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Abstract

Many researchers in arti�cial intelligence are beginning to explore the use of soft con-
straints to express a set of (possibly con
icting) problem requirements. A soft constraint is
a function de�ned on a collection of variables which associates some measure of desirability
with each possible combination of values for those variables. However, the crucial question
of the computational complexity of �nding the optimal solution to a collection of soft con-
straints has so far received very little attention. In this paper we identify a class of soft
binary constraints for which the problem of �nding the optimal solution is tractable. In
other words, we show that for any given set of such constraints, there exists a polynomial
time algorithm to determine the assignment having the best overall combined measure of
desirability. This tractable class includes many commonly-occurring soft constraints, such
as \as near as possible" or \as soon as possible after", as well as crisp constraints such as
\greater than". Finally, we show that this tractable class is maximal, in the sense that
adding any other form of soft binary constraint which is not in the class gives rise to a class
of problems which is NP-hard.

1. Introduction

The constraint satisfaction framework is widely acknowledged as a convenient and eÆcient
way to model and solve a wide variety of problems arising in Arti�cial Intelligence, including
planning (Kautz & Selman, 1992) and scheduling (van Beek, 1992), image processing (Mon-
tanari, 1974) and natural language understanding (Allen, 1995).

In the standard framework a constraint is usually taken to be a predicate, or relation,
specifying the allowed combinations of values for some �xed collection of variables: we will
refer to such constraints here as crisp constraints. A number of authors have suggested
that the usefulness of the constraint satisfaction framework could be greatly enhanced by
extending the de�nition of a constraint to include also soft constraints, which allow di�erent
measures of desirability to be associated with di�erent combinations of values (Bistarelli
et al., 1997, 1999). In this extended framework a constraint can be seen as a function,
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mapping each possible combination of values to a measure of desirability or undesirability.
Finding a solution to a set of constraints then means �nding an assignment of values to all
of the variables which has the best overall combined desirability measure.

Example 1.1 Consider an optimization problem with 2n variables, v1; v2; : : : ; v2n, where
we wish to assign each variable an integer value in the range 1; 2; : : : ; n, subject to the
following restrictions:

� Each variable vi should be assigned a value that is as close as possible to i=2.

� Each pair of variables vi, v2i should be assigned a pair of values that are as close as
possible to each other.

To model this situation we might impose the following soft constraints:

� A unary constraint on each vi speci�ed by a function  i,
where  i(x) = (x� i=2)2.

� A binary constraint on each pair vi; v2i speci�ed by a function Ær,
where Ær(x; y) = jx� yjr for some r � 1.

We would then seek an assignment to all of the variables which minimizes the sum of all of
these constraint functions,

2nX
i=1

 i(vi) +

nX
i=1

Ær(vi; v2i):

The cost of allowing additional 
exibility in the speci�cation of constraints, in order to
model requirements of this kind, is generally an increase in computational diÆculty. In
the case of crisp constraints there has been considerable progress in identifying classes of
constraints which are tractable, in the sense that there exists a polynomial time algorithm
to determine whether or not any collection of constraints from such a class can be simul-
taneously satis�ed (Bulatov, 2003; Feder & Vardi, 1998; Jeavons et al., 1997). In the case
of soft constraints there has been a detailed investigation of the tractable cases for Boolean
problems (where each variable has just 2 possible values) (Creignou et al., 2001), but very
little investigation of the tractable cases over larger �nite domains, even though there are
many signi�cant results in the literature on combinatorial optimization which are clearly
relevant to this question (Nemhauser & Wolsey, 1988).

The only previous work we have been able to �nd on the complexity of non-Boolean
soft constraints is a paper by Khatib et al. (2001), which describes a family of tractable soft
temporal constraints. However, the framework for soft constraints used by Khatib et al.
(2001) is di�erent from the one we use here, and the results are not directly comparable.
We discuss the relationship between this earlier work and ours more fully in Section 5.

In this paper we make use of the idea of a submodular function (Nemhauser & Wolsey,
1988) to identify a general class of soft constraints for which there exists a polynomial time
solution algorithm. Submodular functions are widely used in economics and operational
research (Fujishige, 1991; Nemhauser & Wolsey, 1988; Topkis, 1998), and the notion of
submodularity provides a kind of discrete analogue of convexity (Lov�asz, 1983).
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Submodular functions are usually de�ned (Nemhauser & Wolsey, 1988) as real-valued
functions on sets (which may be viewed as Boolean tuples), but we consider here the more
general case of functions on tuples over an arbitrary �nite domain (as in Topkis, 1978). We
also allow our functions to take in�nite values. By establishing a new decomposition result
for binary submodular functions of this kind, we obtain a cubic time algorithm to �nd the
optimal assignment for any set of soft constraints which can be de�ned using them (such as
the constraints in Example 1.1). Because our algorithm is specially devised for submodular
functions that are expressed as a combination of binary functions, it is much more eÆcient in
this case than existing general algorithms for submodular function minimization (Schrijver,
2000; Iwata et al., 2001).

We give a number of examples to illustrate the many di�erent forms of soft constraint
that can be de�ned using binary submodular functions, and we also show that this class
is maximal, in the sense that no other form of binary constraint can be added to the class
without sacri�cing tractability.

2. De�nitions

To identify a tractable class of soft constraints we will need to restrict the set of functions
that are used to specify constraints. Such a restricted set of possible functions will be called
a soft constraint language.

De�nition 2.1 Let D and E be �xed sets. A soft constraint language over D with evalu-
ations in E is de�ned to be a set of functions, �, such that each � 2 � is a function from

Dk to E, for some k 2 N, where k is called the arity of �.

For any given choice of soft constraint language, �, we de�ne an associated soft constraint
satisfaction problem, which we will call sCSP(�), as follows.

De�nition 2.2 Let � be a soft constraint language over D with evaluations in E. An

instance P of sCSP(�) is a triple hV;D;Ci, where:

� V is a �nite set of variables, which must be assigned values from the set D.

� C is a set of soft constraints. Each c 2 C is a pair h�; �i where: � is a list of variables,

of length j�j, called the scope of c; and � is an element of � of arity j�j, called the
evaluation function of c.

The evaluation function � will be used to specify some measure of desirability or undesir-
ability associated with each possible tuple of values over �.

To complete the de�nition of a soft constraint satisfaction problem we need to de�ne how
the evaluations obtained from each evaluation function are combined and compared, in order
to de�ne what constitutes an optimal overall solution. Several alternative mathematical
approaches to this issue have been suggested in the literature:

� In the semiring based approach (Bistarelli et al., 1997, 1999), the set of possible
evaluations, E, is assumed to be an algebraic structure equipped with two binary
operations, satisfying the axioms of a semiring. One example of such a structure is
the real interval [0; 1], equipped with the operations min and max, which corresponds
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to the conjunctive fuzzy CSP framework (Rosenfeld et al., 1976; Ruttkay, 1994).
Another example is the set f0; 1; 2; : : :g[f1g, equipped with the operations max and
plus, which corresponds to the weighted CSP framework (Bistarelli et al., 1999).

� In the valued CSP approach (Bistarelli et al., 1999), the set of possible evaluations E
is assumed to be a totally ordered algebraic structure with a top and bottom element
and a single monotonic binary operation known as aggregation. One example of such
a structure is the set of multisets over some �nite ordered set together with a top
element, equipped with the operation of multiset union, which corresponds to the
lexicographic CSP framework (Bistarelli et al., 1999).

For our purposes, we require the same properties as the valued CSP approach, with the
additional requirement that the aggregation operation has a partial inverse, such that eval-
uations other than the top element may be \cancelled" when occurring on both sides of an
inequality. For simplicity, we shall assume throughout this paper that the set of evaluations
E is either the set of non-negative integers together with in�nity, or else the set of non-
negative real numbers together with in�nity1. Hence, throughout this paper the bottom
element in the evaluation structure is 0, the top element is 1, and for any two evaluations
�1; �2 2 E, the aggregation of �1 and �2 is given by �1 + �2 2 E. Moreover, when �1 � �2
we also have �1 � �2 2 E. (Note that we set 1�1 =1).

The elements of the set E are used to represent di�erent measure of undesirability, or
penalties, associated with di�erent combinations of values. This allows us to complete the
de�nition of a soft constraint satisfaction problem with the following simple de�nition of a
solution to an instance.

De�nition 2.3 For any soft constraint satisfaction problem instance P = hV;D;Ci, an
assignment for P is a mapping t from V to D. The evaluation of an assignment t, denoted
�P (t), is given by the sum (i.e., aggregation) of the evaluations for the restrictions of t
onto each constraint scope, that is,

�P (t) =
X

hhv1; v2; : : : ; vki; �i2C

�(t(v1); t(v2); : : : ; t(vk)):

A solution to P is an assignment with the smallest possible evaluation, and the question is

to �nd a solution.

Example 2.4 For any standard constraint satisfaction problem instance P with crisp con-
straints, we can de�ne a corresponding soft constraint satisfaction problem instance bP in
which the range of the evaluation functions of all the constraints is the set f0;1g. For each
crisp constraint c of P, we de�ne a corresponding soft constraint bc of bP with the same scope;
the evaluation function of bc maps each tuple allowed by c to 0, and each tuple disallowed
by c to 1.

In this case the evaluation of an assignment t for bP equals the minimal possible evalu-
ation, 0, if and only if t satis�es all of the crisp constraints in P .

1. Many of our results can be extended to more general evaluation structures, such as the strictly monotonic

structures described by Cooper (2003), but we will not pursue this idea here.
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Example 2.5 For any standard constraint satisfaction problem instance P with crisp con-
straints, we can de�ne a corresponding soft constraint satisfaction problem instance P# in
which the range of the evaluation functions of all the constraints is the set f0; 1g. For each
crisp constraint c of P , we de�ne a corresponding soft constraint c# of P# with the same
scope; the evaluation function of c# maps each tuple allowed by c to 0, and each tuple
disallowed by c to 1.

In this case the evaluation of an assignment t for P# equals the number of crisp con-
straints in P which are violated by t. Hence a solution to P# corresponds to an assignment
which violates the minimal number of constraints of P , and hence satis�es the maximal
number of constraints of P. Finding assignments of this kind is generally referred to as
solving the Max-CSP problem (Freuder & Wallace, 1992; Larrosa et al., 1999).

Note that the problem of �nding a solution to a soft constraint satisfaction problem is an
NP optimization problem, that is, it lies in the complexity class NPO (see Creignou et al.,
2001 for a formal de�nition of this class). If there exists a polynomial-time algorithm which
�nds a solution to all instances of sCSP(�), then we shall say that sCSP(�) is tractable. On
the other hand, if there is a polynomial-time reduction from some NP-complete problem to
sCSP(�), then we shall say that sCSP(�) is NP-hard.

Example 2.6 Let � be a soft constraint language over D, where jDj = 2. In this case
sCSP(�) is a class of Boolean soft constraint satisfaction problems.

If we restrict � even further, by only allowing functions with range f0;1g, as in Ex-
ample 2.4, then sCSP(�) corresponds precisely to a standard Boolean crisp constraint sat-
isfaction problem. Such problems are sometimes known as Generalized Satisfiabil-

ity problems (Schaefer, 1978). The complexity of sCSP(�) for such restricted sets � has
been completely characterised, and it has been shown that there are precisely six tractable
cases (Schaefer, 1978; Creignou et al., 2001).

Alternatively, if we restrict � by only allowing functions with range f0; 1g, as in Exam-
ple 2.5, then sCSP(�) corresponds precisely to a standard Boolean maximum satis�ability

problem, in which the aim is to satisfy the maximum number of crisp constraints. Such
problems are sometimes known as Max-Sat problems (Creignou et al., 2001). The com-
plexity of sCSP(�) for such restricted sets � has been completely characterised, and it has
been shown that there are precisely three tractable cases (see Theorem 7.6 of Creignou
et al., 2001).

We note, in particular, that when � contains just the single binary function �XOR
de�ned by

�XOR(x; y) =

�
0 if x 6= y
1 otherwise

then sCSP(�) corresponds to the Max-Sat problem for the exclusive-or predicate, which
is known to be NP-hard (see Lemma 7.4 of Creignou et al., 2001).

Example 2.7 Let � be a soft constraint language over D = f1; 2; : : : ;Mg, where M � 3,
and assume that � contains just the set of all unary functions, together with the single
binary function �EQ de�ned by

�EQ(x; y) =

�
0 if x = y
1 otherwise.
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Even in this very simple case it can be shown that sCSP(�) is NP-hard, by reduction
from the Minimum 3-terminal Cut problem (Dahlhaus et al., 1994). An instance of this
problem consists of an undirected graph (V;E) in which each edge e 2 E has an associated
weight, together with a set of distinguished vertices, fv1; v2; v3g � V , known as terminals.
The problem is to �nd a set of edges with the smallest possible total weight whose removal
disconnects each possible pair of terminals. Such a set is known as a minimum 3-terminal

cut.
To obtain the reduction to sCSP(�), let I be an instance ofMinimum 3-Terminal Cut

consisting of the graph hV;Ei with terminals fv1; v2; v3g. We construct a corresponding
instance PI of sCSP(�) as follows. The variables of PI correspond to the set of vertices V .
For each edge fvi; vjg 2 E, add a binary soft constraint with scope hvi; vji and evaluation
function �EQ, as above. Finally, for each terminal vi 2 fv1; v2; v3g, add a unary constraint
on the variable vi with evaluation function  i, de�ned as follows:

 i(x) =

�
0 if x = i
jEj+ 1 otherwise

It is straightforward to check that the number of edges in a minimum 3-terminal cut of I
is equal to the evaluation of a solution to PI .

The examples above indicate that generalizing the constraint satisfaction framework to in-
clude soft constraints does indeed increase the computational complexity, in general. For
example, the standard 2-Satisfiability problem is tractable, but the soft constraint sat-
isfaction problem involving only the single binary Boolean function, �XOR, de�ned at the
end of Example 2.6, is NP-hard. Similarly, the standard constraint satisfaction problem
involving only crisp unary constraints and equality constraints is clearly trivial, but the soft
constraint satisfaction problem involving only soft unary constraints and a soft version of
the equality constraint, speci�ed by the function �EQ de�ned in Example 2.7, is NP-hard.

However, in the next two sections we will show that it is possible to identify a large class
of functions for which the corresponding soft constraint satisfaction problem is tractable.

3. Generalized Interval Functions

We begin with a rather restricted class of binary functions, with a very special structure.

De�nition 3.1 Let D be a totally ordered set. A binary function, � : D2 ! E will be called

a generalized interval function on D if it has the following form:

�(x; y) =

�
0 if (x < a) _ (y > b);
� otherwise

for some a; b 2 D and some � 2 E. Such a function will be denoted ��[a;b].

We can explain the choice of name for these functions by considering the unary function
��[a;b](x; x). This function returns the value � if and only if its argument lies in the interval

[a; b]; outside of this interval it returns the value 0.
We shall write �GI to denote the set of all generalized interval functions on D, where

D = f1; 2; : : : ;Mg with the usual ordering.
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y

1 � � � b b+ 1 � � � M

x

1
...

a� 1
a
...
M

0BBBBBBBB@

0 � � � 0 0 � � � 0
... 0

...
... 0

...
0 � � � 0 0 � � � 0
� � � � � 0 � � � 0
... �
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Figure 1: The table of values for the function ��[a;b]

Note that the table of values for any function ��[a;b] 2 �GI can be written as an M �M
matrix in which all the entries are 0, except for the rectangular region lying between posi-
tions ha; 1i and hM:bi, where the entries have value �, as illustrated in Figure 1. Hence when
� = 1, a soft constraint with evaluation function ��[a;b] is equivalent to a crisp constraint

which is a particular form of connected row-convex constraint (Deville et al., 1999).
The main result of this section is Corollary 3.6, which states that sCSP(�GI) is tractable.

To establish this result we �rst de�ne a weighted directed graph2 associated with each
instance of sCSP(�GI) (see Figure 2).

De�nition 3.2 Let P = hV; f1; : : : ;Mg; Ci be an instance of sCSP(�GI). We de�ne the
weighted directed graph GP as follows.

� The vertices of GP are as follows: fS; Tg [ fvd j v 2 V; d 2 f0; 1; : : : ;Mgg:

� The edges of GP are de�ned as follows:

{ For each v 2 V , there is an edge from S to vM with weight 1;

{ For each v 2 V , there is an edge from v0 to T with weight 1;

{ For each v 2 V and each d 2 f1; 2; : : : ;M � 2g, there is an edge from vd to vd+1

with weight 1;

{ For each constraint hhv; wi; ��[a;b]i 2 C, there is an edge from wb to va�1 with

weight �. These edges are called \constraint edges".

2. This construction was inspired by a similar construction for certain Boolean constraints described
by Khanna et al. (2000).
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x 4 x 3 x 2 x 1 x 0

y 4 y 3 y 2 y 1 y 0

z 4 z 3 z 2 z 1 z 0

3

72

ÿ

S T

Figure 2: The graph GP associated with the instance P de�ned in Example 3.3.
(Note that solid arrows indicate edges with in�nite weight.)

Example 3.3 Let P = hfx; y; zg; f1; 2; 3; 4g; Ci be an instance of sCSP(�GI) with the
following four constraints:

c1 = hhy; xi; �3[3;4]i

c3 = hhz; yi; �7[1;3]i

c2 = hhy; zi; �2[4;3]i

c4 = hhz; zi; �1[2;4]i

The corresponding weighted directed graph GP , is shown in Figure 2.

Any set of edges C in the graph GP whose removal leaves the vertices S and T disconnected
will be called a cut. If C is a minimal set of edges with this property, in the sense that
removing any edge from C leaves a set of edges which is not a cut, then C will called a
minimal cut. If every edge in C is a constraint edge, then C will be called a proper cut.
The weight of a cut C is de�ned to be the sum of the weights of all the edges in C.

Example 3.4 Consider the graph GP shown in Figure 2. The set fhy3; z0ig is a proper cut
inGP with weight 7, which is minimal in the sense de�ned above. The set fhx4; y2i; hz3; y3ig
is also a proper cut in GP with weight 5, which is again minimal in the sense de�ned above.
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Proposition 3.5 Let P be any instance of sCSP(�GI), and let GP be the associated
weighted directed graph, as speci�ed in De�nition 3.2.

1. For each minimal proper cut in GP with weight �, there is an assignment for P with

evaluation �.

2. For each assignment t for P with evaluation �, there is a proper cut in GP with

weight �.

Proof:

1. Let C be any minimal proper cut of the graph GP , and let CS be the component of
GP nC connected to S. Since C is proper, CS always contains vM , and never contains
v0, so we can de�ne the assignment tC as follows:

tC(v) = minfd j vd 2 CSg

By the construction of GP , it follows that:

tC(v) > d , vd 62 CS (1)

Now consider any constraint c = hhv; wi; ��[a;b]i of P , and its associated edge e in GP .

By De�nition 3.1 and Equation 1, ��[a;b](tC(v); tC (w)) = � if and only if va�1 62 CS and
wb 2 CS , and hence if and only if e joins a vertex in CS to a vertex not in CS . Since
C is minimal, this happens if and only if e 2 C. Hence, the total weight of the cut C
is equal to the evaluation of tC .

2. Conversely, let t be an assignment to P, and let K be the set of constraints in P with
a non-zero evaluation on t.

Now consider any path from S to T in GP . If we examine, in order, the constraint
edges of this path, and assume that each of the corresponding constraints evaluates
to 0, then we obtain a sequence of assertions of the following form:

(vi0 > M) _ (vi1 < a1)
(vi1 > b2) _ (vi2 < a2) for some b2 � a1

...
(vik�1 > bk) _ (vik < ak) for some bk � ak�1
(vik > bk+1) _ (vik+1

< 1) for some bk+1 � ak

Since the second disjunct of each assertion contradicts the �rst disjunct of the next,
these assertions cannot all hold simultaneously, so one of the corresponding constraints
must in fact give a non-zero evaluation on t. Hence, every path from S to T includes at
least one edge corresponding to a constraint from K, and so the edges corresponding
to the set K form a cut in GP . Furthermore, by the choice of K, the weight of this
cut is equal to the evaluation of t.

Hence, by using a standard eÆcient algorithm for the Minimum Weighted Cut prob-
lem (Goldberg & Tarjan, 1988), we can �nd an optimal assignment in cubic time, as the
next result indicates.
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Corollary 3.6 The time complexity of sCSP(�GI) is O(n
3jDj3), where n is the number of

variables.

Proof: Let P = hV;D;Ci be any instance of sCSP(�GI), and let GP be the corresponding
weighted directed graph. If the minimum weight for a cut in GP is ! <1, then it must be
a proper cut, so P has a solution with evaluation !, by Proposition 3.5. Moreover, if the
minimum weight for a cut in GP is1, then the evaluation of every assignment for P is1.

Hence we have established a linear-time reduction from sCSP(�GI) to the Minimum

Weighted Cut problem.
Since GP has v = jV j(jDj + 1) + 2 vertices, and the time complexity of Minimum

Weighted Cut is O(v3) (Goldberg & Tarjan, 1988), the result follows.

4. Submodular Functions

In this section we will consider a rather more general and useful class of functions, as
described by Topkis (1978).

De�nition 4.1 Let D be a totally ordered set. A function, � : Dk ! E is called a sub-
modular function on D if, for all ha1; : : : ; aki; hb1; : : : ; bki 2 D

k, we have

�(min(a1; b1); : : : ;min(ak; bk)) + �(max(a1; b1); : : : ;max(ak; bk))

� �(a1; : : : ; ak) + �(b1; : : : ; bk):

It is easy to check that all unary functions and all generalized interval functions are submod-
ular. It also follows immediately from De�nition 4.1 that the sum of any two submodular
functions is submodular. This suggests that in some cases it may be possible to express a
submodular function as a sum of simpler submodular functions. For example, for any unary
function  : D ! E we have

 (x) �
X
d2D

�
 (d)
[d;d]

(x; x):

For binary functions, the de�nition of submodularity can be expressed in a simpli�ed form,
as follows.

Remark 4.2 Let D be a totally ordered set. A binary function, � : D2 ! E is submodular

if and only if, for all u; v; x; y 2 D, with u � x and v � y, we have:

�(u; v) + �(x; y) � �(u; y) + �(x; v)

Note that when u = x or v = y this inequality holds trivially, so it is suÆcient to check only

those cases where u < x and v < y.

Example 4.3 Let D be the set f1; 2; : : : ;Mg with the usual ordering, and consider the
binary function �M , de�ned by �M (x; y) =M2 � xy.

For any u; v; x; y 2 D, with u < x and v < y, we have:

�M (u; v) + �M (x; y) = 2M2 � uv � xy

= 2M2 � uy � xv � (x� u)(y � v)

� �M (u; y) + �M (x; v):

Hence, by Remark 4.2, the function �M is submodular.
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A real-valued m� n matrix A with the property that

Auv +Axy � Auy +Axv; for all 1 � u < x � m, 1 � v < y � n

is known in operational research as a Monge matrix (for a survey of the properties of such
matrices and their use in optimization, see Burkard et al., 1996). It is clear from Remark 4.2
that the table of values for a real-valued binary submodular function is a Monge matrix,
and conversely, every square Monge matrix can be viewed as a table of values for a binary
submodular function.

It was shown by Rudolf and Woeginger (1995) that an arbitrary Monge matrix can be
decomposed as a sum of simpler matrices. We now obtain a corresponding result for binary
submodular functions, by showing that any binary submodular function can be decomposed
as a sum of generalized interval functions. (The result we obtain below is slightly more
general than the decomposition result for Monge matrices given by Rudolf and Woeginger
(1995), because we are allowing submodular functions to take in�nite values.) Using this
decomposition result, we will show that the set of unary and binary submodular functions
is a tractable soft constraint language.

To obtain our decomposition result, we use the following technical lemma.

Lemma 4.4 Let D be a totally ordered set and let � : D2 ! E be a binary submodular

function. For any a; b; c 2 D such that a � b � c, if there exists e 2 D with �(e; b) = 0,
then for all x 2 D we have �(x; b) � max(�(x; a); �(x; c)).

Proof: Assume that �(e; b) = 0.

� If x > e then, by the submodularity of �, we have �(x; b) � �(x; b) + �(e; a) �
�(x; a) + �(e; b) = �(x; a)

� If x < e then, by the submodularity of �, we have �(x; b) � �(x; b) + �(e; c) �
�(e; b) + �(x; c) = �(x; c).

� If e = x then �(x; b) = 0.

Hence, in all cases the result holds.

Lemma 4.5 Let D be a totally ordered �nite set. A binary function, � : D2 ! E is

submodular if and only if it can be expressed as a sum of generalized interval functions on

D. Furthermore, a decomposition of this form can be obtained in O(jDj3) time.

Proof: By the observations already made, any function � which is equal to a sum of
generalized interval functions is clearly submodular.

To establish the converse, we use induction on the tightness of �, denoted �(�), that is,
the number of pairs for which the value of � is non-zero.

Assume that � is a binary submodular function. If �(�) = 0, then � is identically zero,
so the result holds trivially. Otherwise, by induction, we shall assume that the result holds
for all binary submodular functions that have a lower tightness.

To simplify the notation, we shall assume that D = f1; 2; : : : ;Mg, with the usual order-
ing.

11
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We will say that a value a 2 D is inconsistent if, for all y 2 D, �(a; y) = 1. If every
a 2 D is inconsistent, then all values of � are 1, so it is equal to the generalized interval
function �1[1;M ], and the result holds. Otherwise, if there exists at least one inconsistent

value, then we can �nd a pair of values a; b 2 D, with ja� bj = 1, such that a is inconsistent
and b is not inconsistent.

Now de�ne the function �0 as follows:

�0(x; y) =

�
�(x; y) if x 6= a
�(b; y) if x = a

It is straightforward to check that �0 is submodular and �(x; y) = �0(x; y) + �1[a;a](x; x).

Since �(�0) � �(�), it now suÆces to show that the result holds for �0.
By repeating this procedure we may assume that � has no inconsistent values, and

by symmetry, that the reversed function �T , de�ned by �T (x; y) = �(y; x), also has no
inconsistent values.

We will say that a value a 2 D is penalized if, for all y 2 D, �(a; y) > 0. If a is penalized,
then we set �a = minf�(a; y)jy 2 Dg. If �a =1, then a is inconsistent, so we may assume
that �a <1, and de�ne a new function �0 as follows:

�0(x; y) =

�
�(x; y) if x 6= a
�(x; y)� �a if x = a:

Again it is straightforward to check that �0 is submodular and �(x; y) = �0(x; y)+��a[a;a](x; x).

Since �(�0) � �(�), it now suÆces to show that the result holds for �0.
By repeating this procedure we may assume that neither � nor �T has any inconsistent

or penalized values.
Now if, for all a; b 2 D, we have �(a;M) = �(M; b) = 0, then, by submodularity, for

all a; b;2 D, �(a; b) = �(a; b) + �(M;M) � �(a;M) + �(M; b) = 0, so � is identically 0,
and the result holds trivially. Otherwise, by symmetry, we can choose a to be the largest
value in D such that �(a;M) 6= 0. Since a is not penalized, we can then choose r to be the
largest value in D such that �(a; r) = 0. By the choice of a, we know that r < M , and so
we can de�ne b = r + 1. This situation is illustrated in Figure 3.

For any x; y 2 D such that x � a and y � b, we have:

�(x; y) = �(x; y) + �(a; r) (�(a; r) = 0)
� �(x; r) + �(a; y) (submodularity)
= �(x; r) + max(�(a; y); �(a; r)) (�(a; r) = 0)
� �(x; r) + �(a; b) (Lemma 4.4)
� �(a; b)

Hence we can now de�ne a function �0 as follows:

�0(x; y) =

8<:
�(x; y) if x > a _ y < b
0 if x = a ^ y = b
�(x; y)� �(a; b) otherwise.

It is straightforward to check that �(x; y) = �0(x; y) + �
�(a;b)
[b;a] (y; x). Since �(�0) < �(�), it

only remains to show that �0 is submodular, and then the result follows by induction. In

12
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Figure 3: (a) The choice of a and b in the proof of Theorem 4.5. Dotted lines repre-
sent known 0 values of �. Solid lines represent values of � known not to be 0.
(b-d) Representations of the three cases for the choice of u; v; x; y. The �lled area
represents the non-zero values of the generalized interval constraint subtracted
from � to obtain �0.

other words, it suÆces to show that for any u; v; x; y 2 D such that u < x and v < y, we
have:

�0(u; v) + �0(x; y) � �0(u; y) + �0(x; v) (2)

Replacing x with u in the inequality derived above, we have that whenever u � a and y � b,

�(u; y) � �(u; r) + �(a; b): (3)

The proof of inequality (2) may be divided into four cases, depending on the values of �(a; b)
and the choice of u; v; x; y:

1. �(a; b) =1

In this case, �0 di�ers from � only on the pair ha; bi (because1�1 =1). Since � is
submodular, inequality (2) can only fail to hold if either hx; vi or hu; yi equals ha; bi.

If hx; vi = ha; bi, then, using inequality (3), we know that �(u; y) = 1, so �0(u; y) =
1�1 =1, and inequality (2) holds.

If hu; yi = ha; bi then we have, for all x > u and y > v,

�0(u; v) + �0(x; y) = �(u; v) + �(x; y)
� �(u; v) + max(�(x; r); �(x;M)) (by Lemma 4.4)
= �(u; v) + �(x; r) (x > a) �(x;M) = 0)
� �(u; r) + �(x; v) (by submodularity)
= �(x; v) (since �(u; r) = 0)
= �0(x; v)
� �0(u; y) + �0(x; v)

so inequality (2) holds.

13
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2. a < u < x or v < y < b; (see Figure 3 part (b))

In this situation we know that inequality (2) holds because � and �0 are identical for
these arguments.

3. u < x � a or b � v < y; (see Figure 3 part (c))

If u < x � a, then we have:

�0(u; v) = �(u; v) � �

�0(x; v) = �(x; v) � �

�0(u; y) = �(u; y)� �0

�0(x; y) = �(x; y)� �0

where � and �0 are either 0 or �(a; b), depending on whether v or y are less than b.
Inequality (2) follows trivially by cancelling � or �0 or both.

An exactly similar argument holds if b � v < y.

4. u � a < x and v < b � y; (see Figure 3 part (d))

If u < a, than by inequality (3) we have �(u; y)��(a; b) � �(u; r), so �0(u; y) � �(u; r).
Moreover, if u = a, then �(u; r) = 0, so again �0(u; y) � �(u; r). Hence,

�0(u; v) + �0(x; y) = �(u; v) + �(x; y)
� �(u; v) + max(�(x; r); �(x;M)) (by Lemma 4.4)
= �(u; v) + �(x; r) (x > a) �(x;M) = 0)
� �(u; r) + �(x; v) (by submodularity)
� �0(u; y) + �(x; v) (since �0(u; y) � �(u; r))
� �0(u; y) + �0(x; v)

so again inequality (2) holds.

Hence, in all cases inequality (2) holds, so �0 is submodular, and the result follows by
induction.

The number of generalized interval functions in the decomposition of a binary submod-
ular function can grow quadratically with jDj (see Example 4.6 below) and the cost of
subtracting one binary submodular function from another is also quadratic in jDj. Hence
a naive algorithm to obtain such a decomposition by calculating the required generalized
interval functions and subtracting o� each one in turn from the original function will take
O(jDj4) time. However, by taking advantage of the simple structure of generalized interval
functions, it is possible to obtain a suitable decomposition in O(jDj3) time; a possible algo-
rithm is given in Figure 4. The correctness of this algorithm follows directly from the proof
of the decomposition result given above.

Example 4.6 Consider the binary function �M on D = f1; 2; : : : ;Mg, de�ned in Exam-
ple 4.3. When M = 3, the values of �3 are given by the following table:

�3 1 2 3

1 8 7 6
2 7 5 3
3 6 3 0

14



A Maximal Tractable Class of Soft Constraints

Input: A binary submodular function � on the set f1,2,. . . ,Mg
such that neither � nor �T has any inconsistent or penalized values

Output: A set of generalized interval functions f�1; �2; : : : ; �qg
such that �(x; y) =

Pq

i=1 �i(x; y)

Algorithm:

for j = 1 to M; T [j] = 0 % Initialise list of values to be subtracted
for i = M downto 1 % For each row. . .

while �(i;M) > T [M ] do % If �(i;M) not yet zero. . .
j = M ; while �(i; j) > T [j] do j = j � 1 % Find maximal zero position in row i

� = �(i; j + 1)� T [j + 1] % Set new value to be subtracted
output ��[j+1;i](y; x) % Output generalized interval function

for k = j + 1 to M; T [k] = T [k] + � % Update list of values to be subtracted
for j = 1 to M; �(i; j) = �(i; j)� T [j] % Subtract values from this row

for i = 1 to M; T [j] = 0 % Initialise list of values to be subtracted
for j = M downto 1 % For each column. . .

while �(M; j) > T [M ] do % If �(M; j) not yet zero. . .
i = M ; while �(i; j) > T [i] do i = i� 1 % Find maximal zero position in column j

� = �(i+ 1; j)� T [i+ 1] % Set new value to be subtracted
output ��[i+1;j](x; y) % Output generalized interval function

for k = i+ 1 to M; T [k] = T [k] + � % Update list of values to be subtracted
for i = 1 to M; �(i; j) = �(i; j)� T [i] % Subtract values from this column

Figure 4: A decomposition algorithm with time complexity O(jDj3)

Note that: 0
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Hence,

�3(x; y) = �6[1;1](x; x) + �3[2;2](x; x) + �2[1;1](y; y) + �1[2;2](y; y)

+ �1[2;2](x; y) + �1[3;2](x; y) + �1[2;1](x; y) + �1[3;1](x; y):

In general, for arbitrary values of M , we have

�M (x; y) =

M�1X
d=1

 
�
M(M�d)
[d;d] (x; x) + �M�d

[d;d] (y; y) +

M�1X
e=1

�1[d+1;e](x; y)

!
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We remark that this decomposition is not unique - other decompositions exist, including
the symmetric decomposition �M (x; y) = �0M (x; y) + �0M (y; x), where

�0M (x; y) =
M�1X
d=1

 
�
(M2

�d
2)

2

[d;d] (x; x) + �
1
2

[d+1;d](x; y) +
d�1X
e=1

�1[d+1;e](x; y)

!

Combining Lemma 4.5 with Corollary 3.6, gives:

Theorem 4.7 For any �nite soft constraint language � on a �nite totally ordered set D, if

� contains only unary or binary submodular functions, then the time complexity of sCSP(�)
is O(n3jDj3).

The next result shows that the tractable class identi�ed in Theorem 4.7 is maximal.

Theorem 4.8 Let � be the set of all binary submodular functions on a totally ordered �nite
set D, with jDj � 2. For any binary function  62 �, sCSP(� [ f g) is NP-hard.

Proof: We shall give a reduction from sCSP(f�XORg) to sCSP(� [ f g), where �XOR
is the binary function de�ned in Example 2.6. It was pointed out in Example 2.6 that
sCSP(f�XORg) corresponds to the Max-Sat problem for the exclusive-or predicate, which
is known to be NP-hard (Creignou et al., 2001). Hence sCSP(� [ f g) is also NP-hard.

To simplify the notation, we shall assume that D = f1; 2; : : : ;Mg, with the usual order-
ing.

Since  is not submodular, there exist a; b; c; d 2 D such that a < b and c < d but
 (a; c) +  (b; d) >  (a; d) +  (b; c).

Choose an arbitrary evaluation � such that 0 < � <1, and de�ne � and � as follows:

� = min( (a; c);  (a; d) +  (b; c) + �)

� = min( (b; d);  (a; d) +  (b; c) + �)

It is straightforward to check that

 (a; d) +  (b; c) < �+ � <1: (4)

Now de�ne a binary function � as follows:

�(x; y) =

8<:
� if (x; y) = (1; a)
� if (x; y) = (2; b)
1 otherwise

and a binary function � as follows:

�(x; y) =

8>>>><>>>>:
0 if (x; y) = (c; 1)
 (a; d) + 1 if (x; y) = (c; 2)
 (b; c) + 1 if (x; y) = (d; 1)
0 if (x; y) = (d; 2)
1 otherwise
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�(u; y)

�(y; w)

 (w; v)

x y

t

v

 (t; u)

�(v; x)

�(x; t)
u

w

Figure 5: An instance of sCSP(� [ f g) used to construct a speci�c soft constraint between
variables x and y.

It is straightforward to check that both � and � are submodular.
Now consider the instance P0 of sCSP(� [ f g) illustrated in Figure 5. It is simple but

tedious to verify that the combined e�ect of the six soft constraints shown in Figure 5 on
the variables x and y is equivalent to imposing a soft constraint on these variables with
evaluation function �, de�ned as follows:

�(x; y) =

8<:
�+ �+ �+ � if x; y 2 f1; 2g and x = y
�+ �+  (a; d) +  (b; c) if x; y 2 f1; 2g and x 6= y
1 otherwise

Note that, by inequality (4), we have �+ �+  (a; d) +  (b; c) < �+ �+ �+ � <1.
Now let P be any instance of sCSP(f�XORg). If we replace each constraint hhx; yi; �XORi

in P with the set of constraints shown in Figure 5 (introducing fresh variables t; u; v; w each
time) then we obtain an instance P 0 of sCSP(� [ f g). It is straightforward to check that
P 0 has a solution involving only the values 1 and 2, and that such solutions correspond
exactly to the solutions of P, so this construction gives a polynomial-time reduction from
sCSP(f�XORg) to sCSP(� [ f g), as required.

5. Applications

In this section we give a number of examples to illustrate the wide range of soft constraints
which can be shown to be tractable using the results obtained in the previous sections.

First we de�ne a standard way to associate a function with a given relation.
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De�nition 5.1 For any k-ary relation R on a set D, we de�ne an associated function,
�R : Dk ! E, as follows:

�R(x1; x2; : : : ; xk) =

�
0 if hx1; x2; : : : ; xki 2 R
1 otherwise.

By Theorem 4.7, any collection of crisp constraints, where each constraint is speci�ed by a
relation R for which �R is unary or binary submodular, can be solved in cubic time, even
when combined with other soft constraints that are also unary or binary submodular.

Example 5.2 The constraint programming language CHIP incorporates a number of con-
straint solving techniques for arithmetic and other constraints. In particular, it provides
a constraint solver for a restricted class of crisp constraints over natural numbers, referred
to as basic constraints (van Hentenryck et al., 1992). These basic constraints are of two
kinds, which are referred to as \domain constraints" and \arithmetic constraints". The
domain constraints described by van Hentenryck et al. (1992) are unary constraints which
restrict the value of a variable to some speci�ed �nite subset of the natural numbers. The
arithmetic constraints described by van Hentenryck et al. (1992) have one of the following
forms:

aX 6= b aX � bY + c
aX = bY + c aX � bY + c

where variables are represented by upper-case letters, and constants by lower case letters,
all constants are non-negative real numbers and a is non-zero.

For each of these crisp constraints the associated function given by De�nition 5.1 is
unary or binary submodular, hence, by Corollary 3.6, any problem involving constraints of
this form can be solved in cubic time. Moreover, any other soft constraints with unary or
binary submodular evaluation functions can be added to such problems without sacri�cing
tractability (including the examples below).

Now assume, for simplicity, that D = f1; 2; : : : ;Mg.

Example 5.3 Consider the binary linear function � de�ned by �(x; y) = ax+by+c, where
a; b 2 R

+ .
This function is submodular and hence, by Corollary 3.6, any collection of such binary

linear soft constraints over the discrete set D can be solved in cubic time.

Example 5.4 The Euclidean length function
p
x2 + y2 is submodular, and can be used to

express the constraint that a 2-dimensional point hx; yi is \as close to the origin as possible".

Example 5.5 The following functions are all submodular:

� Ær(x; y) = jx� yjr, where r 2 R, r � 1.

The function Ær can be used to express the constraint that: \The values assigned to
the variables x and y should be as similar as possible".

� Æ+r (x; y) = (max(x� y; 0))r , where r 2 R, r � 1.

The function Æ+r can be used to express the constraint that: \The value of x is either
less than or as near as possible to y".

18
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� Æ�r (x; y) =

�
jx� yjr if x � y
1 otherwise

where r 2 R, r � 1.

The function Æ�r can be used to express the temporal constraint that: \x occurs as
soon as possible after y".

Example 5.6 Reconsider the optimization problem de�ned in Example 1.1. Since  i is
unary, and Ær is binary submodular (Example 5.5), this problem can be solved in cubic
time, using the methods developed in this paper.

Let P be the instance with n = 3 and r = 2. The values of Æ2 are given by the following
table:

Æ2 1 2 3

1 0 1 4
2 1 0 1
3 4 1 0

Hence,

Æ2(x; y) = �1[3;2](y; x) + �1[2;1](y; x) + �2[3;1](y; x)

+ �1[3;2](x; y) + �1[2;1](x; y) + �2[3;1](x; y)

Using this decomposition for Æ2, we can construct the graph GP corresponding to the
instance P , as shown in Figure 6.

The minimum weight of any cut in this graph is 11
4 , and hence the optimal evaluation

of any assignment for P is 11
4 .

One of the several possible cuts with this weight is indicated by the gray line across the
graph, which corresponds to the solution v1 = 1, v2 = 1, v3 = 2, v4 = 2, v5 = 3, v6 = 3.

Note that some of the submodular functions de�ned in this section may appear to be
similar to the soft simple temporal constraints with semi-convex cost functions de�ned and
shown to be tractable by Khatib et al. (2001). However, there are fundamental di�erences:
the constraints described by Khatib et al. (2001) are de�ned over an in�nite set of values,
and their tractability depends crucially on the aggregation operation used for the costs
being idempotent (i.e., the operation min). In this paper we are considering soft constraints
over �nite sets of values, and an aggregation operation which is strictly monotonic (e.g.,
addition of real numbers), so our results cannot be directly compared with those in the
paper by Khatib et al. (2001).

6. Conclusion

As we have shown with a number of examples, the problem of identifying an optimal as-
signment for an arbitrary collection of soft constraints is generally NP-hard. However, by
making use of the notion of submodularity, we have identi�ed a large and expressive class
of soft constraints for which this problem is tractable. In particular, we have shown that
binary soft constraints with the property of submodularity can be solved in cubic time. By
making use of this result, it should be possible to extend the range of optimisation problems
that can be e�ectively solved using constraint programming.
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Figure 6: The graph GP associated with the instance P de�ned in Example 5.6.

From a theoretical perspective, this paper gives the �rst complete characterisation of a
tractable class of soft constraints over a �nite set of values with more than two elements. We
are con�dent that the methods developed here can be extended to identify other tractable
cases, and hence to begin a systematic investigation of the computational complexity of soft
constraint satisfaction. A �rst step in this direction has been taken by Cohen et al. (2003).

We believe that this work illustrates once again the bene�t of interaction between re-
search on constraint satisfaction and more traditional research on discrete optimization
and mathematical programming: the notion of submodularity comes from mathematical
programming, but the idea of modelling problems with binary constraints over arbitrary
�nite domains comes from constraint programming. By combining these ideas, we obtain a

exible and powerful modelling language with a provably eÆcient solution strategy.
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