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The Concise Oxford Dictionary defmes 'swan' as:

[ajlarge waterbird of genus Cygnus etc., with long
flexible neck, webbed feet, and in most species snow
white plumage. (OED, 1982, p. 1077)

This is not a definition in the mathematical sense, since it is
neither possible to say with absolute certainty that every
thing satisfying the definition is a swan, nor that every swan
satisfies the definition. Neither is it reasonable to assume
that deductions made from this definition would apply to
all swans, nor that something which is true of all swans
could necessarily be deduced from the defmition. Yet people
have few problems thinking and reasoning about swans.

By contrast, a mathematical definition does have the
property that everything satisfying it belongs to the corre
sponding category and that everything belonging to the
category satisfies the defmition. Deductions made from the
definitions provide us with theorems that hold for every
member of the category and, in the context of the problems
provided by those lecturing to first year undergraduates,
any theorem a student is asked to prove can be deduced from
the defmitions. Yet many students have significant difficul
ties thinking and reasoning about mathematical concepts.

This article explores these differences by contrasting three
approaches to mathematical reasoning. Two of these are
more and less sophisticated versions of strategies that we
claim are employed in everyday situations. The third type
is that required of undergraduates taking proof-oriented
mathematics courses. By exantining the consequences of the
use of these approaches in a first course in real analysis we
address the following two questions.

\. Why is the transition to university mathematics
difficult?

2. Why is analysis particularly hard?

The first section of this article introduces three terms that
are significant in our discussions: specific object, category and
property. We then illustrate the three reasoning strategies using
examples from a substantial study of students' reasoning
behaviour in analysis (Alcock, 2002). Finally, the framework
built up from study of these examples is used to suggest rea
sons for student difficulties with the transition to university
mathematies in general and with analysis in particular.

Why is the transition to university mathema·
tics difficult?
In the UK context. as in many others, the transition from
school to university mathematics could be seen as an amal
gam of many transitions: social transitions (from relatively
homogeneous home environments to heterogeneous ones);

pedagogical transitions (from a personal teaching relation
ship to a fairly impersonal one; from immediate feedback
to delayed response; from clear authority relationships to
unclear ones); content transitions (from more to less
contextualised mathematics); philosophical transitions (from
utilitarian to systematic viewpoints), and so on. The issues
addressed here cross the last two transitions listed: we focus
on the nature of the mathematical objects that students
are asked to deal with and the ways in which they reason
about them.

We might begin to explore the nature of these changes in
objects and reasoning by asking what university mathema
tics requires that school mathematics does not. One
well-researched answer is 'formal proof'. Other authors
have given careful delineations of proof-related behaviour
(e.g. Harel and Sowder, 1998) and have attributed this
behaviour to factors such as relationship with authority and
students l previous educational experiences. Here, the focus
is on the cognitive origins of behaviour that is commonly
considered incorrect or unproductive in situations requiring
such proof. We address this by drawing together ideas from
the cognitive psychology literature on human categorisa
tion and data from task-based interviews with university
students taking their fIrst course in real analysis.

The framework developed in the next section describes
different student reasoning approaches in terms of how they
handle specific objects, categories and propenies.

We use the term 'specific object' in the sense of Sfard's
(1991) structural notions in mathematics: mathematicians
often think of mathematical notions as "static structure[sj,
existing somewhere in space and time" (p. 4). It is difficult
to clarify this meaning further, because of the fluidity with
which mathematicians move between thinking of different
constructs as objects at different times. However, in the
restricted context of a first course in analysis, we can be
more precise by associating its meaning with the logical
structure of the topic. Thus, specific objects in this work
include specific sequences, such as (lin) or (cos(n)), specific
series, such as 1 n or 1 'I,., and specific real numbers, such
as 0.999....

Specific objects are collected together in categories, each
of which is usually associated with a mathematical term,
such as 'convergent sequence'. This tenn is used instead of
the more usual 'set', since an important distinction in this
article is that between formally defined mathematical sets
and everyday human categories. So while, formally, 'strictly
increasing sequence' contains all and only those sequences
in which each term strictly exceeds its predecessor, we shall
see that not all students appear to think about such categories
in this way.
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An object may have properties and, indeed, all the spe
cific objects in a category may have properties in common.
For example, a sequence might have the property of mono
tonicity and every object in the category of convergent
sequences defmately has the property of being bounded.

These terms allow us to highlight what university mathe
matics requires of students that school mathematics dues
not. School mathematics primarily involves calculations
performed upon specific mathematical objects. For example,
students are required to integrate a specific function or solve
a specific differential equation. Even the few proofs encoun
tered at this level (in the U.K. context) have this property:
students are asked to prove by induction that this formula
gives the sum of the fITSt n terms of this series or prove that
this trigonometric identity is equivalent to thot one.

Proof at university goes beyond this. Work with specific
objects is still required: students are asked to fmd the limit
of a given sequence or to find the rational number that is
represented by a given infinite decimal. However, they must
now also work with entire categories of ohject,;;. This might
involve showing that a specific object is an element of
a category - for example, that a given sequence is conver
gent - or showing that a whole category is contained within
another category - for example, that all convergent sequen
ces are bounded. It might be argued that at least thc first of
these is essentially equivalent to a calculation on a specific
object. Logically this may be the case, but we will argue that
psychologically it is not

We will build up a framework describing how different
strategies for reasoning about whole categories develop
and how these differ from mathematical notions of proof and
deduction. In particular, we will outline three distinct stra
tegies. Two of these rely on the use of a 'prototype': a
representation that an individual considers prototypical of
the category and which might be seen to correspood to an
individual's schema for an object-concept (Skemp, 1979)
or to a frame with default values instantiated (Minsky,
1975). The last strategy, at least formally, abandons the use
of prototypes in favour of definitions.

Briefly, these three strategies are given below.

\. Ceneralising. Students begin with a prototype,
inspect it in order to evaluate or generate a conjec
ture and generalise their conclusions to the whole
category.

2. Property abstraction. Students abstract a salient
property from their prototype and make deductions
(intended for the whole category) based on this.

3. Working from definitions. Students use agreed
defining properties, making deductions (fur the
whole category) based on these.

Generalising
Wendy is typical of students who appear to use the ftrst stra
tegy. In these excerpts, she is working on the following
question during week 9 of a real analysis course (described
in more detail in Alcock and Simpson, 2001).

When doe' I (-~)" converge?

Justify your answer as fully as possible.

Wendy begins by expanding the given series and identify
ing a special case of it as a familiar object. This also reminds
her of a test that might be useful.

W: Erm, just, if x is bigger than or equal to onc then the
series will be erm ... minus x, plus x squared over
two, minus x cubed over three, plus x to the four
over four and then continuing on.

W: If x is one, it'll be, minus ... we've done that, that
converges, doesn't it. Because we did the one
plus a half plus a third plus a quarter plus a fifth
doesn'1 converge yet ... when you have the alter
nating ... what was that alternating series test?

She and her interview partner Xavier establish similar
known results for other special cases and Wendy then con
siders intermediate values.

W: Erm, if ... if you take x as between nought and one,
say x equal to a half, erm ... and put it into the
series, you'd get minus a half, plus a half squared
over two, minus a half cubed over tluee, and so on

X: So that's going to he smalJer.

W: Erm, the terms are decreasing in size, so ... Xli is
bigger than x,. J [she misreads notation hereJ

X: And tending to zero.

Pause (wriring).

W: Converges? 1

In this instance, Wendy is using I (;?' as a generic exam
ple or 'prototype' in reasoning about a category of objects.
She believes her reasoning will generalise and, in this
instance, her fmal answer is correct. Her work shows a solid
relational understanding of the material: she is able to switch
sensibly between representations of familiar objects, iden
tify potentially useful results, make qualitative comparisons
between different objects and organise her results.

In this situation, Wendy's strategy is efficient and suc
cessful. We argue that she is working in exactly the way that
one works with human cultural categories. Rosch's (1978)
work indicates that such categories have structure that could
not derive from a 'classical' interpretation of categories as
mathematical sets. For example, some (perhaps most) cate
gories do not have well defined boundaries - there are
no criteria fur deciding absolutely who belongs to the cate
gory 'tall man' or to the category 'chair'. Similarly, some
memhers of the category 'bird' have clearer categorical
membership than others; in a U.K. context for example, a
robin is more clearly a bird than a turkey is.

The latter phenomenon is known as a prototype effect.
Within a cnlture, ratings for the extent to which a member of
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a category is considered a 'good example' are consistent
across various experiments. This, in itself, does not consti~
lUte any panicular theory of the use of categories in
cognitive processing (Lakoff, 1987), but individuals must
somehow cope in a society where categories are of this
nature. We have claimed elsewhere (Alcock and Simpson,
1999) that a natural way to reason about categories under
these circumstances is to use the general cognitive strategy
(illustrated in Figure I below): the individual assesses a con
jecture by evaluating its validity for a prototype and draws
a conclusion by generalising to the category as a whole.
Others have accounted for human deductive capacity in a
similar way (e.g. Johnson-Laird and Byrne, 1991).

generalise

W: Is that enough to, like, justify it ... a lill1e diagram,
what have you?

W: Well if it converges, you get closer and closer ...

Pause (drawing).

I: Well, I'd like you to prove it, if you can.

W: Oh dear! (laughs) Oh right, well, if a to the n is
increasing ... (writing) ... then it's bounded ...

After this prompt for proof, her aUempt at this is not much
more sophisticated: she describes her picture, but provides
no more indication of the logical necessity of her conclusion.

W: It's convergent [draws a monotonic increasing con
vergent sequence] ... yes so if it's convergent it's
always ... or ... say it could be the other way round
it could be, going down this way [draws a mono
tonic decreasing convergent sequence]. It con
verges, so it's always above that limit.

In effect, Wendy is offering what Harel and Sowder (1998)
would call a perceptual proof, one which is inadequate due
to a failure to look beyond features of the pmicular image
she has in mind (see also Presmeg, 1986). In fact, it proves
difficult to persuade her to consider convergent sequences
that are not monotonic. Whether this occurs because she
does not think that there are any such sequences or whether
she believes them to be in some way less imponant is not
clear. In any case, she is not willing to move beyond her
strategy of examining a prototype and generalising.
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Property abstraction
The next, more sophisticated, reasoning strategy still relies
on prototypes. However, rather than making a direct gener
alisation from the prototype to the whole category, we see
students attempting to abstract propenies from their proto
type and work with those propenies to justify a conclusion.
Cary's initial approach to the week 7 convergence/bounded
problem is similar to Wendy's. He establishes an answer
using generalization from visual prototypes, making the
sketch given in Figure 2 and describing his intentions.

Figure 1

In these terms, Wendy uses L (~' as a 'good example' of
the category she was asked to investigate and makes (cor
rect) statements about the whole of the category by
examining this and similar prototypes. While this strategy
yields a correct answer in this case, at no point does Wendy
verify the fact that her conclusion really does hold for all
values of x within the range she is considering. The pro
blems associated with this omission can be seen in an extract
from her earlier aUempt at the following question, posed in
an interview in week 7 of the same course.

Consider a sequence (a,). Which of the following is
true?

a) (a,) is bounded => (a,) is convergent;

b) (a,) is convergent => (a,) is bounded;

c) (a,) is convergent~ (a,) is bounded;

d) none of the above.

Justify your answer.

In this case, the difference between Wendy's notion of jus
tification and mathematical proof becomes clear. Wendy
begins as follows (I ; interviewer).

Figure 2.' Cary S sketch ofconvergent sequences

C: I've drawn ... er ... convergent sequences, such that
... I don't know, we have er ... curves ... er ...
approaching a limit but never quite reaching it,
from above and below, and oscillating either side.
I think that's preUy much what I've done. I was
trying to think if there's a sequence ... which con
verges yet is unbounded both sides. But there isn't
one. Because that would be __ . because then it
wouldn't converge. Errn ... so I'll say b) is true.
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Though initially he is still working with prototypes, we can
see a difference from Wendy's work. Cary considers more
examples, making explicit his inclusion of non-monotonic
sequences. Following litis, he tries to abstract properties
from his prototypes in order to formulate arguments, evalu
ating each candidate property by performing a counter
example check to see whether there are any cases for which
litis would not be valid.

C: If it converges ... that has to be ... well I don't
suppose you can say bounded. It doesn't have to
be monotonic. Erm ...

C: Yes, I'm trying to 11tink if there's, like ... if you can
say the first term is, like, the highest or lowest
bound but it's not. Because then you could just
make a sequence which happens to go ... to do a
loop up, or something like that.

Finding an appropriate property proves difficult, which is
not surprising since it took the mathematical community a
considerable time to formulate a property that would ade
quately capture the essence of convergence of sequences.

Tom, who in many ways works like Cary, does fmd such
a property in working on litis question, and he attempts a
deduction from his choice.

T: ... If a, tends to big A, okay ... Then erm ... a, does
not tend to infinity, therefore there is a bound, a,
lower than infinity ...

Tom is correct in asserting that since the sequence is
convergent it cannot tend to infinity. However, his coun
terexample checking is not as thorough as Cary's and litis
means that his deduction is not valid: a sequence that does
not tend to infinity may nevertheless fail to have an upper
bound (although it seems likely that a student's prototype
for this type of sequence would have an upper bound).
Nonetheless, this gives us an overview of the abstraction
and-deduction strategy, which is contrasted with the gener
alisation strategy in Figure 3.
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that properties of objects are isolated. Here, the student's
prototype need not be a specific object and a property
abstracted from the individual's prototype is not necessarily
isolated from it for them, although it may appear to be so
for a listener.

In any case, abstraction-and-deduction yields more math
ematically acceptable conclusions than direct generalisation,
although the latter remains favoured in everyday reasoning.
This is no coincidence and the difference is related to the
goals of any piece of argumentation. In mathematics, as in
any technical field, accurate communication is necessary.
Participants must be sure that they intend to indicate the
same objects when using a category word. Hence, while they
may 11tink using their individual prototypes, they communi
cate by abstracting verbally formulated properties and
argning in terms of them.

In everyday situations, this type of precision is not usually
necessary and may be a hindrance to cognitive efficiency.
In their own reasoning, individuals may generalise directly
from a prototype without needing to consider explicitly what
properties of this prototype make a conclusion valid. In
cases where communication is required, the reasoner relies
in general on the other party's prototype being similar to
their own or on citing specific cases and inviting agreement
with the generalisation. In effect, they attempt to communi
cate by sharing their ideas of prototypes rather than ofentire
categories. Most of the time this communication will suc
ceed, so the approach is quick and efficient, and is usually
valued over guaranteed accuracy in everyday reasoning
(Balacheff, 1986).
So we might conclude that Cary is engaging in better math
ematical11tinking than Wendy. However, as noted above, he
fmds it difficult to choose a property that will allow him to
construct a satisfactory argument. He rejects the assump
tion of monotonicity and the possibility that the first term
of the sequence must be one of the bounds. A mathematician
watching this behaviour would recognise that the student
needs to introduce the definition of convergence. In fact,
with some prompting, Cary is able to do litis and to use the
definition to outline an appropriate, though incomplete,
argument. This is still very much tied to a picture for him 
in a similar way to the work of the student Chris discussed in
Pinto and Tall (2002). Cary's diagram is given in Figure 4.

individual's
category

generalise deduce ~
1

I

"conclusion'~ _!:~1 !g,u}~s~a!~ _"conclusion"

Figure 3: Abstraction and deduction

Our use of the term abstraction differs slightly here from
that described by Harel and Tall (1991), in which they say

Figure 4: Cary sillustration ofhis definition-based argument

C: Yes, your no ... that could just be called your no
instead, so going back to your defInition up there,
there exists this point here, such that after that
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point, i.e. when n is greater than no, the sequence
... that statement there won't be less than any
epsilon which you just happen to pick ... And so it's
... and so the upper bound - so because there's
finitely many terms before nO. then er ... your upper
bound will either be plus or minus epsilon, or it'll
be the maximum of those finite terms beforehand.

definition

choose

"conclusion'~_~l(~.t ~'1ui\~S!.Ll~U~ _ "conclusion"

,,":""_#,,---_ ......._----.... '-...~ ...
" , ~ ...

Figure 5: One properry is chosen as the definition, precisely
determininl? the mathematical catel?ory

A communication breakdown
Although students are rarely involved in selecting defini
tional properties (Harel and Tall, 1991), working from those
dictated by their teachers might in principle be expected to
make their task easier. Proof tasks in beginning advanced
level courses are usually quite straightforward in structure:
in order to show that an object is a member of a category,
one checks that it satisfies the definition; and in order to
show that a conjecture is true of all objects in a category, one
makes deductions from the defmition. Hence, while formu
lating the detail of such deductions may be difficult, the 'top
level' (Leron, 1985) or 'proof framework' (Selden and
Selden, 1995) is often very simple.

deduce
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the definition means that any correct deductions he makes
will be valid for all members of the mathematical category
of convergent sequences.

We do not argue that mathematicians think solely in terms
of definitions, although our panicular example happens
to show no evidence of the use of a prototype. Indeed, pro
totypes can remain vital: Tall's (1991) description of
Poincare's thinking and Thurston's (1990) self-rcflection
demonstrate the importance of prototypes as a source of both
conjecture and guidance for the direction of deduction. There
is no inconsistency here: individuals can learn to fonnulate
arguments within the logical structure of mathematics while
still reasoning using the same psychological strategies as in
other contexts. Indeed, we argue that the inclination to work
from definitions is a ~prefix' imposed on general thinking
skills (the 'rigour prefix', described in Alcock and Simpson,
1999). Mathematicians might think in terms of prototypes,
but they are aware that, in order to ensure universal validity
for their arguments, they must eventually fonnulate these in
tcrms of appropriatc dcfmitions.

working with definitions
While Cary can work with definitions, this is not his first
approach; it requires several prompts to persuade him to
write down a reasonably complete defmition and to use this
in preference to his original strategy. By contrast, in answer
ing the same question, Greg shows immediate recourse to
the defmition and rapidly outlines an argument.

G: Right. It's easiest to use the definition. Just say
definition of ... of convergence is that eventually
... Okay! ... The defmition of convergence is even
tually you'll find epsilon such that ... for all n
bigger than big N, epsilon - no an minus a is
smaller than epsilon. So you've got it bounded
between ... a, is ... a plus epsilon ... a minus epsilon
even. And a plus epsilon. And for ... n bigger than
big N. And for all n smaller than big N, you know
that Un has a minimum, and maximum because it's
fmite. Er ...

This approach is radically different from those seen so far.
Greg does not generalise directly from a prototype (as
Wendy does), nor does he attempt to abstract appropriate
properties from a prototype in order to make deductions (as
Cary does). His approach does use a property - but it is the
defining property of convergence of a sequence.

The result is a fundamental difference in the nature of the
category the students work with. For both Wendy and Cary,
the category is pre-existing (and non-classical) and for Cary
the properties of the category follow from it. Greg's
approach to property use, however, goes beyond Cary's by
inverting the property/category relationship: the defining
property determines the category.

Since a definition is precisely a set of necessary and
sufficient conditions for category membership, a mathemat
ically-defmed category has a fixed boundary and no 'better'
members. So, once a defmition is chosen, both the original
objects and any individual's prototype constructed through
experience with those objects, become secondary in impor
tance to the property itself (cf Gray et al., 1999). This is
illustrated in Figure 5.

The process of choosing such properties is institution
alised within the mathematical couununity. While defmitions
such as those used by Greg can often be traced to properties
abstracted from an individual's prototype, one function of
the community is to debate which of these properties best
capture what is common to those objects in the category
under discussion (Lakatos, 1976). This is a worthwhile
enterprise, because making such decisions facilitates com
munication on a large scale by making reasoning in the
subject systematic (Bell, 1976). Greg's work reflects the
results of this debate in analysis and his appropriate use of
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Why is analysis hard?
We can now offer an explanation of why real analysis, of the
topics studied at the beginning of a mathematics degree,
proves particularly difficult. Definitions in analysis are
logically complicated; they often involve multiple mixed
quantifiers (DubinskY, Elterman and Gong, 1988). However,
teachers of analysis also typically make use of visual repre
sentations of objects and results. Such representations are
useful in building prototypes, such as those seen in use by
Wendy and Cary, These prototypes are in turn conducive to
arguing by direct generalisation: it is easy to convince one
self that an increasing sequence which is bounded above
must converge, without recourse to abstracting properties
or formulating algebraic arguments.

Indeed, considerable exasperation may result when stu
dents' prototypes provide them with a strong feeling of
intuitive intrinsic conviction, but they are asked to justify
their assertions precisely (Fischbein, 1982), The requirement
to use the complex definitions means that they are often in
a position from which they must prove something they con
sider obvious using algebraic formulations which make
them feel insecure (Gray et al., 1999).

Comparing analysis with other beginning university sub
jects such as group theory shows how much more significant
the problem is in analysis. Defmitions in group theory may
be long, but they are logically simpler than those in analysis.
Other types of representation are less readily available or,
at least, less often taught in the early part of the course.
Hence, in group theory, it is likely that more students will
produce work that competently makes use of the deftnitions,
This does not mean that they necessarily understand the
structure of this topic or the role that defmitions play within
it, only that these are easier to handle and that they have no
obvious other option.

Indeed, it would be interesting to investigate the conse
quences of the difference for student complaints. Since the
visual representations used in analysis occupy an interme
diate position between realistic pictures and verbai/symbolic
representations (Gibson, 1998), these appear more concrete.
We may find that complaints are distributed so that analysis

Crucially, it may not be apparent to either party that this
communication breakdown has occurred. In cases where
the technical meaning of a term is similar to - or perhaps,
derived from - the everyday meaning, there will be a large
overlap between a student's idea of what is in the category
and the formal version. Hence, there may be very few cases
where conflict seems to arise and both student and teacher
may feel that they are communicating successfully.

Hence, one reason for the difficulty of the transition to
university mathematics is that certain reasoning strategies
are inadequate when applied to university mathematics,
although they may be efficient and successful in non-tech
nical contexts and in the kind of reasoning with specific
objects required by school mathematics. The student must
lcarn to overridc thesc strategics with the ncw approach of
working from the dictated defInitions, but since the role of
mathematical definitions usually remains below the level of
consciousness of working mathematicians, this is rarely
communicated and may be far from transparent.
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Figure 6: Contrasting the use ofdictionary and mathematical
definitions

However, as demonstrated by the excerpts from inter
views with Wendy and Cary, and as noted elsewhere in the
literature (Moore, 1994), the shift from "show that x is X"
to "show that x satisfies the definition of X" is not one that
all students readily make. The status of definitions in math
ematics seems to elude them and this is the source of our
earlier claim that, psychologically, showing that an object
is a member of a category is quite different from perform
ing calculations on this object.

To be more accurate, we might say that what eludes the
students is the distinction between a dictionary defmition as
a description of pre-existing objects and a mathematical
definition as the chosen basis for deduction, one which
serves to determine the nature of the objects. The result is
that a breakdown in communication occurs when a lecturer
gives the student a definition. In a non-technical context,
good students do not simply learn a definition, they use
further experience with examples to deepen their under
standing of the concept.

So when a lecturer provides a mathematical definition,
expecting the student to work with it in future, the student
may try to build or refine a prototype for use in this non
technical way and perhaps abandon the definition once this
is accomplished (Vinner, 1991). If the lecturer also provides
examples, intending them to be illustrative, the student may
even construct their prototype on the basis of experience
with them, ignoring the definition altogether. This contrast
between using a dictionary definition to construct a proto
type and using a mathematical definition to generate a
category is illustrated in Figure 6.

t
dictionary __ ~'.2.t '::'~\::,I~';~iI~U':: _ definition
definition
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attracts more comments like: "!t's obvious, but I don't know
how to prove it" and group theory more comments like "It's
just too abstract".

Thus, in analysis, the availability of visual representations
means that more students initially have access to a way of
coming to understand the concepts. The understanding gained
in this way means that they feel less need to engage seriOlL,ly
with the complex algebraically-expressed properties from
which the formal categories are constructed. So, paradoxi
cally, analysis may be difficult not ouly because the material
is complex per se, but because it is initially less 'abstract' than
other beginning subjects in advanced mathematics.
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