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Abstract

We study the computational complexity of the gqualitative alge-
bra which is a temporal formalism that combines the point algebra,
the point-interval algebra and Allen’s interval algebra. We identify
all tractable fragments and show that every other fragment is NP-
complete. The use of combinatorial techniques has enabled us to prove
this result without computer-assisted case analyses.
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1 Introduction

Reasoning about temporal knowledge is a common task in many branches
of computer science and elsewhere, ¢f. Golumbic and Shamir [7] for a list
of examples from a wide range of applications. Knowledge of temporal con-
straints is typically expressed in terms of collections of relations between
time points and/or time intervals. Reasoning tasks include determining the
satisfiability of such collections and deducing new relations from those that
are known.



Several frameworks for formalizing this type of problem have been sug-
gested (see [19] for a survey); for instance, the point algebra [20] (for express-
ing relations between time points), the point-interval algebra [21] (for ex-
pressing relations between time points and intervals) and the famous Allen’s
interval algebra [1] for expressing relations between time intervals. Basic
temporal formalisms can only be used for reasoning about objects of a single
type—for instance, the point algebra [22] is only useful for time points and
Allen’s interval algebra [1] is only useful for time intervals. Such restricted
languages have been studied intensively from a complexity-theoretic point
of view. For instance, all tractable subclasses of Allen’s interval algebra,
the point-interval algebra and a number of point algebras for different time
models have been identified [4, 8, 10, 12, 22]

Obviously, this kind of basic formalisms may not be sufficient for mod-
elling real-world problems so several formalisms for multisorted temporal rea-
soning have been proposed [3, 9, 11, 16, 18]. It is not very surprising that the
basic temporal formalisms are easier to analyse (from a complexity-theoretic
standpoint) than the multisorted formalisms; in fact, virtually nothing is
known about tractability in more complex formalisms. The goal of this ar-
ticle is to study the computational complexity of a multi-sorted formalism,
namely Meiri’s [16] Qualitative Algebra. It is a temporal formalism able to
represent both time points and time intervals and it is possible to relate
points with points, points with intervals and intervals with intervals using
an expressive set of qualitative relations. More precisely, the algebra is an
amalgamation of the point algebra, the point-interval algebra and Allen’s
algebra. Thus, this research follows the recent trend in artificial intelligence
of combining different formalisms, cf. [2, 23].

We identify all tractable fragments of the satisfiability problem and show
that all other fragments are NP-complete. By using combinatorial tech-
niques, we can prove this result without using computer-assisted enumeration
methods. The key element in our approach is reducibility via expressibility —
i.e. given a set of relations, we derive new relations by different methods. By
analyzing the structure of relations, we show that every non-tractable frag-
ment of the Qualitative Algebra can express some NP-complete fragment of
the point-interval algebra or of Allen’s algebra. Consequently, this article
shows that combinatorial methods are not only useful when classifying con-
straint problems (as in [12]), but also for combining complexity results for
different formalisms.

The article is organised as follows: in Section 2 we give the basic defi-
nitions and present the maximal tractable subclasses. In Section 3 we for-
mally state the classification result and prove it; Subsection 3.1 contains some



tractability results and Section 3.2. contains the classification proof together
with descriptions of a few proof techniques. Some concluding remarks are
collected in Section 4. This article is based on an incomplete classification
of the Qualitative Algebra presented by Krokhin & Jonsson in a conference
paper [14].

2 Preliminaries

In the Qualitative Algebra (QA) [16], a qualitative constraint between two
objects O; and O; (each may be a point or an interval), is a disjunction of
the form

(Oﬂ‘le) V...V (OiTkOj)

where each one of the r}s is a basic qualitative relation that may exist between
two objects. There are three types of basic relations.

1. Point-point (PP) relations that can hold between a pair of points.

2. Point-interval (PI) and interval-point (IP) relations that can hold be-
tween a point and an interval and vice-versa.

3. Interval-interval (IT) relations that can hold between a pair of intervals.

The PP-relations correspond to the point algebra [22], Pl-relations to the
point-interval algebra [21] and II-relations to Allen’s interval algebra [1]. The
basic relations are shown in Table 1. Note that we use different fonts to
distinguish between PI- and II-relations. The endpoint relation I~ < I that
is required for all intervals has been omitted. For the sake of brevity, we will
write expressions of the form (O;710;) V...V (0;r;0;) as O;(ry...71%)0;.
Let @ denote the empty relation. Let PP, PZ and ZZ denote the sets of
all PP-relations, Pl-relations and II-relations, respectively, and let QA =
PPUPIUIIL.

The problem of satisfiability (QA-SAT) of a set of point and interval
variables with relations between them is that of deciding whether there exists
an assignment of points and intervals on the real line for the variables, such
that all of the relations are satisfied. This is defined as follows.

Definition 1 Let X C QA. An instance IT of QA-SAT(X) consists of a set
Vp of point variables, a set Vi of interval variables and a set of constraints of
the form zry where z,y € V, UV and r € X. We require that V, N Vy = 0.

The question is whether Il is satisfiable or not, i.e. whether there exists
a function M, called a model, satisfying the following:



1. for each v € V,, M(v) € R;
2. for eachveV;, M(v)= (I ,I")ERXRand I~ <IT.
3. for each constraint xry € C, M(z)rM (y) holds.

We note that QA-SAT is in NP; let II be an arbitrarily chosen instance with
point variables V), and interval variables V7. The relations are qualitative so
we do not need to consider models that assign real values to the variables,
it is enough to merely consider models that assign values from the finite
set {1,...,m} where m = |V,| 4+ 2|V;|, and such a model can be guessed
non-deterministically in polynomial time.

Let X C QA and assume that IT = (V),,V7,C) is an instance of QA-
SAT. We define Var(II) as the set of variables in IT and Xpp, Xpz, X177
as X NPP, X NPL, X NIZ, respectively. We extend the notation to sets
of constraints and problem instances, i.e. IIz7 denotes the subinstance only
containing II-constraints:

(0,V1,{I’I°J eC | I,J e V[})

If there exists a polynomial-time algorithm solving all instances of QA-
SAT(X) then we say that X is tractable. On the other hand, if QA-SAT(X)
is NP-complete then we say that X is NP-complete. Since QA is finite,
the problem of describing tractability in Q.4 can be reduced to the problem
of describing the mazimal tractable subclasses in QA, i.e., subclasses that
cannot be extended without losing tractability.

The complexity of QA-SAT(X) has been completely determined earlier
when X is a subset of PP, PZ or ZT.

Theorem 2 (Vilain et al. [22]) PP is tractable.

Theorem 3 (Jonsson et al. [10]) Let X be a subclass of PZ. Then X is
tractable if it is contained in one of the 5 subclasses Vy,Vs, Ve, Vs and V¢
(see Table 2). Otherwise, X is NP-complete.

In order to simplify the presentation of tractable subclasses of II-relations,
we use the symbol &, which should be interpreted as follows. A condition
involving + means the conjunction of two conditions: one corresponding to +
and one corresponding to —. For example, condition (0)*! C r < (d)*! C r
means that both (o) Cr < (d) Crand (o7!) Cr < (d') Cr hold.



Theorem 4 (Krokhin et al. [12]) Let X be a subclass of ZZ. Then X
is tractable if it is contained in one of the 18 subclasses listed in Table 3.
Otherwise, X is NP-complete.

Let ZZ;, denote the set of the 18 maximal tractable subclasses of II-relations.
In some previous papers, the subclasses in Tables 2 and 3 were defined in
other ways. However, in all cases except for #, it is very straightforward to
verify that our definitions are equivalent to the original ones. The subclass
‘H was originally defined as the ‘ORD-Horn algebra’ [17], but has also been
characterized as the set of ‘pre-convex’ relations (see, e.g., [15]). Using the
latter description it is not hard to show that our definition of H is equivalent.

3 Main Result

Our main result is the identification of all tractable subclasses X of Q.A. Let
W CIZandV C PZ. Let WY = WUVUPP and WV’ = WUVU{=, <, >}.

Theorem 5 Let X C QA. Then QA-SAT(X) is tractable if and only if X
is a included in one of the subclasses defined below. Otherwise, QA-SAT(X)
is NP-complete.

e WVy and WVq if W € IT,

WVg if W € Iy — {H,Sp, Ep}

HV’H, SpVS, ngg

WVsn if W € {84,80,5*}
WV if W € {Eg, E0,E*}

WV.IS lfW € {g*aAzaAla"' 7A4}
o WV}‘ lfW € {S*aAEaBla"'aB4}

The rest of this section is structured as follows. In Subsection 3.1, we prove
the tractability of a number of subclasses and we give the proof of Theorem 5
in Subsection 3.2.



‘ Basic relation Example ‘ Endpoints
p before ¢ < p P<gq
q
p equals ¢ = p pP=q
q
p after ¢ > p p>q
q
‘ Basic relation Example ‘ Endpoints
p before 1 b P p<I™
ITT
p starts T s P p=1"
ITT
p during [ d P I"<p<I*
ITT
p finishes T f p p=1I"
ITT
p after I a p|p>1IF
ITT
‘ Basic relation Example ‘ Endpoints
I precedes J p III I"<J-
J preceded by I p~! JJJ
I meets J m IIII It =J"
J met by I m~1 JJiJ
I overlaps J o IIII I-<J <IT,
J overl. by I o~ ! J333 It <Jt
I during J d III I—>J,
J includes T dt | 3333333 | It <Jt
I starts J s 111 I =J,
J started by I s! | 3333333 | It < Jt
I finishes J f IIr | It =Jt,
J finished by I f~! JJ33333 | I~ > J°
I equals J = IIII I =J,
3333 It=Jg*

Table 1: Basic PP-, PI- and Il-relations.




Viy={r|[rn(bs) #0&rnN(ta) #0 = (a) Cr}
Vsu={r| rN(fa) #0=(d) Cr}

Ve = {r | rn(bs) # (/):>(d)C7"}
Vs={r|rn(daf) #0

Vg:{T|7‘ﬂ(sd)7é
Vi={r|r#0=(r)

=
=
C } where r € {b,s,d,f,a}

Table 2: Subsets of PI-relations.

3.1 Tractability results

We shall now show that all subclasses in Theorem 5 are tractable. In fact,
Lemma 6 prove a slightly stronger result which will be useful in the proof of
the main theorem.

Lemma 6 WV, and WYV, are tractable if and only if W C S for some
S € IT;,. Otherwise, they are NP-complete.

Proof. If W is not a subset of a member of ZZ;,, then both WV}, and WV,
are NP-complete by Theorem 4. Thus, we assume W is tractable and give
a proof for the case X = WYVy,; the other case is analogous. Let IT be an
arbitrary instance of QA-SAT(X) and assume without loss of generality that
no constraint is trivially unsatisfiable, i.e. of the form z@y. We claim that II
is satisfiable iff Ilpp and Ilzz are satisfiable—obviously, this can be checked
in polynomial time by the choice of W.

If IIpp or IIz7 are not satisfiable, then II is not satisfiable. Otherwise,
there exists two models Mpp and Mz of Ilpp and Ilzz, respectively. We
can, without loss of generality, assume that Mpp has the following additional
property: Mpp(p) < Mzz(I™) for all p € Var(Ilpp) and I € Var(Ilzz). We
construct a model M of II as follows:

M(:L’) _ { M'pp(x) ifze Var(pr)
MII(QZ) ifz € Var(HII)

It follows that M is a model of II since every constraint in I[Ip7 contains the
relation b. O

Lemma 7 WYy is tractable if W € IZy — {H,Sp, Ep}-

Proof. Assume II is a satisfiable instance of QA-SAT(X) where X € ITZ, —
{H,Sp,Ep} By analyzing the correctness proofs of the algorithms for these



Sp = {r | r N (pmod—1f-1)E! £ = (p)*! C r}

Sq = {r|rn(pmod=t 1) £ = (d-1)* Cr}
So = {r | r N (pmod=1f~1)*! £ = (o)*! C r}

Ar = {r|rn(pmod  1)F £ = (s )* Cr}
(
(
(

~_ — S~ N

(s~
Az = {r | r N (pmod 1 1)EL £ = (s)*F C r}
Az = {r | 7N (pmodf)*! # 0 = (s)*! C r}
Ag = {r | rn(pmodf—1)*L #£ ) = (s)* C r}

Ep={r|rn (pmods)*! #£ ) = (p)*
Eq = {r| N (pmods)*! # 0 = (d)*
Eo = {r | r N (pmods)™! # 0 = (0)*
By = {r| N (pmods)* £ = (f !

( )

(

(

e
H_
=

IN
<
—

By = {r | 7N (pmods)*! # O = (f)*! C r}
By = {r| N (pmod=ts~1)* £ = (f~1)FL C r}
By = {r|rn(pmod=ts)* £ = (f-1)*L Cr}

o {r 1) 7N (pmod)*! # 0 = (s)*! C r, and }
Sl |2y #£0= (=) Cr

St — {1" 1) r N (pmod 1)*! £ @ = (- 1)* C r, and }
B 2)rN(sst)#0=(=)Cr

2) r N (ds)* # 0 & r N (d 1) £ = (o)*! Cr, and

D) rN(os)™ #0 & rn (o7 f)FL £ 0 = () Cr, and
H=<r
3)rN(pm)* £ 0 & r Z (pm)* = (0)*! Cr

A={rlr#0=(2)Cr)

Table 3: The tractable subalgebras of Allen’s algebra.



subclasses [5, 6], one can notice that IT always has a model M in which the
intersection of all intervals is itself a non-empty interval, say J.

Thus, we can use a similar trick as in the proof of Lemma 6: instead of
moving the points to a position before or after the intervals, we scale the
points and move them to a position within the interval J. O

For proving tractability of the remaining subclasses, we define the function
S : QA — I7T such that

S(<) = (pmod—1f~1) S(=)=(=ss1)
S(>)=(p 'mlotdf) S(b) = (pmod 1f~1)
S(s) =(=ss71) S(a) = (o~1df)
5(f) = (m™) S(a) = (p7")

and S(r) = r if r is a basic II-relation. We extend S such that S(r) =
S(ri)U...US(rp) if r = (r1,...,7,), and given a set X C QA, we define
S(X)={S(r)|re X}

The idea is to transform instances of QA-SAT(X) into instances of QA-
SAT(X N ZT)—this will avoid the need for constructing completely new al-
gorithms.

Lemma 8 Let IT = (V,, V7, C) be an instance of QA-SAT(X). Let V] = Vi
and V, = {I, | p € Vp} (where we assume that Vi NV, = 0). Define an
instance

= 0,vi U{L, |p € %}, )

of QA-SAT(ZZ) where C' = {L,S(r)I; | prq € Cpp} U{L,S(r)I' | prl €
CPI} U {I'S(T)J' | Ird € CII}-
Then, 11 is satisfiable iff II' is satisfiable.

Proof. only-if: Let M be a model of II. Construct an interpretation M’ of
IT' as follows:

1. for each interval I' € V}, let M'(I') = M(I); and

2. for each interval I, € V), let M'(I}) = [M(p), M (p) + 1].

It is straightforward to verify that M’ is a model of II'. As an exam-
ple, assume that p(bs)I € C, M(p) = 1 and M(I) = [2,4]. Then, I,(=



pmod~tss 1) I' € C', M'(I,) = [1,2] and M'(I') = [2,4]; consequently, the
relation between II', and I’ is satisfied.

if: Let M’ be a model of IT'. Construct an interpretation M of II as follows:

1. for each point p € V;, let M (p) = M'(I,); and

2. for each interval I € Vy, let M(I) = M'(I').

Once again, it is straightforward to verify that M is a model of II. We take
the same example as before: Assume I,(= pmod'ss 'f 1)I' € C', M'(I})) =
[1,2] and M'(I') = [2,4]. Then, we know that p(bs)I € C, M(p) = 1 and
M(I) = [2,4]. O

As is evident in the proof, function S identifies the points with the left
endpoint of intervals while the relations between the right endpoints are
arbitrary; thus, we can symmetrically define a function E that identifies
points with the right endpoint of intervals.

E(<) = (pmods) E(=) = (=ff1)
E(>)=(p'm to7!d 's7!) E(b) = (p)

E(s) = (m) E(a) = (ods)

E(f) = (=ff1) E(a) = (ptmlotd-is71)

Lemma 9 Let X be one of the subclasses in Theorem 5 that is not covered
by Lemmata 6 or 7. Then, X is tractable.

Proof. Assume X' is a tractable subset of ZZ. If S(X) C X' or E(X) C X',
then X is tractable by Lemma 8. It can be verified that either S(X) or E(X)
is a subset of X NZ7 and the lemma follows since X NZ7 is tractable. O

3.2 Proof of Theorem 5

The proof of Theorem 5 consists of three parts where we successively restrict
the allowed PP-relations. The two first parts (where we first assume (<) €
Spp and then (<) & Spp but (#) € Spp) have a similar structure. The
final part (where we assume Spp C {=, <,>}) is slightly different.

One of our main tools for proving the result is the notion of derivations.
Suppose X C QA and Il is an instance of QA-SAT(X). Let the two variables

10



z,y appear in II. Furthermore, let » € Q.A be the relation defined as follows:
a basic relation 7' is included in 7 if and only if the instance obtained from
IT by adding the constraint zr'y is satisfiable. In this case, we say that r is
derived from X.

It should be noted that if the instance II; = IT U {zr'y} is satisfiable,
then, for any two points or intervals i1, j; such that ¢17'71, there is a model
M of II such that M(z) = i3 and M(y) = j1. This can be established
as follows: since II; is satisfiable, it has a model M’'. Denote M'(z) by iy
and M'(y) by j2; then i57'j5. There exists a continuous monotone injective
transformation ¢ of the real line such that ¢ takes i3 to i; and j9 to j77.
Obviously, ¢ maps intervals to intervals, and it does not change the relative
order between points and intervals. Therefore, by combining ¢ and M’ we
obtain the required model M.

It can easily be checked that adding a derived relation r to X does
not change the complexity of QA-SAT(X) because, in any instance, any con-
straint involving r can be replaced by the set of constraints in II (introducing
fresh variables when needed), and this can be done in polynomial time.

Given a relation t € QA and a set S C QA such that S is closed under
derivations, we define the relation r§ = N{r € S|t Cr} and note that
r{ € S since it is derived from the relations in S. We drop the superscript
whenever § is understood from the context.

We will sometimes use a principle of duality for simplifying proofs. We
make use of a function reverse which is defined on the basic relations of QA
by the following table:

r < = >

reverse(r) | > = <

T b s d f

reverse(r) | a f d s b

r = p p~! m m~! o ol d dt s st f 1
reverse(r) | = p ! p m!m o! o dd! f fl s st

and is defined for all other elements in Q.4 by setting reverse(R) = U,y reverse(r).

Let II be any instance of QA-SAT, and let IT' be obtained from II by
replacing every relation r with reverse(r). It is easy to check that IT has a
model M if and only if IT' has a model M’ given by

—M(x) if x € Var(Ilpp)

M (x) = { [_ M(x)-l',_M(gj)_] ifx e Val'(HII)

11



In other words, M’ is obtained from M by redirecting the real line and
leaving all points and intervals (as geometric objects) in their places. This
observation leads to the following lemma.

Lemma 10 Let X = {ry,...,rn} C QA and X' = {r,...,r,} C QA be
such that, for all 1 < k < n, r} = reverse(ry). Then X is tractable (NP-
complete) if and only if X' is tractable (NP-complete).

As an example of the use of Lemma, 10, note that a proof of NP-completness
for, say, {(<), (bf), (ods™')}, immediately yields a proof of NP-completeness

for {(>), (sa), (071df 1)}

3.2.1 Case 1: Strict inequality

Henceforth, we assume that (<) € Spp. The classification proof of this
special case has four step. In each step, it is proved that if a subclass S
satisfies a certain condition, then either & is NP-complete, contained in one
of the tractable subclasses or S satisfies the conditions of some earlier step.
Throughout the proof, we assume that S is closed under derivations and
(<) € §. We say that a relation is non-trivial if it is not equal to the empty
relation.

Step 1. We begin by proving that S is NP-complete unless Spz is a subset
of Vg, Vs or Vg.

Step 2. Assume now that Spz contains two non-trivial relations rq,ro such
that r; C (fa) and r9 C (bs). This implies that S is NP-complete or S is
included in one of HV3;, SpVs or EpVe.

Step 3. We note that if (b) C r for all » € Spz or (a) C r for all r € Spr,
then § is NP-complete or contained in one of the tractable subclasses. Thus,
we assume the existence of 1, ry € Spz such that (b) € vy and (a) € 72 and
show that Spr is contained in one of Vgy or Vey, or else the previous step
applies.

Step 4. Finally, we show that if Spr C Vs or Spr C Vgy, then either
S is NP-complete or is contained in one of the tractable subclasses listed in
Theorem 5.

Before the proof, we present a number of derivations that will be frequently
used.

Lemma 11 Assume r € S is a non-trivial relation. Then,

12



if (b) € r and r N (sd then (dfa) € S;

. if (b) (sd) # 0, then (

. if () Z 7 and 7N (sd) = 0, then (a) €
. if (a) £ 7 and r N (df) # 0, then (bsd) €
. if (a) (af) = 0, then (

) #
) =
) #
) =

f (a) Z v and r N (df then (b) €

Proof. The cases are similar so we only consider the first one: the relation
p(dfa)l is derived from {qrI,p > q}. |

Lemma 12 § is NP-complete or Spr is contained in one of Vy, Vs, Ve.

Proof. Suppose that Spz is not NP-complete. By Theorem 3, it is contained
in one of Vy, Vs, Ve, Vs, V¢. Assume that Spr C Vs. If (b) C r for every
non-trivial » € Spz then Spz C Vge. Suppose there is a non-trivial r € Spz
such that (b) Z r. Then SpzN{(a), (dfa)} # 0 by Lemma 11, a contradiction.
The argument is dual when Spz C Vs. O

In the next three lemmata, we will assume that Spz is contained in one of
V’H) VS, VE-

Lemma 13 Suppose that Spz contains two non-trivial relations r1,ry such
that 71 C (af) and ro C (bs). Then either S is NP-complete or is contained
in one of HVy, SpVs or EpVe.

Proof. First note that {(a),(b)} C Spz by Lemma 11. Now, I(p)J is de-
rived from {p(a)l,p(b)J}. It follows from Theorem 4 that either Szz is
NP-complete or it is contained in one of H, Sp, &p.

Suppose first that we have (d) C rq C (dsf). By using Lemma 12,
we conclude that either Spz is NP-complete or Spr C V. Furthermore,
I(= oo tdd~tss~ff~1)J is derived from {prql,prqJ}. Therefore we have (=
oo~ ldd=1ss~1ff~!) € Szz which now implies that either Szz is NP-complete
or Sz C H. We conclude that either § is NP-complete or § C H V.

We can now assume that rq contains (a) or (b) (or both). Suppose we
have (a) C rq; the second case is dual. It follows that, for every r € Sprz,
(d) C r implies (a) C r. If there exists ¥ € Spz such that ' N (fa) = (f)
then Spz N {(b), (bsd)} # @ by Lemma 11 which contradicts the assumption
just made. It can now be checked that Spz C Vs and we complete the proof
by considering two cases.

13



Case 1. Sp7r C Vs N Vg.
If Sz7 C Sp or Sz C &p then we get the required result. Otherwise there
exist r3, 74 € Szz such that r3 & Sp and r4 & Ep, that is, r3N(pmod 1) #
but (p) Z r3, and r4 N (pmods) # 0 but (p) Z r3. Now one can check that the
constraint p(d)y is derived from {Ir4J, JrsK,p(a)I,p(b)K}. Indeed, suppose
these constraints are satisfied. Then p(a)l, p(b)K imply IT < p < K.
Since (p) € r4 and (p) € r3, we have J~ < I'" and K~ < JT. It follows
that J— < p < JT, that is p(d)J. On the other hand, if p(d)J then, for any
choice of r3 N (pmod=f~1) and r4 N (pmods), it is easy to find intervals I and
K such that the constraints {IryJ, Jr3K,p(a)l,p(b)K} are satisfied. This
contradicts the fact that rq contains a and/or b.
Case 2. Spr € Ve.

It is easy to check that Spz contains r5 € {(sa), (da), (sda), (sfa), (dfa), (sdfa)}.
Then, p(dfa)l € S by Lemma 11, and we have (pmod—*f~') € Szz because
I(pmod—*f~1).J is derived from {p(dfa)l,p(b)J}. In particular, we obtain
that Sz7 C H or 877 C Sp. If 877 € Sp then § C SpVs. Otherwise there
is a relation rg € Szz such that r¢ N (pmod 1) # 0 but (p) € re. If
r6 N (mo) # 0, then p(a)J is derived from {IrgJ, Jrg K, p(a)l,p(b)K} and we
have a contradiction. Otherwise we get r7 = g N (pmod—f~1) C (d~}f~1).
Note that r7 € Sz7. Now one can check that the constraint p(d)I is derived
from {Ir;J,p(dfa)l,p(b)J} which leads to a contradiction. 0

Assume that (b) C r for all r € Spz or (a) C r for all r € Spz. By using
Lemma 6, we see that either S is NP-complete (if Szz is NP-complete) or
contained in one of the tractable subclasses WV, or WV}, where W € IZ7,.

Lemma 14 Suppose there exist 1,79 € Spz such that (b) Z r1 and (a) 7.
Then, S is NP-complete, Spt is contained in one of Vs, Ve, or Lemma 13
applies.

Proof. S is NP-complete if Spz is not a subset of Vg, Vs or V¢ by Lemma 12.
Thus, we consider three cases depending on which of these sets Spz is in-
cluded in. The claim obviously holds if Spz C V4 by the definitions of Vsy
and Vgy. Suppose Spz C Vs; then ro C (bs). If #1 can be chosen so that
r1 C (sfa) and r; # (s), then we can apply Lemma 13 with ry if (s) € r;
and with r; N (dfa) otherwise (since (dfa) € Spr by Lemma 11). If there is
no such r; then Spzr C Vey. For Spr C Vg the argument is dual. |

By duality, it is sufficient to consider Spz with Spz C Vsy.
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Lemma 15 If Spr C Vsy then either S is NP-complete or is contained in
one of the tractable subclasses listed in Theorem 5.

Proof. We consider three different cases depending on the value of r4 N (ba).

Case 1. rqg N (ba) € {(b), (ba)} (i.e. (b) C rq).

In this case we have (s) & Spz, since otherwise (dfa) € Spz by Lemma 11
and rq C (dfa). Thus (b) is contained in every non-trivial relation from Spz,
and we get the required result by Lemma 6.
Case 2. 7g N (ba) = (a).
Note that in this case we also have Spz C Vs so Spz C Vs N Vsy. We have
(dfa) € Spz by Lemma 11 since (d) C rq € Spz. If SpzN{(b),(s),(bs)} =0
then (a) is contained in every non-trivial relation from Spz, and we get
the required result by Lemma 6. Otherwise we have (b) € Spr (repeating
the argument from the beginning of Lemma 13). Then I(pmod—f~1)J is
derived from {p(dfa)l,p(b)J}. If (pmod='f~') € Szz then, as follows from
Theorem 4, either Szz is NP-complete or it is contained in one of H, Sp, So,
Sy, §*. Thus, if Sz7 is not NP-complete then S is contained in one of the
tractable subclasses HVy (since Vsy C Vi), SpVs, SoVsu, SqVsu, S*Vsu.

Case 3. rq N (ba) = 0.

Since p(d)! is derived from {qi17qI,q2rql,q1 < p < g2}, it follows that rq =
(d). We have (= oo~'dd~!ss~ff~!) € Szz because this relation is derived
from {p(d)I,p(d)J}. In particular, either Szz is NP-complete or is contained
in some maximal tractable subclass of A other than Sp and &p.

If SpzN{(b), (s), (bs)} # 0 then (b) € Spz by Lemma 11, and I(pmod~1f~1).J
is derived from {p(d)I,p(b)J}. Therefore either Szz is NP-complete or con-
tained in one of H, So, Sy, §*. Thus, if Sz is not NP-complete then § is
contained in one of the tractable subclasses HVy, SoVsu, SqVs#, S*Vsu.

Otherwise, every non-trivial relation in Spz contains (d). If Szz is in-
cluded in some tractable subclass except #, the result follows immediately
from Lemma 7. If that is not the case, then § C HVy. O

3.2.2 Case 2: Disequality

We assume now that (#) € Spp and (<) € Spp. The proof of this special
case contains exactly the same four steps as the proof of the previous case
but the proofs themselves are slightly different. We will frequently use the
result proved in the previous section so we state it explicitly as a proposition.
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Proposition 16 Let X C QA such that (<) € X. Then QA-SAT(X) is
tractable if and only if X is a included in one of the subclasses listed in
Theorem 5. Otherwise, QA-SAT(X) is NP-complete.

Lemma 17 S is NP-complete or Spr is contained in one of Vy, Vs, Ve.

Proof. Suppose that Spz is not NP-complete. Then, by Theorem 3, it is
contained in one of Vg, Vs, Vg, Vs, V¢. Assume that Spzr C Vs.

If (b) C rg for every non-trivial » € Spr then Spr C V. If (a) C rg for
every non-trivial » € Spz then Spz C Vs. If (d) C rg for every non-trivial
r € Spr then Spr C Vy. Otherwise we have (s) C rg C (sf). If (s) € Spy
then the constraint p(bdfa)l is derived from {q(s)I,p # q}. This contradicts
that Spz C Vs. If (sf) € Spz then the constraint p(bda)l is derived from
{q1(s£)1,q2(s£)I,q1 # q2,p # q1,p # g2} and we have a contradiction once
again.

If Spz C V¢ then the argument is dual. O

From now on we will assume that Spz is contained in one of Vg, Vg, Ve.

Lemma 18 Suppose that Spz contains two non-trivial relations r1,ry such
that 71 C (af) and ro C (bs). Then either S is NP-complete or is contained
in one of HVy, SpVs or EpVe.

Proof. The constraint p < ¢ is derived from {prsI,qriI} and the lemma
follows from Proposition 16. O

Assume that (b) C r for all r € Spz or (a) C r for all r € Spz. By using
Lemma 6, we see that either S is NP-complete (if Sz7 is NP-complete) or
contained in one of the tractable subclasses WV, or WV, where W € IZ;,.

Lemma 19 Suppose there exist 1,79 € Spz such that (b) Z r1 and (a) 7.
Then, S is NP-complete, Spt is contained in one of Vs, Ve, or Lemma 18
applies.

Proof. S is NP-complete if Spz is not a subset of Vg, Vs or V¢ by Lemma 17.
Thus, we consider three cases depending on which of these sets Spz is in-
cluded in. The claim obviously holds if Spz C V4 by the definitions of Vsy
and Vgey.

Suppose Spz C Vs; then r9 C (bs). If r; can be chosen so that 71 C (sfa)
and r; # (s) then we can apply Lemma 18. Indeed we can use Lemma 18
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with r; if (s) & r1; otherwise either (b) € Spz and p < ¢ is derived from
{p(b)I,qr1I} (and we can apply Proposition 16), or else (s) € Spz and
pr1 N (sfa)l is derived from {p(sfa)l,q(s)I,p # q}. If there is no such r
then Spz C Vgsy. For Spr C Vg the argument is dual. |

By duality, it remains to consider only Spz with Spz C Vsy.

Lemma 20 If Spr C Vsy then either S is NP-complete or is contained in
one of the tractable subalgebras listed in Theorem 5..

Proof. We distinguish three cases.

Case 1. (b) C rq.
If (s) ¢ Spz then (b) is contained in every non-trivial relation from Spz, and
we get the required result from Lemma 6.

Assume instead that (s) € Spz. Then the relations (pp~*mm~too~tdd—1ff~1),
(= ss71) are derived from {p(s)I,q(s)J,p # q} and {p(s)I,p(s)J}, respec-
tively. Therefore either Szz is NP-complete or is contained in one of Sp, &y,
So, §*, H by Theorem 4.

If (ba) C rgq then Spz C V4 NVs, and we get the required result. Suppose
now that (ba) Nrq = (b). Consider the constraint Ir.J derived from

{pral,p(s)J,qraJ, q(s)I,p # q}.

It can be checked that r is equal to (mm~too tdd~1ff 1) if (£) C rq and to
(oo~tdd—ff~!) otherwise. In either case we conclude that Sz7 is NP-complete
or else is contained in one of Sy, So, §*, H. The result follows.

Case 2. rqg N (ba) = (a).

Note that in this case we also have Spzr C Vs. If Spz N {(b), (s), (bs)} =0
then (a) is contained in every non-trivial relation from Spz, and we get the re-
quired result. Otherwise the constraint p < ¢ is derived from {prI,qrql,p #
g} where r is one of (b), (s), (bs). Now the result follows from Lemma 16.

Case 3. rq N (ba) = 0.

We have (= oo~'dd~!ss~1ff~!) € Szz because this relation is derived from
{pral,prqJ}. In particular, either Sz7 is NP-complete or is contained in
some maximal tractable subalgebra of A other than Sp and &p.

If Spz N {(b),(s),(bs)} # O then the constraint p < ¢ is derived from
{prI,qrql,p # q} where r is one of (b),(s),(bs). Now the result follows
from Lemma, 16.

Finally, If every non-trivial relation in Spz contains (d) then the result
follows immediately from Lemma 7. a
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3.2.3 Case 3: Equality
In the final part of the proof, we assume that Spp C {(=),(Z),(>)}. If

Spz contains two non-trivial relations 71,7 such that r{ Nre = @ then the
constraint between p and g derived from {pri I, groI} is one of #, <, >, which
contradicts the fact that Spp C {=,<,>}. It follows that the intersection
of all non-trivial relations in Spz is non-trivial and we denote this relation
by r’. We consider four different cases.

Case 1. ' N (ba) # 0.
The result follows immediately from Lemma 6.

Case 2. (d) C 7' C (sdf).
I(= oo 'dd1ss ff 1)J is derived from {pr'I, pr’' J} which implies that Sz7 Z
Sp and 817 € &p. So, if S77 is NP-complete, then S is NP-complete. Oth-
erwise, § is tractable by Lemma 7.

Case 3. r' = (sf).
I(= mm~1ss~1f~1)J is derived from {pr'I,pr'J}. It follows from Theorem 4
that either Szz is NP-complete or is contained in one of A=, A4;(1 < i < 4),
Bi(1 < i < 4). In the latter case S is contained in one of the tractable
subclasses WV or WV5

Case 4. ' = (s) or ' = (£).
Suppose that 7' = (s); the case 7' = (£) is dual. I(=ss™1)J is derived from
{pr'I,pr' J}. Moreover, r N (= ss~!) # () for each non-trivial r» € Szz, since
otherwise the constraint between p and g derived from {p(s)I,q(s)J, IrJ}
belongs to {#,<,>} which contradicts that S is closed under derivations.
We conclude the proof by showing that every subalgebra Szz in Allen’s
algebra satisfying the conditions above either is NP-complete or is contained
in one of £*, A=, A;,1 < i < 4. By Lemma 9, this implies that S is either
NP-complete or tractable.

Lemma 21 Assume that (= ss7!) € Szz. If rN (= sst) # 0 for every non-
trivial r € Stz then either QA-SAT(Szz) is NP-complete or Sz1 is contained
in one of £, A=, A;, 1 <i < 4.

Proof. The proof consists of two cases.

Case 1. There is a non-trivial r; € Szz such that r; N (ss7!) = 0.
Then (=) C 7. If every element r in Sz7 satisfies (=) C r then S C A=.
Otherwise there is ro € Szz such that (=) € r,. Note that, since Szr
is closed under derivation, it is also closed under intersection. We have
ro N (= ss 1) € S where ro N (= ss7 1) is one of (s), (s71), (ss7!). We may
without loss of generality assume that ro € {(s),(ss7*)}. It is not hard to
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check that if 7y € (= ff~!) then one of the following derivations gives a
non-trivial relation 7’ between I and K such that ' N (=ss71) = {:

{I’I”QJ, J'I‘lK, I?‘lK}, {J’I”QI, J'I‘lK, I?‘lK}.

We can therefore assume that r; C (= ff~1). If (s) € S then, for every r € S,
r N (ss7!) # 0 implies (ss7*) C r, and so & C &*. Let (s) € Szz. It can be
verified that the relation (pmods) between I and L is derived from

{I'I"lJ, K'I"lJ, K(S)L}.

Thus (s) is contained in each of rp, rm, ro, r4, and we conclude that S C £*.

Case 2. r N (ss1) # 0 for every non-trivial r € Sz7.

Assume that QA-SAT(Szz) is not NP-complete. Then Szz is contained in
one of 18 subclasses from Table 3. We now show that if Szz is contained
in one of 12 subclasses from Table 3 not listed in this lemma then it is also
contained in one of those listed. Note that all relations rp, rm, ro, rq4, and
r¢ have non-empty intersection with (ss™').

If Sz7 C Sp then S77 is contained in A; or A depending on whether rp
contains (s=') or (s). The argument is similar if Sz7 C Sy or Szz C So.

Let Szz C &p. If (s7!) C rp then it follows that (ss™') C r whenever
7N (pmod) # 0 or r N (p 'm 1o 'd1) # (). Then Szz is contained in Aj
or A4 depending on whether r¢ contains (s) or (s7'), and the same holds if
(s) € rp. The argument is similar if Sz7 is contained in one of £y, &o, Bi, B>
If Sz7 is contained in Bs or By then one can show (as above) that Sz7 C A;
or S g .Ag.

It is obvious that if Sz7 C S* then Sz7 C A=.

Finally, assume that Szz C #H. It follows from condition 3) of # that
ro C 7p and 7o C rm. We consider four subcases:

Subcase 1: (s) C ro and (s) C ry.

Then, Sz7 is contained in A3 or A4 depending on whether ¢ contains (s) or
(5.

Subcase 2: (s) C ro and (s') C ry.

If (s) C r¢ then, by condition 1) of #H, we have (d) C r¢, and, consequently,
(s7') € r¢. So, in any case we have (s™') C r¢. It is easy to verify that
S1z C As.

Subcase 3: (s!) C ro and (s) C ry.

If (s7') C r¢ then, by condition 2) of H, we have (o=') C r¢, and, conse-
quently, (s) C r¢. So, in any case we have (s) C r¢, and, hence, S77 C A;.
Subcase 4: (s7') C ro and (s7') C ry.
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By applying condition 2) of H to rq we get that (o~') C ry, and, therefore,
(s) € rq. Then apply condition 1) of H to ro and obtain that (d=') C o, and,
consequently, (ss7!) C ro. Once again, we conclude that Sz7 is contained in
As or A4 depending on whether r¢ contains (s) or (s 1). O

4 Conclusions

We have studied the computational complexity of the Qualitative Algebra
which is a temporal formalism that combines the point algebra, the point-
interval algebra and Allen’s interval algebra. We have identified all tractable
fragments by using combinatorial techniques and this method has made it
possible to avoid the use of computer-assisted enumeration techniques. The
tractable fragments have a clear description which allows one to easily incor-
porate the checking for these cases into general-purpose temporal constraint
solvers. To the best of our knowledge, this is the first time a temporal
constraint language able to represent different temporal entities (points and
intervals) has been completely classified with respect to tractability. We have
also proved that all other fragments are NP-complete.

There are several possible ways to continue this work. One continuation is
to study the complexity of QA extended by metric constraints — for instance,
Meiri [16] suggests one such extension. Investigations of such formalisms can
probably be carried out using methods similar to those found in [13]. Another
interesting future research directions is to see if these results can be used for
improving heuristics or constraint solvers for temporal reasoning.
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