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Abstract

This Letter deals with static BPS monopoles in three dimensions which are periodic either in one direction (monopole chains)
or two directions (monopole sheets). The Nahm construction of the simplest monopole chain is implemented numerically, and
the resulting family of solutions described. For monopole sheets, the Nahm transform itildheate is computed explicitly,
and this leads to a description of the @JUmonopole sheet which arises as a deformation of the embeddgdtlution.
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1. Introduction Letter is to review what is known about the simplest
(unit charge) monopole chains and monopole sheets,
and to describe their appearance.

In the chain case, we implement the Nahm con-
struction numerically, to obtain a one-parameter fam-
ily of 1-monopole chains; the parameter is the ratio
between the monopole size and the period. In the sheet
case, there is a homogeneougliymonopole sheet
solution; we demonstrate that this is “self-reciprocal”
under the Nahm transform, and describe the appear-
ance of the S) monopole sheet which arises as a
deformation of this Abelian solution.

The fields we deal with are solutions of the Bogo-
molny equations

In recent years, there has been interest in periodic
BPS monopoles, namely solutions of the Bogomolny
equations o3 which are periodic either in one direc-
tion (monopole chains) or two directions (monopole
sheets). This has arisen partly because of the interpre-
tation and application of such solutions in the theory
of D-branes. For monopole chains, the details of the
Nahm transform have been fully explored, and there
are some partial existence result$; but for mono-
pole sheets, much less is kno{@2}. In neither case are
there any explicit solutions. The main purpose of this

- 1
E-mail address: richard.ward@durham.ac.(R.S. Ward). D;® = —Esjkl Fr (1)

0370-2693 [ 2005 Elsevier B.V. Open access under CC BY license
doi:10.1016/j.physleth.2005.05.070


http://www.elsevier.com/locate/physletb
mailto:richard.ward@durham.ac.uk
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

178

on R3. Here the coordinates are’ = (x, y, z), the
gauge field isFj; = 0;Ax — A + [A}, A¢], and
D;i®=09;®+[A;, P]. We take the gauge group to be
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has the asymptotic behaviogr ~ (logp)/(27) for
largep.
This U(1) example motivates the boundary condi-

SU(2); except that in the section on monopole sheets, tions for the non-Abelian casg]. In particular, we

we start with U1) fields. The norm-squared of the
Higgs field® is defined by ®|2 = —1 tr(#?), and the
energy density is

1 1
5=_§tr[(D,-q>)2+§(F,-k)2} 2)
If (1) is satisfied, therf = V2|®|2, whereV? is the
Laplacian orR3.

2. Monopole chains

require that

@1~ 5-logp,  1D®|=0(1/p) @
T
asp — oo, whereN is a positive integer. In facty
is a topological invariant: the eigenvector®éfassoci-
ated with its positive eigenvalue defines a line bundle
over the 2-torugp = ¢ > 1, and the first Chern num-
ber of this line bundle isv. A smooth solution of1)
satisfying the boundary conditidd) may be thought
of as an infinite chain oV-monopoles.

Through the Nahm transforifi], such monopole
chains correspond to solutions of th&€ ) Hitchin

In this section, we are interested in BPS monopoles equations on the cylindeR x S, with appropriate

on R? x $1: specifically, monopoles which are peri-
odic in z with period 2r. Let us begin with some

boundary conditions. Let us concentrate onshe- 1
case, and describe the Nahm construction ofthe 1

general remarks. In the case of periodic instantons monopole chain.

(calorons), one may proceed by taking a finite chain

of instantons A instantons strung along a line R*
with equal spacing), and letting the numletend to
infinity—indeed, the first example of a caloron solu-
tion was constructed in this wd®]. For monopoles,
there is a solution representing a stringmefmono-
poles[4]: one can write down its Nahm data explicitly
in terms of them-dimensional irreducible representa-
tion of su2). But this has no limit ag& — oo, So one
does not get an infinite monopole chain in this way.

There is another way to understand why one ex-

pects something to go wrong in the — oo limit
[1,2]. In the asymptotic regiop? = x2+ y2 — oo, the
Higgs field @ of a chain of single S{2) monopoles
will behave like a chain of ) Dirac monopoles,
for which the Higgs field, by linear superposition, is
p=—3 Y pezlp? + (z — 27p)? Y2, But this series
diverges: then-chain (which corresponds to a finite
series) has no limit as — oo. One may, instead,

define a chain of Dirac monopoles by subtracting an

infinite constant, to obtain

o 1 1 [ 1 1]

= — — — — p— s

or 202l Vp2+ (z—2np)2 27l
3)

whereq is a constant. This field is smooth, except at

the locationsp = 0, z € 27Z of the monopoles, and

Write s = r + it, wherer e R andt € [0, 1) are
coordinates on the cylinder. L&t be the first-order
differential operator

A:|:23§_—Z P(s) jI’
P(S) 23s+Z

whereP (s) = C coshi(2rs) — (x +1y), with C being a
positive constant. For each spatial poifit= (x, v, z),
the L? kernel of this operator is 2-dimensional. So
there exists a % 2 matrix¥ (z, r; x/) satisfying

®)

oo 1
AW =0, //wwtdrzL (6)
—0 0
wherel denotes the X 2 identity matrix. Then
oo 1
o =i / /rqﬁq/dtdr,
—0 0
oo 1
+ 0
Aj= v —wdrdr 7
8Xj

—00 0

defines a 1-monopole chain satisfyifig and(4).

The explicit solution of the boundary-value prob-
lem(6) is not known. Part of the difficulty is the lack of
symmetry—both the finite and the infinite monopole
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chains seem to have onlyl, symmetry, correspond-
ing to rotations by 180Dabout each of the, y andz
axes. This is quite unlike the situation for the= 1
instanton chain, where one hag3p symmetry, and
an explicit caloron solutiorf3]. So to see what the
monopole chain looks like, one has to sol&g €ither
approximately or numerically.
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f =1&lg/& andc = m|€]. In other words, one approx-
imate solution of8) is

g &
I~ E(s — ,
[f] [m} (v = %0)

which is strongly peaked at= so. The other (inde-
pendent) solution is peakedsat —sg, and is obtained

This solution contains only one parameter, name- similarly. So we can take
ly C. All the other moduli can (and have) been
removed by translations and rotations of tké.

(Of course, there will be far more parameters when
N >1.) From(5), one might guess on dimensional
grounds thaC determines the monopole size, and this
is indeed the case; or rather, since the length-scale
is already fixed by the period aof, the paramete€ L2 1
corresponds to the dimensionless ratio between thef/‘E(r +”)| drdt ~ T&I

W@|§|1/2|:€E(S_SO) —&E(s + s0)
IEIE(s —s0)  |E]E(s + s0)

where the normalization factor
[ ww =) follows from

], ©)

(ensuring that

monopole size and theperiod.

If 0 < C « 1, then one would expect to obtain a

chain of small monopoles located at the points: 0,
z € 2nZ along thez-axis; in fact, like the Dirac chain

(3) but with the singularities smoothed out. A numer-
ical implementation of the Nahm construction pro-
duces results that are consistent with this interpreta-

tion. The more interesting casedss> 1: namely, what

happens when the monopole size becomes greater than
the z-period? It is this question that we shall concen-

trate on here.

Once again, it is worth contrasting with the caloron
case. The large-size limit of a 1-caloron is in fact a 1-

monopole5]; but for N > 2, the large-size limit may
be anN-monopole, or may not exist at 46].
So let us look for approximate solutions of

A[g}z[ng-—zngP_f}:O ®)
f 2fs+Zf + Pg

whenC > 1. Clearly the functiong and f will have
to be close to zero, except near the zetog of the
function P(s). In other wordsg and f are supported
near the two points = +so = +[cosh (¢ /C)1/(2n),
where¢ = x + iy. For purposes of the approxima-
tion, let us restrict to values @ffor which these zeros
are well-separated. The zeros coincidePif0) = O,
which implies thatt = +C, so we have to stay away
from these values af. Note that near = sg, we have
P(s) = 2n&(s — s0), whereg = C sinh(2r sg).

Finally, from & we can compute the Higgs field, and
we get

|®| ~ |%(s0)| = [Rcoshric/O)|/(@2n). (10)

Several things can immediately be deduced f{a6y):

o |®@| ~ [log(2p/C)]/(27) as p — oo, which
agrees with the required boundary behavi@)r

e |@] andf are independent af;

e @ vanishes on the planar segmenf < x < C,

y = 0 (but bear in mind that our approximation is
not guaranteed to hold near= +C);

e the energy density is localized around the two
linesx =+£C, y =0 (again bearing in mind that
this is exactly where the approximation is un-
clear).

Plotting [#|? and |D®|? = & = $V2|®|? obtained
both from this approximation, and from a numerical
implementation of the Nahm transform, far = 8,
yields the plots irFig. 1 The two upper subfigures use
the approximate solution, withD®|? truncated near
x = +C, y = 0; while two lower subfigures use the
Higgs field obtained from the numerical Nahm trans-
form. The two methods yield the same picture, except
where one expects the approximation to break down.
To summarize, the appearance of an infinite chain
of 1-monopoles is as follows. ' (the ratio between

Define E(s) = expg—css — z(s — 5)/2], wherec is
a positive constant, and talge= E (s — sg). Then @)
is satisfied (to within our approximation) if and only if

the monopole size and the period) is small, then one
has a chain of small monopoles, each roughly spher-
ical in shape, strung along a line (in this case, the
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Fig. 1. |@|2 and | D&P|? on thexy-plane, forC = 8. The upper figures use the approximate solution, and the lower figures use a numerical

solution.

z-axis). For largeC, however, the energy density be-
comes approximately constant in thalirection, and
is peaked along two lines parallel to theaxis, each
a distanceC from it. The numerical results indicate
that the zeros of the Higgs fieldl are located on the
z-axis, atz = 27n for n € Z; but for largeC, @ is

I =1 ([1], discussed in the previous section) are well-
established; but not much is known about the 2
case. In view of the general pattern, one would expect
that the Nahm transform of a monopole Bnx T2
will be another monopole oR x T2. It remains to
be seen whether or not this is the case in general

very close to zero on the whole of the planar segment (and under what circumstances), but we shall see now

—C<x<C,y=0.

3. Monopole sheets

By a monopole sheet we mean a solution(bf
which is periodic in two of the three dimensions (say
the x and y directions), and satisfies an appropri-
ate boundary condition in the-direction. In other
words, the field lives orR x T2. The general pat-
tern for the Nahm transform is that monopoles on
R3-! x T! correspond to solutions @f) on R x 7'
which are independent of the remaining-2 coordi-
nates. The casés= 0 (monopoles ofR® correspond-
ing to solutions of the Nahm equations &) and

that the simplest (Abelian) example confirms this pic-
ture.

Consider the well-known homogeneouglYgauge
field, with gauge potentiatt; = 1iB(—y, x, 0). Here
B is a real constant, which represents the magnetic
flux density through thecy-plane. With Higgs field
® = —iBz, we have a l¢1) solution of the mono-
pole equationgl). This field is doubly-periodic (up
to gauge) in ther and y directions, with periods.,
and i, respectively, provided we impose the Dirac
quantization conditiorBA, A, = 27 N, with N being
an integer. Geometricallyy is the first Chern class of
the U(1) bundle on7'2. For simplicity in what follows,
let us taker, = 1= A, andN =1, so thatB = 27.
The Nahm transform of the field involves the normal-
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izable solutions oAY = 0, where

A=|:Dz—iq)—Z 2D; +iS }

2D;+iS -D,—i®—Z (11)

Heres =x+iy, D; =9;+ A;, (X, Y, Z) are the dual
coordinates X andY are periodic, with the dual pe-
riod 27), andS = X + iY. The boundary conditions
onv are

W(.X +1s ) Z) = W(xv Y, Z) E'Xp(_i”)’)
Ux,y+1,z2)=W(x,y,z)expirx)
¥(x,y,z) >0 asz— foo

12)

Putting in the homogeneous (U field described
above gives the system

A [g} 3 [gz —@2nz—2)g +2fs +(n5+i§)f}
f 285 — (ms —i8)g— fo— 2nz+2) f
(13)
A solution of (13), satisfying the required boundary
conditions, isg = 0 and

=0.

f(x,y,2) = A%3(ws —15/2)
x exp[—%(an +2)°+(S— ini)y:|.

(14)
Here 93 is the theta-function ¥3(¢) = 1 +
232 exp(—mk?) cog2ke), and A is a normaliza-
tion constant determined bf| f|>d3x = 1. We can
then compute the Nahm transform @b, A;): these
are U1) fields on theXY Z-space, and are given by
1

- d
= et watr= —(0, i
Aj_/w ax P dx=5-(0.-1X,0),

. iz
&= —|/szWd3x ==,
2

This is essentially the same solution as we started with
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The calculations irf2] did not impose periodicity in
thexy-plane, and the version below is a variant which
does.

Let us write @ = ®%0%/(2i), A; = A‘j!o“/(Zi),
whereo“ denote the Pauli matrices. The embedded
solution is

3 3

~ o ~ o
nZ2i7 J JT( ya-x’ )2|

We consider a perturbation

o=b+¢, Aj=A;+aj, (15)

where¢ anda; are infinitesimal. We can take® =
0= af.’, since we are only interested in “non-Abelian”

fluctuations. WritingW,; = ajl. + iajz and W = ¢t +
i¢?, and imposing the monopole equatighytogether
with a gauge conditioD ;a; + [®, ¢] = 0, gives the
system

Wi —iW-: W3 +iW,
Ao[ ! .z]zoon[ ® .“]
—W3+1Wy W1+ 1W>

where A is the operatof11) with Z =S = § = 0.
The same boundary conditiorf$2) as before apply
here as well, in order for the perturbation to be nor-
malizable and doubly-periodic. So a solution(&B)

is given by

(16)

W1 =iWs =afy, Wy =iW3 = Bfo, 17)

wherea and 8 are complex constants, anf is the
function (14) with Z = § = § = 0. This suggestg]
that the “Abelian” monopole sheet belongs to a four-
parameter family of doubly-periodic §B) mono-
pole sheets. However, it remains to be shown whether
these actually exist—in other words, whether the zero-
modes(17) correspond to actual solutions.

To see what these solutions may look like, how-

(except that the periods are dual to the original ones). ever, we can plot the perturbed field@s5). Clearly

So this U1) monopole sheet is “self-reciprocdl7]
under the Nahm transform.

the perturbations are concentrated on the plaad.
In Fig. 2, the quantitie§®|2 and |D®|? are plotted

What about non-Abelian monopole sheets? By on z =0, for 0< x < 2 and 0< y < 2 (covering
analogy with the Abelian case, we expect the bound- four fundamental cells). The fiel@ is obtained from

ary condition inz to be that® is linear inz, and| D@ |
tends to a positive constant, as> oco. In [2], it was
argued that the embedding of thg1y example into
SU(2) may legitimately be thought of as an &)

(15) and (17), with coefficientg = 0.5. The doubly-
periodic nature of the field is evident. The unperturbed
Higgs field® is identically zero orr = 0, whereas the
perturbed field® has exactly one zero in each cell;

monopole sheet. Part of the argument came from look- @ is non-zero forz # 0, and grows linearly withy.
ing at the normalizable zero-modes of the embedding. Similarly, the energy densityD® |2 takes the constant
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Fig. 2. SU2) monopole sheet: perturbation of homogeneous solutiomdi(&)on z=0; (b) ID®|2 — 72 0onz=0.
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