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This paper describes work carried out as part of a major experimental and theoretical investigation into tension

stiffening. This work was carried out at the universities of Leeds and Durham. The experimental work enabled a

detailed study to be undertaken of the behaviour of concrete in tension surrounding reinforcing bars. This study

showed that a more-or-less linear variation in concrete and steel stress occurred in the region affected by a crack

and also that behaviour of the concrete in the region of a crack remained substantially elastic. The experimental

study permitted equations to be developed to predict the deformations and crack widths in axially reinforced tension

members. Tests of the formulae for crack widths are reported and the formulae are shown to be satisfactory. A more

detailed model of the behaviour in the region of a crack is proposed and shown to be reasonable.

Notation

Ac area of concrete

As area of reinforcement

c cover

Ec modulus of elasticity of the concrete

Es modulus of elasticity of the reinforcement

fc compressive strength of concrete

fct tensile strength of the concrete

L the length of the specimen (or the length over

which measurements are taken)

N axial tension force

n number of cracks

So the transfer length within which there is a

transfer of force by bond between the

reinforcement and the concrete

Srm average crack spacing

s the slip at the point considered

s1 the slip at the maximum bond stress

w the crack width

wav the average crack width

Æ a coefficient

Æe modular ratio ¼ Es/Ec

˜a the extension of a specimen prior to cracking

˜b the extension of the reinforcement over the length

2So centred on a crack

˜c the shortening of the concrete over the distance

2So on formation of a crack

� a constant of integration such that the shaded

area in Fig. 5(b) is given by 2So�(�s2��o)
�cm average strain in the concrete (used in MC 90)

�cs strain caused by shrinkage (used in MC 90)

�o the strain in an uncracked tension member

�sm average strain in the reinforcement ¼ the average

strain in a tension member

�s2 the strain in the reinforcement at a crack

(concrete carries no tension)

r As/Ac

�ct stress in the concrete

� the bond stress.

�max the maximum bond stress which occurs at a slip

s1
� bar diameter

Introduction

The interaction of reinforcement and the surrounding

concrete is fundamental to the understanding of the

behaviour of reinforced concrete. There are a number

of aspects to this problem which include an understand-

ing of bond behaviour, an understanding of cracking

behaviour and the related problem of tension stiffening.

Any study of the literature will show that these are

interrelated. Although much research has been carried
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out into these problems, issues that require resolution

still remain.

Traditionally, it is assumed in the design of rein-

forced concrete that concrete has no tensile strength.

On this assumption, and assuming elastic behaviour of

the steel and the concrete in compression, it is possible

to calculate the stresses and strains in the concrete and

the reinforcement and hence the deformations of the

member. In practice, it is found that this procedure

overestimates the deformations because the concrete in

tension surrounding the reinforcement does, on aver-

age, carry some stress, even after cracking. This reduc-

tion in deformation or increase in stiffness relative to

that calculated assuming the concrete supports no ten-

sion is referred to as tension stiffening.

Recently, two linked Engineering and Physical Re-

search Council (EPSRC) grants were awarded: one to

the University of Durham and the other to the Univer-

sity of Leeds to investigate tension stiffening and, in

particular, the reduction in tension stiffening with time.

In addition to the grants from the EPSRC, industrial

contributions to the project, both financial and in-kind,

were made by Arup Research and Development, Gif-

fords, Cadogan Tietz and the Concrete Society.

The experimental work carried out under these grants

has enabled a very thorough study to be carried out into

the behaviour of concrete in tension surrounding rein-

forcement. In this paper, the results from the experi-

mental work will be used to explore the behaviour of

tension zones under service levels of short-term load-

ing. It is believed that this work has led to a much

clearer idea to be developed of the nature of the inter-

actions between steel and concrete. Details of the test-

ing and instrumentation and some results from this

project have been published elsewhere1–4 so these will

not be described in detail in this paper. A future paper

will deal with the detail of tension stiffening behaviour

over time.

Basic behaviour of tension elements

Before attempting to develop further the theory of

the behaviour of members subjected to pure tension it

would be useful to gain a picture of the behaviour of

such members. This will be done by looking at test data

from tension tests carried out by Scott and Gill.5

A procedure for fixing strain gauges at very close

spacings along the length of reinforcing bars has been

developed at the University of Durham. This has been

used over a period of some 20 years in a large number

of projects in which detailed measurements of the var-

iations of strain or stress along the reinforcement are

necessary. This procedure has been described in detail.5

Scott and Gill’s tests on specimens with deformed bars

are detailed in Table 1.

Initially, strain data for specimen 100T12 will be

presented as this gives a convenient illustration of a

number of aspects of behaviour. Data from other speci-

mens will be considered later to illustrate particular

points. Fig. 1 shows the load–average reinforcement

strain response for this specimen.

It will be seen that the response is not a continuous

smooth curve as is commonly plotted, but is made up

of a series of linear segments separated by a sudden

increase in strain on the occurrence of each crack. Up

to a load of about 35 kN, these linear segments, extra-

polated backwards, can be seen to pass through the

origin. The behaviour of the tension specimen with a

given number of cracks is thus elastic. Using the com-

puter to produce ‘best fit’ lines for each segment

enables the stiffness of the specimen to be established

for each crack configuration. Fig. 2 shows this stiffness

plotted against the number of cracks. It will be seen

that there is a linear relationship between stiffness and

Table 1. Details of Scott and Gill’s tests5

Specimen Cross-section: mm Nominal bar size:

mm

Bar area: mm2 % reinforce-ment Cube strength:

N/mm2

Tensile strength:

N/mm2

70T12 70 3 70 12 81 1.61 47.0 3.0

100T12 100 3 100 12 86 0.83 45.0 2.7

100T20 100 3 100 20 260 2.48 47.0 3.1

140T12 140 3 140 12 86 0.43 54.0 3.1

140T20 140 3 140 20 266 1.33 55.0 2.8

200T20 200 3 200 20 258 0.65 60.0 3.1

300/100T20 300 3 100 20 262 0.87 48.0 3.2
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Fig. 1. Detailed load–strain response of specimen 100T125
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number of cracks. This implies that the formation of

each crack reduces the stiffness of the element by a

constant amount. The final point for four cracks does

not quite fit the linear relationship. This point is ob-

tained from the behaviour immediately after formation

of the fourth crack. Fig. 1 shows that at higher loads

there are two further sudden increases in strain. These

increases were not related to the formation of visible

surface cracks and it may be speculated that they arise

from some form of internal failure. It should be noted

that both events occurred only at very high levels of

stress in the reinforcement (. 400 N/mm2).

A further point to note from Scott and Gill’s tests is

that the variation in steel strain on either side of a crack

is close to linear. A typical result is shown in Fig. 3,

which shows the variation in steel strain between two

cracks at two levels of load in specimen 100T20. This

close approximation to a linear strain variation is typi-

cal of all specimens in work by Scott and Gill5, Beeby

and Scott1 and in other research programmes in which

the Durham system of instrumenting bars has been

used. This linear variation of stress implies a constant

bond stress, which initially suggests some form of

plastic behaviour. In fact, this is not the case—as can

be seen from Fig. 4. This figure shows the bond stres-

ses, calculated from the average change in stress over

the transfer length, So, for specimen 100T20. It will be

seen that there is an almost linear increase in bond

stress with increase in applied axial force up to an axial

force of approximately 30 kN or a bond stress of about

4 N/mm2. Above this, the rate of increase in bond

stress with increase in load reduces substantially to

close to zero. Other specimens behave similarly,

although the change from the linear response occurs at

different loading states. For example, the change from

the linear for specimen 140T20 is at a bond stress of

close to 6 N/mm2 and an axial force of approximately

65 kN. From the limited data available, however, it

seems likely that the kink in the response is not related

to any intrinsic property of bond.

Derivation of equations for short-term

loading

The results from Scott and Gill’s tests have provided

the following information on the behaviour of axially

reinforced tension prisms.

(a) The formation of a crack results in a reduction in

the stiffness of the element. For a particular ele-

ment, the reduction in stiffness caused by the for-

mation of a crack is close to constant.

(b) The load–deformation response during load incre-

ments between the formation of one crack and the

formation of the next crack is linear. Extrapolation

of the straight-line relationship back to the axes

shows that the lines pass very close to the origin,

suggesting that the behaviour is effectively elastic.

(c) The distribution of the stresses in the reinforce-

ment and the concrete over the length So on either

side of a crack closely approximates to linearity.

These findings may be used to develop equations for

the prediction of both the deformation and the crack

width in axially reinforced prisms subjected to tension.

Figure 5 shows a schematic picture of the variation

of strain in the region of a crack. Before a crack forms,
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Fig. 2. Variation in stiffness of specimen 100T125 as a func-

tion of number of cracks
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Fig. 3. Variation in stress in reinforcement between two

cracks (specimen 100T205)
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Fig. 4. Variation in bond stress with axial load for specimen

100T205

Axially reinforced members subjected to pure tension
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the strain in both the reinforcement and the concrete

may be written as

�o ¼ N=[EcAc(1þ Æer)] (1)

From equation (1), the extension of the member with-

out any cracks is given by

˜a ¼ NL=[EcAc(1þ Æer)]

N can, however, be written as

N ¼ �s2AsEs (2)

Substitution for N thus gives

˜a ¼ �s2AsEsL=[EcAc(1þ Æer)] ¼ �s2ÆerL=(1þ Æer)
(3)

The formation of a crack results in an extension of the

reinforcement in the region of the crack equal to the

shaded area in Fig. 5 divided by the modulus of elasti-

city of the steel. This area may conveniently be written

as

˜b ¼ 2So�(�s2 � �o)

Taking �o from equation (1) and N from equation (2),

this can be simplified to give

˜b ¼ 2So��s2=(1þ Æer) (4)

The average strain can now be calculated from the total

extension divided by the overall length of the specimen,

L. This extension is given by

Extension ¼ ˜a þ n˜b

and hence the average strain is given by

�sm ¼ �s2(Æerþ 2�Son=L)=(1þ Æer)

As it appears that the variation in stress in the reinfor-

cement and concrete is linear over the length So, it can

be assumed that � ¼ 0.5, giving

�sm ¼ �s2(Æerþ Son=L)=(1þ Æer) (5)

Equation (5) can be seen to have exactly the same form

as the line in Fig. 2. Since the crack spacing, S, can be

expressed as L/(n + 1), n/L can be more conveniently

expressed in terms of S, if desired.

These equations only apply rigorously in situations

where the average crack spacing is greater than 2So. It

is possible to derive similar equations for situations

where the spacing is less than 2So. In this case, the

stress in the reinforcement mid-way between cracks

does not reduce to �s2Æer/(1 + Æer) but, if the bond

stress is assumed to remain constant, the resulting

equation is

�sm ¼ �s2[1þ Æer� Srm=(4So)]=(1þ Æer) (6)

A recent paper by Beeby and Scott2 develops and tests

equations (5) and (6) in detail. A formula is developed

for the prediction of the crack spacing, S, which is

needed in equations (5) and (6). Using this, it is shown

that equation (5) predicts the deformation of a tension

prism with considerable precision in cases where the

spacing is greater than So. This is a larger range of

applicability than is theoretically correct but, practi-

cally, a very useful conclusion.

The basic model developed from the test data can

also be used to establish the expected crack width.

The extension of the reinforcement in the region of

the crack, provided the crack spacing exceeds 2So, is

˜b, given by equation (4) above. This is not quite the

complete crack width since, as well as an extension of

the reinforcement, there is a contraction of the concrete

in the region of the crack since the stress in the con-

crete has been reduced. The stress in the concrete at

the end of the length So is given by

�ct ¼ �s2AsEs=Ac(1þ Æer) ¼ �s2rEs=(1þ Æer)

From this, the increment in crack width caused by

change in length of the concrete can be written as

˜c ¼ 2So�Æer�s2=(1þ Æer)

The total crack width is now given by

w ¼ ˜b þ ˜c ¼ 2So��s2(1þ Æer)=(1þ Æer) ¼ 2So��s2

If, as before, it is assumed that � ¼ 0.5 then

w ¼ So�s2 (7)

�s2 can be obtained directly from equation (2).

One point should be noted about this equation. Since

it is assumed that the cracks are more than 2So apart,

all cracks will depend on the deformations of the re-

inforcement and concrete over the full 2So. All the

cracks on the element will therefore be predicted to be

the same width. In practice, this is clearly unlikely to

be true and there will inevitably be a variability owing

to the inherent variability in material properties from

section to section along the member. This is likely to

appear as a random variability in So along the element.

A different formula would be expected to apply when

the average spacing became less than 2So and this can

easily be derived as
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Fig. 5. Strain conditions in the region of the first crack
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wav ¼ Srm�s2(1� Srm=4So) (8)

This equation gives an average crack width as a

function of the average crack spacing. It can be argued

that the maximum crack width will still be given by

equation (7) since the maximum width will correspond

to the situation where the crack spacing on either side

of the crack is just 2So. Furthermore, equation (8) is

difficult to apply. It requires calculation of the crack

spacing under any particular loading. An equation for

this has been presented2 but this, in turn, depends upon

the average strain. In practice, therefore, it may be

appropriate to ignore equation (8) and use equation (7)

for all situations. Equation (8) will therefore not be

considered further in this paper.

A set of equations has now been derived for both the

deformation and the crack widths in reinforced con-

crete prisms derived from the same model of behaviour

of tension zones. This seems to be a valuable step in

the development of rational equations for the prediction

of serviceability behaviour. The remaining variable that

needs to be established in order to produce a complete

set of formulae for deflections and crack widths in

tension members is the distance, So, over which the

stresses are affected by a crack

Development of an expression for So

There are a number of ways by which values of So
can be obtained from the available test data. The most

obvious is that, where the distribution of strain or stress

in the reinforcing bars has been measured, then So can

be obtained directly from the distribution. This requires

some care and is really only possible at early load

stages before the cracks are sufficiently closely spaced

to interfere with each other. Nevertheless, values of So
have been obtained directly for most of Scott and Gill’s

specimens reinforced with deformed bars.

The second approach is to use the equation for defor-

mations derived earlier (equation (5)). This can be re-

arranged to give

So ¼ [�sm=�s2(1þ Æer)� Æer]L=n

Considering Fig. 1, it will be seen that �sm/�s2 is the

gradient of the line drawn through the data points

corresponding to a particular number of cracks. All

other variables in the equation are known and hence So
can be obtained. This has been done for all the square-

sectioned prisms tested by Scott and Gill5 and also a

selection of the results obtained by Farra and Jaccoud.6

Farra and Jaccoud tested a series of more than 130

prisms, all of which had a 100 mm square cross-section

and were reinforced with either a 10, 14 or 20 mm

axially placed bar. The main variable considered was

the concrete mix, and a wide range of concrete

strengths and cement types were used. For each mix

and bar size, a set of three nominally identical speci-

mens were cast and tested. For the purposes of this

exercise, it seemed excessively time consuming to cal-

culate So for all the specimens and so only a few

determinations have been made for typical specimens

for each bar diameter and a range of concrete strengths.

Since So is predicted to vary largely as a function of

geometric variables, carrying out determinations of So
for a much greater number of specimens would simply

have given a better picture of the scatter of results. The

scatter can be investigated with much less effort when

the crack width predicted by equation (7) is evaluated

for a much larger population of Farra and Jaccoud’s

specimens in the next section of the report. Farra and

Jaccoud tested their specimens using increments in

strain rather than increments in load since they were

primarily interested in cracking caused by restraint.

They present detailed graphs and tables of stresses,

strains and crack widths for all load stages for all

specimens. In general, only one determination has been

made for each specimen for the case where n ¼ 1. This

was difficult to do for specimens with low concrete

strengths and the highest reinforcement ratio because

only one or two strain readings were taken for these

specimens when just one crack was present. To enable

a result to be obtained in this case, the stiffnesses were

calculated for the situations in which there were one,

two and three cracks and the resulting assessment of So
averaged.

Finally, Farra and Jaccoud measured extensive crack

width data and this can be used to establish So directly

from equation (7). Fig. 6 shows the average crack

widths measured by Farra and Jaccoud for a series of

three specimens reinforced with a 14 mm bar plotted

against the strain in the reinforcement at a crack

(�s2/Es). A good linear relationship is obtained between

crack width and steel strain and, according to equation

(7), the gradient of this line is So. This approach has

been used to establish So for the same specimens as

had been used previously.

The values of So found by the three methods de-

scribed above have been tabulated in Table 2. There is

a certain amount of subjectivity in the measurement of
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Fig. 6. Average crack width plotted against strain in reinfor-

cement at a crack for all specimens of series H52-146

Axially reinforced members subjected to pure tension
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So by the first method and in the establishment of the

best-fit lines in the other two methods. Nevertheless,

agreement between the methods is sufficiently good to

give reasonable confidence that each method is measur-

ing the same thing. It now remains to establish the

factors that influence So. The most well-established

theory for the prediction of cracking predicts that So
will be proportional to �/r. In a recent paper7 Beeby

showed, from an analysis of extensive cracking data

from many sources, that �/r has no discernable influ-

ence on cracking, and hence on So. It is shown that the

critical parameter is the cover, c. This confirms the

conclusions of earlier work in the UK8 and USA.9

Thus, So is plotted against cover in Fig. 7, which shows

that a reasonable expression for So is:

So ¼ 3:05c (9)

where c is the cover.

Validation of the equations

The validation of equations (1) and (2) has been

covered fully2 and will not be considered in detail here.

It has been shown3 that equation (1) will predict the

average stress in the concrete in cracked prisms tested

by Farra and Jaccoud6 with a mean error of 0.08 N/

mm2 and a standard deviation of 0.29 N/mm2. This

prediction is considerably superior to other formulae

considered. This paper focuses on consideration of the

crack width prediction equations (equations (7) and

(8)).

Figure 8 compares the calculated crack widths given

by equation (7) with the experimental average crack

widths obtained by Ramos and Serre.10 Generally,

agreement is very good. The slight tendency for equa-

tion (7) to overestimate the crack width may arise from

the comparison of the predictions with the average

crack widths rather than the maximum values, which

were not reported. Ramos and Serre’s data cover a wide

variation in covers and bar diameters, but little varia-

tion in reinforcement ratio.

Figure 9 shows similar comparisons using data pro-

duced by Haqqi.11 Haqqi tested larger tension speci-

mens with multiple reinforcing bars with the objective

of modelling more practical situations. The data used

are for crack widths measured on the surface perpendi-

cularly away from a reinforcing bar. The data cover a

wide range of covers, reinforcement ratios and bar

diameters. Agreement is not as good as that achieved

with the data from Ramos and Serre, but it is still

reasonable. The differences may result from the more

Table 2. So obtained by various methods

Specimen No. So measured

from stress

distribution

So calculated

from stiffness

So calculated

from crack

widths.

Scott and Gill tests

70T12 92 121

100T12 140 115

140T12 200 –

100T20 135 128

140T20 144 140

200T20 262 282

Farra tests

N10-10 126 133

N10-20 102 113

H52-14 124 150

H52-20 144 133
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with crack widths calculated using equation (7)
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and calculated crack widths
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complex form of Haqqi’s specimens and interaction be-

tween adjacent bars: a factor not taken into account in

the derivation of the equations.

Figure 10 compares calculated widths with some

experimental results from Farra and Jaccoud.6 These

tests consider three sections: 100 3 100 mm prisms re-

inforced with either 10, 14 or 20 mm diameter bars.

This gives a good range of bar diameters and reinforce-

ment ratios but little variation in cover. Some care

needs to be taken with the selection of results from

Farra and Jaccoud. Their tests were carried out by

incrementing the strain rather than increasing the load,

as was done with all the other data considered. The

effect of this difference in test procedure is that, when

a crack forms, the stiffness of the prism is reduced and

the loads, stresses and crack widths reduce. Data have

been selected which, as closely as possible, correspond

to the maximum crack widths just before formation of

a further crack. Furthermore, the major variable consid-

ered was the concrete mix design. It was found when

using these tests to validate the equations for the pre-

diction of the deformations that the crack formation

varied quite considerably with variations in cement

type. The reason for this variability is unclear, although

it has been suggested2 that it might be the result of

changes in the coefficient of variation of the concrete

tensile strength. As a result of this problem, crack

widths have been used for only one cement type: Port-

land cement without the addition of silica fume. Fig.

10 shows that, using this limited set of data, good

agreement is obtained between calculated and experi-

mental crack widths. Including all the cements used

significantly increases the scatter.

To gain an overall picture of the accuracy of the

proposed formula, the data from the three sets of tests

considered above have been combined. This gives 280

individual results. The average value of the ratio of the

experimental crack width to the calculated width is

1.10 and the standard deviation of the ratio is 0.23. The

results from Farra and Jaccoud6 and Haqqi11 have also

been compared with widths calculated using the equa-

tion in the Comité Euro-International du Béton (CEB)

model code.12 In applying this formula, the value of

(�sm � �cm � �cs) has been taken as the measured aver-

age strain. The 36 results from Ramos and Serre10 have

not been used in this comparison because the average

strain was not reported. The results from 244 compari-

sons of the CEB calculation with the experimental

values gives an average ratio of the experimental crack

width to the calculated width of 0.81 and the standard

deviation of the ratio of 0.49, more than twice the value

obtained for the proposed formula.

Overall, the comparisons carried out and presented

in this section suggest that equation (7) gives a good

estimate of the crack width in tension members, which

are either centrally reinforced prisms or where the

crack widths are measured directly over the bars. A

previous paper by the current authors2 shows that equa-

tion (4) predicts the deformation well. The basic ap-

proach to the prediction of the behaviour of tension

members thus seems justified.

Mechanisms to accommodate high strains

in reinforcement

A full understanding of the behaviour of concrete in

tension around reinforcing bars requires that the me-

chanisms for accommodating strains in the reinforce-

ment, which are substantially greater than the ultimate

tensile strain of the concrete, are understood. Fig. 11

illustrates the issue. This shows the reinforcement

strains at four stages during the loading of specimen

T16B1.1 It will be seen that at every stage above 8 kN,

there is a major area adjacent to a crack or a free end

of the specimen where the strain substantially exceeds

the strain capacity of the concrete (assuming this to be

in the region of 100 � 150 3 10�6). Even at a load of

20 kN, which is below the cracking load, there is a

length of approximately 200 mm at each end of the

specimen where the strain exceeds the strain capacity

of the concrete. Once the cracking has developed, the

strain in the reinforcement exceeds the strain capacity
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Fig. 10. Comparison of calculated and measured average

crack widths6 for prisms made from ordinary Portland cement

concrete without silica fume
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Fig. 11. Variation in reinforcement strain along the length of

specimen T16B11 at various levels of axial load
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of the concrete at all points along the specimen.

Clearly, some mechanism must exist to accommodate

this strain incompatibility.

Two mechanisms have been proposed. The first is

bond–slip. This seems a rational assumption when the

bars are smooth, but less so for ribbed bars. Neverthe-

less, this assumption of bond failure followed by slip

between the bar and the concrete has remained the

most commonly invoked concept and one which lies at

the root of many models of behaviour. In particular, it

lies at the root of most derivations of formulae for the

prediction of crack widths and is enshrined in the CEB

model code.12 The alternative mechanism is internal

cracking of the form demonstrated by Goto.13 The two

mechanisms are illustrated in Fig. 12. In the slip me-

chanism, a relationship has to be postulated between

the slip at any point along the bar and the bond stress.

Many forms of bond–slip relationship have been pro-

posed. The CEB/FIP model code 9012 provides what

must be the closest to a ‘consensus’ view on bond–slip

relationships and, for the low levels of slip obtaining

under service conditions, this is given by the relation-

ship:

� ¼ �max(s=s1)
Æ (10)

In the model code, �max is taken as 2ˇfc, s1 as 0.6 mm

and Æ as 0.4 for the conditions appropriate to the

tension tests.

Most classical derivations of crack width formulae

assume that bond failure occurs and that the average

bond stress can be uniquely related to the ultimate bond

strength, independently of the amount of slip. These

methods might be considered to assume a constant

bond stress.

In the internal cracking model, the deformation of

the bar is accommodated by the deformation of the

teeth between the internal cracks. These teeth are in

reality cones of concrete caused by the axi-symmetric

nature of the bar and the surrounding concrete. No real

attempt has been made to analyse this situation in the

context of the development of crack prediction formu-

lae. However, this mechanism has been invoked in the

development of bond failure theories (e.g. see

Tepfers14). A possible approach might reasonably be to

consider the cones as conical springs. By analogy with

the deformation of circular plates, the deformation at

the inner edge of the cones could be expected to be

proportional to the load applied by the interaction be-

tween the concrete and the rib. An attempt must be

made to establish which of these mechanisms is most

consistent with the behaviour revealed by the tests.

Classical theories generally implicitly assume that

the crack width is simply the sum of the slip on either

side of the crack and that the width is constant between

the bar and the concrete surface. A considerable num-

ber of studies have been carried out to investigate this

and the resulting information on the shape of cracks

has been considered in some detail1 and has been

summarised by Farra and Jaccoud.6 These studies

clearly show that the deformation of the crack faces is

more consistent with the internal cracking model than

with a bond–slip model. Also, the problem with the

bond–slip model is the necessity for the concrete to be

able to slip past the ribs on the bar. If this occurs, there

should be clear and widespread evidence of disruption

of the concrete around the ribs. Inspection of the con-

crete interface revealed that, after breaking the concrete

off, the bar rarely shows any sign of this at the level of

load relevant to serviceability considerations.

The difference between the two mechanisms may not

be too revolutionary: bond stress is simply a shear

stress at the interface between the steel and concrete.

Failure could either occur by failure along the interface

or as cracks in the concrete which form under action of

the principal tensile stress.13 This would be expected to

be at some angle to the axis of the bar. In other forms

of reinforced concrete behaviour, such as punching

shear, it is clearly the diagonal cracking which occurs

rather than a vertical failure along the slab–column

interface.

It may help further discussion to set down some

experimental results which will show what a viable

model needs to be able to predict. The experimental

results show the following.

(a) The variation in the stress in the reinforcement

over the length So is close to linear. This implies a

constant bond stress over this length.

(b) There is little evidence of general slip.

(c) The bond stress increases with increasing load.

(d ) Equations (5) and (7) appear to predict behaviour

well and have been derived on the assumption of

elastic behaviour punctuated by discrete cracking

events.

(e) It has been shown by Beeby7 and in the present

paper that So and crack widths are proportional to

cover and independent of � or r.

The bond–slip model can now be considered to see

how well it fits these requirements. No detailed model
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Fig. 12. Mechanisms for accommodating the strain incom-

patibility between the reinforcing bar and the concrete
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for cracking has been developed for an internal crack-

ing mechanism so a study will have to be initiated to

establish whether such a model could, potentially incor-

porate these requirements.

There are, in fact, two mutually incompatible bond–

slip models. The classical model, on which the CEB

model code crack formula is based, assumes that bond

failure has taken place at some point along So and so

the average bond stress can be related directly to the

ultimate bond strength. It is not essential to assume a

uniform bond stress along the length So, although this

is often done. Since the bond stress has reached its

ultimate value, however, there can be no further in-

crease in bond stress with increase in load. This vio-

lates point (c) above. Point (d ) is also probably violated

and the lack of evidence for bond failure and slip at the

bar–concrete interface also counts against this model.

Finally, the model predicts that cracking will be a func-

tion of �/r, which has been shown to be untrue.7

The second bond–slip model is to assume a bond–

slip relationship obtained from tests such as the CEB

relationship given by equation (10). This is incompati-

ble with the model used for the CEB crack prediction

formula because bond failure is not predicted to occur

until a slip of 0.6 mm, corresponding to a crack width

at the bar surface of 1.2 mm and a width at the concrete

surface of possibly 2 mm or more. In the range of slips

appropriate to serviceability behaviour, the bond stress

is predicted to increase with increasing load. This mod-

el could therefore satisfy requirements (b), (c) and (d )

above. There are, however, difficulties with requirement

(a). Any slip model requires that there is zero slip at

the end of So remote from the crack and then increases

up to about half the crack width at the crack face. The

bond–slip model would thus require that the bond

stress increased from zero at the end of So remote from

the crack and reached a maximum at the crack. This

contradicts the clear experimental evidence of a more-

or-less constant bond stress over the whole of So.

Bond–slip models thus appear unable to explain the

actual behaviour, and a viable model must be found

elsewhere.

Development of an internal cracking

model

The problem which needs to be addressed is to

formulate a model in which the transfer of stress be-

tween the reinforcing bar and the concrete can be pre-

dicted, allowing for the presence of internal cracks.

The model selected is that of a bar restrained by com-

pression springs at intervals along the bar. This is illu-

strated in Fig. 13. Each pair of springs models the

stiffness of a compression strut in the concrete between

two internal cracks. These compression struts are actu-

ally akin to conical springs, bearing in mind the axial

symmetry of the system. The chain dotted line to the

right of Fig. 13 indicates either the point at which there

is zero stress in the bar or the section mid-way between

cracks where, by symmetry, there is no horizontal

movement of the bar. If stiffnesses are ascribed to the

springs and the bar and the distance ˜L is defined, then

the variation of stress along the bar can easily be

calculated.

Inspection of standard textbooks on elasticity shows

that the deformation at the centre of a circular plate,

regardless of the boundary conditions, can be expressed

by the relation:

� ¼ kN (1� �2)R2=(Et3)

where � ¼ the deflection at the centre

k ¼ a constant depending on the boundary condi-

tions and form of the loading

N ¼ the applied load

R ¼ the radius of the plate

E ¼ the modulus of elasticity of the material

t ¼ the plate thickness

� ¼ Poisson’s ratio.

For a given configuration of conical spring and a

given material, k, t, E and � will be constants so that

the equation reduces to:

� i ¼ k9NiR
2
i or k9=R2i ¼ Ni=�i (11)

where the subscript ‘i’ indicates the ith tooth.

If a linear variation in steel stress is to be modelled

then, for a given overall axial load, the load Ni carried

by each tooth should be constant along the length So. If

the model is to give a linear increase in stress in the

reinforcement with distance from the end of So remote

from a crack, the displacement of the tooth, �i, at the

bar surface can be written as:

� i ¼ � sx=2Es

but �s ¼ kx and hence � i ¼ kx2/2Es

Substituting for � in equation (11) and rearranging

gives:

Ri ¼ k9x=
p
(2EsNi) (12)

Thus, the model suggests that, for a linear change in
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Fig. 13. Schematic diagram of proposed bar–concrete inter-

action

Axially reinforced members subjected to pure tension
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steel strain or stress, the height of the cracks, Ri should

be proportional to distance from the end of So remote

from the crack, x. There is some experimental evidence

to support this. Fig. 14 shows the internal cracks

around bars anchored in blocks of concrete and then

pulled. The figure is drawn from a photograph in a

paper by Otsuka and Ozaka.15 The figure shows a

more-or-less linear decrease in crack length with in-

creasing distance from the face of the concrete.

The possibility of change in length of the cracks with

increase in load on the prisms has not yet been consid-

ered. Intuitively, the crack length and hence the stiff-

ness of the interface could be expected to decrease with

increase in loading as the deformation of each tooth

must increase with increase in load. The model can be

studied to establish what might happen. If it is assumed

that bond is entirely elastic and that the bond stress

increases linearly with increase in applied load, then

the internal cracking would have to develop immedi-

ately on formation of the crack and would then have to

stay constant. If, on the other hand, it was assumed that

the bond stress remained constant with increase in

loading, then equation (11) suggests that R at any point

along So should vary proportionally to the square root

of the load applied to the bar at a crack. The test results

suggest that, at low levels of loading above the cracking

load, the bond is elastic while at higher loads, the bond

stress tends to approach a constant value. This suggests

that the internal crack pattern forms immediately on

formation of the crack and that the length of these

cracks remains sensibly constant for some considerable

increase in loading. Beyond a certain point, however,

the lengths of the internal cracks start to increase. At

high loads, the rate of increase approaches proportion-

ality with the square root of the applied load. The

effectiveness of the equations derived earlier for crack

width and deformation, which assume elastic bond,

shows that, in practice, the assumption of elastic bond

appears practically reasonable.

Discussion

The object of this brief discussion is simply to clarify

what the work reported in this paper claims to have

achieved. The study has been concerned almost entirely

with the behaviour of axially reinforced prisms. Such

elements have been used frequently in the past as the

basis for deriving formulae for the prediction of crack-

ing and the results from prisms have been assumed to

apply to any other tension zone; comparative behaviour

being obtained simply by the empirical definition of an

appropriate effective area of concrete surrounding the

bar. It is not intended to claim that this can necessarily

be done with the results reported here and it is not

claimed that the formulae can reliably be applied at

present to any elements other than axially reinforced

prisms, although further work may enable a more gen-

eral application. Particular issues which remain to be

considered are (a) the effect of multiple bars and hence

the influence of bar spacing and (b) the rather different

stress conditions which occur in members subjected to

bending where there is a strain gradient across the

tension zone.

What is claimed is that the research has shed much

light on the actual behaviour of tension zones under

conditions where this can be established unambigu-

ously. In the present authors’ view, the behavioural

mechanisms revealed or postulated are likely to hold

generally true in all cracked tension zones, although

there may be further mechanisms acting in more com-

plex situations. While these further mechanisms may

complicate the situation, the present authors believe

that the fundamental mechanisms will remain valid.

The equations derived for the prediction of crack

widths and deformations perform a useful purpose in

that they enable the reasonableness of the proposed

mechanism to be tested for this simple experimental

arrangement. The results of this testing have been

highly satisfactory. The current authors are therefore

reasonably confident that the basic aspects of the be-

haviour of reinforced tension zones have been correctly

identified. Further work will, however, be required to

develop generally applicable practical formulae. The

formulae derived in this paper should turn out to be

limiting cases of more general formulae. How this

greater understanding will eventually influence practice

remains to be seen and will depend upon the further

research outlined above. However, tension stiffening is

a major factor in the prediction of the deformation of

lightly reinforced members such as slabs. In such mem-

bers, deformation is frequently a major defining para-

meter in the design and any improvements in predictionFig. 14. Internal cracks around anchored bars15
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methods will be of practical significance. Worldwide,

there is remarkably little consensus on the cracking

behaviour of reinforced concrete, despite the derivation

of very many formulae. Hopefully, this research will

help to develop a clearer consensus on the behaviour of

concrete in tension surrounding reinforcement and will

lead to more rational formulae in due course.

Conclusions
(a) Study of experimental results where the variation

in the strains in the reinforcement can be measured

in detail shows that the stiffness of an axially

reinforced tension member is directly related to the

number of cracks. For a given number of cracks,

the behaviour is elastic.

(b) The experimental evidence also shows that the

variation in reinforcement strain is linear in the

region where it is affected by a crack.

(c) The length of the specimen over which the crack

influences the stress distribution, So, is shown to

be proportional to the cover.

(d) On the basis of these findings, formulae for the

prediction of deformations and crack widths can be

derived. These equations are shown to give good

predictions of behaviour.

(e) Consideration is given to the mechanism by which

the incompatibility between the deformation of the

reinforcement and the strain capacity of the sur-

rounding concrete is accommodated. It is con-

cluded that the most likely mechanism is internal

cracking rather than bond failure. Initial analysis

of an internal cracking model suggests that it is

capable of modelling all aspects of the observed

behaviour.
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