
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003 503

CyberWalk: A Web-Based Distributed
Virtual Walkthrough Environment

Jimmy Chim, Rynson W. H. Lau, Member, IEEE, Hong Va Leong, and Antonio Si, Member, IEEE

Abstract—A distributed virtual walkthrough environment al-
lows users connected to the geometry server to walk through a
specific place of interest, without having to travel physically. This
place of interest may be a virtual museum, virtual library or virtual
university. There are two basic approaches to distribute the vir-
tual environment from the geometry server to the clients, complete
replication and on-demand transmission. Although the on-demand
transmission approach saves waiting time and optimizes network
usage, many technical issues need to be addressed in order for the
system to be interactive.
CyberWalk is a web-based distributed virtual walkthrough

system developed based on the on-demand transmission approach.
It achieves the necessary performance with amultiresolution
caching mechanism. First, it reduces the model transmission
and rendering times by employing a progressive multiresolution
modeling technique. Second, it reduces the Internet response time
by providing a caching and prefetching mechanism. Third, it
allows a client to continue to operate, at least partially, when the
Internet is disconnected. The caching mechanism ofCyberWalk

tries to maintain at least a minimum resolution of the object
models in order to provide at least a coarse view of the objects
to the viewer. All these features allowCyberWalk to provide
sufficient interactivity to the user for virtual walkthrough over the
Internet environment.

In this paper, we demonstrate the design and implementation
of CyberWalk. We investigate the effectiveness of the multires-
olution caching mechanism ofCyberWalk in supporting virtual
walkthrough applications in the Internet environment through nu-
merous experiments, both on the simulation system and on the pro-
totype system.

Index Terms—Distributed virtual environments, model
prefetching, multiresolution caching, multiresolution modeling,
virtual walkthrough.

I. INTRODUCTION

I N A VIRTUAL walkthrough application, a viewer could ex-
plore a specific place of interest without having to travel

physically. The place of interest is usually modeled as a vir-
tual environment, containing a vast number of virtual objects.

Manuscript received December 1, 2000; revised March 18, 2002. This work
was supported in part by an SRG grant from the City University of Hong Kong
(Project 7001071), and the Hong Kong Polytechnic University Central Grant
(Grant G-T040). The associate editor coordinating the review of thi spaper and
approving it for publication was Dr. Chung-Sheng Li.

J. Chim was with the Department of Computing, the Hong Kong Polytechnic
University, Hong Kong. He is now with the School of Visual Arts, New York,
NY 10010-3994 USA.

R. W. H. Lau is with the Departments of Computer Science and Computing
Engineering and Information Technology, City University of Hong Kong,
Kowloon, Hong Kong (e-mail: rynson@cs.cityu.edu.hk).

H. V. Leong is with Department of Computing, The Hong Kong Polytechnic
University, Hong Kong.

A. Si is with Oracle Corporation, Redwood Shores, CA 94065 USA.
Digital Object Identifier 10.1109/TMM.2003.819094

Sample applications of this sort include virtual museum, virtual
library, and virtual university [18]. is a distributed
virtual walkthrough system, employing a standard client–server
architecture. Information of virtual objects, including their lo-
cations and geometric shapes, is maintained in a central data-
base server. A viewer using a client machine connected to the
Internet may access and visit the virtual environment provided
by the server. When the viewer walks through the environment,
information of virtual objects located within a visible distance
from the viewer will be conveyed to the client machine for ren-
dering. In general, virtual objects could be dynamic, changing
their locations and orientations within the virtual environment.
However, in this paper, we only focus on virtual environments
where objects are static. The goal of is to provide
good performance, both in terms of responsiveness and reso-
lution, under the existing constraints of relatively low Internet
bandwidth and the large memory demand of virtual objects.

We are addressing several research issues in .
First, virtual objects must be modeled in a compact form so
as to reduce the storage space needed and the time required
to transfer the objects from the server to a client. A compact
modeling of virtual objects also has the benefit of fast retrieval
from secondary storage, both at the server and at a client. How-
ever, over-compact modeling of virtual objects will increase
the overheads in compressing and decompressing the objects.

employs the progressive multiresolution technique
for object modeling [12], [15]. The technique allows progressive
transmission of object models with only minimal overheads.

Second, with the limited bandwidth of the Internet, we need
to reduce the amount of data requested over the network for
faster response time. addresses this problem by em-
ploying caching and prefetching mechanisms. A caching mech-
anism allows a client to utilize its memory and local storage to
cache currently visible objects that are likely to be visible in the
near future [10]. A prefetching mechanism allows a client to pre-
dict objects that are likely to be visible in the future and obtain
the objects in advance to improve response time. A good caching
mechanism should retain objects with high affinity while a good
prefetching mechanism should predict those objects which will
most likely be needed in the future.

Third, the Internet often suffers from various degrees of dis-
connection. The local cache of a client can be used to provide
partial information to support a certain degree of disconnected
operation. For example, a viewer may still be able to see a coarse
resolution of objects in the virtual environment if the minimal
approximated models of the objects are cached. Even if only the
coordinates of the virtual objects are cached, a viewer could still
be aware of their existence.

1520-9210/03$17.00 © 2003 IEEE

504 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

The rest of the paper is organized as follows. Section II
presents a survey on relevant research. Section III presents the
design of in detail. Section IV discusses the im-
plementation of our experimental prototype system. Section V
quantifies the performance of our caching and prefetching
mechanisms with several experiments on . Finally,
Section VI concludes our paper with a discussion on possible
future work.

II. RELATED WORK

In this section, we summarize existing work in three different
areas which are fundamental to our work. First, we briefly look
at the strengths and limitations of existing distributed virtual
walkthrough systems. Next, we summarize related multiresolu-
tion methods for object modeling. Finally, we point out the ra-
tionale for employing replacement and prefetching techniques
in .

A. Distributed Virtual Walkthrough Systems

Two main approaches have been proposed to distribute virtual
objects from the server to the clients in distributed virtual reality
applications [25]. Most systems, such as DIVE [4], SIMNET
[2], and VLNET [20], employ acomplete replicationapproach
to distribute all geometry data to the clients before the start of
the application. Since the geometry database is usually large in
size, this approach assumes the use of a high speed network
in order to reduce preloading time and may not be suitable for

. A few systems employ theon-demand transmis-
sionapproach to distribute geometry data to the clients [9], [21],
[24] at runtime. When the virtual environment is large, a viewer
would likely only visit a small section of it. This approach re-
quires only the visible region of the environment to be trans-
mitted to the client and can thus reduce startup time and net-
work traffic. It, however, introduces a number of problems. In
particular, we need to fetch the visible objects from the server
in advance so that they can be available in the client when they
are needed, in order for the walkthrough application to be in-
teractive. In [27], this interactive problem was addressed as a
scheduling problem, with emphasis on deadline and admission
control of clients to sustain certain level of quality of service.
However, the research work did not consider the client cache
and, more importantly, did not make use of the multiple granu-
larity of the object models, which constitute two major sources
of performance improvement in . We address this
interactive problem as well as related problems, such as con-
tinued viewing service in momentary network congestion and
client disconnection, with a number of solutions as will be de-
scribed in Section III.

In a conventional client-server database environment, data
objects are usually transferred from the database server to a
client on a per-page basis [3], [10]. This is primarily because
the server’s storage is also page-based. The overheads for trans-
mitting one item or a page are similar. In a distributed virtual en-
vironment, virtual objects are represented usingobject models.
These models are usually large in size, occupying possibly mul-
tiple pages. The cost to transfer them in their entirety via the In-
ternet is very high. Furthermore, we might not always need to

Fig. 1. Structure of a progressive mesh.

render an object at its full resolution. Hence, there will be situ-
ations that we need to transfer less than a page of information
and situations that we need to transfer more than a page of in-
formation. A more dynamic granularity for caching is therefore
needed in a distributed virtual environment. To combat frequent
network disconnections of the Internet, a storage cache, which
has the advantage of persistence, may be established. When dis-
connected from the server, a client can still operate on the cached
database objects in its local storage.

B. Multiresolution Modeling

In a distributed environment, rendering a complex object at a
client is computationally expensive. From the perspective of a
viewer in the environment, distant objects appear smaller than
nearby objects after perspective projection. Most details of a dis-
tant object are actually not visible to the viewer. Hence, it is only
necessary to represent the object at a resolution high enough
for a given viewing distance. This could reduce not only the
rendering time, but also the transmission delay and the storage
space required at the client. employs multiresolu-
tion modeling techniques for caching and prefetching objects in
a client at various granularities, with nearby objects at higher
resolution and distant objects at lower one.

A method referred to asprogressive mesheswas recently
proposed to encode object models for progressive transmission
[12]. The method is based on two operations,edge collapsefor
reducing model resolution, andedge splitfor increasing model
resolution. Each object is modeled as an ordered list. The list
begins with a minimal resolution model of the object, referred
to as thebase mesh. Each subsequent record in the list, referred
to as aprogressive record, stores information of an edge split.
The structure of a progressive mesh is shown in Fig. 1. If
we apply each progressive record to the base mesh in order,
the object model will gradually increase in resolution until it
reaches the maximum. Conversely, the method may begin with
the highest resolution model. If we apply each of the records in
reverse order, which is equivalent to an edge collapse operation,
the object model will gradually decrease in resolution until
it reaches the resolution of the base mesh. We have recently
developed a similar method independently [13], [15].

C. Replacement and Prefetching Techniques

If a client can provide unbounded disk storage and wait for
a possibly very long preloading time, we could transmit all vir-
tual objects in the environment to the client before starting the
walkthrough. This approach is adopted by some existing dis-
tributed virtual walkthrough systems [2], [4], [20]. However, a
more realistic situation is that the available cache storage and
preloading time are limited. Furthermore, preloading a large
section of a database would saturate the network with unnec-
essary traffic, depriving other clients of their service. To avoid

CHIM et al.: : WEB-BASED DISTRIBUTED VIRTUAL WALKTHROUGH ENVIRONMENT 505

this bandwidth over-utilization, employs cache re-
placement policy to retain only frequently accessed objects in
the cache and prefetching mechanisms to prefetch only poten-
tially visible objects in order to reduce access and rendering la-
tency.

In [8], various cache replacement policies have been proposed
and their suitabilities in a conventional database system have
been examined. Policies such as Least Recently Used (LRU) and
Least Reference Density (LRD) are being used widely. These
policies are derived from their counterpart in operating systems.
In the context of databases, the Most Recently Used (MRU)
policy is also occasionally adopted to cater for cyclic data ac-
cess behavior. These policies are all page-based, due to the log-
ical mapping made by the database or operating system to the
physical storage. In general, the performance of individual re-
placement policies is sensitive to the characteristics of queries
initiated. A general conclusion on the performance of the re-
placement policies cannot be made. In practice, replacement
policy is often approximated by the LRU policy in conventional
caching [3], [10], [23]. In [22], we show that LRU policy is not
appropriate in a context where objects accessed by a client might
change over time. Rather, the semantics of data access is more
important in defining the replacement policy. We therefore need
to develop a more appropriate replacement policy based on the
semantics of accesses in a walkthrough environment. This has
been shown to be effective in our preliminary work [7]. Fur-
thermore, we have also noticed in [5] that prefetching could be
very beneficial in improving the performance of database ap-
plications if the prefetching is performed intelligently. In [14],
prefetching has been adopted to reduce the expected access time
to a sequence of web page accesses. Experimental results have
demonstrated the benefits brought about by prefetching.

III. D ESIGN OF

In , each virtual object is stored in the database
server at its maximum resolution in the form of a progressive
mesh. The use of such a multiresolution method allows the data-
base server to transmit an object model at a resolution just high
enough for rendering. This could save scarce Internet bandwidth
from transmitting extra details of distant objects. The resolu-
tion of an object model at a particular point in time is deter-
mined by its distance from the viewer and its angular distance
from the viewer’s line of sight. However, it would be expen-
sive to determine the resolution of every object within the vir-
tual world whenever the viewer makes a movement. In practice,
the number of objects that are visible to a viewer is limited, de-
pending on the depth of sight of the viewer. Hence, we could
further minimize the number of objects needed to be handled
in each frame by associating the concept of depth of sight with
each viewer. Objects beyond the depth of sight of a viewer will
not need to be transmitted from the server to the client, nor do
they need to be rendered. In , the depth of sight of a
viewer is modeled by the idea ofobject scopeandviewer scope.
To further reduce the dependency on the Internet, to lower the
transmission delay, and to support disconnected operation, we
have incorporated a caching mechanism to retain objects of high

affinity and a prefetching mechanism to predict those that will
likely be accessed in the near future.

possesses several advantages over previous
approaches. First, previous approaches use an LoD method
[21] for model transmission. Redundant information will be
sent over the network, since multiple models of the same object
at different resolutions need to be transmitted. Our method
applies the progressive mesh technique for model transmission.
No redundant information needs to be sent across the network.
Second, the importance of an object is calculated based not
only on the distance of the object from the viewer, but also
on the size of the object concerned, the depth of sight of the
viewer, and the resolution of the viewing device, allowing
the object models to be rendered at the lowest cost. Third,
our caching mechanism differs from conventional caching
mechanisms [3], [10], [23] in that objects could be cached
at multiple granularities. Cache replacement is also based on
object access patterns rather than on the conventional LRU
policy. Finally, the performance of the walkthrough application
is further improved by predicting the future movement of the
viewer and prefetching objects in advance.

A. Object Scope

To minimize the amount of data needed to be handled, most
existing methods consider only thearea of interest(AOI) of
a viewer [9], [17], [21]. If an object falls inside the AOI of a
viewer, the object is considered visible to the viewer. Other-
wise, the object is considered too far to be visible. Although
these methods can quickly eliminate invisible objects, they do
not consider the object size. Hence, a mountain located just out-
side the AOI of a viewer may still be visible to the viewer, but
is considered as invisible, while a tiny object such as an insect
located just inside the AOI of a viewer is unlikely to be visible
to the viewer, but is considered for visibility. The former situa-
tion may result in a sudden appearance of large objects, and the
latter situation may result in a waste of processing time.

To overcome this limitation, we generalize the AOI concept
to both viewers and objects. We call themviewer scopeand
object scope. We denote the viewer scope for viewerby
and the object scope for objectby . A viewer scope is
similar to AOI. It indicates the depth of sight of a viewer, i.e.,
how far the viewer can see. A viewer with a good eyesight or
equipped with a special device may be able to see objects that
are further away, and therefore may be assigned with a larger
scope. A short-sighted viewer may only be able to see nearby
objects, and therefore may be assigned with a smaller scope.
An object scope indicates how far an object can be seen. A large
object has a larger scope and a small object has a smaller scope.
In general, a viewer may also be considered as an object and
assigned with an object scope in addition to the viewer scope.
This object scope of the viewer will define how far the viewer
can be seen by another viewer in the virtual environment. This
approach is somewhat similar to the one proposed by [11]. In

, we define a scope as a circular region. Therefore,
each scope (object or viewer) is characterized by a radius.

An object may be visible to a particular viewer only when
its scope overlaps with the viewer scope. When the two scopes

506 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

Fig. 2. Interaction between the viewer and the objects in the virtual
environment.

overlap, the object’s distance from the viewer and the object’s
angular distance from the viewer’s viewing direction are used to
determine the resolution, called theoptimal resolution, at which
the object should be rendered. If an object is rendered at a reso-
lution higher than this optimal resolution, the additional details
will not be easily noticeable to the viewer. By contrast, if an
object is rendered at a resolution lower than this optimal reso-
lution, the image quality of the rendered object as perceived by
the viewer drops rapidly [6]. Such perceived image quality is
calledvisual perception. The interaction between a viewer and
the virtual environment is illustrated in Fig. 2. In addition to the
viewer scope, each viewer is also associated with aviewing
direction , a location , and a viewing region. The viewing
direction defines the viewer’s line of sight. Given the location of
a viewer, all virtual objects whose object scopes intersect with
the viewer scope are potentially visible to the viewer. These ob-
jects will be associated with the highest priority for caching in
the client’s memory and we refer to them ascachable objects.
Even though some objects may be located behind the viewer, the
viewer should be able to see them within a very short moment
simply by a brief rotation. The viewing region is a sub-space
of the viewer scope and is captured by aviewing angle. All
cachable objects within the viewing region are considered for
rendering at their optimal resolution, and we refer to them as
renderable objects.

B. The Optimal Resolution

The optimal resolution of an object model can be determined
according to thevisual importanceof the object to the viewer.
In [16], we have identified several factors that may affect the vi-
sual importance of an object. Those factors can all be considered
here. However, for the sake of clarity, we only consider two of
those factors, which are relevant to the context of .
The first one is the distance factor. If an object is far away from
the viewer, the object may be considered as visually less im-
portant. The second one is the line of sight factor. Studies have
shown that when an object is located outside the line of sight, the
viewer is unable to perceive much detail from the object [19],
[26]. Degradation of peripheral visual details can improve ren-
dering performance and reduce perceptual impact. In our im-
plementation, we assume that the viewer’s line of sight is at the
center of the screen.

Fig. 3 depicts visual importance of object to viewer .
is the current distance betweenand , while is

the distance between them when their scopes just overlap. Since
a scope is defined as a circular region, is the sum of
the radii of the two scopes. The angular distance offrom the

Fig. 3. Visual importance of an object to a viewer.

viewer’s line of sight, , is denoted by , where
. can be defined as

(1)

The first term models the effect of the distance betweenand
on . Higher results in a lower . The second term models
the effect of the angular distance offrom the viewer’s line of
sight on . Higher results in a lower . Since this relation-
ship is not a linear one, a constant is introduced for adjusting
the decrement rate of the model resolution due to the increase
in .

The value of in (1) must be chosen carefully because it
will affect the performance of visual importance estimation and
hence, caching and prefetching performance. We determine here
the value of for an optimal visual importance distribution.
Equation (1) can be rewritten as follows:

(2)

Let be the angular cutoff point where the visual importance
would be assumed to be effectively reduced to zero,be the
volume of within , and be the volume of beyond .
We now try to find such that is maximized:

(3)

(4)

(5)

Substitute (4) and (5) into (3), and perform a differentiation
to establish :

Solving for with , we get
such that the visual importance for objects within the

stereo vision will be optimal. The perspective view, top view,

CHIM et al.: : WEB-BASED DISTRIBUTED VIRTUAL WALKTHROUGH ENVIRONMENT 507

Fig. 4. Visual importance distribution.

front view and side view of the visual importance distribution
are illustrated in Fig. 4.

In , visual importance of object is used to de-
termine the optimal resolution of its model. In effect,indicates
the percentage of progressive records ofrequired to be rendered
in addition to its base mesh. During the walkthrough, we contin-
uously determine those cachable objects. When an object scope
touches theperimeterof theviewerscope,willbeequal to0and
the optimal resolution of the object will be equal to its base mesh,
which provides the minimal resolution of the object. As the ob-
ject moves closer to the viewer or to the viewer’s line of sight, its
optimal resolution increases. Extra progressive records are then
transmitted to the client if they are not already available from the
local cache, so that the resolution of the object model can be in-
creased to match with its optimal resolution.

C. The Cache Model

At the start of the walkthrough, the locations of all objects
in the virtual environment and the radii of their object scopes

are sent to the client machine. Depending on the sizes of the
virtual environment and the local cache, we may also preload the
base meshes of all or some of the objects in the environment.
Since the size of a base mesh can be as small as 0.1% of that
of the full resolution model, preloading the base meshes may
reduce the system latency at the cost of only slightly increased
preloading time.

At the client, the size of the viewer scope and the cachable ob-
jects are determined. The cachable object models at their optimal
resolutions are then transmitted to. As the viewermoves within
theenvironment, continuouslydeterminesthecachableobjects
at each step. Each cached objectis associated with a resolution

indicating its current highest possible resolution available for
rendering. will then generate arequest listfor the cachable ob-
jects not in the local cache. Each entry of the request list con-
tains (ID of), , and (expected optimal resolution of
). The server then transmits the outstanding progressive records

and/or base meshes to, with renderable objects transmitted be-
fore other cachable objects.

508 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

Fig. 5. Prediction of moving direction using (a)mean, (b)window, and (c)EWMA.

Models received by will be cached in the local storage. If
the storage is exhausted, will employ a replacement policy
to identify victim objects to be discarded. Anaccess scoreis
determined for each object indicating the prediction of its future
access affinity. An object will be cached if it has a higher score.
Some progressive records of the cached object with the lowest
score will be reclaimed, i.e., will try to decrease the
resolution of cached objects with lowest scores. It also attempts
to further improve the performance by prefetching objects likely
to be accessed in the future, by predicting the next location and
viewing direction of the viewer based on his/her past movement
profile.

D. Multiresolution Replacement Scheme

employs theMost Required Movement(MRM)
replacement technique. Normally, the farther an object is from
the viewer, the longer it will take for the viewer to move to view
the object in greater detail. Similarly, the larger the angular dis-
tance of an object is from the viewer’s line of sight, the longer it
will take for the viewer to rotate to view the object directly in the
front. Both lead to a lower value in caching the object. Simulated
experiments have shown that such a replacement scheme out-
performs traditional LRU replacement scheme [7]. In this work,
we have incorporated the idea of the object scope and the viewer
scope for visibility determination.

Among all possible formulae for calculating the access score
of an object, we prefer a simple one to model the line of sight
and the distance factors. The simplest formula is a weighted av-
erage of the input factors. To make these factors comparable, we
normalize them with their reference values. The distance factor
is normalized by the sum of the radii of the viewer scope and
the object scope . The line of sight factor is normal-
ized by the maximum angular distance from the viewer’s line
of sight . We have developed a formula for estimating the
access score with a single parameter . Using the
notations in Fig. 3, the access score of objectis defined as

(6)

When the object with the lowest access score is selected for
replacement, we first remove the extra progressive records of the
object to reduce its resolution to the optimal resolution. If there
is still not enough room, the object with the next lowest access
score will be taken and this process will be iterated. When there
is still not enough room even after all cached objects have been
reduced to their optimal resolutions, all progressive records of
the object with the lowest score will be removed, leaving only

its base mesh. Again, this process will be iterated. Finally, the
base mesh of the objects with the lowest scores will be removed.

This multiresolution replacement scheme tries its best to keep
at least the base meshes of the cached objects in the client’s
cache storage. This provides the viewer with a much better vi-
sual perception since all or most of the cachable objects could
be seen instantaneously, even though they may only be visible
at a low resolution.

E. Prefetching Mechanism

To enable prefetching, the client maintains a profile of the
viewer, containing the list of historicalmovement vectors,

. Each vector is calculated from the
viewer’s moving direction and location at a particular time.
When the viewer moves to a new location with a new
orientation, the th movement vector is determined. The
client will then attempt to predict the th movement
vector as and request for the transmission of the objects
that would become cachable if the viewer were at ,
in addition to the cachable objects at . This would save
future requests to the server if the prefetched objects are indeed
required by the client.

Possible prediction schemes include , and
, as shown in Fig. 5. In the scheme, the next

movement vector is predicted as the average of the
previous movement vectors, as depicted in Fig. 5(a) with
three movement vectors. In the scheme, each viewer
is associated with a window of size , holding the previous

movement vectors. The next movement vector is predicted
as the average of the most recent vectors. This is indicated
in Fig. 5(b), showing a window of size . A problem for
the window scheme is that all movement vectors within the
window have equal effect on the prediction.

To better approximate the real movement, and to adapt
quickly to changes in the viewer’s moving patterns,
employs the (exponentially weighted moving average)
approach to predict the next location of the viewer. It assigns
exponentially decreasing weights to each previous movement
vector . With parameter , the most recent vector will
receive a weight of 1, the previous, the next previous , and
so on. This idea is depicted in Fig. 5(c), indicating the predicted
moving direction. The new th movement vector is
estimated as .

has been shown to be quite effective in predicting
access probabilities of data items in database applications by
adapting rather quickly to changes of access patterns [22]. How-
ever, it might not perform as satisfactorily in this new context of
predicting the next viewer location. This is because the access

CHIM et al.: : WEB-BASED DISTRIBUTED VIRTUAL WALKTHROUGH ENVIRONMENT 509

Fig. 6. Architecture ofCyberWalk.

probability of a data item is bounded between 0 and 1.
is trying to incorporate the effect of the change into the new es-
timate and normally, the estimation error would not diverge. In
the new context here, we are using to predict a vector,
whose direction is an angle with an unbounded range, i.e., the
angle can increase indefinitely, for example, through continuous
rotation in a circle. Thus, may not be able to cope
with the “nonstationary” changes. We need to explicitly correct
the prediction with adjustment from residuals or error predic-
tions. The residual in predication of is .
We consider the angle between and , denoted as

, where is the argument of vector
in a complex plane. can be predicted by rotating

through an angle of , i.e., a multiplication by . Since
we do not really know when we predict , we must
try to predict as well. There can be different ways of pre-
dicting from the previous values of . Again,
uses to compute the prediction of in each step
as we compute . Thus, , and

. We call this the - (
with residual adjustment) scheme, since it involves the adjust-
ment to the direction of each movement.

IV. I MPLEMENTATION OF

The architecture of is composed of two main
parts, theClient Subsystemand theServer Subsystem, as shown
in Fig. 6. The Server Subsystem consists of four main compo-
nents. TheServer Managerserves as the coordinator of all other
components at the Server Subsystem and handles all clients’ re-
quests. TheDatabase Agentmaintains the database of the virtual
environment. It is also responsible for identifying and sending
the relevant object models to the client in the form of progres-
sive meshes, upon receiving requests from it. TheClient Han-
dler receives requests from each client, processes the requests
and sends the requested data back to the client. It is implemented
as a separate thread for each connected client to reduce response
time. TheNetwork Agenthandles all communications between
each client and the server. It also maintains the connection be-
tween them once a connection is established. When a client re-

quests for a connection, the Network Agent creates a separate
Client Handler thread to serve the client.

The Client Subsystem consists of five main components. The
Client Managerserves as the coordinator of all other compo-
nents at the Client Subsystem. All viewer inputs, such as trans-
lation or rotation, are directed to and handled by the Client Man-
ager. TheCache Agentcontrols local caches, including memory
cache and disk cache at the client. All geometry data would be
cached via the Cache Agent. The agent maintains aScore Table,
containing the access score of each object in the local caches.
ThePrefetching Agentprefetches objects from the server based
on historical movement vectors of the client in the form of a
viewer profile. TheNetwork Agentsupports the communication
between a client and the server, maintaining the connection be-
tween them once a connection is established. It is implemented
as a separate thread under the Client Manager to exploit exe-
cution concurrency. TheDisplay Agentaccepts inputs from the
viewer and generates output images for display.

Except for the Display Agent, the prototype is implemented
using Java, due to its platform independence nature. The Display
Agent is implemented using OpenGL, as it would utilize the un-
derlying rendering capability of the client machine, if available,
for better performance.

A. Client–Server Interactions

A connection-oriented protocol is used in the prototype. The
connection between a client and the server is maintained once
it has been established. This is easily implemented by Java Re-
mote Method Invocation. We decide to implement our own pro-
tocol instead of employing the standard HTTP protocol since
HTTP requires a new connection to be established between the
client and server every time before a data transfer. This would
increase the response time of the system.

When a client wants to connect to a server, the client sends
a command, specifying the size of its scope and the
viewing angle. If the server accepts the connection request,
the server replies to the client with a new ClientID and some
startup information, such as the radii of object scopes and the
positions of all objects within the virtual environment. As the
viewer moves or rotates within the virtual environment, the

510 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

client sends an command to the server followed by a
request list, requesting for the outstanding progressive records
and/or base meshes of the cachable objects. If prefetching is
used, the IDs of the predicted objects would also be included
in the list. In return, the server will send an signal to the
client followed by the list of requested records and meshes.

Note that there is a slight variation here from our previous
work [6] in the way we distribute the tasks between a client and
the server. In our previous work, we did not want to make the
assumption that the viewer had a fast client machine. Hence,
the server was responsible for determining the cachable objects
and running the prediction algorithm. When a viewer moved,
the client first sent its new location to the server. The server
would then send a list of IDs of the cachable objects and their op-
timal resolutions to the client. Upon receiving the list, the client
would determine and send the request list of outstanding pro-
gressive records/base meshes of those cachable objects. Based
on this list, the server would forward the outstanding data to the
client. Although this approach requires minimal computation at
the client machine, it increases the network traffic and causes
two roundtrip delays. The delay becomes serious as the trans-
mission distance between the client and the server increases. In
this implementation, we have decided to offload the tasks to the
client machine, which is becoming more and more powerful in
recent years. This causes only a single roundtrip delay.

B. Database Structure and Organization

In order to provide fast response to client requests, virtual ob-
jects must be organized and maintained in the server in a way
that facilitates efficient retrieval. We store each object in the
virtual environment into two database files, themesh filecon-
taining the base mesh and therecord filecontaining all the pro-
gressive records of the object.

When the virtual environment is complex, it will most likely
contain a huge number of virtual objects. Identifying the set of
cachable objects with respect to the current position of a viewer
will be expensive since the Client Manager has to examine all
virtual objects to determine if their object scopes overlap with
the viewer scope. To reduce the cost of scope comparison, we
have adopted a simple indexing method. We divide the virtual
environment into two-dimensional (2-D) square cells. Each cell
is a pointer to a list of object IDs. These IDs indicate objects
whose scopes overlap with the cell. To determine the cachable
objects, we may simply identify the cells that the viewer scope
overlaps with the objects and the objects IDs found in these cells
will simply indicate the cachable objects.

C. Progressive Mesh Transmission

In , a client machine would continuously request
the server for objects that are not available in local cache, as
the viewer moves around the virtual environment. These re-
quested objects from the server can be classified into three dis-
jointed groups, the renderable objects, the nonrenderable ob-
jects and the prefetch objects. The nonrenderable objects are
objects which are cachable but not renderable, i.e., cachable ob-
jects which are outside the viewing region. The prefetch objects
are objects which are expected to become cachable in the near

Fig. 7. Example of an edge split operation.

Fig. 8. Data structure of the progressive mesh for transmission.

future as predicted by the prefetching mechanism. These three
groups define a total order of transmission: renderablenon-
renderable prefetch, where denotes the classicprecedes
relation [1]. In other words, guarantees that pro-
gressive meshes of the renderable objects will be transmitted
before those of the nonrenderable objects, which in turn, will be
transmitted before those of the prefetch objects.

To transmit a progressive mesh to the client, the base mesh
is transmitted first as a single unit. The client reconstructs the
minimal resolution model of the object as it receives the base
mesh. Progressive records are then transmitted in order. Each
record stores information of an edge split, thereby increasing the
resolution of the object model by a small amount. Fig. 7 shows
an example of such an operation. After an edge split, one vertex,
i.e., , one edge, i.e., , and two triangles, i.e.,

and , are inserted into the model. (Note that at the
surface boundary, only one triangle is inserted into the model.)

We use Fig. 7 as an example to explain the data struc-
ture of a progressive record shown in Fig. 8. First, we
need to store the coordinates of the child vertex

to be inserted into the model and the ID of the parent
vertex . will join with to form the
inserted edge. We also need to include the IDs of two ver-
tices, and . They help to identify the locations
at which the two new triangles are to be inserted. The two
triangles are defined as and

. When inserting , some
neighboring vertices of will move to become the neigh-
boring vertices of . To be able to divide the neighboring
vertices during an edge split, we maintain a linked list for each
vertex of the object model at the client. Each linked list points
to all immediate neighboring vertices of the parent vertex,
ordered in a clockwise direction. Given the IDs of vertices,

and , the linked list is automatically divided into two
segments. As an example, , , , , and will
become the neighboring vertices of while , ,

, , , and will become the neighboring vertices
of after the edge split.

CHIM et al.: : WEB-BASED DISTRIBUTED VIRTUAL WALKTHROUGH ENVIRONMENT 511

Fig. 9. Sample session with the prototype.

Fig. 9 illustrates a sample session of the prototype. Fig. 9(a)
shows a scene in the virtual environment. Fig. 9(b) illustrates
the corresponding model resolutions, with distant objects rep-
resented by lower resolution models. Fig. 9(c) and (d) show an
increase in the resolution of the cow and the tree objects when
the viewer moves forward.

V. RESULTS AND DISCUSSIONS

We have conducted extensive experiments to quantify the per-
formance of our multiresolution scheme with MRM cache re-
placement and the effectiveness of various prefetching schemes
via simulation as well as on the prototype. The purpose of sim-
ulation is a proof of concept, allowing us to experiment the be-
havior of the mechanisms under diverse situations easily. The
prototype provides a study under a real situation. Due to page
limit, we present only a representative subset of experiments in

this section. We first present a simulated experiment to illustrate
the general behavior of the caching and prefetching schemes,
followed by a more detail analysis of the performance of the
mechanisms using our prototype.

We characterize the performance of the caching and replace-
ment schemes with two metrics:cache hit ratioandvisual per-
ception. Cache hit ratio measures the percentage of bytes of the
renderable objects, i.e., those within the viewing region, that
could be retrieved from the local storage cache of the client.
A high hit ratio is important to reduce reliance on network and
to provide service during disconnection. Visual perception mea-
sures the relative degree (in percentage) of image quality expe-
rienced by a viewer just after the move. The visual perception
of a cached renderable objectis modeled as a cubic function:

, where is the expected size of object
at its optimal resolution and is the size of the object cur-

rently cached. This definition of visual perception is based on

512 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

TABLE I
PARAMETERS LISTING FOREXPERIMENTS

Fig. 10. Moving patterns: (a)CP, (b)CCP, and (c)RW.

the fact that when a viewer makes a move in the virtual envi-
ronment, a high visual perception would be experienced if all
renderable objects could be seen instantaneously (from the local
cache) at a resolution close to the optimal one. The visual per-
ception would still be considered as good or acceptable if at a
minimum, the base meshes of the models are available locally.
On the other hand, if some or all of the renderable objects are
not visible until after a long period of waiting time, a low visual
perception is experienced.

A. Experimental Environment

The set of parameters used in our experiments are listed
in Table I. We focus on a single server and a single client in
our study here. The size of the virtual environment is set to
2000 2000 square units. virtual objects are distributed
uniformly among the square units, each containing an average
of objects. The viewer’s viewing angle is set to
120 . The radius of the viewer scope is set to ten units. The
cache size is set to of the database size.

We experimented with different prefetching schemes, in-
cluding no prefetching (), , , and

. forms a base case for comparison. In the
scheme, we experimented with four Window sizes,

. We denote with window size as
- . We refer to with residual adjustment enabled

by - , and with residual adjustment disabled
by - . We experimented with three moving patterns
of a viewer, as depicted in Fig. 10. Each pattern contains
a sequence of movement steps. The first pattern models a
constant circular translation pattern . The viewer moves
circularly starting and ending at the same location. Each move-
ment step includes a translation of 15 units along the viewing
direction, and then a rotation of the viewing direction by 12.
At each step, the viewer rotates his/her head by . This
models a situation where a viewer explores the virtual objects

around him/her for every movement. The second pattern, called
changing circular pattern (), models the same pattern as

except that the moving direction changes with an angle of
10 , after every four movement steps. Finally, in the random
moving pattern (random walk or), each movement step is
either a translation of arbitrary length or a rotation of arbitrary
angle.

B. Experiments From Simulation

The purpose of our simulation is to study the performance of
the caching mechanism on various moving patterns, with and
without prefetching. In our simulation model, there are 5000
virtual objects. Each object is modeled by a progressive mesh.
The number of progressive records associated with each object
model follows a normal distribution with a mean of 25 000 and
a standard deviation of 2,500 records. Each progressive record
has a size of 40 bytes while each base mesh has a size of 2 KB.
The database is approximately 5 GB and the size of the storage
cache is fixed at 1% of the database.

The measurements of the metrics are depicted in Fig. 11. We
observe that even without prefetching, the caching mechanism
performs reasonably well, achieving a hit ratio ranging from
79% to 83%. With prefetching, the hit ratios could be improved
by up to 6%. We observe that is not very effective in
predicting future movements, with performance similar to that
of No Prefetch. Both and perform equally
well in improving the hit ratios of the caching mechanism.

With respect to , a small window size results in better
performance under the and moving patterns. Under

and , the moving direction is always changing, very
often with a constant angle. With a large window size, aged
moving vectors will contribute to the prediction of the moving
vector, introducing some noise in the prediction. By contrast,
under the moving pattern, each movement step bears a
high degree of randomness. The small window does not capture
enough information to predict the next movement vector. There-
fore, the performance with a small window size is not as good
as that with a large window size under . - ex-
hibits a similar behavior. - performs better under the

and moving patterns. This is mainly because the angle
deviation under these two moving patterns exhibits a well-de-
fined pattern and is thus predictable. Under the moving pat-
tern, the angle deviation does not exhibit a clear pattern and the
residual correction does not seem to yield any improvement.

C. Experiments From Prototype

In our prototype experiments, the server runs on a Sun Ultra-
Sparc 2 workstation. The client runs on an SGI work-
station with 64MB RAM. We study the behavior of the caching
and prefetching mechanisms under a real system.

Experiment 1: Our first set of experiments resembles our
simulated experiment presented in Section V-B. However, since
running experiments on a prototype is very time-consuming, we
reduce the number of objects,, to 500 here. The average size
of each object is also reduced to 200 KB. All other parameters
remain unchanged. We hope to be able to compare the general
behavior of the mechanism under a real system with simulated
behavior with this adjustment.

CHIM et al.: : WEB-BASED DISTRIBUTED VIRTUAL WALKTHROUGH ENVIRONMENT 513

Fig. 11. Performance from simulation.

Fig. 12. Performance from experiment 1.

The measurements of the metrics are depicted in Fig. 12.
For the moving pattern, the general behavior of the per-
formance from the prototype is similar to that from the simu-
lation. The only difference is a slight increase in hit ratios and
visual perception by a few percent in the experiment, across all
prefetching schemes. For other moving patterns, the improve-
ment in hit ratios from seems to be smaller than that
brought about by simulation. This is perhaps due to the object
distribution in the experimental environment. We are currently
investigating this issue. We hope to be able to report our find-
ings in the future. The impact on visual perception is similar to
that on hit ratios, but at a smaller scale.

Experiment 2: In our second experiment, we study the effect
of cache size on the performance of the caching and prefetching
mechanisms. To obtain a better understanding of the effect of
cache size, we further measure the averageresponse timeandla-
tency timeof the prototype. Response time refers to the amount
of time spent from the moment a client initiates a query for ren-
derable objects to the moment when the optimal resolutions of
all renderable objects are available. Latency time refers to the
amount of time spent between the initiation of a query to the
time the base meshes of all renderable objects are available at
the client. It measures the observable delay experienced by a
viewer when the viewer makes a move.

In this experiment, is again fixed at 500 objects. The
moving pattern is fixed at . The size of the storage cache

ranges from 0% to 2% of the database. Other parameters
remain the same. Fig. 13 depicts the results, with the second
row showing the response and latency times of the experiments.

With a cache size of only 0.5% of that of the database, the re-
sponse and latency times of the application are already reduced
to a quarter and a half respectively, even without prefetching.

We observe an increase in hit ratios and visual perception
when the cache size increases. It is simply because a larger cache
is able to hold more object models; thus, the chance of hitting an
object model in the local cache becomes higher. The improve-
ment in both hit ratio and visual perception from to

is very significant. However, the improvement seems
to level off when cache size increases beyond 2%.
is also performing more satisfactorily, yielding similar perfor-
mance as in the simulation.

Response and latency times are not as stable as hit ratio and
visual perception, due to their heavy dependency on the avail-
able network bandwidth when the prototype is running. How-
ever, a general observation can still be drawn about their relative
performance. With caching, latency time is around 0.25 s. Com-
pared with other prefetching schemes, the schemes
generally result in a smaller access latency. We also observe
that prefetching leads to a small improvement in latency. The re-
sponse time is about 50% higher than the latency, i.e., between
0.3 s to 0.4 s with a cache size of 1% for all movement patterns,
and higher with a smaller cache size, as depicted in Fig. 13(c).
However, when compared with no caching, caching alone could
improve the response and latency times of the walkthrough ap-
plication by quite a few times as shown in Fig. 13(c) and (d).
Prefetching also leads to improvement in response times. Fi-
nally, with an increasing cache size, improvement in response
and latency times is also observed.

514 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 4, DECEMBER 2003

Fig. 13. Performance from Experiment 2.

VI. CONCLUSIONS

In this paper, we have described the design and implemen-
tation of . We have pointed out the technical chal-
lenges that need to be addressed in order to support on-demand
transmission of virtual environments without sacrificing the per-
formance of distributed virtual walkthrough applications. As an
alternative to improving the performance, we propose a caching
mechanism that employs the local storage of a client machine to
hold remote objects residing at the database server. The caching
mechanism is further complemented by a prefetching mecha-
nism to predict objects that may be accessed in the near future.
The prediction is based on the semantics of virtual walkthrough
application. These caching and prefetching mechanisms attempt
to make the objects available at the client machines as soon as
they become visible to the users. As demonstrated in our ex-
periments, these mechanisms significantly reduce both response
time and latency time of the system.

We are currently extending our studies along several di-
mensions. We are investigating other means of prefetching
virtual objects and comparing their effectiveness with
scheme. We are studying the effectiveness of prioritizing
objects for transmission at record level rather than object level
on visual perception. We are investigating the effect of multiple
clients on the performance of the caching mechanism. We are
also investigating the situation when objects are dynamic, i.e.,
an object can move within the virtual environment. This further
complicates our caching mechanism as the updated location of
each dynamic object needs to be reflected in the object model
cached in each client in a consistent manner.

ACKNOWLEDGMENT

The authors would like to thank B. Ng for helping to verify
some of the experimental results. We would also like to thank

the anonymous reviewers and the associate editor of this paper
for their helpful suggestions.

REFERENCES

[1] P. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency Control and
Recovery in Database Systems. Norwell, MA: Addison-Wesley, 1987.

[2] J. Calvin, A. Dicken, B. Gaines, P. Metzger, D. Miller, and D. Owen,
“The SIMNET virtual world architecture,” inProc. IEEE VRAIS, 1993,
pp. 450–455.

[3] M. Carey, M. Franklin, M. Livny, and E. Shekita, “Data caching trade-
offs in client-server DBMS architectures,” inProc. ACM SIGMOD.,
1991, pp. 357–366.

[4] C. Carlsson and O. Hagsand, “DIVE—A multi-user virtual reality
system,” inProc. IEEE VRAIS, 1993, pp. 394–400.

[5] B. Y. L. Chan, H. V. Leong, A. Si, and K. F. Wong, “MODEC: A multi-
granularity mobile object-oriented database caching mechanism, proto-
type and performance,”J. Distrib. Parallel Databases, vol. 7, no. 3, pp.
343–372, July 1999.

[6] J. Chim, M. Green, R. W. H. Lau, H. V. Leong, and A. Si, “On caching
and prefetching of virtual objects in distributed virtual environments,”
in Proc. ACM Multimedia, Sept. 1998.

[7] J. Chim, R. W. H. Lau, H. V. Leong, and A. Si, “Multi-resolution cache
management in digital virtual library,” inProc. IEEE Advances in Dig-
ital Libraries Conf., Apr. 1998, pp. 66–75.

[8] W. Effelsberg and T. Haerder, “Principles of database buffer manage-
ment,”ACM Trans. Database Syst., pp. 560–595, Dec. 1984.

[9] J. Falby, M. Zyda, D. Pratt, and R. Mackey, “NPSNET: Hierarchical data
structures for real-time three-dimensional visual simulation,”Comput.
Graph., vol. 17, no. 1, pp. 65–69, 1993.

[10] M. Franklin, M. Carey, and M. Livny, “Global memory management in
client-server DBMS architectures,” inProc. VLDB, 1992, pp. 596–609.

[11] C. Greenhalgh and S. Benford, “MASSIVE: A distributed virtual reality
system incorporating spatial trading,” inProc. Int. Conf. Distributed
Computing Systems, 1995, pp. 27–34.

[12] H. Hoppe, “Progressive meshes,” inProc. ACM SIGGRAPH ’96, Aug.
1996, pp. 99–108.

[13] V. Icsler, R. W. H. Lau, and M. Green, “Real-time multi-resolution mod-
eling for complex virtual environments,” inProc. ACM VRST, July 1996,
pp. 11–20.

[14] A. Kraiss and G. Weikum, “Integrated document caching and
prefetching in storage hierarchies based on Markov-chain predictions,”
J. Very Large Database Syst., vol. 7, no. 3, pp. 141–162, Aug. 1998.

[15] R. W. H. Lau, M. Green, D. To, and J. Wong, “Real-time continuous
multi-resolution method for models of arbitrary topology,”Presence:
Teleop. Virtual Environ., pp. 22–35, Feb. 1998.

CHIM et al.: : WEB-BASED DISTRIBUTED VIRTUAL WALKTHROUGH ENVIRONMENT 515

[16] R. W. H. Lau, D. To, and M. Green, “An adaptive multi-resolution mod-
eling technique based on viewing and animation parameters,” inProc.
IEEE VRAIS, 1997, pp. 20–27.

[17] M. Macedonia, M. Zyda, D. Pratt, P. Brutzman, and P. Barham, “Ex-
ploiting reality with multicast groups: A network architecture for large-
scale virtual environments,” inProc. IEEE VRAIS, Mar. 1995, pp. 2–10.

[18] B. Mannoni, “A virtual museum,”Commun. ACM, vol. 40, no. 9, pp.
61–62, 1997.

[19] T. Ohshima, H. Yamamoto, and H. Tamura, “Gaze-directed adaptive ren-
dering for interacting with virtual space,” inProc. IEEE VRAIS, July
1996, pp. 103–110.

[20] I. Pandzic, T. Capin, E. Lee, N. Thalmann, and D. Thalmann, “A flex-
ible architecture for virtual humans in networked collaborative virtual
environments,” inProc. Eurographics ’97, 1997, pp. 177–188.

[21] D. Schmalstieg and M. Gervautz, “Demand-driven geometry transmis-
sion for distributed virtual environments,” inProc. Eurographics ’96,
1996, pp. 421–432.

[22] A. Si and H. V. Leong, “Adaptive caching and refreshing in mobile
databases,”Personal Technol., vol. 1, no. 3, pp. 156–170, Sept. 1997.

[23] A. Silberschatz, H. Korth, and S. Sudarshan,Database System Con-
cepts. New York: McGraw-Hill, 1996.

[24] G. Singh, L. Serra, W. Png, and H. Ng, “Bricknet: A software toolkit for
network-based virtual worlds,”Presence: Teleop. Virtual Environ., vol.
3, no. 1, pp. 19–34, 1994.

[25] S. Singhal and M. Zyda,Networked Virtual Environments: Design and
Implementation. Norwell, MA: Addison-Wesley, 1999.

[26] B. Watson, N. Walker, and L. Hodges, “Effectiveness of spatial level of
detail degradation in the periphery of head-mounted displays,” inProc.
ACM CHI’96, April 1996, pp. 227–228.

[27] W. M. R. Wong and R. R. Muntz, “Providing guaranteed quality of ser-
vice for interactive visualization applications,” inProc. ACM SIGMET-
RICS, June 2000.

Jimmy Chim received both the undergraduate and
M.Phil. degrees from the Hong Kong Polytechnic
University.

He is currently with the School of Visual Arts in
New York, pursuing the M.S. degree in visual arts and
computer animation. He has conducted research on
the area of multimedia systems, both in performance
study and system implementation, publishing several
papers in major conferences.

Rynson W. H. Lau (M’88) received a (top) first class
honors degree in computer systems engineering in
1988 from the University of Kent, Canterbury, U.K.,
and the Ph.D. degree in computer graphics in 1992
from the University of Cambridge, U.K.

He is currently an Associate Professor at the City
University of Hong Kong. Prior to joining the uni-
versity in 1998, he taught at the Hong Kong Poly-
technic University. From 1992 to 1993, he worked at
the University of York, U.K., on a defense project on
image processing. His research interests are in com-

puter graphics, virtual reality and multimedia systems.
Dr. Lau is a member of the IEEE Computer Society and the ACM.

Hong Va Leong received the Ph.D. degree from the
University of California, Santa Barbara.

He is currently an Associate Professor at the Hong
Kong Polytechnic University. He has served on the
program committees and organization committees
for many international conferences. He is also a
reviewer for a number of international journals,
including several IEEE Transactions. His research
interests are in distributed systems, distributed
databases, mobile computing, internet computing,
and digital libraries.

Dr. Leong is a member of the ACM and the IEEE Computer Society.

Antonio Si (M’95) received the Ph.D. degree from
the University of Southern California, Los Angeles.

He is currently with Oracle Corporation, Red-
wood Shores, CA. Before joining Oracle, he was an
Assistant Professor at the Hong Kong Polytechnic
University and a Software Engineer at Sun Mi-
crosystems, Inc. in the United States. He has served
on the program committees for several international
conferences and as external reviewers for a number
of international conferences and journals. His
research interests are in mobile computing, internet

computing, and digital libraries.
Dr. Si is a member of the ACM and IEEE Computer Society.

