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Abstract

We compute the complete bulk one-loop contribution to the Weyl anomaly of the boundary theory for IIB supergravity
compactified onAdSs x S°. The result, thas.A = (E + I)/x2, reproduces the subleading term in the exact expression
A=—(N2-1)(E+ I)/nz for the Weyl anomaly of\” = 4 super-Yang—Mills theory, confirming the Maldacena conjecture.
The anomaly receives contributions from all multiplets casting doubt on the possibility of describing the boundary theory
beyond leading order iV by a consistent truncation to the ‘massless’ multiplet of 1IB supergravity.

0 2003 Published by Elsevier B.V. Open access under CC BY license,

Henningson and Skenderis’ beautiful computation fermions and gauge vector of the super-Yang—Mills
[1] of the Weyl anomaly ofNV' = 4 SU(N) super- theory (all in the adjoint with dimensioN? — 1)
Yang—Mills theory from five-dimensional gravity is

2
a remarkable test of the Maldacena conjecture [2] to 4 _ (65 +2f + g0)(N” — 1)‘ 1)
leading order in larg&v. When super-Yang-Mills the- 1672

ory is coupled to a nondynamical, external metgig, When the heat-kernel coefficients f, and g, are

the Weyl anomalyA, is the response of the logarithm  expressed in terms d@f and/ this becomes

of the partition function,F, to a scale transforma-

tion of that metrics F = [ d*x \/g 80 A whendg;; = A (N> = (E+1) @
280g;j. On general groundd = aE + cI whereE is B w2 ’

the Euler density(R* R; jx; — 4R R;; + R?) /64, and

I is the square of the Weyl tensdr= (—RV¥ R j; +
2R R;; — R?/3)/64. A one-loop calculation [3] gives
A as the sum of contributions from the six scalars, two

soa = ¢ = —(N? —1)/(27?) and supersymmetry pro-
tects this from higher-loop corrections. Henningson
and Skenderis showed that the tree-level calculation in
the bulk reproduces the leading? piece by solving
the Einstein equations perturbatively near the bound-
T E-mail addvesses: p.r.w.mansfield@durham.ac.uk ary. We would expect that thel piece is due to string

(P. Mansfield), nolland@liv.ac.uk (D. Nolland), ueno@liv.ac.uk loops in the bulk that to this order can be approximated
(T. Ueno). by field theory loops, but these depend on much more
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than just classical general relativity, and reproducing coefficient for the operator associated with a four-
them provides a more stringent test of the Maldacena dimensional gauge field, whilst that for a minimally
conjecture sensitive to the detailed particle content of coupled five-dimensional scalar is associated with a
the bulk 11B supergravity theory. In [4] we showed that conformally coupled four-dimensional scalar.

the bulk supergravity one-loop contributionsde- ¢ The scaling dimensiona are related to the bulk
vanished when summed over each supermultiplet con- masses which were originally worked out in [7]. In
firming the conjecture. In this Letter we will complete Table 1 we display the corresponding valuesiof 2.

this calculation of the Weyl anomaly by computiag
itself and showing that it does indeed reproduce the
—1 piece.

The one-loop contribution tod from bulk fields

The multiplets are labeled by an integer> 2, and
the fields form representations 8l (4) ~ SO(6). The
four-dimensional heat-kernel coefficients have also
been known for a long time and we use the values

was found in [5] using Schrddinger functional meth- given by [8,9]. In Table 2 we list these for the cases
ods that are particularly appropriate to the AAS/CFT of a Ricci flat boundary.
correspondence because, being Hamiltonian, they ap-
ply four-dimensional technology to the study of fields
on a five-dimensional manifold with a boundary. The
result can be expressed [6] as

(A —2)az

bA==) o ©)

where the sum is taken over all the fields in 11B super-
gravity compactified oAdSs x $°, A is the scaling di-

Table 1

Mass spectrum. The supermultiplets (irreps Wt2,2/4)) are
labeled by the integep. Note that the doubletorp(= 1) does not
appear in the spectrum. THe, b, ¢) representation o8U(4) has
dimension(a+1) b+ 1D (c+D(a+b+2)(b+c+2)(a+b+c+
3)/12, and a subscriptindicates that the representation is complex.
(Spinors are four component Dirac spinorshitSs)

mensior? of the_ associated boundary _operator@rhsi. Field SO(4) rep’ V@) rep’ A_2
a four-dlmenspnal hea_t-ker_nel coeff|C|_er_1t (mu_lt|pl|ed e 0.0 ©.5.0) b2 p>2
by —1 for anticommuting fields). Deriving this re- a 1
. . . . . ¥ (2,0) ©O,p—1,1), p—3/2, p=2
quires decomposing the five-dimensional components ;)
of fields into those appropriate to the four-dimensional ~ 4 €0 ©.p-10 p=l p=2
boundary. ¢ (0.0) ©,p—22)e p—1, p=2
In deriving (3) the AdS metric was taken to be »® (0,0 0, p—2,0), p o p=2
1 v@ (3.0 ©p-2Dc  p-12 p>2
ds2=[—2(12dt2+2§ijdxidxj>, t>0 (4 AP G Lp-21 p—1, p>2
i v w3 Lp-20.  p-12 p=2
which satisfies the Einstein equations with cosmolog- " @D ©.p=20 popz2
ical constant-6/1? provided g;;, (which is propor- v® (10 2,p-31 p—1/2, p>3
tional to the boundary metric), is Ricci flat. In this case @ (3.0 ©, p—3,1)e p+1/2, p=3
E = —1I so thatA is proportional toa — ¢. To find A2 @AY 1, p—3 1 P p>3
a itself it is convenient to take a constant curvature A2 (1.0) @ p—3.0). b p>3
boundary for whichR;jx = (gl‘kgjzl — 8ilgjk)R/12, A/(jgg L0 ©.p— 3.0, bl p>3
Rij = Rgij/4, 1 =0 and E = R-/384. The solu- @ 1
tion to Einstein’s equations is obtained by multiply- Vu (.3) Lp=30. p+1/2, p=3
ing &;; in (4) by (1 — Rt%12/48)2, whereR is the cur- @ (0,0) 2. p-42 p. p=4
vature constructed frorg;;. The effect of this extra $® (0,0) ©,p—4,2). p+1, p>4
piece on the decomposition of five-dimensional fields  4® (0,0) (0, p — 4,0) p+2, p=4
into four-dimensional variables is to introduce into the (3.0 @ p—41, P12, p=4
four-dimensional operators precisely th(_)se couplings ,® (3.0 ©, p—4 1), p+3/2, p=4
to R that render them conformally covariant. Thys A® b L p—41) pil p>4

for a five-dimensional gauge field is the heat-kernel
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Table 2

Anomaly coefficients of massive fields éwSs. Note that the mas-
sive vector coefficient isg + 25 — 259 wherewyg, s, sg are respec-
tively, the coefficients for the 4d gauge-fixed Maxwell operator, a
conformally coupled scalar, and a minimally coupled scalar

Field R;j =0: ConstantR:
18%2/RijklRijkl 18012/R2
¢ 1 -1/12
¥ 7/2 -11/12
Ay -11 293
Ay 33 194
Y —219/2 —61/4
hyy 189 7474

If we denote the values afy for the fields¢, ¥,
Au, Apv, Y, by By s, f,v,a, 1, andg respectively
then the contribution from a generip & 4) multiplet
is

(Z(A - 2)a2>p>4

=(—4S+4a+r+f+2v)§

3
4 (105 — g — 260 — 8¢ —72f—48v)i7—2

5
+(16v+20f+10a+4r+25s+g)]£—2 )

209
whilst for the p = 3 multiplet it is
(Z(A - 2)a2) -

= 244f + 18g + 2665 + 218v + 14& + 64r.  (6)

The p = 2 multiplet contains gauge fields requiring
the introduction of Faddeev—Popov ghosts. Their pa-
rameters are given in Table 3 along with the decom-
position of the five-dimensional components of fields
into four-dimensional pieces.

12v — 305 + 6r — 10f + 2g @)

and if we include the scalars, spinors and antisymmet-
ric tensors the total contribution of the= 2 multiplet
is

(Z(A - 2)a2)p=2

=120 — 65+ 6r + 6 + 2g + 12a. 8)

Substituting the values of the heat kernel coefficients
for a Ricci flat boundary shows that the contribution of
each supermultiplet vanishes implying that ¢ [4].
However if we do not specialize to this case we have
to deal with the sum over multiplets labeled Ipy
We will evaluate this divergent sum by weighting the
contribution of each supermultiplet ky”. The sum
can be performed fdg| < 1, and we take the result to
be a regularization of the weighted sum for all values

Table 3
Decomposition of gauge fields for the massless multiplet
Original field Gauge fixed fields A—-2 R;j=0: ConstantR:
18Qu/R; jiy RV 181/ R?
Ay A 1 -11 293
(15 of SU(4)) Ag 2 1 -1/12
bEp, CFP 2 -1 1/12
Yu i 3/2 —219/2 —61/4
a 5/2 7/2 ~11/12
(4 of U4) Yo 5/2 7/2 —11/12
AFP, OFP 5/2 —=7/2 11/12
OGF 5/2 ~7/2 11/12
v hyt 2 189 7274
(U4 singlet) hoi 3 -11 293
hoo, hly V12 1 -1/12
BEP, cfP V12 -1 112
BFP, cFP 3 11 —29/3
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of z. Multiplying this by 1/(z — 1) and integrating
around the pole at = 1 gives a regularization of the
original divergent sum. This yields

D (A—2)az=8s+4f +2v (9)

which remarkably depends only on the heat-kernel co-
efficients of fields in the super-Yang—Mills theory. By
decomposing a five-dimensional vector into longitudi-

nal and transverse pieces and solving the Schrdédinger
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tions might be constructed by a ‘consistent’ truncation
of the full 11B supergravity to this single multiplet, as
in studies based on gaugad= 8 supergravity, such

a procedure would miss loop effects in the bulk that
contribute to the super-Yang—Mills theory at sublead-
ing order. So, for example, the application of (3) to
the spectrum of [12] fails to produce the expected sub-
leading correction to the coefficieaffor the infra-red
fixed point of the RG flow driven by adding certain

equation for them, it can be seen that the heat-kernel MaSS terms to th&/ = 4 super-Yang-Mills theory to

coefficient for a vector fieldy, is related to that for the
four-dimensional (gauge-fixed) Maxwell operatay,
asv = vg + 2s — 2sg wheresg is the coefficient for a
minimally coupled four-dimensional scalar (Faddeev—
Popov ghost), showing — 2s = vg — 250 = g, [10].
Therefore we finally arrive at the one-loop contribu-
tion to the Weyl anomaly

(A —2ap 6s+2f+ gy
54 = Z 3272 1672
which is precisely what is needed to reproduce the
subleading term in the exact Weyl anomaly of super-
Yang-Mills theory and verify the Maldacena conjec-
ture.

It is worth emphasizing that received nontrivial
contributions from all the supermultiplets, not just the
p = 2 multiplet containing gauge fields, in contrast to
[11]. This indicates that although bulk tree-level solu-

(10)

break the supersymmetry downid=1.
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