
One-to-many node-disjoint paths
in (n, k)-star graphs

Yonghong Xiang and Iain A. Stewart
Department of Computer Science, Durham University,

Science Labs, South Road, Durham DH1 3LE, U.K.
e-mail: {yonghong.xiang,i.a.stewart}@durham.ac.uk

Abstract

We present an algorithm which given a source node and a set of n− 1
target nodes in the (n, k)-star graph Sn,k, where all nodes are distinct,
builds a collection of n − 1 node-disjoint paths, one from each target
node to the source. The collection of paths output from the algorithm
is such that each path has length at most 6k − 7, and the algorithm
has time complexity O(k2n2).
keywords: interconnection networks; (n, k)-star graphs; one-to-many
node-disjoint paths.

1 Introduction

Chiang and Chen [6] introduced (n, k)-star graphs, Sn,k, where n > k ≥ 1, as
alternatives to n-star graphs, for which the ‘jump’ from n! nodes in an n-star
graph to (n + 1)! nodes in an (n + 1)-star graph is deemed excessive (n-star
graphs were devised in [1] as rivals to hypercubes in that they can incorporate
comparable numbers of nodes yet have smaller diameters and degrees). The
two parameters, n and k, of (n, k)-star graphs allow much more precision
with regard to incorporating more nodes, and allow fine tuning with regard
to a degree/diameter trade-off.

Since their introduction in [6], (n, k)-star graphs have been well studied
and their basic topological and algorithmic properties are well understood.

1

For example: they form a hierarchical family of graphs, each of which is node-
symmetric [6]; they can be recursively decomposed in a number of ways [6];
they have a simple shortest-path routing algorithm [6]; the node-connectivity
of Sn,k is n − 1 [7]; there is an exact formula for their diameters, and their
fault-diameters are at most their fault-free-diameters plus 3 [7]; a cycle of
length n!

(n−k)!
− f can be found in Sn,k when the number of faulty nodes f

is at most n − 3 and n − k ≥ 2 [4]; their Hamiltonicity and Hamiltonian-
connectedness properties are well understood in the presence of a limited
number of faulty nodes and edges [12]; and Sn,k is super spanning connected
if n ≥ 3 and n − k ≥ 2 [13].

As regards the node-connectivity of Sn,k, it was shown in [7] that there
are n− 1 node-disjoint paths joining any two distinct nodes of Sn,k (with an
implicit algorithm for construction) and that each of these paths has length
at most the diameter, ∆(Sn,k), of Sn,k plus 3; that is, the wide-diameter
of Sn,k is at most ∆(Sn,k) + 3. It was also shown in [7] that the diameter
∆(Sn,k) is 2k − 1, if 1 ≤ k ≤ ⌊n

2
⌋, and k + ⌊n−1

2
⌋, if ⌊n

2
⌋ + 1 ≤ k < n.

The wide-diameter analysis was improved in [16, 17] to yield that: when
2 ≤ k < ⌊n

2
⌋ or k = n − 1, the wide-diameter of Sn,k is exactly ∆(Sn,k) + 2;

when ⌊n
2
⌋+ 1 ≤ k < n− 2, the wide-diameter of Sn,k is either ∆(Sn,k) + 1 or

∆(Sn,k) + 2; and the wide-diameter of Sn,1 is ∆(Sn,1) + 1. Thus, the one-to-
one node-disjoint paths problem for Sn,k has been pretty much resolved (note
that as Sn,k is regular of degree n−1, there is no scope for incorporating more
node-disjoint paths between two nodes). In this paper, we are concerned with
the one-to-many node-disjoint paths problem for Sn,k; that is, we are given
Sn,k, n − 1 distinct target nodes in the set T , and a source node I, different
from any target node, and we wish to find n − 1 node-disjoint paths, one
from the source node I to each target node of T .

The one-to-many node-disjoint paths problem is a fundamental prob-
lem in the design and implementation of parallel and distributed computing
systems and it has been extensively studied for a variety of (families of) in-
terconnection networks. Whilst Menger’s Theorem [3] implies that, given a
source node and n − 1 distinct target nodes (different from the source) in
a graph of node-connectivity n − 1, there exist n − 1 node-disjoint paths to
each of the target nodes from the source, it is sometimes difficult to identify
and actually construct the paths, especially if the paths are to be as short
as possible. Suppose that G is a c-connected graph. We say that G has
c-Rabin number r if r is the minimum number for which any c + 1 distinct

2

nodes s, t1, t2, . . . , tc are such that there are c node-disjoint paths from s to
t1, t2, . . . , tc, each of length at most r. It was shown in [11] that given a
c-connected graph G, it is NP-hard to compute the c-Rabin number of G.
However, in many interconnection networks, which almost always have ‘uni-
formity’ properties such as recursive decomposability, node-symmetry, and
degree regularity, the situation is much more acceptable (see, for example,
[1, 2, 5, 8, 9, 10, 11, 14, 15, 18, 19]). We only highlight here two such
studies of the one-to-many node-disjoint paths problem: in hypercubes and
in n-star graphs (recall, n-star graphs were introduced as improvements to
hypercubes, and (n, k)-star graphs as improvements to n-star graphs). In
[19], Rabin studied the one-to-many node-disjoint paths problem in hyper-
cubes where he showed that given a source node and n target nodes in an
n-dimensional hypercube, there exist node-disjoint paths from the source to
each of the target nodes such that each path has length at most 1 plus the
diameter of the n-dimensional hypercube (this result was slightly improved
in [8]). In [10], Gu and Peng showed that given a source and n − 1 target
nodes in an n-star graph, there is an algorithm of time complexity O(n2)
that builds n−1 paths from the source to each of the target nodes such that
the length of each path is at most the diameter of the n-star graph (that is,

⌊3(n−1)
2

⌋) plus 2.
In this paper, we prove the following theorem.

Theorem 1 When T is a set of n − 1 distinct nodes in Sn,k, where n >

k ≥ 1, and when I is a node not in T , there is an algorithm that finds
n − 1 node-disjoint paths in Sn,k from the source I to each of the nodes in
T . Furthermore, all paths found by this algorithm have length at most 6k−7
and the time complexity of the algorithm is O(k2n2).

We also show that this result is optimal for the case when k = 2.
We present the basic definitions in Section 2 before dealing with the case

when k = 2 in Section 3. In Section 4, we present the algorithm alluded
to in Theorem 1 and its proof of correctness, and in Section 5 we consider
the lengths of the paths constructed by our algorithm and also its time com-
plexity. Our conclusions are presented in Section 6, where we comment on
our results in comparison with analogous ones for n-star graphs and hyper-
cubes. We remark that weaker results than those presented in this paper
were claimed in [21]. However: the proof of the main theorem in [21] is in-
complete in that the cases considered do not exhaust those that might arise,

3

with the consequence that more sophistication in the construction and the
analysis is called for; no analysis of the lengths of the paths constructed in
[21] was given; and the base case of the induction (see the proof of the main
theorem in [21]) was merely stated as being self-evident when, as we shall
see in Section 3, this is not the case.

2 Basic definitions and lemmas

It is worthwhile beginning with an n-star graph in order that we might un-
derstand why (n, k)-star graphs emerged. The n-star graph Sn has node set
V (Sn) = {(u1, u2, . . . , un) : each ui ∈ {1, 2, . . . , n} and ui 6= uj, for i 6= j},
and there is an edge ((ui, u2, . . . , un), (v1, v2, . . . , vn)) if, and only if, u1 = vi

and ui = v1, for some i ∈ {2, 3, . . . , n}, with ul = vl, for all l ∈ {2, 3, . . . , n} \
{i}. In order to avoid the significant jump from n! nodes in an n-star graph to
(n+1)! nodes in an (n+1)-star graph, (n, k)-star graphs were devised, as ‘gen-
eralized’ n-star graphs. Let n > k ≥ 1. The (n, k)-star graph, denoted Sn,k,
has node set V (Sn,k) = {(u1, u2, . . . , uk) : each ui ∈ {1, 2, . . . , n} and ui 6=
uj, for i 6= j}, and there is an edge ((u1, u2, . . . , uk), (v1, v2, . . . , vk)) if, and
only if, either:

• ui = vi, for 2 ≤ i ≤ k, and u1 6= v1 (a 1-edge);

• u1 = vi and ui = v1, for some i ∈ {2, 3, . . . , k}, with ul = vl, for all
l ∈ {2, 3, . . . , k} \ {i} (an i-edge).

In consequence, Sn,k has n!
(n−k)!

nodes and n−1
2

× n!
(n−k)!

edges. Note that Sn,n−1

is isomorphic to the n-star Sn, and that Sn,1 is a clique on n nodes.
An important property of Sn,k, of which we make crucial use, is that it

can be partitioned into n node-disjoint copies of Sn−1,k−1 over one of k − 1
dimensions. In more detail, let i ∈ {2, 3, . . . , k} and partition the nodes
of Sn,k by fixing the ith component of each node. Thus, define Si

n,k(j) =
{(u1, u2, . . . , uk) ∈ V (Sn,k) : ui = j}, for each j ∈ {1, 2, . . . , n}. It is trivial
to see that the set of nodes Si

n,k(j), for j ∈ {1, 2, . . . , n}, induces a copy of
Sn−1,k−1. Note that there are k−1 dimensions over which we can so partition
Sn,k.

We adopt the following notation throughout this paper. Let I = (u1, u2,

. . . , uk) be an arbitrary node of Sn,k. Note that there are k−1 neighbours of
I that are joined to I via an i-edge, and n−k neighbours of I that are joined

4

to I by a 1-edge; each neighbour is characterized by its first component. We
denote the neighbour of I whose first component is j by Ij. Paths are written
explicitly as sequences of nodes, such as (x1, x2, . . . , xm) (it will be clear from
the context whether we are referring to a path of nodes or the components
of a node), and we sometimes denote a specific path from node s to node t

by ρ(s, t). We write x ∈ Sn,k \X, where X is a set of nodes of Sn,k, to denote
that x is a node of Sn,k different from any node in X.

We now give a lemma that shall be useful later.

Lemma 2 Let (x1, x2, . . . , xk) be some node of Sk
n,k(xk), where x1 6= y 6= xk.

There are n− 2 distinct nodes of Sk
n,k(xk) each of whose first component is y

and each of which is reachable by a path in Sk
n,k(xk) of length at most 3 from

(x1, x2, . . . , xk).

Proof Suppose that xi = y, where 1 6= i 6= k. The nodes are as follows.
For each z where z 6∈ {x1, x2, . . . , xk}, define the path

(x1, x2, . . . , xi−1, y, xi+1, . . . , xk), (z, x2, . . . , xi−1, y, xi+1, . . . , xk),

(y, x2, . . . , xi−1, z, xi+1, . . . , xk).

When 2 ≤ j ≤ k − 1 and j 6= i, define the path

(x1, x2, . . . , xi−1, y, xi+1, . . . , xk),

(xj, x2, . . . , xj−1, x1, xj+1, . . . , xi−1, y, xi+1, . . . , xk),

(y, x2, . . . , xj−1, x1, xj+1, . . . , xi−1, xj, xi+1, . . . , xk),

and define the path

(x1, x2, . . . , xi−1, y, xi+1, . . . , xk), (y, x2, . . . , xi−1, x1, xi+1, . . . , xk).

Suppose that y 6∈ {x1, x2, . . . , xk}. The nodes are as follows. For each z

where z 6∈ {x1, x2, . . . , xk, y}, define the path

(x1, x2, . . . , xk), (z, x2, . . . , xk), (x2, z, x3, . . . , xk), (y, z, x3, . . . , xk).

When 2 ≤ j ≤ k − 1, define the path

(x1, x2, . . . , xk), (xj, x2, . . . , xj−1, x1, xj+1, . . . , xk),

(y, x2, . . . , xj−1, x1, xj+1, . . . , xk),

5

and define the path

(x1, x2, . . . , xk), (y, x2, . . . , xk).

The result follows.

Our intention is to build an algorithm to find n − 1 node-disjoint paths
from each of n − 1 distinct target nodes, held in T , to a given source node
I of Sn,k (I is never a target node). Note that hitherto we have spoken of
paths from the source to the target nodes whereas now we are speaking of
paths from the target nodes to the source. We have swapped the orientation
as it turns out that our paths will actually be constructed by starting at a
target node and working towards the source. Of course, this is of no practical
consequence.

Before we present our algorithm, we show that there are certain assump-
tions that we can make.

Lemma 3 Let T be a set of n − 1 target nodes in Sn,k, where k ≥ 3. There
exists a dimension i ∈ {2, 3, . . . , k} such that each of Si

n,k(1), Si
n,k(2), . . . ,

Si
n,k(n) contains at most n − 2 nodes of T .

Proof Suppose that for every j ∈ {2, 3, . . . , k}, when we partition Sn,k over
dimension j, we get that some S

j
n,k(ij) contains all the target nodes from T .

Thus, all target nodes in T have the form (u, i2, i3, . . . , ik), for some u. This
yields a contradiction as there are only n − (k − 1) such nodes.

Suppose that k ≥ 3. By Lemma 3, we can choose a dimension, i, say
(where i ∈ {2, 3, . . . , k}), so that when we partition the (n, k)-star Sn,k over
dimension i to obtain the (n− 1, k− 1)-stars Si

n,k(1), Si
n,k(2), . . . , Si

n,k(n), we
can be sure that each Si

n,k(j) contains at most n − 2 target nodes. Sup-
pose that i 6= k. The automorphism of Sn,k obtained by swapping the
ith and kth components of every node is such that Si

n,k(j) is mapped to
Sk

n,k(j). Suppose that I = (y1, y2, . . . , yk) and let σ be any permutation
of {1, 2, . . . , n} for which σ(yj) = j, for j = 1, 2, . . . , k. The permutation
σ yields an automorphism of Sn,k by mapping each node (x1, x2, . . . , xk)
to (σ(x1), σ(x2), . . . , σ(xk)), so that each Sk

n,k(j) is mapped to Sk
n,k(σ(j)).

Thus, we may assume that our source node I is Ik = (1, 2, . . . , k) and
that when we partition over dimension k, the resulting (n − 1, k − 1)-stars
Sk

n,k(1), Sk
n,k(2), . . . , Sk

n,k(n) each contains at most n − 2 target nodes. Note

6

that when k = 2, we can assume that our source is Ik but not that partition-
ing over dimension k results in (n − 1, k − 1)-stars each containing at most
n− 2 target nodes. Henceforth, for brevity, we denote Sk

n,k(i) by Si (with Si

not to be confused with the n-star graph of the same name).
For i ∈ {k + 1, k + 2, . . . , n}, we define Ii = (k, 2, 3, . . . , k − 1, i) ∈ Si; for

i ∈ {2, 3, . . . , k−1}, we define Ii = (k, 2, 3, . . . , i−1, 1, i+1, . . . , k−1, i) ∈ Si;
and we define I1 = (k, 2, 3, . . . , k − 1, 1) ∈ S1. For i = 1, 2, . . . , n, we denote
the set of target nodes of T which lie in Si, that is, T ∩ Si, by Ti. The basic
structure of Sn,k can be visualized in Fig. 1.

I
1

Ik
Sk

... ...

Ik
nIk

iIk
2

I
2 Ii

In

Si

Sn

S
2

S
1

...

...

Figure 1. The basic partition of Sn,k.

3 The case for k = 2

In this section, we devise an algorithm Disjoint paths when k=2 which finds
node-disjoint paths in Sn,2 from n−1 target nodes in T to the source node I2

(which is not a target node). (Note that the one-to-many node-disjoint paths
problem is trivial for Sn,1, an n-clique.) We begin with an overview of our
algorithm and describe how it works in an abstract way before presenting
a more detailed pseudo-code description (we link the abstract description
with specific lines of pseudo-code). We refer the reader to Fig. 2 for a visual
depiction of the general scenario.

7

Algorithm overview

1. Our algorithm begins by marking every edge from a node I
j
2 ∈ T2 to I2

as a path to be output (thus, this deals with |T2| paths; recall, every
Si is a clique). (lines 2–4)

2. Consider some Sj, where Tj = ∅ and where if j 6= 1 then the node
I

j
2 6∈ T2. We might use such an Sj as a collection of ‘transit’ nodes;

that is, we might construct a path passing through some of these nodes
and then on from Ij to I

j
2 and on to I2 (or directly to I2 if j = 1). We

call such an Sj a transit set. (line 5)

3. Consider some Si, where i 6= 2 and Ti 6= ∅ (that is, in which there is
at least one target node). We need to build a path from every target
node in Si to I2. (line 6)

4. If i = 1 or I i
2 6∈ T2 then we choose some target in Ti, giving preference

to the node Ii, if it is a target node, and build a path through Ii, I i
2 (if

i 6= 1) and on to I2. This deals with 1 target node of Si, though there
may be others. (lines 7–17)

5. So, we have either |Ti| − 1 or |Ti| remaining target nodes in Si to deal
with (depending upon whether we have just found a path to I2 from a
target node in 4 above).

6. We choose either |Ti| − 1 or |Ti| (as appropriate) different transit sets
(these transit sets will be used to build paths from the target nodes
remaining in Si to I2; we shall prove below that we can always find the
required number of transit sets). (lines 18–22)

7. For every remaining target node I
j
i ∈ Ti, we build a path to I2, either

directly through Sj (if Sj is one of our chosen transit sets) and on to I2,
or via some non-target node I l

i ∈ Si, through the chosen transit set Sl,
and on to I2 (if Sj is not one of our chosen transit sets). (lines 24–33)

8. We no longer regard the transit sets chosen as subsequently being tran-
sit sets; that is, available for use when we wish to construct other paths
in future. (line 23)

9. We repeat the above process, from 3 onwards, for each Si for which
i 6= 2, Ti 6= ∅, and whose target nodes we have yet to deal with.

8

We now present our pseudo-code before elaborating on the description of
our algorithm presented above.

1 Disjoint paths when k=2(n,T,I2,paths)

2 for every node I
j
2 ∈ T2 do

3 add the path ρ(Ij
2 , I2) = (Ij

2 , I2) to paths;

4 od

5 set transit := {Sj : j ∈ {1, 3, 4, . . . , n} and Tj = ∅, and

if j 6= 1 then I
j
2 6∈ T2};

6 for i = 1, 2, . . . , n where i 6= 2 and Ti 6= ∅ do

7 if i = 1 or I i
2 6∈ T2 then

8 if Ii ∈ Ti then

9 add the path ρ(I1, I2) = (I1, I2) (resp. ρ(Ii, I2) =
(Ii, I

i
2, I2)) to paths if i = 1 (resp. i 6= 1);

10 sorted target := Ii;

11 else

12 choose some I
j
i ∈ Ti and add the path ρ(Ij

1 , I2) =

(Ij
1 , I1, I2) (resp. ρ(Ij

i , I2) = (Ij
i , Ii, I

i
2, I2)) to paths

if i = 1 (resp. i 6= 1);

13 sorted target := I
j
i ;

14 fi

15 else

16 sorted target := ǫ;

17 fi

18 if sorted target 6= ǫ then

19 let good trans ⊆ transit be of size |Ti| − 1;
20 else

21 let good trans ⊆ transit be of size |Ti|;
22 fi

In the algorithm above, we write sorted target := ǫ to denote that no node
is associated with sorted target.

We need to verify that such a subset good trans exists, which we do now
(see clause 6 in the description of our algorithm). Note that we need to verify
this fact for every iteration of the for-loop spanning lines 6-34 and not just
the first; thus, we deal with the general scenario below. Consider an iteration
for some value of i. Suppose that X = {l : l = 1, 3, 4, . . . , n, l < i, Tl 6= ∅}
with Y ⊆ X defined as Y = {l : l ∈ X \{1}, I l

2 ∈ T2}, i.e., X indexes the Sl’s

9

(with target nodes) that have so far been dealt with in the for-loop in lines
6-34, and Y indexes those such Sl’s for which I l

2 blocks direct paths from Il

to I2 (so, every path from any target node of Sl must be routed through some
Sl′ for which Tl′ = ∅ and I l′

2 6∈ T , if l′ 6= 1). On an iteration of the for-loop
for some i where i 6= 2 and Ti 6= ∅, any Sl from {S1, S2, . . . , Sn} \ {S2, Si}
fails to be in transit for exactly one of six reasons:

1. Sl contains target nodes, 2 6= l < i, and (l 6= 1 and I l
2 ∈ T2), i.e., l ∈ Y ;

2. Sl contains target nodes, 2 6= l < i, and (l = 1 or I l
2 6∈ T2), i.e.,

l ∈ X \ Y ;

3. Sl contains target nodes and l > i;

4. Sl contains no target nodes but is used as a set of transit nodes for a
path from some target in Sj , where j ∈ Y ;

5. Sl contains no target nodes but is used as a set of transit nodes for a
path from some target in Sj , where j ∈ X \ Y ;

6. Sl contains no target nodes, Sl is not used as a set of transit nodes for
a path from some target node, l 6= 1, and I l

2 ∈ T2.

Some of the different cases are illustrated in Fig. 2, where the target nodes
are represented in black and where i = 18 (note that all Sj ’s are cliques even
though they are not depicted as such). We can associate a target node with
any Sl not in transit by choosing: the target node I l

2 in case 1; the (unique)
target node t of Sl for which the path ρ(t, I2) passes through Il in case 2; any
target node of Sl in case 3; the unique target node t upon whose path ρ(t, I2)
the nodes of Sl are used as transit nodes in cases 4 and 5; and the target
node I l

2 in case 6. All such target nodes are distinct and are different from
the target nodes in Ti. Thus, |transit| ≥ (n− 2)− ((n− 1)− |Ti|) = |Ti| − 1.
Furthermore, if sorted target = ǫ then I i

2 ∈ T2 and i 6= 1, and this target
node is distinct from all target nodes which were associated above; hence, in
this case |transit| ≥ (n− 2)− ((n− 1)− |Ti| − 1) = |Ti| and our claim holds.

23 transit := transit \ good trans;

24 for every I
j
i ∈ Ti \ {sorted target} do

25 if Sj ∈ good trans then

26 add the path ρ(I1
i , I2) = (I1

i , I i
1, I1, I2) (resp. ρ(Ij

i , I2) =

10

(Ij
i , I

i
j, Ij , I

j
2 , I2)) to paths if j = 1 (resp. j 6= 1);

27 remove Sj from good trans;

28 else

29 choose I l
i 6∈ Ti for which Sl ∈ good trans;

30 add the path ρ(Ij
i , I2) = (Ij

i , I
1
i , I i

1, I1, I2) (resp. ρ(Ij
i , I2)

= (Ij
i , I

l
i , I

i
l , Il, I

l
2, I2)) to paths if l = 1 (resp. l 6= 1);

31 remove Sl from good trans;

32 fi

33 od

34 od

S
2

...

... ...

...

I
2

...

S
1I

1
S

22

S
19

S
18

S
13

S
5

I
22

I
19

I
18

I
13

I
5

case 1

i = 18 case 6

case 3

case 2transit

Figure 2. An illustration of different cases.

Consequently, Disjoint paths when k=2 achieves its aims. Furthermore,
all paths found by Disjoint paths when k=2 have length at most 5 and the
time complexity of Disjoint paths when k=2 is O(n2).

Theorem 4 When T is a set of n − 1 distinct nodes in Sn,2 and when I is
a node not in T , the algorithm Disjoint paths when k=2 finds n − 1 node-
disjoint paths from the nodes in T to the node I. Furthermore, all paths found
have length at most 5 and the time complexity of Disjoint paths when k=2
is O(n2).

11

Note that there are situations where at least one of the paths found in
Theorem 4 necessarily has length 5. One such situation is when n ≥ 4 and
the target nodes include the nodes (1, 3), (2, 1) and (2, 3); for it is easy to
see that any path from the node (1, 3) to the node (1, 2) (avoiding the nodes
(2, 1) and (2, 3)) must have length at least 5. Consequently, when n ≥ 4,
Theorem 4 is optimal in terms of the length of the longest path found. Of
course, S3,2 is a cycle of length 6 and so there is a configuration consisting of
a source and two distinct targets where there is necessarily a path of length
at least 3 joining the source and one of the targets.

4 Building node-disjoint paths when k > 2

We now detail a recursive algorithm to construct node-disjoint paths from
n − 1 distinct target nodes in Sn,k, given by the set of nodes T , to a source
node (which is different from each target node). Recall that we may assume
that our source is Ik and, for k ≥ 3, when we partition over dimension k,
none of the resulting copies of Sn−1,k−1 (namely S1, S2, . . . , Sn) contains more
than n − 2 target nodes.

We remind the reader of some structural properties of Sn,k and introduce
some notation. Consider any node x of any Si, where i ∈ {1, 2, . . . , n}. The
node x has n − 1 neighbours, with 1 external neighbour outside Si, in Sι(x)

(and so ι(x) is the first component of x), and n − 2 internal neighbours
in Si. Any two neighbours y and y′ of x within Si are such that ι(x) 6=
ι(y) 6= ι(y′) 6= ι(x). Denote the neighbour of x in Sι(x) by xι(x) and call it
x’s neighbour of index ι(x), and for any neighbour y of x inside Si, we say
that y is x’s neighbour of index ι(y) and refer to y as xι(y). Thus, x has a
neighbour of every index from {1, 2, . . . , n} \ {i}.

Our algorithm Disjoint paths iterates through the subgraphs of {S1, S2,

. . . , Sn}\{Sk, S1} finding paths in Sn,k from each of the target nodes encoun-
tered. Actually, not the full paths are found: only the portions of the paths
until the paths enter Sk, via some (distinct) entry nodes (that are not target
nodes). Next, paths are found in the same way as above to deal with any
target nodes in S1 (if there are any). However, it is ensured that there is
always one path from a target node, which may lie outside S1, through the
nodes of S1, on to I1, and then on to Ik. This accounts for one of our eventual
output paths (note that this path does not contain any nodes of Sk, apart
from Ik). Thus, we are left with finding n − 2 node-disjoint paths from the

12

entry nodes in Sk and the target nodes of Tk to Ik, which we do recursively.
Here is our algorithm in more detail. Define transit = {Sj : Tj = ∅, j 6=

k}. Consider some Si, where 1 6= i 6= k and Ti 6= ∅ (and so Si 6∈ transit).
A lower bound on the size of transit is (n − 2) − ((n − 1) − |Tk| − |Ti|) =
|Ti|+ |Tk| − 1, and this lower bound is only reached when every Sj for which
Sj 6∈ transit and i 6= j 6= k contains exactly one target node. For every
target node x ∈ Ti, if ι(x) = k and xι(x) 6∈ Tk then place x in the set Xi (so,
Xi contains every target node in Ti with first component k whose external
neighbour is not a target node). We shall ultimately construct a path from
each target node x in Xi to its neighbour in Sk, which we call x’s entry node,
and then on to Ik in Sk. Note that all entry nodes are distinct.

Define Y ′

i = {x : x ∈ Ti \ Xi, ι(x) 6= k, Sι(x) ∈ transit}; that is, Y ′

i

consists of those target nodes of Ti \Xi whose external neighbours lie in sets
in transit. Note that it might be the case that for two distinct target nodes
x and x′ in Y ′

i , ι(x) = ι(x′). Choose a subset Yi ⊆ Y ′

i that is maximal with
respect to the property that for any two distinct target nodes x and x′ in
Yi, ι(x) 6= ι(x′). If x ∈ Yi then remove Sι(x) from transit. As we shall see,
any Sj originally in transit has its nodes used on at most one path from any
target node in T \Tk; moreover, any path we ultimately construct from some
target node will use nodes from at most one Sj which originally appeared in
transit. We shall ultimately construct a path from each target node x of Yi

to xι(x), then on through nodes in Sι(x) to a node in Sk, and then on to Ik.
We find an appropriate path through Sι(x) and in to Sk, via an entry node in
Sk, presently. Thus, we have |Ti| − |Xi| − |Yi| target nodes remaining to be
dealt with in Si and we have that |transit| is at least |Ti| − |Yi| + |Tk| − 1.

Suppose that |Ti|−|Xi|−|Yi| ≤ |Ti|−|Yi|+|Tk|−1, i.e., 0 ≤ |Xi|+|Tk|−1,
i.e., either Xi 6= ∅ or Tk 6= ∅. Each of the target nodes in Ti \ (Xi ∪ Yi) can
choose an internal neighbour so that the indices of the neighbours chosen are
all different and are such that each chosen neighbour’s external neighbour lies
in some Sj ∈ transit (note that all neighbours chosen are necessarily distinct
and can not be target nodes, as otherwise they would have been included in
Yi on the grounds that Yi is maximal). We shall ultimately construct a path
from each target node in Ti \ (Xi ∪ Yi) to its chosen internal neighbour, then
on to the chosen neighbour’s external neighbour, then through the Sj within
which this external neighbour resides, then on to an entry node in Sk, and
finally on to the node Ik. All Sj ’s to be used in these paths are removed from
transit.

Suppose that Xi = ∅ and Tk = ∅, and so we have that |transit| =

13

|Ti \ Yi| − 1. For all but one of the target nodes of Ti \ Yi, we can proceed as
in the previous paragraph and choose (distinct) internal neighbours through
which we will construct paths that will ultimately lead to an entry node in
Sk and on to Ik (we reiterate that none of these internal neighbours can be
target nodes because of the maximality of Yi). As above, all Sj’s to be used
on these paths are removed from transit. Thus, that leaves only 1 target
node x of Ti \ Yi to deal with. Let y be the neighbour of x of index k. Note
that as Xi = ∅ and Tk = ∅, y is an internal neighbour of x and can not be
a target node. Moreover, by construction, y is not a chosen neighbour of
one of the other target nodes in Ti \ Yi, above (as ι(y) = k and all chosen
neighbours of the other target nodes in Ti \ Yi have index different from k).
We shall ultimately construct a path from x to y, then to y’s neighbour in
Sk (the entry node), and then on to Ik.

Consider now some Si′ for which Ti′ 6= ∅ and i′ 6∈ {1, k, i}. Whilst dealing
with Si, above, we reduced the number of elements in transit; however, each
time we removed some Sj from transit, above, we dealt with some target
node in Si. Thus, a lower bound on the size of transit now is (n−3)− ((n−
1)−|Tk|− |Ti|− |Ti′|) = |Tk|+ |Ti|+ |Ti′|−2 ≥ |Tk|+ |Ti′|−1. Consequently,
when we deal with Si′ in exactly the same way that we dealt with Si, the
numeric arguments are identical and thus our path ‘reservations’ can be made
for all target nodes in Si′ too. Similarly, we ‘reserve’ paths in this way for
all target nodes outside Sk ∪ S1.

Now consider S1. We wish to ensure that we ultimately construct a path:
from some target in S1, if there is one, through S1 to I1, and then on to Ik;
or, if T1 = ∅, from some target outside S1 ∪ Sk, in to S1, then on to I1, and
then on to Ik. We will deal with all other target nodes in S1 as we have done
above. As we have seen, immediately prior to dealing with S1, we have that
|transit| is at least |Tk| + |T1| − 1 and there are |T1| target nodes in S1 to
deal with.

Suppose that S1 contains at least 1 target node. We proceed as we did
above for other Si’s and deal with the target nodes in T1. Having done so,
we have reserved paths from all target nodes in T1. Let D be the set of
target nodes in T1 whose distance to I1 in S1 is shortest (note that D might
just consist of 1 element, and might, in fact, be {I1}). Choose some x ∈ D

and consider a shortest path ρ in S1 from x to I1; denote by y the node
on this path adjacent to x, if y exists (of course, if y exists then it is not a
target node). If y does not exist then D = {I1}; so, replace the path just
reserved for I1 with the path (I1, Ik). If y exists and y does not appear on

14

any other reserved path from a target node in T1 \ {x} then replace the path
reserved for x with the path ρ extended with the edge (I1, Ik). Consequently,
we may suppose that y appears on some reserved path from a target node x′

in T1 \ {x}. In particular, the node y must have been chosen as one of x′’s
internal neighbours because x′ 6∈ X1 ∪ Y1 and, at that point, Sι(x′) 6∈ transit.
We can now replace x′’s reserved path with the path obtained by moving
from x′ to y, then along ρ to I1, and then to Ik. Note that this path is
node-disjoint from all of the reserved paths just constructed (which consist
of at most 1 edge before they leave S1).

Alternatively, suppose that S1 contains no target nodes. If S1 is no longer
in transit then we have indeed reserved a path from some target node outside
S1 through S1 to I1 and on to Ik. So, suppose that S1 still resides in transit.
By hypothesis, not all target nodes lie in Sk and so we can trivially ensure
that for one target node outside Sk, we construct a path from this target
node (possibly through one of its neighbours) in to S1 and on to Ik through
I1 (note that if our initially chosen target node x is such that its internal
neighbour y for which yι(y) = 1 is a target node then we simply choose y as
the target node whose corresponding path to Ik passes through S1).

We have now made our path reservations: n− 2 of these reservations are
for paths to entry nodes in Sk; and 1 reservation is for a path, from some
target node x1, through S1 and on to Ik directly. We can visualize these
reservations in Fig. 3, where the black nodes are target nodes, the dark grey
node is the source node, and the light grey nodes are entry nodes.

We now have to make concrete these path reservations. This means find
paths through Sj ’s and on to entry nodes in Sk. However, we must ensure that
all entry nodes in Sk are distinct from each other and also from any target
nodes in Sk (as otherwise our resulting paths will not be vertex-disjoint).

We iterate through the target nodes of T \ (Tk ∪{x1}) and make concrete
our paths. Note that every such target node has an associated reserved path
and that the number of target nodes and entry nodes ultimately chosen in Sk

will be n−2. Some of our paths are already concrete. For example, any node
x in some Xi has entry node xι(x) in Sk. Consider some target node x that
has a reserved path through some Sj (where Sj was originally in transit).
The path from x to the node y ∈ Sj where the path enters Sj (y is the
external neighbour of x or the external neighbour of an internal neighbour
of x) is well-defined. By Lemma 2, there are n − 1 distinct nodes of Sj ,
each at a distance of at most 3 from y, with the property that their external
neighbours all lie in Sk. So, at least one of these external neighbours in Sk

15

has not yet been chosen as an entry node and is not a target node. Thus, we
may choose such a node as the entry node corresponding to the target node
x. Hence, we can find an entry node corresponding to every target node of
T \ (Tk ∪ {x1}) so that all of these entry nodes are distinct and also distinct
from all target nodes in Sk.

IkSk
... ...

Si

Sm

Sj

I
1

S
1

...

...

...transit

transit

transit

transit

Figure 3. The path reservations.

Finally, having constructed our entry nodes, we recursively find n − 2
vertex-disjoint paths in Sk from the target nodes of Tk and the entry nodes,
and then we use (some of) these paths to extend our partially constructed
paths from the target nodes of T \ (Tk ∪ {x1}) to their corresponding entry
nodes to the source Ik. Hence, we have an algorithm to find node-disjoint
paths in Sn,k from each of any set T of n−1 target nodes to any given source
node; that is, Disjoint paths achieves its aims.

5 Path lengths and complexity

Having proved that our algorithm Disjoint paths finds a collection of node-
disjoint paths in Sn,k from n−1 target nodes to a source node, we now turn to
the lengths of the paths produced by the algorithm and the time complexity
of the algorithm.

16

5.1 Path lengths

We derive below an upper bound on the length of any path constructed by
Disjoint paths; in the first instance, this upper bound is in the form of a
recurrence relation. Let bk be an upper bound on the length of any path
produced by the algorithm Disjoint paths applied in Sn,k, irrespective of
n (at the moment, we have not shown that such an upper bound exists;
however, we show, using induction, that it does and derive an estimate of it).
By Theorem 4, b2 = 5. As our induction hypothesis, we assume that bk−1

exists and is independent of n.
Clearly, any path produced by our algorithm Disjoint paths which lies

entirely within Sk has length at most bk−1. By considering the construction
of paths from target nodes in any Si to Ik, where i 6= k, the length of any
such path is at most the maximum of {∆(Sn−1,k−1) + 3, bk−1 + 6}. Solving
this recurrence relation with bk = 5 results in an upper bound on the length
of any path constructed by Disjoint paths of bk ≤ 6k − 7.

5.2 Time complexity

As regards the time complexity of our algorithm, we assume that our model
of computation is such that when dealing with Sn,k, the integer n can be
stored in one word of memory; thus, basic arithmetic operations involving n

can be undertaken in constant time. This means that, for example, we can
iterate through the neighbours of a given node in O(n) time (the node is
given as a k-tuple of integers between 1 and n). Note that we do not have an
explicit representation for Sn,k, as its adjacency matrix, for example, as this
would require an exponential amount of memory (in k); we simply start with
n, k, a list of our target nodes, and our source, and we construct vertices of
Sn,k as and when they are required.

We begin by considering the computation undertaken by Disjoint paths

apart from the recursive call. We can register the Si’s in which target nodes
reside and the number of target nodes in the Si’s in O(kn) time. With
reference to our remark in the first paragraph of the previous section, our
assumptions as regards the number of target nodes in any Si and the par-
ticular source node and partition in any recursive call result from an O(kn)
time computation. The initialization of transit can be undertaken in O(kn)
time. We can clearly deal with reserving paths corresponding to target
nodes in some Si in O(|Ti|k) time, and we can make these paths concrete

17

in O(|Ti|kn) time (note that the straightforward algorithm in [6] for finding
a shortest path joining two nodes in Sn,k is easily implementable with time
complexity O(kn)). Thus, we obtain that the time taken by the algorithm
Disjoint paths on Sn,k, apart form the recursive call, is O(kn2) time. Con-
sequently, by solving a simple recurrence relation, the time complexity of the
algorithm Disjoint paths is O(k2n2).

6 Conclusions

In this paper, we have derived a polynomial-time algorithm to find node-
disjoint paths from each of n − 1 distinct target nodes in Sn,k to a source
node (different from any target node). The length of any path constructed is
at most 6k − 7. This should be compared with the diameter of Sn,k which is
at most 2k−1 (see the Introduction for an exact formula for the diameter of
Sn,k, suffice it to say that when 1 ≤ k ≤ ⌊n

2
⌋, the diameter is exactly 2k−1).

The most appealing aspect of our construction is that we have managed
to obtain an upper bound on the length of any of our paths from the source
node to the target nodes in Sn,k that is independent of n; thus, n can be
increased arbitrarily and our upper bound remains the same. Also, our algo-
rithm is efficient and in practice will be even faster as the scenarios whereby
recursive calls are made will be much fewer than in our worst-case analysis.
Furthermore, our algorithm should be easily and efficiently implementable
on a distributed-memory machine where global knowledge of the source and
target nodes is available but where the paths have to be constructed in a
distributed fashion by the individual processors (see, for example, the under-
lying model in [20]). We say no more here concerning this claim but note that
the structure of our algorithm lends itself to the incremental construction of
paths.

However, our upper bound is roughly three times the diameter of Sn,k,
whereas for n-star graphs the analogous upper bound is at most the diameter
plus 2 and for hypercubes the analogous upper bound is at most the diameter
plus 1. Thus, we conjecture that our result is not optimal. (Note that our
result is optimal when k = 2.) It may be the case that a refined analysis of
the possible distributions of sources and targets might yield that a recurrence
of bk ≤ bk−1 + 2 (see the previous section) can be obtained (which is what
would be required in order to get a maximal path length comparable with
the scenarios in n-star graphs and hypercubes). As yet, we have been unable

18

to make progress in this direction ((n, k)-star graphs are conceptually much
more complex than n-star graphs and hypercubes).

Of course, we can apply our algorithm to Sn,n−1, i.e., the n-star. What re-
sults is an algorithm of time complexity O(n4) that finds node-disjoint paths,
each of length at most 6n − 13. As might be expected, the algorithm from
[5], designed specifically for n-stars, is better in that it has time complexity
O(n2) and results in node-disjoint paths each of length at most 3n+9

2
+ 2.

Similarly, we can apply our algorithm to produce a (u, v)-container, for dis-
tinct nodes u and v of Sn,k. Again, as expected, the resulting container is
much worse than that produced by the (polynomial-time) algorithm in [16]
(specifically designed for the purpose) where one of wide-diameter at most
2k + 1 is produced. Nevertheless, our algorithm gives a polynomial-time
alternative for constructing node-disjoint paths in n-stars and containers in
Sn,k.

References

[1] S.B. Akers, D. Horel and B. Krishnamurthy, The star graph: an at-
tractive alternative to the n-cube, Proc. of Internat. Conf. on Parallel
Processing (1987) 393–400.

[2] L.N. Bhuyan and D.P. Agrawal, Generalized hypercube and hyperbus
structures for a computer network, IEEE Transactions on Computers
C-33 (1984) 323–333.

[3] B. Bollobas, Extremal Graph Theory, Dover (2004).

[4] J.-H. Chang and J. Kim, Ring embedding in faulty (n, k)-star graphs,
Proc. of 8th Internat. Conf. on Parallel and Distributed Systems (IC-
PADS’01) (2001) 99–106.

[5] C.C. Chen and J. Chen, Nearly optimal one-to-many parallel routing in
star networks, IEEE Transactions on Parallel and Distributed Systems
8 (1997) 1196–1202.

[6] W.-K. Chiang and R.-J. Chen, The (n, k)-star graph: a generalized star
graph, Information Processing Letters 56 (1995) 259–264.

19

[7] W.-K. Chiang and R.-J. Chen, Topological properties of the (n, k)-star
graph, Internat. Journal of Foundations of Computer Science 9 (1998)
235–248.

[8] S. Gao, B. Novick and K. Qiu, From Hall’s matching theorem to optimal
routing on hypercubes, Journal of Combinatorial Theory Series B 74

(1998) 291–301.

[9] Q.P. Gu and S. Peng, Efficient algorithms for disjoint paths in star
graphs, Proc. of 6th Transputer/Occam International Conf. (1994) 53–
65.

[10] Q.P. Gu and S. Peng, Node-to-set disjoint paths problem in star graphs,
Information Processing Letters 62 (1997) 201–207.

[11] D.F. Hsu and Y.D. Lyuu, A graph-theoretical study of transmission
delay and fault tolerance, Internat. Journal of Mini and Microcomputers
16 (1994) 35–42.

[12] H.-C. Hsu, Y.-L. Hsieh, J.J.M. Tan and L.-H. Hsu, Fault Hamiltonicity
and fault Hamiltonian connectivity of the (n, k)-star graphs, Networks
42 (2003) 189–201.

[13] H.-C. Hsu, C.-K. Lin, H.-M. Hung and L.-H. Hsu, The spanning con-
nectivity of the (n, k)-star graphs, Internat. Journal of Foundations of
Computer Science 17 (2006) 415–434.

[14] C.-N. Lai, G.-H. Chen and D.-R. Duh, Constructing one-to-many dis-
joint paths in folded hypercubes, IEEE Transactions on Computers 51

(2002) 33–45.

[15] S.C. Liaw, G.J. Chang, F. Cao and D.F. Hsu, Fault-tolerant routing in
circulant networks and cycle prefix networks, Annals of Combinatorics
2 (1998) 165–172.

[16] T.-C. Lin, D.-R. Duh and H.-C. Cheng, Wide diameters of (n, k)-star
networks, Internat. Conf. on Computing, Communications and Control
Technologies (CCCT’04) (2004) 160–165.

[17] T.-C. Lin and D.-R. Duh, Constructing vertex-disjoint paths in (n, k)-
star graphs, Information Sciences 178 (2008) 788–801.

20

[18] J.-H. Park, One-to-many disjoint path covers in a graph with faulty
elements, Proc. of Computing and Combinatorics, 10th Ann. Internat.
Conf. (COCOON’04), Lecture Notes in Computer Science Vol. 3106 (ed.
K.-Y. Chwa, J.I. Munro), Springer (2004) 392–401.

[19] M.O. Rabin, Efficient dispersal of information for security, load balanc-
ing, and fault tolerance, Journal of the ACM 36 (1989) 335–348.

[20] I.A. Stewart, Distributed algorithms for building Hamiltonian cycles in
k-ary n-cubes and hypercubes with faulty links, Journal of Interconnec-
tion Networks 8 (2007) 253–284.

[21] Y. Xiang, Y. Lin, Z. Gu, C. Zhang and B. Cong, One-to-many node-
disjoint paths problem in com-star interconnection networks, Proc. of
13th IASTED Int. Conf. on Parallel and Distributed Computing and
Systems (PDCS’01) (2001) 248–253.

21

