the solutions belonging to the orbit of the vacuum under the group

of dressing transformations. For pedagogical reasons we perform the explicit

calculations for the case of the sine-Gordon model, taken as a prototype of soliton

theories. We show that the energy and momentum are boundary terms for all

the solutions on the orbit of the vacuum. That orbit includes practically all

the solutions of physical interest, namely solitons, multi-solitons, breathers, and

combinations of solitons and breathers. The example of the mKdV equation is

also given explicitly.
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1 Introduction

In the last years there appeared in the literature several results pointing to the fact

that the conserved charges, especially the energy, of 1 + 1 dimensional integrable field

theories take the form of boundary terms when evaluated on soliton solutions. In

other words, the charges seem to depend only on the asymptotic values of the fields

at infinity. Using arguments based on conformal symmetry, it was shown in [1] that

the energy of one-soliton solutions of all abelian affine Toda theories is determined

by the the asymptotic value of a Belinfante type term (which ‘improves’ the energy

momentum tensor). The same result was obtained in [2] by explicit calculations of

the energy integral. By considering one of the light cone variables as the time, it was

shown in [3] that the corresponding chiral charges are surface terms. All these results

relied on the extensions of the Toda field theories proposed in [4, 5, 6], by the addition

of extra fields to render them conformally invariant. Similar results were also obtained

using Backlund transformations [7].

In order to illustrate the statements above, consider the example of the sine-Gordon

model. Its conformal extension carried out along the lines of [4, 5, 6] is defined by the

eqs. of motion

∂2ϕ = −eη sin ϕ,

∂2η = 0,

∂2ρ = eη (1 − cos ϕ) . (1.1)

The theory is invariant under the conformal transformations1 x± → f± (x±) if the

sine-Gordon field ϕ is a scalar under the conformal group and if e−η → f ′
+f ′

−e−η. The

conformal weights of ρ are arbitrary. The Lagangrean for (1.1) is given by

L =
1

2
(∂µϕ)2 − ∂µη ∂µρ − eη (1 − cos ϕ) (1.2)

and the improved energy-momentum tensor by

Tµν = Θµν + 2
(

∂µ∂ν − gµν ∂2
)

ρ, (1.3)

where Θµν is the canonical energy-momentum tensor

Θµν = ∂µϕ ∂νϕ − ∂µρ ∂νη − ∂µη ∂νρ − gµν L. (1.4)

The second term in (3) is the above mentioned Belinfante type term [8].

1The light cone coordinates x± are defined in (3.2).
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As a consequence of the conformal symmetry Tµν is indeed traceless. The Hamilto-

nian of the pure sine-Gordon theory is obtained by considering the solutions where the

free field η is a constant (a spontaneous symmetry breaking of the conformal symmetry)

and is given by

HSG = Θ00 |η=0=
1

2
(∂tϕ)2 +

1

2
(∂xϕ)2 + 1 − cos ϕ. (1.5)

In [1, 2] it was shown that the energy measured by the improved tensor, namely
∫∞
−∞ dx T00, vanishes when evaluated on the soliton solutions. Therefore, the energy

measured by the sine-Gordon canonical energy momentum tensor takes the form of a

surface term, i.e.

E =
∫

dxHSG = −2
∫ ∞

−∞
dx ∂2

x ρ = −2∂xρ |x=∞
x=−∞ . (1.6)

In this paper we extend this result by showing that not only the soliton solutions

but all solutions connected to the vacuum by the so-called dressing transformations,

have the energy and momentum given by the boundary terms (1.6). The orbit of

solutions obtained this way includes practically all solutions of physical interest like

solitons, multi-solitons, breathers, combinations of solitons and breathers, etc. We also

give a simple formula for the higher conserved charges for the same orbit of solutions.

For instance, for the case of 1-soliton solutions we show that the conserved charges

take the form (n = 0, 1, 2, . . .)

Ω
(±)
2n+1 = ±2

[

1 + v

1 − v

]±
(2n+1)

2

, (1.7)

where v is the velocity of the soliton. For the breather solution they are given by

Ω
(±)
2n+1 = ±4 ε

[

1 + v

1 − v

]±
(2n+1)

2

cos [(2n + 1) θ] , (1.8)

where again v is the velocity of the breather, and the angle θ is related to the breather

oscillation frequency ω by sin θ = ω. For multi-soliton or multi-breather solutions,

and also for solutions that are combinations of solitons and breathers, all the charges

simply add up.

We also show that the reasons underlying such results are not really connected to

the conformal symmetry. They are a consequence of very special algebraic structures

appearing in the construction of the solutions by the dressing transformation method.

The first important point is the behavior of the Wilson path ordered integral, used

in the construction of the conserved charges, under the dressing transformation. One
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can write that integral in terms of its vacuum value, which is simple, and the asymp-

totic values of the group element performing the dressing (gauge) transformation. The

second important point relates to special decompositions of those group elements in-

volving oscillators algebras defined by the vacuum solution. We point out however,

that in order to prove our results one has to work with the Kac-Moody algebra with

a non-trivial central extension, even when the soliton theory needs a zero curvature

representation (Lax-Zakharov-Shabat equation) based on a loop algebra only. In many

cases, that implies the introduction of an extra field on the lines of [4, 5, 6].

We also extend such results to any integrable hierarchy possessing the basic ingre-

dients for the appearance of soliton solutions. We work out the explicit formulas for

all the conserved charges for such theories. The example of the modified Korteweg-de

Vries (mKdV) equation is given explicitly to ilustrate that our method also works for

non-Lorentz invariant theories appearing in fluid dynamics.

The paper is organized as follows: in section 2 we discuss the construction of the

conserved charges of integrable theories using a flat connection satisfying the Lax-

Zakharov-Shabat equation, and show how the charges relate to their vacuum value

under the dressing transformations. In section 3 we discuss in detail the case of the

sine-Gordon model as a prototype of soliton theories, and evaluate the charges explic-

itly. Section 4 is devoted to the generalization of our results for any soliton theory

satisfying the conditions given at the beginning of that section. The example of the

mKdV equation is given in section 4.1. In appendix A we give some results about

representation theory of Kac-Moody algebras needed in the paper.

2 The conserved charges

A 1 + 1 dimensional integrable field theory admits a representation of its equations

of motion in terms of the so-called zero curvature condition, or Lax-Zakharov-Shabat

equation [9]

Fµν = ∂µAν − ∂νAµ + [Aµ , Aν ] = 0 µ, ν = 0, 1, (2.1)

where Aµ is a Lie algebra valued vector field which is a functional of the physical fields of

the theory. The vanishing of the curvature Fµν is equivalent to the equations of motion

of the underlying field theory. One of the key points of eq. (2.1) is that it constitutes

conservation laws in 1+1 dimensions. The construction of the corresponding conserved

charges is obtained as follows: Consider a path C going from an initial point P0 to a
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Figure 1:

final point P1, and let the quantity W be defined on C through the differential equation

d W

d σ
+ Aµ

d xµ

d σ
W = 0, (2.2)

where σ parametrizes C. The solution of (2.2) is the path ordered integral

W = P e−
∫

C
dσ Aµ

d xµ

d σ

=
∞
∑

n=0

(−1)n
∫ σ

0
dσ1

∫ σ1

0
dσ2 . . .

∫ σn−1

0
dσn Aµ1 (σ1)

d xµ1

d σ1

. . . Aµn
(σn)

d xµn

d σn

.

Eq. (2.1) is the sufficient condition for W to be path independent as long as the initial

and end points of C are kept fixed [10]. Then if we take the two paths shown in figure

1 we get that (x0 ≡ t, x1 ≡ x)

P exp
(

−
∫ t

0
dt At |x=L

)

P exp

(

−
∫ L

−L
dxAx |t=0

)

=

= P exp

(

−
∫ L

−L
dxAx |t=t

)

P exp
(

−
∫ t

0
dt At |x=−L

)

.

Next we impose the boundary condition (for L → ∞)

At |x=L= At |x=−L +β C (2.3)

where β is some function of t and L and C is the central charge of the algebra. Then

one gets the quasi-isospectral evolution equation

Wt = e
∫ t

0
dt β C U (t) W0 U (t)−1 , (2.4)

where

W0/t = P exp

(

−
∫ L

−L
dxAx |t=0/t

)

; U (t) = P exp
(

−
∫ t

0
dt At |x=L

)

. (2.5)
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If β vanishes we have a pure isospectral evolution. Therefore, the eigenvalues of Wt are

constant in time, and constitute the conserved charges of the underlying field theory

associated with (2.1). However, if β does not vanish we still can have conserved charges

in some circumstances. For instance, suppose that the operator Ψ0 is an eigenstate of

W0 under the adjoint action

W0 Ψ0 W−1
0 = λ Ψ0. (2.6)

Then, the operator Ψt = U (t) Ψ0 U (t)−1 is an eigenstate of Wt with the same eigen-

value, since the central term C commutes with every operator.

Another key point of eq. (2.1) is that it is invariant under the gauge transformations

Aµ → Ag
µ = g Aµ g−1 − ∂µg g−1, (2.7)

where g is an element of the Lie group associated to the Lie algebra of Aµ. Under (2.7)

the path ordered integral transforms as

W (C) → W g (C) = g (P1) W (C) g−1 (P0) , (2.8)

where P0 and P1 are the initial and final points of C respectively. One then observes

that the conserved charges are invariant under those gauge transformations for which

g (t, x = −L) = eα C g (t, x = L), since if Ψt is an eigenvector of Wt under the adjoint

action, i.e. Wt Ψt W
−1
t = λ Ψt, so is Ψg

t = g (t, x = L) Ψt g (t, x = L)−1, an eigenvector

of W g
t = e−α C g (t, x = L) Wt g

−1 (t, x = L). However, we are more interested in the

gauge transformations that do change the values of the conserved charges, as we explain

below.

The transformations (2.7) constitute the so-called hidden symmetries of the under-

lying field theory associated with (2.1), in the sense that they are not symmetries of the

equations of motion but of the zero curvature condition. Under some circumstances,

the transformations (2.7) constitute a map among solutions of the theory. In fact,

all the soliton and multi-soliton solutions in 1 + 1 dimensions can be constructed us-

ing special transformations of the type (2.7), named dressing transformations, starting

from a simple vacuum solution. Therefore, if one knows the operator W
(vac.)
t associated

to a given simple vacuum solution, and knows the dressing transformation that maps

that vacuum solution to a non-trivial solution, like a soliton, then the corresponding

operator will be given by

Wt = g (t, x = L) W
(vac.)
t g−1 (t, x = −L) . (2.9)

Consequently, the conserved charges evaluated on such non-trivial solutions, which are

the eigenvalues of Wt, will depend upon the eigenvalues of W
(vac.)
t , which are trivial,
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and on the asymptotic values of the group element performing the transformation. In

many cases, that will imply that the charges are surface terms as we now explain on

some concrete examples.

3 The case of the sine-Gordon model

The standard zero curvature condition (2.1) for the sine-Gordon model involves poten-

tials Aµ which live in a sl(2) loop algebra, i.e., they are 2 × 2 matrices depending on

a so-called spectral parameter. That is an infinite dimensional Lie algebra without a

central extension. The potentials are given by

A+ =
1

2





0 eiϕ

λ e−iϕ 0



 =
1

2
(cos ϕ b1 + i sin ϕ F1) ,

A− = −1

2





i ∂−ϕ 1/λ

1 −i ∂−ϕ



 = −1

2
b−1 −

i

2
∂−ϕ F0, (3.1)

where the 2×2 matrix representation for b±1, F0 and F1 are given in (A.6) and λ is the

so-called spectral parameter. Moreover, in (3.1) we have used light cone coordinates

x± =
1

2
(t ± x) ∂± = ∂t ± ∂x ∂2 = ∂2

t − ∂2
x = ∂+∂−. (3.2)

Putting (3.1) into the zero curvature condition (2.1) one finds that the diagonal part

of the matrices gives the sine-Gordon equation

∂2ϕ = − sin ϕ (3.3)

and the off-diagonal part is satisfied trivially.

However, to present our arguments that demonstrate the existence of conserved

charges we need to centrally extend the basic algebra. We will then work with the

full sl(2) Kac-Moody algebra. In order for the zero curvature to remain valid on such

algebra, it is necessary to extend the sine-Gordon model by the addition of an extra

scalar field. Furthermore, for the theory to possess a Lagrangian, we need to add a

further scalar field, which in fact renders the model conformally invariant. This way

we end up with the so-called conformal sine-Gordon model [4, 5, 6] defined by the

equations of motion (1.1).

The three equations (1.1) are equivalent to (2.1) with the potentials Aµ given by

A+ =
1

2
eη (cos ϕ b1 + i sin ϕ F1) ,

A− = −1

2
b−1 −

i

2
∂−ϕ F0 − ∂−η Q − 1

4
∂− (ρ + γ) C, (3.4)
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where γ is a function satisfying

∂+∂−γ = −eη (3.5)

and where F0, F1, b±1 and C are generators of a sl(2) Kac-Moody algebra [11]. Its

generators and commutation relations are defined on the appendix A. This time, i.e.

for C 6= 0, we do not have a finite matrix representation of the algebra and we have to

proceed using just the commutation relations given in the appendix A.

However, we are really interested only in finite energy solutions of the pure sine-

Gordon model (η = 0). From (1.5) one sees that the finiteness of the energy requires

that ϕ (t, x = ±L) → 2πn±, with n± integers, for L → ∞, but this does not impose

any condition on the behaviour of the ρ field. Therefore, the potentials (3.4) can satisfy

the boundary condition (2.3) since

At (t, x = L) = At (t, x = −L) − 1

8
∂− (ρ + γ) |x=L

x=−L C

=
1

4
(b1 − b−1) −

1

8
∂− (ρ + γ) |x=L C. (3.6)

In consequence, the conserved charges can be constructed as explained in (2.3)-(2.6).

In order to do this we have to build the operator Wt from its form for a vacuum

configuration as explained in (2.9). Note that the conformal sine-Gordon eqs. (1.1)

have a vacuum solution given by ϕ = η = ρ = 0. The potentials A± given in (3.4),

when evaluated on such a vacuum solution become

A
(vac.)
+ =

1

2
b1,

A
(vac.)
− = −1

2
b−1 −

1

4
∂−γ(vac.) C, (3.7)

where, according to (3.5), ∂+∂−γ(vac.) = −1, and so γ(vac.) = −x+ x−. Since these

potentials are flat we can write them as

A(vac.)
µ = −∂µΨvac Ψ−1

vac (3.8)

with

Ψvac = e−
1
2

x+ b1 e
1
2

x− b−1 . (3.9)

The solutions we are interested are those in the orbit of such a vacuum solution under

the group of the so-called dressing transformations [12]. In order to construct such an

orbit of solutions we consider a constant group element h, obtained by exponentiating

the generators of the sl(2) Kac-Moody algebra, which admit the following Gauss like

decomposition

Ψvac h Ψ−1
vac = G−1

− G−1
0 G+, (3.10)

7



where G+, G−, and G0 are group elements obtained by exponentiating the generators

of the positive, negative and zero grades respectively, of the grading operator Q defined

in (A.5).

Then we define the potential

Ah
µ = −∂µΨh Ψ−1

h (3.11)

with

Ψh = G0 G− Ψvac h = G+ Ψvac. (3.12)

As a consequence we have

Ah
µ = G+ A(vac.)

µ G−1
+ − ∂µG+ G−1

+ (3.13)

= G0

(

G− A(vac.)
µ G−1

− − ∂µG− G−1
−

)

G−1
0 − ∂µG0 G−1

0 . (3.14)

The fact that Ah
µ and A(vac.)

µ are related by two gauge transformations, one invol-

ving only positive grade generators and the other only non-positive grade generators,

guarantees that Ah
µ has the same grading structure as A(vac.)

µ , and so as Aµ defined in

(3.4). Indeed, the x+-component of (3.13) implies that Ah
+ has components of grades

greater than or equal to one, and the x+-component of (3.14) implies that it has

components of grades smaller or equal to one. Thus, Ah
+ must have components of

grade one only. The same reasoning applies to Ah
−, using the x−-components of (3.13)

and (3.14). Notice that the space-time dependency of Ah
µ is explicit, since it depends on

the parameters of G0,± which, according to (3.10), are explicit functions of the space-

time variables. Therefore Ah
µ corresponds to Aµ evaluated on the solution constructed

by the dressing method. By equating Ah
µ to Aµ one then generates an explicit solution

for the fields, since Aµ is their functional. Note that the dressing transformation from

a vacuum with η = 0 will never produce a solution with η 6= 0. The reason for this is

that the grading operator Q can never be obtained as a result of any commutator and,

consequently, the terms proportional to Q will never appear in (3.13)-(3.14).

The best way of extracting the solutions for the fields is as follows: first note that

the grade zero part of the x−-component of (3.14) is
(

−∂−G0 G−1
0 − 1

4
∂−γ(vac.) C

)

.

Comparing this with the grade zero component of A− in (3.4) (with η = 0 since the

dressing transformation does not excite η) one gets that

G0 = e
i
2

ϕ F0+
1
4
ρC . (3.15)

The highest weight states of the two fundamental representations of the sl(2) Kac-

Moody algebra are annihilated by the positive grade generators and so one has G+ |
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λi 〉 =| λi 〉, and 〈 λi | G− = 〈 λi |, for i = 0, 1. Then, using the relations (A.7)-(A.9)

one gets from (3.10) that

τ0 ≡ 〈 λ0 | Ψvac h Ψ−1
vac | λ0 〉 = 〈 λ0 | G−1

0 | λ0 〉 = e
i
4

ϕ− 1
4
ρ,

τ1 ≡ 〈 λ1 | Ψvac h Ψ−1
vac | λ1 〉 = 〈 λ1 | G−1

0 | λ1 〉 = e−
i
4

ϕ− 1
4
ρ (3.16)

and so

ϕ = −2 i log
τ0

τ1
, ρ = −2 log (τ0 τ1) . (3.17)

In fact, the highest weight states are eigenvectors of G−1
0

G−1
0 | λi 〉 = τi | λi 〉, 〈 λi | G−1

0 = τi 〈 λi |, i = 0, 1. (3.18)

The quantities τ0 and τ1 are the so-called Hirota’s tau functions. Indeed, substituting

(3.17) into (1.1) one finds that they satisfy the Hirota’s equations

τ0 ∂+∂−τ0 − ∂+τ0 ∂−τ0 =
1

4

(

τ 2
0 − τ 2

1

)

,

τ1 ∂+∂−τ1 − ∂+τ1 ∂−τ1 =
1

4

(

τ 2
1 − τ 2

0

)

. (3.19)

We now write the group elements G± as

G± = g−1
±,F g±,b, g±,F = exp

(

∞
∑

n=1

ζ (±)
n F±n

)

, g±,b = exp

(

∞
∑

n=0

ξ
(±)
2n+1 b±(2n+1)

)

.

(3.20)

The relation (3.13) can then be rewritten as

g+,F Ah
µ g−1

+,F − ∂µg+,F g−1
+,F = g+,b A(vac.)

µ g−1
+,b − ∂µg+,b g−1

+,b ≡ a(+)
µ (3.21)

and the relation (3.14) as

g−,F Āh
µ g−1

−,F − ∂µg−,F g−1
−,F = g−,b A(vac.)

µ g−1
−,b − ∂µg−,b g−1

−,b ≡ a(−)
µ , (3.22)

which serve as the definitions of the potentials a(+)
µ and a(−)

µ , and the potential Āh
µ is

defined as

Āh
µ ≡ G−1

0 Ah
µ G0 − ∂µG

−1
0 G0. (3.23)

The gauge transformations relating the various potentials can be summarized in the

following diagrams

A(vac.)
µ

G+−→ Ah
µ

g+,b ց




y

g+,F

a(+)
µ

A(vac.)
µ

G−−→ Āh
µ

g−,b ց




y

g−,F

a(−)
µ

. (3.24)
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The potentials a(+)
µ and a(−)

µ are related to the abelian potentials considered in [13, 14]

Equating Ah
µ to Aµ, given in (3.4), with η = 0, we get that

Āh
+ =

1

2
b1 +

i

2
∂+ϕ F0 +

1

4
∂+ρ C,

Āh
− = −1

2
(cos ϕ b−1 − i sin ϕ F−1) −

1

4
∂−γ(vac.) C. (3.25)

In addition, the x− component of (3.21) gives

g+,F

(

−1

2
b−1 −

i

2
∂−ϕ F0

)

g−1
+,F − 1

4
∂−

(

ρ + γ(vac.)
)

C − ∂−g+,F g−1
+,F

= −1

2
b−1 −

1

4

(

2 ξ
(+)
1 + ∂−γ(vac.)

)

C −
∞
∑

n=0

∂−ξ
(+)
2n+1 b2n+1 (3.26)

and the x+ component of (3.22) gives

g−,F

(

1

2
b1 +

i

2
∂+ϕ F0

)

g−1
−,F +

1

4
∂+ρ C − ∂+g−,F g−1

−,F

=
1

2
b1 −

1

2
ξ

(−)
1 C −

∞
∑

n=0

∂+ξ
(−)
2n+1 b−2n−1. (3.27)

Observe that the r.h.s. of (3.26) and (3.27) contain terms proportional to the

oscillators b2n+1 and to the central term C only. Therefore, the components on the

l.h.s. of these equations, which are in the direction of the Fn’s must vanish. Splitting

the relations (3.26) and (3.27) into eigenvectors of the grading operator Q one can then

determine the parameters of g±,F recursively. Indeed, one finds that

ζ
(+)
1 = − i

2
∂−ϕ, ζ

(−)
1 = − i

2
∂+ϕ,

ζ
(+)
2 =

i

2
∂2
−ϕ, ζ

(−)
2 = − i

2
∂2

+ϕ, (3.28)

...
...

So, ζ (±)
n are polynomials in the x∓ derivatives of the field ϕ and they do not depend

on the field ρ. As discussed above, for finite energy solutions, one needs ϕ → 2πn± as

x → ±∞, with n± integers, and consequently

g±,F → 1 for x → ±∞. (3.29)

We also get from (3.26) and (3.27) that

ξ
(+)
1 =

1

2
∂−ρ, ξ

(−)
1 = −1

2
∂+ρ,

∂−ξ
(+)
1 = −1

4
(∂−ϕ)2 , ∂+ξ

(−)
1 =

1

4
(∂+ϕ)2 , (3.30)

...
...
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From the relations (3.30) we obtain an important property of the solutions in the

orbit of the vacuum, which may not necessarily hold for other solutions of (1.1). To

get it we note that (3.30) implies that

∂2
−ρ = −1

2
(∂−ϕ)2 , ∂2

+ρ = −1

2
(∂+ϕ)2 . (3.31)

Using (3.31), (3.2), and the third eq. of (1.1) we see that the components of the

canonical energy momentum tensor (1.4), for η = 0 (see (1.5)), can be written as

Θ00 |η=0 =
1

2
(∂tϕ)2 +

1

2
(∂xϕ)2 + 1 − cos ϕ = −2 ∂2

xρ,

Θ01 |η=0 = ∂tϕ ∂xϕ = −2 ∂t∂xρ. (3.32)

In consequence, the energy and momentum of the solutions on the orbit of the vacuum

are surface terms:

E ≡
∫ ∞

−∞
dx Θ00 |η=0= −2 ∂xρ |x=∞

x=−∞,

P ≡
∫ ∞

−∞
dx Θ01 |η=0= −2 ∂tρ |x=∞

x=−∞ . (3.33)

Replacing (3.17) into (3.31) one gets that the τ -functions, evaluated on the solutions

on the orbit of the vacuum, satisfy, in addition to the Hirota’s eqs. (3.19), the relations

τ1∂
2
±τ0 + τ0∂

2
±τ1 − 2 ∂±τ0 ∂±τ1 = 0 (3.34)

The infinite number of conserved charges for the sine-Gordon model can be easily

derived using the arguments of section 2 and the gauge transformations defined in this

section. Thus, from the definition (2.5) we see that the Wt operator for the vacuum

potential (3.7) is given by

W
(vac.)
t = e−

L
2

b−1 e−
L
2

b1 e
1
8

(

L2+
∫ L

−L
dx ∂−γ(vac.)

)

C
. (3.35)

Next we define the operators:

Ψ2n+1 = : eb2n+1+b−2n−1 : = eb−2n−1 eb2n+1 n = 0, 1, 2, . . . (3.36)

where :: stands for the normal ordering of the oscillators b2n+1. We see that, under the

adjoint action, Ψ2n+1 are eigenvectors of W
(vac.)
t , with unity eigenvalue since

W
(vac.)
t Ψ2n+1 W

(vac.)
t

−1
= Ψ2n+1. (3.37)

Therefore, the conserved charges for the vacuum solution are indeed trivial.
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Notice from (3.24) and (3.29) that the gauge potentials Ah
µ and a(+)

µ , and also Āh
µ and

a(−)
µ , are connected by gauge transformations involving group elements, namely g±,F ,

that go to unity at spatial infinity. Therefore, from the arguments given below (2.8),

one concludes that the conserved charges constructed from Ah
µ and a(+)

µ are the same.

For the same reasons, the charges obtained from Āh
µ and a(−)

µ , are also equal. We can

then construct the charges from the potentials a(+)
µ and a(−)

µ , because the calculations

are easier since these potentials are related to the vacuum potential via abelian gauge

transformations.

The Wt operators for the non-trivial solutions connected to the vacuum by the

gauge transformations performed by the group elements g±,b, according to (2.9), are

given by

W
(±)
t = g±,b (t, x = L) W

(vac.)
t g−1

±,b (t, x = −L) . (3.38)

Using the definition of g±,b in (3.20), one gets that

W
(±)
t Ψ2n+1 W

(±)
t

−1
= e

±(2n+1) C

(

ξ
(±)
2n+1(t,x=L)−ξ

(±)
2n+1(t,x=−L)

)

Ψ2n+1. (3.39)

Thus, we have two infinite sets of conserved charges given by

Ω
(±)
2n+1 ≡ ± (2n + 1)

(

ξ
(±)
2n+1 (t, x = L) − ξ

(±)
2n+1 (t, x = −L)

)

n = 0, 1, 2, . . .

(3.40)

In order to evaluate those charges we use the expressions for the solutions, on the orbit

of the vacuum, given by the dressing transformation method. Using (3.10), (3.20),

(3.16), (3.18), and the results of the appendix A we find that (for n ≥ 0, and i = 0, 1)

〈 λi | Ψvac h Ψ−1
vac b−2n−1 | λi 〉 ≡ = 〈 λi | G−1

− G−1
0 G+ b−2n−1 | λi 〉

= τi 〈 λi | g−1
+,F g+,b b−2n−1 g−1

+,b | λi 〉

= τi 〈 λi | g−1
+,F

(

b−2n−1 + (2n + 1) ξ
(+)
2n+1 C

)

| λi 〉

= τi

(

〈 λi | g−1
+,F b−2n−1 | λi 〉 + (2n + 1) ξ

(+)
2n+1

)

.

Now using (3.29) we get

ξ
(+)
2n+1 (t, x = ±L) =

1

(2n + 1)

〈 λi | Ψvac h Ψ−1
vac b−2n−1 | λi 〉

〈 λi | Ψvac h Ψ−1
vac | λi 〉

|x=±L . (3.41)

Using similar arguments we also see that

ξ
(−)
2n+1 (t, x = ±L) = − 1

(2n + 1)

〈 λi | b2n+1 Ψvac h Ψ−1
vac | λi 〉

〈 λi | Ψvac h Ψ−1
vac | λi 〉

|x=±L . (3.42)
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Therefore, the charges (3.40) become

Ω
(+)
2n+1 =

〈 λi | Ψvac h Ψ−1
vac b−2n−1 | λi 〉

〈 λi | Ψvac h Ψ−1
vac | λi 〉

|x=+L
x=−L (3.43)

and

Ω
(−)
2n+1 =

〈 λi | b2n+1 Ψvac h Ψ−1
vac | λi 〉

〈 λi | Ψvac h Ψ−1
vac | λi 〉

|x=+L
x=−L . (3.44)

In particular, using (3.30), (3.33), and (3.40) we see that the energy and momentum

of the solutions on the orbit of the vacuum are given, respectively, by:

E = 2
(

Ω
(+)
1 − Ω

(−)
1

)

, P = −2
(

Ω
(+)
1 + Ω

(−)
1

)

. (3.45)

3.1 Soliton solutions

The soliton solutions are not only the most important ones in the orbit of the vacuum,

but also the simplest ones to construct using the dressing method. The n-soliton

solutions are obtained by taking the constant group element h introduced in (3.10) as

the product of n exponentials of eigenvectors of the oscillators b2n+1 [2, 15, 16], namely

the vertex operators defined in (A.11), i.e.

h =
n
∏

i=1

eai V (zi). (3.46)

Therefore, using (3.9) and (A.15) one gets that

Ψvac h Ψ−1
vac =

n
∏

i=1

eai eΓ(zi) V (zi) =
n
∏

i=1

(

1 + ai e
Γ(zi) V (zi)

)

, (3.47)

where we have used the nilpotency property (A.17) of the vertex operator and have

introduced

Γ (zi) ≡ zi x+ − x−

zi
. (3.48)

Using (A.18) and (A.19), one then gets that the tau-functions (3.16) are given by

τj = 1 + (−1)j
n
∑

l=1

al e
Γ(zl) +

n
∑

l1<l2=1

(

zl1 − zl2

zl1 + zl2

)2

al1 al2 eΓ(zl1)+Γ(zl2) + . . .

+ (−1)j
n
∑

l1<l2<l3=1

(

zl1 − zl2

zl1 + zl2

)2 (
zl1 − zl3

zl1 + zl3

)2 (
zl2 − zl3

zl2 + zl3

)2

al1al2al3e
Γ(zl1)+Γ(zl2)+Γ(zl3)

. . . + (−1)j n
n
∏

k1<k2=1

(

zk1 − zk2

zk1 + zk2

)2 n
∏

l=1

al e
Γ(zl) for j = 0, 1. (3.49)
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The solution for the fields are then obtained through (3.17).

Observe that using (A.15) one has that

b2n+1

(

1 + a eΓ(z) V (z)
)

=
(

1 + a eΓ(z) V (z)
)

b2n+1 − 2 z2n+1a eΓ(z) V (z) .

Thus, using (3.47), the charges (3.43) and (3.44) for the n-soliton sector of solutions,

become (l = 0, 1)

Ω
(±)
2n+1 = ±2

n
∑

k=1

z
∓(2n+1)
k ak eΓ(zk) × (3.50)

×
〈 λl |

[

∏k−1
i=1

(

1 + ai e
Γ(zi) V (zi)

)]

V (zk)
[

∏n
j=k+1

(

1 + aj eΓ(zj) V (zj)
)]

| λl 〉
〈 λl | ∏n

i=1 (1 + ai eΓ(zi) V (zi)) | λl 〉
|x=+L
x=−L .

Let us now parametrize zi as

zi = e−αi+iθi with αi and θi real. (3.51)

Then (3.48) becomes

Γ (zi) =
1

√

1 − v2
i

[cos θi (x − vi t) + i sin θi (t − vi x)] , (3.52)

where vi are velocities in units of the speed of light and

vi = tanh αi, cosh αi =
1

√

1 − v2
i

. (3.53)

Note that the behaviour of eΓ(zi) as x → ±∞ is determined by the sign of cos θi.

In addition, if a given combination of exponentials of Γ’s dominates the behaviour of

the denominator of a given term of the sum in (3.50) for x → ±∞ then the same

combination dominates the behaviour of the numerator of that term. Consequently,

the corresponding expectation value of the product of V ’s cancels out and we have that

Ω
(±)
2n+1 = ±2

n
∑

k=1

ǫk z
∓(2n+1)
k , (3.54)

where ǫk = ±1 are signs determined by the dominant combinations of exponentials of

Γs. In consequence, the form of the charges for the n-soliton sector of solutions is quite

simple.
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3.1.1 1-soliton sector

In order to have a real solution for the field ϕ in the 1-soliton sector we need to take

either θ = 0 (soliton) or θ = π (anti-soliton). In addition, we need a to be pure

imaginary. Then from (3.49) and (3.52) we have τ0 = τ ∗
1 and from (3.17)

ϕ = 4 ArcTan

[

exp

(

ε
(x − v t − x0)√

1 − v2

)]

, (3.55)

where we have taken a = i exp
(

−ε x0/
√

1 − v2
)

, and ε ≡ eiθ = ±1, θ = 0, π.

Evaluating the charges (3.50) one gets

Ω
(±)
2n+1 = ±2 ε z∓(2n+1) = ±2 e±(2n+1)α = ±2

[

1 + v

1 − v

]±
(2n+1)

2

. (3.56)

In particular, the energy and momentum (3.45) become

E =
8√

1 − v2
, P = − 8 v√

1 − v2
. (3.57)

3.1.2 2-soliton sector

In this sector we have two types of real solutions: unbounded 2-solitons and breathers.

Unbounded 2-soliton solutions

In this case we take θ1, θ2 = 0, π, corresponding to the choices of solitons or anti-

solitons, and also take ai, i = 1, 2 pure imaginary. We then have τ0 = τ ∗
1 and

τ0 = 1 + i eΓ1 + i eΓ2 −
(

1 − ε1 ε2 eα1−α2

1 + ε1 ε2 eα1−α2

)2

eΓ1+Γ2 (3.58)

with

Γi = εi

(

x − vi t − x
(i)
0

)

√

1 − v2
i

(3.59)

with ai = i exp
(

−εi x
(i)
0 /

√

1 − v2
i

)

, εi ≡ eiθi = ±1, θi = 0, π, i = 1, 2.

Evaluating the charges (3.50) we get

Ω
(±)
2n+1 = ±2

(

ε1 z
∓(2n+1)
1 + ε2 z

∓(2n+1)
2

)

= ±2
(

e±(2n+1)α1 + e±(2n+1)α2

)

= ±2





[

1 + v1

1 − v1

]±
(2n+1)

2

+
[

1 + v2

1 − v2

]±
(2n+1)

2



 . (3.60)
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Therefore

E =
8

√

1 − v2
1

+
8

√

1 − v2
2

, P = − 8 v1
√

1 − v2
1

− 8 v2
√

1 − v2
2

. (3.61)

Breathers

For the breather solutions we take α1 = α2 ≡ α, θ1 = −θ2 ≡ θ, and so z1 = z∗2 . We

also take a1 = −a2 = −cotan θ. We then have Γ (z1) = Γ (z2)
∗ and, again, τ0 = τ ∗

1 ,

with

τ0 = 1 + e2ΓR + 2 i (cotan θ) eΓR sin ΓI , (3.62)

where

ΓR =
cos θ√
1 − v2

(x − v t) , ΓI =
sin θ√
1 − v2

(t − v x) . (3.63)

Therefore

ϕ = 4 Arctan
(cotan θ) sin ΓI

cosh ΓR
. (3.64)

Evaluating the charges (3.50) one gets

Ω
(±)
2n+1 = ±2 ε

(

e∓(2n+1)(−α+iθ) + e∓(2n+1)(−α−iθ)
)

= ±4 ε
[

1 + v

1 − v

]±
(2n+1)

2

cos [(2n + 1) θ] , (3.65)

where ε ≡ sign (cos θ). Therefore, the energy and momentum become

E =
16 | cos θ |√

1 − v2
, P = −16 v | cos θ |√

1 − v2
. (3.66)

3.1.3 N-soliton sector

As shown in (3.54), the conserved charges evaluated on the solutions coming from the

choice (3.46) for the constant group element h of the dressing method have an additive

character. Therefore, if one considers a solution with N solitons and M breathers the

charges are given by

Ω
(±)
2n+1 = ±2

N
∑

i=1

[

1 + vi

1 − vi

]±
(2n+1)

2

± 4
M
∑

j=1

εj

[

1 + vj

1 − vj

]±
(2n+1)

2

cos [(2n + 1) θj ] (3.67)

with εj = sign (cos θj). Consequently the energy and momentum are also additive and

one has

E =
N
∑

i=1

8
√

1 − v2
i

+
M
∑

j=1

16 | cos θj |
√

1 − v2
j

,

P = −
N
∑

i=1

8 vi
√

1 − v2
i

−
M
∑

j=1

16 vj | cos θj |
√

1 − v2
j

. (3.68)
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4 Generalized soliton hierarchies

The results obtained above for the sine-Gordon model can certainly be generalized to

other theories possessing soliton solutions. We sketch here how this can be done using

the basic structures known to be responsible for the existence of solitons. As explained

for instance in [16], practically all two dimensional exact soliton solutions known in the

literature belong to a class that can be characterized by the following features:

1. They are solutions of two dimensional theories that admit a zero curvature repre-

sentation of their equations of motion, i.e. there exist potentials (Lax operators)

Aµ, which are functionals of the fields of the theory and which belong to a Kac-

Moody algebra G such that the condition

[ ∂µ + Aµ , ∂ν + Aν ] = 0 (4.1)

is equivalent to the equations of motion. The indices µ, ν correspond to the two

coordinates of space-time, or to the various times tN of a hierarchy of soliton

theories (see [16] for details).

2. There exist an integer gradation of G

G = ⊕
n∈ZZGn, [Gm , Gn ] ⊂ Gm+n (4.2)

such that the potentials can be decomposed as

Aµ =
N+

µ
∑

n=N−
µ

A(n)
µ , where A(n)

µ ∈ Gn (4.3)

with N−
µ and N+

µ being non-positive and non-negative integers, respectively.

3. There exist at least one “vacuum solution” of the theory such that the potentials

Aµ evaluated on it belong to an abelian subalgebra, up to central term, of G, i.e.

A(vac)
µ =

N+
µ
∑

n=N−
µ

r
∑

a=1

ca,n
µ ba

n + σµ C ≡ Eµ + σµ C, (4.4)

where ca,n
µ are constants, C is the central element of G, and ba

n satisfy an algebra

of oscillators (Heisenberg subalgebra)

[

ba
m , bb

n

]

= ωab m δm+n,0 C (4.5)

with ωab being a symmetric matrix, and a, b = 1, 2, . . . r, labels the number of

infinite sets of oscillators. The index n corresponds to the grade of the oscillators,
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i.e. ba
m ∈ Gn, and they do not have to exist for all values of n (for instance, in the

case of sine-Gordon, as discussed in section 3 and appendix A, they exist only

for odd n)

The soliton solutions are then constructed using the dressing method in a manner

similar to that explained in section 3 for the sine-Gordon model. Since A(vac)
µ , given

in (4.4), satisfy the zero curvature equation (4.1), there exists a group element Ψvac,

which is an exponentiation of Eµ (oscillators) and C (see [16] for details), such that

A(vac)
µ = −∂µΨvac Ψ−1

vac.

We then choose a constant group element h such that there exists a Gauss like decom-

position

Ψvac h Ψ−1
vac = G−1

− G−1
0 G+ (4.6)

with G+,0,− being group elements obtained by the exponentiation of generators of G
with positive, zero, and negative grades, respectively, with respect to (4.2). We now

introduce

Ψh ≡ G0 G− Ψvac h = G+ Ψvac, Ψ̄h ≡ G− Ψvac h = G−1
0 G+ Ψvac (4.7)

and the corresponding potentials

Ah
µ ≡ −∂µΨh Ψ−1

h , Āh
µ ≡ −∂µΨ̄h Ψ̄−1

h . (4.8)

Therefore one has

Ah
µ = G+ A(vac)

µ G−1
+ − ∂µG+ G−1

+ (4.9)

= G0 G− A(vac)
µ (G0 G−)−1 − ∂µ (G0 G−) (G0 G−)−1 , (4.10)

Āh
µ = G− A(vac)

µ G−1
− − ∂µG− G−1

− (4.11)

= G−1
0 G+ A(vac)

µ

(

G−1
0 G+

)−1 − ∂µ

(

G−1
0 G+

) (

G−1
0 G+

)−1
. (4.12)

Using arguments similar to those given before (3.13)-(3.14) one can then show that

Ah
µ and Āh

µ have the same grading structure as Aµ in (4.3). Indeed, using (4.4) one

sees that (4.9) implies that Ah
µ has components of grade greater or equal to N−

µ and

(4.10) implies that it has components of grade smaller or equal to N+
µ . Therefore, Ah

µ

must have components of grade varying from N−
µ to N+

µ . Using similar arguments for

(4.11) and (4.12) one concludes that Āh
µ must also have components of grade varying

from N−
µ to N+

µ . In fact, from their definition (4.8), one notices that Ah
µ and Āh

µ are
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related by a gauge transformation with the group element G0, which involves only zero

grade generators, and so they must indeed have the same grading structure. Thus, Ah
µ

corresponds to Aµ evaluated on the solution constructed by the dressing method. By

equating Ah
µ to Aµ given in (4.3), which is a functional of the underlying fields, one

then defines the solution of their equations of motion. Note that we could as well have

equated Āh
µ to Aµ, as this corresponds to a gauge choice which we can make in order

to get the relation among the parameters of G0,± with the fields as simple as possible.

The soliton solutions are obtained by choosing the constant group element h, in-

troduced in (4.6), as

h =
N
∏

l=1

n
∏

k=1

eal,k Vl(zk), (4.13)

where Vl (zk) are eigenvectors of the operators Eµ, introduced in (4.4),

[ Eµ , Vl (zk) ] = λl
µ (zk) Vl (zk)

and where l labels the species or types of solitons and zk are parameters that determine

the velocities and topological charges of the solitons (see [16] for more details). In the

case of the sine-Gordon model discussed in section 3, we have seen that there exist

only one species of solitons.

Denoting by H the (Heisenberg) subalgebra generated by the oscillators ba
n’s and

C, and by F its complement in the Kac-Moody algebra G we see that

G = H + F . (4.14)

Then we split the group elements G± according to such a decomposition, i.e.

G± = g−1
±,F g±,b (4.15)

with

g±,b = exp

(

∞
∑

n=1

r
∑

a=1

ξ(±)
a,n ba

±n

)

(4.16)

and g±,F being group elements obtained by exponentiating the parts F+ and F− of

F containing the generators of positive and negative grades respectively, i.e. g±,F =

exp (F±). In this case the relations (4.9) and (4.11) can be rewritten, respectively, as

g+,F Ah
µ g−1

+,F − ∂µg+,F g−1
+,F = g+,b A(vac.)

µ g−1
+,b − ∂µg+,b g−1

+,b ≡ a(+)
µ , (4.17)

g−,F Āh
µ g−1

−,F − ∂µg−,F g−1
−,F = g−,b A(vac.)

µ g−1
−,b − ∂µg−,b g−1

−,b ≡ a(−)
µ , (4.18)

where we have introduced the potentials a(±)
µ .
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The conserved charges can now be constructed in a manner similar to that of

section 3 of the sine-Gordon case. Denote by x and t the space-time coordinates for

our generalized soliton theory. Suppose that the time component of the potential

introduced in (4.3) satisfies the boundary condition (2.3). Then using (4.17)-(4.18)

and the arguments leading to (2.9) one sees that

W
(±)
t = P e

−
∫ x=L

x=−L
dx a

(±)
x = g±,b (t, x = L) W

(vac.)
t g−1

±,b (t, x = −L) , (4.19)

where

W
(vac.)
t = P e

−
∫ x=L

x=−L
dx A

(vac)
x . (4.20)

For every pair of oscillators, ba
n and ba

−n, we introduce the operator (n > 0)

Ψa,n = : eba
n+ba

−n : = eba
−n eba

n (4.21)

where ::, as before, denotes the normal ordering of the oscillators, i.e. positive grade

oscillators are put to the right of the negative ones. Then, using (4.5) and (4.16) we

see that

W
(±)
t Ψa,n W

(±)
t

−1
= e

(

Ω
(±)
a,n+Ω

(vac)
a,n

)

C
Ψa,n (4.22)

with

Ω(±)
a,n = ±n

r
∑

b=1

ωab
(

ξ
(±)
b,n (t, x = L) − ξ

(±)
b,n (t, x = −L)

)

(4.23)

and Ω(vac)
a,n are the vacuum values of the charges

W
(vac.)
t Ψa,n W

(vac.)
t

−1
= eΩ

(vac)
a,n C Ψa,n. (4.24)

In a manner similar to that of the sine-Gordon case, the parameters ξ(±)
a,n are deter-

mined for the solution associated to a given constant group element h, by the matrix

elements of the form 〈 λ | Ψvac h Ψ−1
vac ba

n | λ 〉 and 〈 λ | ba
−n Ψvac h Ψ−1

vac | λ 〉 of the

operators in (4.6), with n > 0, and | λ 〉 being a highest weight state of a given

representation of the Kac-Moody algebra G.

Note that, using (4.4) and (4.16), the r.h.s. of (4.17) and (4.18) give

a(+)
µ = Eµ + σµ C +

−N−
µ

∑

n=1

r
∑

a,b=1

ωab ca,−n
µ n ξ

(+)
b,n C −

∞
∑

n=1

r
∑

a=1

∂µξ(+)
a,n ba

n,

a(−)
µ = Eµ + σµ C +

N+
µ
∑

n=1

r
∑

a,b=1

ωab ca,n
µ (−n) ξ

(−)
b,n C −

∞
∑

n=1

r
∑

a=1

∂µξ
(−)
a,n ba

−n.
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Equating to the l.h.s. of (4.17) and (4.18) one gets that the C-part gives

−N−
µ

∑

n=1

r
∑

a,b=1

ωab ca,−n
µ n ξ

(+)
b,n =

(

g+,F Ah
µ g−1

+,F

)

coeff. C
− σµ,

N+
µ
∑

n=1

r
∑

a,b=1

ωab ca,n
µ (−n) ξ

(−)
b,n =

(

g−,F Āh
µ g−1

−,F

)

coeff. C
− σµ.

Therefore, from (4.23) one gets

−N−
µ

∑

n=1

r
∑

a,b=1

ca,−n
µ Ω(+)

a,n =
[(

g+,F Ah
µ g−1

+,F

)

coeff. C
− σµ

]x=L

x=−L
,

N+
µ
∑

n=1

r
∑

a,b=1

ca,n
µ Ω(−)

a,n =
[(

g−,F Āh
µ g−1

−,F

)

coeff. C
− σµ

]x=L

x=−L
. (4.25)

If
[(

g+,F Ah
µ g−1

+,F

)

coeff. C
− σµ

]

and
[(

g−,F Āh
µ g−1

−,F

)

coeff. C
− σµ

]

, can be expressed locally

in terms of the underlying fields of the theory, we see that the above linear combinations

of conserved charges are boundary terms. This happens for instance, in the abelian

and non-abelian Toda models [1, 17], where the combinations of charges turn out to

be related to the energy and momentum of the solutions.

4.1 The example of the mKdV equation

The modified Korteweg-de Vries equation (mKdV) is an example of a soliton theory

that fulfills the requirements described at the beginning of section 4, and so can have

its conserved charges calculated as described in this paper. As we pointed out it

is important to work with a zero curvature representation based on the Kac-Moody

algebra with a non vanishing central term. We use here the zero curvature potentials

for the mKdV equation constructed in section IV.A of reference [16]. The potentials

are given by

Ax = −b1 − q F0 − ν C (4.26)

At = −b3 − q F2 +
1

2
∂xq F1 +

1

2
q2 b1 −

1

2

(

1

2
∂2

xq − q3
)

F0 −
1

16
∂xq

2 C

where C, bj , j = 1, 3, and Fk, k = 0, 1, 2, are generators of the sl(2) Kac-Moody algebra

defined in appendix A, and which commutation relations are given in (A.3). We have

denoted by q the mKdV field, and by ν an extra field associated to the central term C

of the algebra. Replacing the potentials (4.26) into the zero curvature condition (4.1)
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one gets that all components vanish with the exception of those in the direction of F0

and C which give the equations of motion

∂tq =
1

2
∂x

(

1

2
∂2

xq − q3
)

(4.27)

∂tν =
1

16
∂2

xq
2 (4.28)

and (4.27) is the well known mKdV equation. Notice that the ν field is an expectant

since it does affect the equation of motion for the field q. That is similar to the ρ

field introduced in the sine-Gordon model in (1.1). However, here in the case of the

mKdV equation we would not have to introduce such field to work with a non-vanishing

central term C. The reason is that, contrary to the sine-Gordon case, all the generators

appearing in the potentials (4.26) have non negative grades w.r.t. the grading operator

Q defined in (A.5). Therefore, the commutator term, [ Ax , At ], of (4.1) does not

produce terms in the direction of C. However as we show below, the introduction of

such field is important to make the dressing method consistent with a non vanishing

central term. In addition, that field is crucial for the simple formula we obtain for the

energy of the solutions.

So, the mKdV theory fulfills the requirement 1 at the beginning of section 4. As

for the requirement 2, we have that the potentials (4.26) are decomposed as in (4.3)

w.r.t. to the gradation defined by the grading operator Q introduced in (A.5). Indeed,

one can check that in this case we have N−
x = 0, N+

x = 1, N−
t = 0 and N+

t = 3. The

vacuum solution of the requirement 3 can be taken as q = ν = 0, and so the potentials

evaluated on it are given by

A(vac)
x = −b1 A

(vac)
t = −b3 (4.29)

Comparing with (4.4) we have Ex = −b1, Et = −b3, and σµ = 0. The relevant oscillator

algebra (4.5) in this case is that generated by b2n+1 (see (A.3)). The potentials (4.29)

can be written as

A(vac)
µ = −∂µΨvac Ψ−1

vac with Ψvac = ex b1 et b3 (4.30)

The dressing method can then be applied following the description given from (4.6) to

(4.12). With the vacuum potential given by (4.29) it then follows from (4.11)-(4.12)

that Āh
µ has the same same grading structure as Aµ given in (4.26). We can then equate

those two potentials in order to evaluate the solutions. By comparing the zero grade

part of Āh
x given in (4.12), with the zero grade part of Ax given in (4.26), one then gets

that

G0 = eα F0+β C with ∂xα = −q ; ∂xβ = −ν (4.31)
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Since all the relations on the dressing method are valid on shell, i.e. when the equa-

tions of motion hold true, we can use (4.27)-(4.28) to get the time derivatives of the

parameters α and β. By taking the integration constants to vanish, one obtains that

∂tα = −1

2

(

1

2
∂2

xq − q3
)

; ∂tβ = − 1

16
∂xq

2 (4.32)

Replacing (4.29) into (4.9)-(4.10) one observes that Ah
µ does not have the same grading

structure as Aµ given in (4.26). In fact, contrary to Aµ, Ah
µ can not have zero grade

components. In fact, Ah
µ corresponds to a potential Ãµ obtained from Aµ of (4.26) by

the gauge transformation (see (4.7)-(4.8))

Ãµ ≡ G0 Aµ G−1
0 − ∂µG0 G−1

0 (4.33)

Using (4.31) and (4.32) one gets

Ãx = − cosh (2 α) b1 − sinh (2α) F1 (4.34)

Ãt = − cosh (2 α) b3 − sinh (2α) F3 − q F2 +
1

2

[

∂xq cosh (2 α) + q2 sinh (2α)
]

F1

+
1

2

[

q2 cosh (2 α) + ∂xq sinh (2α)
]

b1

So, Ãµ is local in the parameter α but not on the mKdV field q. In addition, it does

not involve the extra filed ν and neither the parameter β. Notice that, the vanishing

of the integration constants leading to (4.32) is a requirement of the dressing method,

since if those constants were not zero, Ãµ would have zero grade components.

Using (4.6) we now introduce the Hirota’s tau functions

τ0 = 〈 λ0 | Ψvac h Ψ−1
vac | λ0 〉 = 〈 λ0 | G−1

0 | λ0 〉 = e
1
2

α−β

τ1 = 〈 λ1 | Ψvac h Ψ−1
vac | λ1 〉 = 〈 λ1 | G−1

0 | λ1 〉 = e−
1
2

α−β (4.35)

where | λi 〉, i = 0, 1, are the highest weight states of the two fundamental representa-

tions of the sl(2) Kac-Moody algebra, and where we have used their properties given

in (A.7)-(A.9). Therefore, using (4.31) and (4.35), the relation among the fields and

tau functions are given by

q = ∂x ln
τ1

τ0

ν =
1

2
∂x ln (τ0 τ1) (4.36)

As explained in (4.13) the soliton solutions, on the orbit of the vacumm (4.29), are

obtained by taking the constant group element h to be exponentials of the eigenvectors

of b1 and b3. Evaluating the matrix elements in (4.35) and replacing them into (4.36)

one gets the solutions for the mKdV field q.
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The decomposition (4.14) in the case of the mKdV is such that H is generated by

the oscillators b2n+1, and the complement F by the generators Fn, with n ∈ ZZ. We

then write the group elements introduced in (4.15) as

g±,b = exp

(

∞
∑

n=0

ξ
(±)
2n+1 b±(2n+1)

)

g±,F = exp

(

∞
∑

n=1

ζ (±)
n F±n

)

(4.37)

The x-components of the relations (4.17)-(4.18) are then given by

g+,F Ãx g−1
+,F − ∂xg+,F g−1

+,F = −g+,b b1 g−1
+,b − ∂xg+,b g−1

+,b ≡ a(+)
x (4.38)

= −b1 −
∞
∑

n=0

∂xξ
(+)
2n+1 b2n+1

and

g−,F Ax g−1
−,F − ∂xg−,F g−1

−,F = −g−,b b1 g−1
−,b − ∂xg−,b g−1

−,b ≡ a(−)
x (4.39)

= −b1 + ξ
(−)
1 C −

∞
∑

n=0

∂xξ
(−)
2n+1 b−(2n+1)

with Ax and Ãx given by (4.26) and (4.34) respectively. The r.h.s. of (4.38) and

(4.39) do not contain terms in the direction of Fn. By imposing the cancellation of the

coefficients of Fn on the l.h.s. of those equations one determines the parameters ζ (±)
n .

The first of them are given by

ζ
(−)
1 = −1

2
q ∂xζ

(+)
1 = − sinh (2α) (4.40)

ζ
(−)
2 =

1

4
∂xq ∂xζ

(+)
2 = −2 ζ

(+)
1 cosh (2α)

...
...

By equating the coefficients of b2n+1 on both sides of (4.38) and (4.39) one determines

the parameters ξ
(±)
2n+1. The first of them are

ξ
(−)
1 = −ν ∂xξ

(+)
1 = 2 sinh2 α (4.41)

∂xξ
(−)
1 =

1

2
q2 ∂xξ

(+)
3 = ζ

(+)
2 sinh (2 α)

...
...

In order to construct the conserved charges one needs the time component of the

potentials to satisfy the boundary conditions (2.3). If one looks for solutions satisfying

the conditions

q → 0 ; ∂n
x q → 0 ; as x → ±∞ (4.42)
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then the potential (4.26) do satisfy (2.3), i.e. At (t, x = ∞) = At (t, x = −∞) = −b3.

From (4.40) one observes that the parameters ζ (−)
n depend locally on q and its deriva-

tives. Therefore

ζ (−)
n → 0 and so g−,F → 1 as x → ±∞ (4.43)

Therefore, according to the discussion below (2.8) one concludes that the charges ob-

tained from the potentials Aµ, given in (4.26), and those from a(−)
µ , defined in (4.39),

are the same since they are related by a gauge transformation involving a group element

that goes to unity at spatial infinity.

Assuming the conditions (4.42) one needs in addition that

α (t, x = ∞) = α (t, x = −∞) (4.44)

in order for the potential Ãt to satisfy the boundary condition (2.3). However, no-

tice that the mKdV equation (4.27) together with the condition (4.42) constitute a

conservation law which leads to the following conserved charge

H1 =
∫ ∞

−∞
dx q = − [α (t, x = ∞) − α (t, x = −∞)] = − ln

τ0

τ1
|x=∞
x=−∞ (4.45)

where we have used (4.31) and (4.35). Therefore, the conditions for the potential Ãµ

to give conserved charges imply that H1 should vanish. In addition, the condition

(4.44) is not sufficient for the parameters ζ (+)
n to vanish at spatial infinity, as seen from

(4.40). Consequently, it does not guarantees that the charges coming from Ãµ and a(+)
µ

are the same, as g+,F may not go to unity at spatial infinity. On the other hand, the

conditions for the potential a(+)
µ to satisfy (2.3) and so to lead to conserved charges,

independently of what happens to Ãµ, is that ∂tξ
(+)
2n+1 (t, x = ∞) = ∂tξ

(+)
2n+1 (t, x = −∞).

However, that will involve intricate conditions on α. Therefore, the question if one can

construct conserved charges from the potentials Ãµ and a(+)
µ depends on a very detailed

analysis of the boundary conditions satisfied by the solutions obtained by the dressing

method.

The conditions (4.42) however, are suffucient to obtain conserved charges from the

potentials Aµ and a(−)
µ , as argued above. Those charges are obtained following the

discussion given in (4.19)-(4.24), and are given by

Ω
(−)
2n+1 = − (2n + 1)

[

ξ
(−)
2n+1 (t, x = ∞) − ξ

(−)
2n+1 (t, x = −∞)

]

n = 0, 1, 2, . . . (4.46)

The asymptotic values of ξ
(−)
2n+1 can be evaluated using the highest weight states of the

fundamental representations of the sl(2) Kac-Moody algebra in a manner similar to

that done for the sine-Gordon case in (3.41)-(3.44).
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Using (4.41) one gets that the lowest charge is related to one of the Hamiltonians

of the mKdV hierarchy. Indeed, one has from (4.41), (4.46) and (4.36) that

Ω
(−)
1 = −1

2

∫ ∞

−∞
dx q2 = (ν |x=∞ −ν |x=−∞) =

1

2
∂x ln (τ0 τ1) |x=∞

x=−∞ (4.47)

Therefore, we have here a situation very similar to the sine-Gordon case (see (3.33))

where the energy of the solution is determined by the asymptotic behavior of the extra

field associated to the central term of the algebra. Our method therefore gives a very

simple formula for the energy, and also for the higher charges, of the mKdV solutions

on the orbit of the vacumm, qvac = νvac = 0, under the dressing transformation group.

A The sl(2) Kac-Moody algebra

The commutation relations of the sl(2) Kac-Moody algebra are given by [11]

[Tm
3 , T n

3 ] =
1

2
m δm+n,0 C,

[

Tm
3 , T n

±

]

= ±Tm+n
± ,

[

Tm
+ , T n

−

]

= 2 Tm+n
3 + m δm+n,0 C, (A.1)

where C is the central term. The relevant basis for our calculations is given by

b2m+1 = Tm
+ + Tm+1

− ; F2m+1 = Tm
+ − Tm+1

− ; F2m = 2 Tm
3 − 1

2
δm,0 C, (A.2)

which satisfy

[ b2m+1 , b2n+1 ] = (2m + 1) δm+n+1,0 C,

[ b2m+1 , Fn ] = −2 Fn+2m+1,

[ F2m+1 , F2n ] = −2 b2(m+n)+1,

[ F2m+1 , F2n+1 ] = −(2m + 1) δm+n+1,0 C,

[ F2m , F2n ] = 2m δm+n,0 C. (A.3)

The indices of the generators correspond to the grades under

[ Q , b2m+1 ] = (2m + 1) b2m+1 ; [ Q , Fn ] = n Fn, (A.4)

where

Q = T 0
3 + 2d with [ d , Tm

i ] = m T m
i i = 3, +,−. (A.5)
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In the case when the central term vanishes, i.e. C = 0, the algebra is called the sl(2)

loop algebra, and it admits finite matrix representations. In the case of 2× 2 matrices

on has

b2m+1 =





0 λm

λm+1 0



 , F2m+1 =





0 λm

−λm+1 0



 , F2m = λm





1 0

0 −1



(A.6)

with m = 0,±1,±2 . . .. In that case, the operator d takes the form d ≡ λ d
d λ

.

For C 6= 0 all the representations of the sl(2) Kac-Moody algebra are infinite

dimensional. The methods of constructing these representations involve field theory

techniques [11], like the vertex operator given below. However, having C 6= 0 leads to

a very desirable property, namely the existence of the highest weight state represen-

tations, i.e. representations that contain states that are annihilated by positive root

step operators (the generalization of T+ in the algebra of angular momentum). Indeed,

among the highest weight state representations of the sl(2) Kac-Moody algebra there

are two that play a very important role. They are the two fundamental representations,

with highest weight states | λi 〉, i = 0, 1, satisfying

T 0
3 | λ0 〉 = 0, T 0

3 | λ1 〉 =
1

2
| λ1 〉,

C | λ0 〉 = | λ0 〉, C | λ1 〉 = | λ1 〉 (A.7)

and

T n
3 | λi 〉 = T n

± | λi 〉 = T 0
+ | λi 〉 = 0, n > 0 ; i = 0, 1. (A.8)

From (A.7) one gets

F0 | λ0 〉 = −1

2
| λ0 〉, F0 | λ1 〉 =

1

2
| λ1 〉. (A.9)

An important mathematical tool in the study of solitons is the use of the so-called

vertex operator representations of the Kac-Moody algebras. In the case of the sine-

Gordon model the relevant representation is the one involving the principal vertex

operators. It is based on the Fock space of the oscillators b2n+1 satisfying the first

relation in (A.3) with C = 1, i.e.

[ b2m+1 , b2n+1 ] = (2m + 1) δm+n+1,0. (A.10)

The vertex operator is defined as [11]:

V (z) ≡: eQ(z) := eQ<(z) eQ>(z), (A.11)
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where, as usual, : :, denotes the normal ordering of the oscillators (b2n+1 with n ≥ 0 are

the annihilation operators, and the negative ones the creation operators), and where

Q (z) ≡ Q< (z) + Q> (z) (A.12)

and

Q> (z) =
∞
∑

n=0

2 z−2n−1

2n + 1
b2n+1, Q< (z) = −

∞
∑

n=0

2 z2n+1

2n + 1
b−2n−1 (A.13)

with z being an arbitrary (complex) parameter.

One can then show that in such a representation the generators Fn are given by

[11]:

Fn =
∮ dz

2πiz
zn V (z) . (A.14)

There are two important properties of the vertex operators which are relevant for the

solitons. First, the vertex operators are eigenstates of the oscillators

[ b2n+1 , V (z) ] = −2 z2n+1 V (z) , n = 0,±1,±2, . . . (A.15)

The second property is its operator product expansion

V (z1) V (z2) = : V (z1) V (z2) :
(

z1 − z2

z1 + z2

)2

(A.16)

so that V (z) is nilpotent

V (z)2 = 0. (A.17)

One can also show that

V (z1) V (z2) V (z3) = : V (z1) V (z2) V (z3) :
(

z1 − z2

z1 + z2

)2 (z1 − z3

z1 + z3

)2 (z2 − z3

z2 + z3

)2

and in general that

n
∏

i=1

V (zi) = :
n
∏

i=1

V (zi) :
n
∏

i<j=1

(

zi − zj

zi + zj

)2

. (A.18)

We also have that

〈 λ0 |:
n
∏

i=1

V (zi) :| λ0 〉 = 1, and 〈 λ1 |:
n
∏

i=1

V (zi) :| λ1 〉 = (−1)n. (A.19)
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