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Abstract 

Pre-weaning pup mortality in a UK grey seal breeding colony (North Rona) was 

examined in relation to the local adult female density over two breeding seasons. 

Accurate, fine scale maps of daily seal locations within a GIS database permitted the 

extraction of measures of female density determined at a range of spatial scales from 

5m to 50m around each pup on the date of death.  Adult densities around live pups 

provided the null distribution of adult densities which were tested against the 

distribution of densities where deaths occurred.  Pre-weaning pup mortality at this 

colony was not related to any of our density measures.  The proportion of pups dying 

each day showed no seasonal trends.  Analysis of topographic features from a sub-

metre Digital Terrain Model for locations where deaths occurred suggested that there 

were fewer mortalities in prime pupping habitats.  This could have been a direct effect 

of habitat or the relative quality of mothers in these habitats.  The distance separating 

mothers and pups tended to be greater on the periphery of the colony compared to 

more central areas.  Pups in the peripheral areas may be more exposed to predation by 

gulls. 
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INTRODUCTION 

 

Many species aggregate to breed.  Advantages of group breeding include reduced risk 

from predation and an increased ability to detect and to exploit resources, including 

mates (Sutherland, 1996).  However, these advantages are often traded against costs, 

such as increased risks of mortality, arising from density dependent processes of 

depletion, interference and predation (Sutherland, 1996).  Density dependent mortality 

has been shown to occur in a wide range of vertebrates during their temporary 

breeding aggregations (reviewed by Sinclair, 1989), largely due to limitations on the 

availability of space or food.  Much of this density dependent mortality impacts on 

juveniles (Sutherland, 1996).   

Density dependent pup mortality has been suggested for some pinniped species at 

some breeding colonies (Arctocephalus gazella: Doidge, Croxall & Baker, 1984; 

Arctocephalus australis: Majluf, 1992; Harcourt, 1992; Mirounga angustirostris: 

Riedman, 1990; Mirounga leonina: Baldi et al., 1996).  However, comparisons of 

overall levels of mortality between different breeding colonies with measures of 

breeding density derived from colony-wide counts of animals do not consider an 

individual’s environment at the specific location and time of its death (i.e. within a 

spatial and temporal scale at which the actions of conspecifics are likely to impact 

directly on an individual).  Few studies have examined variation in mortality within a 

colony in relation to adult density and habitat variation measured at this ‘local’ 

resolution.  Whilst some factors that may influence mortality are observed at larger 

scales (environmental variables such as weather conditions and tide), it can be argued 

that the impact of these factors on individuals depend upon their interaction with the 

individual at a local scale.  For example, an individual’s exposure to the prevailing 
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weather may depend upon the interaction of weather with local topographic features.  

Although weather parameters can easily be observed and measured at larger scales, 

they are experienced by individuals at local scales.  Many other potential causes of 

individual deaths, particularly those associated with conspecifics (Baker, 1988; Baker 

& Baker, 1988) certainly operate at the scale of the individual and not the colony.  

Therefore, it is important to examine pup mortality with regard to these local scale 

measures.  Similarly, as breeding densities often vary through a breeding season, it is 

necessary to assess local density at the time of death in order to ascertain if density is 

a potential cause of pup mortality.  

Pinnipeds generally aggregate to breed (Bartholomew, 1970), frequently on island 

sites that are typically free from terrestrial predators.  Many phocids rely upon stored 

energy reserves (blubber) to provision themselves and their pups during the annual 

breeding attempt.  Thus, in species such as the grey seal (Halichoerus grypus) 

breeding in the UK, predation and local food resources are generally excluded from 

considerations of density dependent pup mortality within breeding aggregations.  The 

primary candidate amongst potential determinants of pup mortality is likely to be 

interference from conspecifics.  As such we would expect a relationship between local 

density and pup mortality.  Density dependent pup mortality on grey seal colonies has 

been suggested by several studies (e.g. Boyd, Lockie & Hewer, 1962; Boyd & 

Campbell, 1971; Coulson & Hickling, 1964; Summers, Burton & Anderson,1975).  

Breeding colony topography has also been implicated as a factor in pup mortality.  

Boyd et al. (1962), Coulson & Hickling (1964) and Summers et al. (1975) noted the 

higher mortality rates close to the major access routes to the colony.  However, the 

relationship between topography and mortality has not been quantified at the scale of 

the individual.  
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Grey seals in Scottish waters aggregate to breed during each autumn, often on 

remote islands, such as North Rona.  Individual females spend 18-20 days ashore, 

during which time they each bear and suckle one pup, come into oestrus towards the 

end of lactation and are mated.  Of all the pups produced in a year, approximately 

95% are born during a six week period (Harwood et al., 1991; Hiby et al., 1996).  

Hence, there is a turnover of females during the breeding season.  At North Rona 

females generally remain with their pup throughout lactation (median daily movement 

of mothers is 10m from pupping location).  Females aggregate around preferred habitat 

features (pools of water) (Twiss et al., 2000a; Twiss, Thomas & Pomeroy, 2001), with 

variation in density related to habitat suitability (Twiss et al., 2001).  Males compete 

to maintain positions on the colony in areas that hold high densities of females 

(Anderson and Fedak, 1985; Twiss, 1991; Twiss, Anderson & Monaghan, 1998).  Sex 

ratios on North Rona are typically in the order of 1male to seven females (Anderson 

and Fedak, 1985; Twiss et al.,1998). 

Here, we are able to investigate the occurrence of pre-weaning pup deaths within 

the grey seal breeding colony of North Rona using fine scale accurate mapping of pup 

and adult daily locations within a Geographical Information System (GIS).  We use 

these data to test the null hypothesis that pup deaths are not related to measures of 

local adult female density.  By linking these location data to a sub-meter accurate 

Digital Terrain Model (DTM) of the colony we also test the null hypothesis that levels 

of pup mortality are not related to local topography. 

 

 

METHODS 
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Study site  

The grey seal colony on the Scottish island of North Rona (59 06' N, 05 50' W) was 

established prior to the 1880s and has been the subject of studies of reproductive 

behaviour for 40 years (Boyd & Laws, 1962; Pomeroy et al., 1999).  The main seal 

breeding area is on the low lying northern peninsula (Fianuis), measuring 1.0x0.3 km.  

Our study area encompasses the southern portion of this peninsula covering 

185000m
2
.  The duration of the study period in both the 1997 and 1998 breeding 

seasons extended from the onset of breeding at North Rona to past the time of 

maximum number of adults ashore (see Fig. 1a and b). 

 

Mapping of seal locations 

During the 1997 and 1998 breeding seasons the daily locations of all seals within the 

North Rona study area were mapped precisely on detailed fine grain, geo-referenced 

maps of the breeding colony.  Maps incorporating detailed habitat features and a 

10x10m grid were derived from digitised geo-rectified high resolution aerial 

photographs (Twiss et al., 2000a, 2000b, 2001).  Every seal was identified by sex and 

age and individual identities where known, with all pups being classified into either age 

categories ‘I’ to ‘V’ (based on the well established descriptive age classes of Boyd et 

al., 1962) or as dead pups.  All these daily maps and classifications were digitised into 

an ARC-INFO GIS database (Twiss et al., 2000 a, 2000b, 2001).   

 

GIS data extraction 

From these GIS coverages (topologically linked geographic features with their 

associated descriptive data) of seal locations for each breeding season we extracted 

the locations of all dead pups and their associated dates of observation into a new GIS 
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coverage.  Most dead pups remain on the North Rona breeding colony for a 

considerable period (see results).  Therefore, in our data-set successive daily maps 

contained repeat records of the same dead pup.  These repeat records of dead pups 

formed readily distinguishable clusters of locations within our composite GIS 

coverage of dead pups (dead pups did move marginally; artefactually through minor 

mapping errors, but also in reality through the actions of other seals and in particular 

scavenging gulls).  Hence, for each cluster we selected the location with the earliest 

date, and used this as our representative location for the mortality and the date on 

which it was first recorded as its day of death.  These selected ‘first’ occurrences of 

each dead pup were generated into a new coverage, one for each breeding season.  We 

then used these coverages to automatically extract from daily coverages of female 

locations the number of adult females within a specified radius of each dead pup on 

the specific date on which the pup died.  This process was repeated to extract the 

number of adult females in successively increasing radii, from 5m to 50m in 5m 

increments.  Thus, this process provides measures of the local adult female density, on 

a range of scales, around the location of each dead pup on the day of its death.  This 

day-specific approach combined with the flexibility in the scale of density 

measurement, provides a more realistic assessment of potential density effects within 

the colony, than, for example, comparisons of the number of dead pups in sub 

sections of the colony with seasonal averages or maximum observed adult densities.  

Furthermore, it provides the capability to detect relationships that may operate at 

scales beyond the dead pups immediate vicinity, for example, if abandoned or 

starveling pups wander away from their natal sites prior to death. 
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Estimation of the percentage pup mortality 

The total number of first occurrences of dead pups provides a count of the number of 

dead pups over each season within our study site.  To convert this to a percentage of 

the total number of pups born in the study area, we extracted from our coverages of 

pup locations the number of pups of stage I to IV (stage V pups are fully moulted and 

usually weaned pups).  We plotted the daily number of these pups and computed the 

area under this graph (the sum of daily numbers i.e. total number of pup-days) for 

each season.  This sum was then divided by 18, the average duration from birth to 

weaning.  To this resulting value we added the number of dead pups to provide an 

estimate of the total number of pups born in the study area.  From this we generated 

an overall estimate for the seasonal percentage of mortality. 

 

Temporal sequence of mortalities 

The seasonal change in the rate of mortalities was examined with respect to both the 

numbers of adult females and the numbers of all pups on a daily basis. 

 

Local adult female density and pup mortality 

In order to test whether mortalities tended to occur more often than expected in areas 

of higher adult densities it was necessary to provide null distributions of the 

‘available’ adult densities on the colony.  Using a similar GIS based process to that 

described above, we extracted the densities of females (for each of the 5m to 50m 

radii) around every live pup’s location on every day for each season.  Inevitably, the 

density of females around any one pup on any one date was unlikely to be 

independent of the density on the preceding or following days.  However, these 

records numbered 5835 for 1997 and 5848 for 1998.  Therefore, we generated 
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probability density functions for our null distributions by repeating 10000 

bootstrapping procedures in which we resampled with replacement 1% of these 

records.  This process was repeated for each spatial scale and for year of the two 

breeding seasons.  Seals do not utilise all the area mapped within our GIS but prefer 

specific habitat features (Twiss et al., 2000a, 2001).  Therefore, the use of live pup 

locations to sample adult densities provided a more appropriate measure of the 

available densities than would be achieved by random locations taken throughout the 

study area which would inevitably include samples from parts of the colony devoid of 

seals.   

For each season and each sampling radii of adult female density we compared the 

distributions of adult densities around mortalities with the corresponding distribution 

derived from our bootstrapping of densities around live pups.  Comparisons were 

made by Kolmogorov-Smirnov 2 sample tests. 

 

Habitat and mortality 

A sub-meter accurate DTM of the study area (Mills, Newton & Twiss, 1997; Twiss et 

al., 2000a, 2000b, 2001) provides accurate descriptions of the physical habitat for any 

location.  These topographic measures include; 

 

(1) elevation above mean sea level (m) 

(2) Slope (degrees) 

(3) "Cost distance" to "nearest" pool of water, 

(4) "Cost distance" to "nearest" access point from the sea. 
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The cost–distance variables provide an index for each location of the relative ease of 

moving over an irregular terrain from that location to the nearest pool or access point, 

though nearest is defined as the easiest to get to (least cost).  Large physical features, 

such as cliffs present impenetrable barriers to movement in these models, requiring 

circumnavigation and hence longer routes and higher costs.  Differing slopes also 

present differing costs to movement.  These models provide an accurate 

representation of the relative ease of locomotion across the colony, and have been 

used to demonstrate seals’ preferences for breeding close to access points and / or 

close to pools of water (see Twiss et al., 2000a, 2000b, 2001 for further details of 

cost-distance modeling procedures). 

Each of these variables was selected for the 2m grid square in which each dead pup 

was found.  Null distributions of ‘available’ habitat were generated in the same 

fashion as for the adult densities above; using 10000 bootstrapping procedures 

resampling with replacement 1% of the habitat values associated with live pup 

locations.  We then compared the distribution of habitat variables for dead and live 

pups. 

 

Female-pup proximity relative to position in the colony 

We hypothesised that females on the periphery of the colony, in lower density areas 

may not attend their pups as closely as those in denser, central areas.  A useful 

measure of centrality of location in the colony is provided by our index of cost-

distance to access (Twiss et al., 2001, Pomeroy et al., 2001.).  Females prefer to pup 

at an intermediate distance from access points, as access points tend to experience 

more traffic, exposure to waves and increased numbers of transient males (Twiss et 

al., 2001).  Using coverages of all live pups and adult females we determined the 
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distance between every pup on each day and their nearest adult females using GIS 

proximity functions (Twiss et al., 2000a).  We compared these distances between pup 

and nearest female for categories of cost-distance to access (divided into bins of 50 

units in an index ranging from 0 to 300) using Kruskall-Wallis tests.  A similar 

analysis was conducted to examine the pup to nearest female distances in relation to 

cost-distance to pools of water (divided into bins of five units in an index ranging 

from 0 to 35). 

 

 

RESULTS 

 

Persistence of corpses on the colony 

Dead pups on North Rona remained visible, and were therefore mapped, for an 

average of 9.0  1.0 consecutive days in 1997 and 10.2  1.2 days in 1998.  However, 

many of the dead pups (32% in 1997 and 35% in 1998) remained visible up to and 

including our last observation date, therefore, the above values represent 

underestimates of the true persistence of corpses on the colony.   

 

Estimates of the percentage pup mortality 

Estimated pup mortality rates were 14.6% (52/357) in 1997 and 14.4% (51/354) in 

1998.  

 

Temporal sequence of mortalities 

Fig. 1a and b shows the change in number of pups, adult females and dead pups 

during the 1997 and 1998 seasons respectively.  The number of dead pups is 
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represented as both the total number of corpses recorded on each date (which 

approximates to cumulative deaths) and as the number of deaths (first occurrences of 

dead pups) per day (daily mortality rate).  Note that the numbers of corpses and deaths 

have been exaggerated by a factor of ten for clarity in these figures.  Table 1 presents 

the correlations of these two daily measures of mortality with date during the breeding 

season, the total number of adult females present per day and thirdly, the total number 

of pups present per day.  The total number of corpses recorded on each date correlates 

highly with both the number of females and the number of pups present (as the 

number of corpses is a cumulative measure, no correlation was attempted with date).  

However, significant positive correlations also existed between the daily mortality 

rate and either date, the number of females and the number of pups per day.  

Conversely, when the daily mortality rate is expressed as a percentage of the total 

number of pups present per day then no significant correlations remained. 

 

Local adult female density and pup mortality  

In both breeding seasons, the frequency distributions of densities of adult females 

around pup mortalities showed no significant differences from the distributions of 

available female densities at p < 0.05 for all spatial scales at which female densities 

were sampled with the exception of the smallest, 5m, scale (Table 2).  Examination of 

the cumulative frequency distributions for dead and live pups for the 5m spatial scale 

(Fig. 2a and b) suggests that dead pups tended to occur more frequently than live pups 

in locations where there were no or few adult females within 5m of the dead pup (i.e. 

at the lowest density categories).  
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Habitat and mortality 

Our analysis of the nature of the topography at locations where deaths occurred 

compared to the null distribution of topographies at live pup locations provided 

inconsistent results between years.  In the 1998 season there were no significant 

differences at p < 0.01 between the topography at dead and live pup locations (Table 

3).  However, in 1997, the frequency distributions of both elevation and cost distance 

to access differed for dead and live pups (Table 3).  Examination of the cumulative 

frequency distributions of elevation values for dead and live pups (Fig. 3) indicated 

that dead pups occurred more frequently than live pups at the lowest elevations and 

less frequently at intermediate elevations (approximately 10-25m).  In terms of cost-

distance to access (Fig. 4), dead pups occurred more frequently in the immediate 

vicinity of access points (low cost-distance indices) and less frequently than live pups 

at moderate indices for cost-distance to access (indices of approximately 60 to 100). 

 

Female-pup proximity relative to position in the colony 

The distances separating pups and their nearest adult female tended to (i) increase 

with distance from access points (Kruskall-Wallis tests: 1997 
2
 = 98.7, d.f. = 5, p < 

0.001, 1998 
2
 = 53.2, d.f. = 5, p < 0.001) and (ii) increase with distance from pools 

of water (Kruskall-Wallis tests: 1997 
2
 = 142, d.f. = 6, p < 0.001, 1998 

2
 = 47.6, d.f. 

= 6, p < 0.001). 

 

 

DISCUSSION 
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Contrary to earlier studies which examined pup mortality rates in relation to colony 

wide measures of pup production (Boyd et al., 1962; Boyd & Campbell, 1971; 

Coulson & Hickling, 1964; Summers et al., 1975), our fine scale analyses failed to 

demonstrate any evidence that pre-weaning pup mortality increased with adult 

densities at this breeding colony.  The densities in which mortalities occurred 

encompassed the full range of available adult densities on the colony.  The occurrence 

of pup deaths was not related to local density of adult females irrespective of the scale 

at which local density was measured with the exception of our smallest scale of 

analysis.  At this 5m scale our analysis again revealed no indication of mortality 

increasing with local density.  In fact, dead pups were found more frequently in 

locations with no adult females within 5m.   

Our analyses were repeated at a range of scales that extended from the pup’s 

immediate vicinity to well beyond any distance at which adult female density could 

possibly directly influence individual pup deaths.  The significant positive correlation 

between the daily mortality rate and the number of females per day may give a 

misleading appearance of a relationship between density and mortality when viewed 

at this relatively coarse scale.  It is likely that this relationship is mediated through a 

mutual correlation with date.  This was supported by the fact that there was no 

correlation when the mortality rate was expressed as a percentage of the daily number 

of pups.  Thus, the absolute number of deaths increased with increasing female 

numbers, but the proportion of deaths remained constant as increasing numbers of 

pups were born.  Furthermore, our fine scale analysis of local adult female density and 

pup deaths refuted any notion that mortalities increased with local adult female 

density within the range of densities occurring in the North Rona colony.  Animal 

densities on grey seal breeding colonies tend to be lower than those seen in colonies 
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of elephant seals (Riedman, 1990; Baldi et al., 1996) and of many otariid species 

(Harcourt, 1992; Riedman, 1990) in which pup mortality is density dependent.  Even 

amongst the most dense aggregations, female grey seals maintain a distance of 

approximately 1.5 body lengths between themselves and their neighbours (Twiss et 

al., 2000a).  Our results suggest that local adult densities on the day of death do not 

directly cause pup deaths.  It is possible that more complex, compound effects of local 

density on a number of days preceding death may provide a link between adult 

density and death.  Abandoned or starveling pups may wander from natal sites.  Our 

finding that dead pups tended to occur more frequently in locations where no potential 

mothers were found within 5m radii may reflect either this, or that mothers leave a 

dead pup (although mothers have been observed maintaining close contact with dead 

pups for a number of days, pers. obs. PPP, SDT).  A further consideration is the effect 

of adult males.  Whilst densities of males, given the skewed sex ratio, are very low 

compared to adult females, it is possible that pup moralities, or at least injuries that 

subsequently lead to death, result as a by-product of male-male aggression.  It is 

clearly necessary to quantify these parameters, and future studies should endeavour 

to; (a) track pup locations in relation to local density prior to death, (b) quantify the 

movements of live pups once they have been abandoned, (c) quantify maternal 

attendance, in terms of proximity to pups, in relation to local density  (d) quantify 

local male densities and more importantly the frequency and intensity of inter-male 

aggression with respect to location.  

We detected no seasonal trend in the rate of pup mortality.  This indicates that for 

the period of these studies, there is no cost in terms of increased pup loss to later 

breeding females.  Boyd & Campbell (1971) stated that an accurate measure of 

seasonal trends in daily mortality rates would aid in estimating pup production, but 
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stated that daily ground counts would incur too much disturbance (Summers et al., 

1975 provided daily mortality rates at weekly intervals).  Here, we provide such data, 

on a daily basis, with no disturbance, and demonstrate that daily mortality rates are 

proportional to the number of pups present in any day. 

Our estimates of overall seasonal mortality rates of approximately 14.5% matched 

closely estimates derived from more direct means (ground counts) at both this colony 

and others.  Mortality estimates for the southern part of the Fianuis peninsula of North 

Rona provided by Boyd & Laws (1962) were 15% of 542 births and 13% of 510 

births in 1959 and 1960 respectively, whilst Boyd & Campbell (1971) provide 

estimates ranging from 10 to 20% over the years 1962 to 1968 with an average of 

14.5%.  The study area used in these studies is larger than ours but encompasses our 

study area.  Summers et al. (1975), studying the same area as we use here, estimated 

30% mortality from 393 births in the 1972 season.  Further afield, Baker & Baker 

(1988) estimated mortality rates for the Isle of May (Scotland) ranging from 13.0 to 

15.7%, Coulson and Hickling (1964) presented an average mortality rate of 14.9% for 

the Farne Islands (England), and Davies (1949) recorded 15% for beach breeding 

seals in Pembrokeshire (Wales).  The concurrence of these estimates suggests that our 

approach provides a good measure of the number of dead pups.  Furthermore, the 

remarkable consistency of most of these estimates of mortality rates, despite the fact 

that the various colonies mentioned above have differing topographies and seal 

densities to North Rona (Pomeroy, Twiss & Duck, 2000; Twiss et al., 2000a, 2001), 

might suggest that mortality rates are linked to larger scale effects.  It may be that the 

mortality rate reflects the proportion of breeding females that have insufficient energy 

to successfully rear a pup in any one year, and so be related to factors outside the 

breeding season that affect female body condition (although if this was the case one 
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might expect more inter-annual variation in mortality rates).  If such energetic 

considerations are responsible for underlying mortality rates, then it is possible that 

this might mask more subtle density-dependent effects.  Subsequent studies of local 

density effects on mortality should endeavour to control for maternal condition. 

Density dependent mortality in breeding aggregations may be absent where 

advantages accrue to centrally located individuals and yet central locations attract the 

highest densities of individuals (Sutherland, 1996). Competition for desirable central, 

high density locations may lead to occupancy of these prime sites by higher quality 

individuals.  These individuals may then offset the potential density dependent effects 

by their better parental qualities and through their enhanced location.  Amongst grey 

seals, female pupping site preferences in relation to variation in habitat quality at UK 

grey seal breeding colonies (Pomeroy, Twiss & Duck, 2000; Twiss et al., 2000a, 

2001) has been linked with differences in female quality (Pomeroy et al., 1999, 2001).  

Therefore, individual quality could confound density dependent effects in grey seal 

colonies such as North Rona.   

Our analyses indicated a possible role for habitat, at least in the 1997 breeding 

season.  Increased mortality in the immediate vicinity of access points is expected 

(Baker, 1988; Pomeroy et al., 1994), as these areas form major transit routes for adult 

seals, leading to increased disturbance of mothers and pups (Boyd et al. 1962, 

Coulson & Hickling 1964, Summers et al. 1975).  Our results from 1007 suggested 

such an effect, with increased mortality at low elevations and cost-distances to access 

(effectively in, or around, access points).  Twiss et al. (2000a, 2001) demonstrated 

that locations with intermediate distances to access points (i.e. not being immediately 

in the access points) and/or close proximity to pools of water are preferred pupping 

locations for breeding grey seals.  Likewise, Twiss et al. (2000a) provided evidence 
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that local topography can determine the level of behavioural investment in pups by 

mothers.  Pomeroy et al. (2001) extended this idea and provided evidence of high pup 

growth rates and potentially increased genetic success for mothers occupying these 

prime habitats.  The result presented here from the 1997 season indicate an apparent 

reduction in the number of dead pups occurring at these same intermediate elevations 

and cost-distance to access indices (Fig. 4).  Thus, reduced pup mortality in prime 

habitats may to be a direct consequence of habitat quality.  However, since these 

patterns were not observed in both the breeding season examined here, it is perhaps 

more likely to be effected indirectly via the increased quality of animals occupying 

these sites.  Linking long-term studies of individual females with habitat, local density 

and detailed behavioural observation should enable the causal direction of this 

relationship to be determined. 

Finally, it may be necessary to reconsider the role of predation.  Whilst there are no 

terrestrial predators of grey seal pups on North Rona, Greater and Lesser Black-Back 

gulls attack weakened or unprotected pups (pers. obs. PPP, SDT).  Again, both 

maternal quality and habitat may be important here.  Many otariids make large daily 

movements whilst breeding, often in order to access pools or the sea for 

thermoregulation (Harcourt, 1992).  Grey seals at North Rona appear to do the same 

(Redman, Pomeroy & Twiss, 2001; Twiss et al., 2000a, 2001, in press), but generally 

do not have to move too far from their pup due to the abundance of pools.  However, 

pups born further from pools appear to spend more time further away from their 

mothers as their mothers spend longer commuting to pools.  This may make these 

pups more vulnerable to predation by gulls.  Thus, predation risk is likely to be a 

function of habitat (pupping site) quality, and potentially individual quality.  Further 

observations will be required to address this question. 
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Whilst the pattern of pup mortalities on North Rona are not related to local variation 

in adult female density, our results suggest a possible role for both habitat and 

maternal quality in reducing pup deaths.  These results have implications for studies 

of both the behavioural ecology of grey seals and also for applied models of 

population growth that require estimates of pup mortality on breeding colonies.  Our 

results also illustrate the importance of examining individual based processes at the 

appropriate spatial scale. 
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Table 1: Spearman’s rank correlations (R) of date, daily number of adult females and 

daily number of live pups with:(a) the number of corpses recorded per day (as the 

number of corpses is effectively a cumulative measure, no correlation was 

attempted with date), (b) the number of deaths per day (daily mortality rate) and (c) 

daily mortality rate expressed as a percentage of total number of pups (live and 

dead) present per day.  Significant  (2-tailed) correlations are emphasised in bold. 

 

  (a) Number of 

corpses observed 

per day 

(cumulative deaths) 

(b) Number of 

deaths per day 

(daily mortality 

rate) 

(c) Daily mortality 

rate as a percentage 

of the total number 

of pups present on 

each day 

  1997 

(n = 27) 

1998  

(n = 28) 

1997  

(n = 27) 

1998  

(n = 28) 

1997  

(n = 27) 

1998  

(n = 28) 

 

Date 

R 

p 

- - 0.49 

0.001 

0.63 

<0.001 

-0.27 

0.17 

0.04 

0.86 

Number of 

adult females 

R 

p 

0.92 

<0.001 

0.92 

<0.001 

0.49 

0.009 

0.56 

0.002 

-0.24 

0.24 

-0.08 

0.97 

Number of 

live pups 

R 

p 

0.97 

<0.001 

0.97 

<0.001 

0.47 

0.014 

0.63 

<0.001 

-0.30 

0.14 

0.03 

0.87 
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Table 2.  Results of Kolmogorov- Smirnov (KS) tests of the frequency distribution of 

female densities around pup mortalities on the day of death compared against the null 

distribution from 10000 resamplings of adult densities around live pup locations.  

Analysis repeated using female densities determined for a range of radii around each 

pup location, from 50m to 5m.  Sample sizes are 52 dead pups and 578144 live for 

1997 and 51 dead and 578796 live in 1998.  Significance difference at p < 0.01 are 

emphasised in bold. 

 

  Radius (m) around pups in which adult female density was determined 

Year  50 45 40 35 30 25 20 15 10 5 

1997 KS Z 1.23 1.31 1.23 1.08 1.31 1.03 0.78 0.57 0.93 1.64 

P 0.10 0.06 0.1 0.19 0.07 0.24 0.57 0.91 0.35 0.009 

1998 KS Z 1.20 1.09 1.10 1.05 1.13 0.89 1.00 1.34 0.99 2.53 

P 0.11 0.19 0.18 0.22 0.16 0.40 0.27 0.06 0.28 <0.001 
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Table 3:  Results of Kolmogorov- Smirnov (KS) tests of the frequency distribution of 

four topographic variables derived from the locations provided by dead pups and from 

10000 resamplings of live pup locations.  Sample sizes are 52 dead pups and 578144 

live for 1997 and 50 dead and 572974 live in 1998.  Significance difference at p < 

0.01 are emphasised in bold. 

 

 

  Topographic parameter 

Year  elevation slope Cost-distance to 

access 

Cost-distance to 

pool 

1997 KS Z 1.67 1.28 1.79 0.84 

P 0.008 0.08 0.003 0.49 

1998 KS Z 0.72 1.59 0.82 1.51 

P 0.68 0.013 0.52 0.021 
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Figure Legends: 

 

Fig. 1a & b: Plots of the daily numbers of adults females, live pups, pup corpses 

(cumulative number of deaths) and pup deaths (daily mortality rate) within the North 

Rona study area during the (a) 1997 and (b) 1998 breeding seasons.  *NB: Numbers 

of pup corpses and pup deaths have been multiplied by a factor of 10 to give a clearer 

graphical presentation of changes in relative number with date. 

 

 

Fig. 2a & b: Cumulative frequency histograms of densities of adult females within 5m 

of dead pups and live pups during the (a) 1997 and (b) 1998 breeding seasons. 

 

 

Fig. 3: Cumulative frequency histogram of the elevation values at locations where 

dead pups and live pups occurred during the 1997 breeding season. 

 

 

Fig 4: Cumulative frequency histogram of the cost-distance to access values at 

locations where dead pups and live pups occurred during the 1997 breeding season. 
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Fig. 1a:  Twiss, Duck & Pomeroy: Grey seal pup mortality. 
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Fig. 1b:  Twiss, Duck & Pomeroy: Grey seal pup mortality. 
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Fig. 2a:  Twiss, Duck & Pomeroy: Grey seal pup mortality. 
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Fig. 2b:  Twiss, Duck & Pomeroy: Grey seal pup mortality. 
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Fig. 3:  Twiss, Duck & Pomeroy: Grey seal pup mortality. 
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Fig. 4:  Twiss, Duck & Pomeroy: Grey seal pup mortality.  
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