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Abstract

This Letter deals with static BPS monopoles in three dimensions which are periodic either in one direction (monopole
or two directions (monopole sheets). The Nahm construction of the simplest monopole chain is implemented numeric
the resulting family of solutions described. For monopole sheets, the Nahm transform in the U(1) case is computed explicitly
and this leads to a description of the SU(2) monopole sheet which arises as a deformation of the embedded U(1) solution.
 2005 Elsevier B.V.
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1. Introduction

In recent years, there has been interest in perio
BPS monopoles, namely solutions of the Bogomo
equations onR3 which are periodic either in one dire
tion (monopole chains) or two directions (monopo
sheets). This has arisen partly because of the inter
tation and application of such solutions in the the
of D-branes. For monopole chains, the details of
Nahm transform have been fully explored, and th
are some partial existence results[1]; but for mono-
pole sheets, much less is known[2]. In neither case ar
there any explicit solutions. The main purpose of t
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Letter is to review what is known about the simple
(unit charge) monopole chains and monopole she
and to describe their appearance.

In the chain case, we implement the Nahm c
struction numerically, to obtain a one-parameter fa
ily of 1-monopole chains; the parameter is the ra
between the monopole size and the period. In the s
case, there is a homogeneous U(1) monopole shee
solution; we demonstrate that this is “self-reciproc
under the Nahm transform, and describe the app
ance of the SU(2) monopole sheet which arises as
deformation of this Abelian solution.

The fields we deal with are solutions of the Bog
molny equations

(1)D Φ = −1
ε F
j

2
jkl kl
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on R3. Here the coordinates arexj = (x, y, z), the
gauge field isFjk = ∂jAk − ∂kAj + [Aj ,Ak], and
DjΦ = ∂jΦ +[Aj ,Φ]. We take the gauge group to b
SU(2); except that in the section on monopole she
we start with U(1) fields. The norm-squared of th
Higgs fieldΦ is defined by|Φ|2 = −1

2 tr(Φ2), and the
energy density is

(2)E = −1

2
tr

[
(DjΦ)2 + 1

2
(Fjk)

2
]
.

If (1) is satisfied, thenE = ∇2|Φ|2, where∇2 is the
Laplacian onR3.

2. Monopole chains

In this section, we are interested in BPS monopo
on R2 × S1; specifically, monopoles which are pe
odic in z with period 2π . Let us begin with some
general remarks. In the case of periodic instant
(calorons), one may proceed by taking a finite ch
of instantons (m instantons strung along a line inR4

with equal spacing), and letting the numberm tend to
infinity—indeed, the first example of a caloron so
tion was constructed in this way[3]. For monopoles
there is a solution representing a string ofm mono-
poles[4]: one can write down its Nahm data explicit
in terms of them-dimensional irreducible represent
tion of su(2). But this has no limit asm → ∞, so one
does not get an infinite monopole chain in this way

There is another way to understand why one
pects something to go wrong in them → ∞ limit
[1,2]. In the asymptotic regionρ2 = x2+y2 → ∞, the
Higgs fieldΦ of a chain of single SU(2) monopoles
will behave like a chain of U(1) Dirac monopoles
for which the Higgs field, by linear superposition,
φ = −1

2

∑
p∈Z[ρ2 + (z − 2πp)2]−1/2. But this series

diverges: them-chain (which corresponds to a fini
series) has no limit asm → ∞. One may, instead
define a chain of Dirac monopoles by subtracting
infinite constant, to obtain

(3)

φ = α − 1

2r
− 1

2

∑
p �=0

[
1√

ρ2 + (z − 2πp)2
− 1

2π |p|
]
,

whereα is a constant. This field is smooth, except
the locationsρ = 0, z ∈ 2πZ of the monopoles, an
has the asymptotic behaviourφ ∼ (logρ)/(2π) for
largeρ.

This U(1) example motivates the boundary con
tions for the non-Abelian case[1]. In particular, we
require that

(4)|Φ| ∼ N

2π
logρ, |DΦ| = O(1/ρ)

asρ → ∞, whereN is a positive integer. In fact,N
is a topological invariant: the eigenvector ofΦ associ-
ated with its positive eigenvalue defines a line bun
over the 2-torusρ = c � 1, and the first Chern num
ber of this line bundle isN . A smooth solution of(1)
satisfying the boundary condition(4) may be though
of as an infinite chain ofN -monopoles.

Through the Nahm transform[1], such monopole
chains correspond to solutions of the U(N) Hitchin
equations on the cylinderR × S1, with appropriate
boundary conditions. Let us concentrate on theN = 1
case, and describe the Nahm construction of theN = 1
monopole chain.

Write s = r + it , wherer ∈ R and t ∈ [0,1) are
coordinates on the cylinder. Let� be the first-order
differential operator

(5)� =
[

2∂s̄ − z P (s)

P (s) 2∂s + z

]
,

whereP(s) = C cosh(2πs)− (x + iy), with C being a
positive constant. For each spatial pointxj = (x, y, z),
the L2 kernel of this operator is 2-dimensional. S
there exists a 2× 2 matrixΨ (t, r;xj ) satisfying

(6)�Ψ = 0,

∞∫
−∞

1∫
0

Ψ †Ψ dt dr = I,

whereI denotes the 2× 2 identity matrix. Then

Φ = i

∞∫
−∞

1∫
0

rΨ †Ψ dt dr,

(7)Aj =
∞∫

−∞

1∫
0

Ψ † ∂

∂xj

Ψ dt dr

defines a 1-monopole chain satisfying(1) and(4).
The explicit solution of the boundary-value pro

lem(6) is not known. Part of the difficulty is the lack o
symmetry—both the finite and the infinite monopo
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chains seem to have only aD2 symmetry, correspond
ing to rotations by 180◦ about each of thex, y andz

axes. This is quite unlike the situation for theN = 1
instanton chain, where one has O(3) symmetry, and
an explicit caloron solution[3]. So to see what th
monopole chain looks like, one has to solve (6) either
approximately or numerically.

This solution contains only one parameter, nam
ly C. All the other moduli can (and have) bee
removed by translations and rotations of thexj .
(Of course, there will be far more parameters wh
N > 1.) From (5), one might guess on dimension
grounds thatC determines the monopole size, and t
is indeed the case; or rather, since the length-s
is already fixed by the period ofz, the parameterC
corresponds to the dimensionless ratio between
monopole size and thez-period.

If 0 < C 	 1, then one would expect to obtain
chain of small monopoles located at the pointsρ = 0,
z ∈ 2πZ along thez-axis; in fact, like the Dirac chain
(3) but with the singularities smoothed out. A num
ical implementation of the Nahm construction pr
duces results that are consistent with this interpr
tion. The more interesting case isC � 1: namely, what
happens when the monopole size becomes greater
the z-period? It is this question that we shall conce
trate on here.

Once again, it is worth contrasting with the calor
case. The large-size limit of a 1-caloron is in fact a
monopole[5]; but for N � 2, the large-size limit may
be anN -monopole, or may not exist at all[6].

So let us look for approximate solutions of

(8)�

[
g

f

]
=

[
2gs̄ − zg + Pf

2fs + Zf + P̄ g

]
= 0

whenC � 1. Clearly the functionsg andf will have
to be close to zero, except near the zeros±s0 of the
functionP(s). In other words,g andf are supported
near the two pointss = ±s0 = ±[cosh−1(ζ/C)]/(2π),
where ζ = x + iy. For purposes of the approxim
tion, let us restrict to values ofζ for which these zero
are well-separated. The zeros coincide ifP(0) = 0,
which implies thatζ = ±C, so we have to stay awa
from these values ofζ . Note that nears = s0, we have
P(s) ≈ 2πξ(s − s0), whereξ = C sinh(2πs0).

DefineE(s) = exp[−css̄ − z(s − s̄)/2], wherec is
a positive constant, and takeg = E(s − s0). Then (8)
is satisfied (to within our approximation) if and only
n

f = |ξ |g/ξ andc = π |ξ |. In other words, one approx
imate solution of(8) is[

g

f

]
≈

[
ξ

|ξ |
]

E(s − s0),

which is strongly peaked ats = s0. The other (inde-
pendent) solution is peaked ats = −s0, and is obtained
similarly. So we can take

(9)Ψ ≈ |ξ |−1/2
[

ξE(s − s0) −ξE(s + s0)

|ξ |E(s − s0) |ξ |E(s + s0)

]
,

where the normalization factor (ensuring th∫
Ψ †Ψ = I ) follows from

∫ ∫ ∣∣E(r + it)
∣∣2 dr dt ≈ 1

2|ξ | .

Finally, from Ψ we can compute the Higgs field, an
we get

(10)|Φ| ≈ ∣∣�(s0)
∣∣ = ∣∣�cosh−1(ζ/C)

∣∣/(2π).

Several things can immediately be deduced from(10):

• |Φ| ∼ [log(2ρ/C)]/(2π) as ρ → ∞, which
agrees with the required boundary behaviour(4);

• |Φ| andE are independent ofz;
• Φ vanishes on the planar segment−C < x < C,

y = 0 (but bear in mind that our approximation
not guaranteed to hold nearx = ±C);

• the energy densityE is localized around the tw
lines x = ±C, y = 0 (again bearing in mind tha
this is exactly where the approximation is u
clear).

Plotting |Φ|2 and |DΦ|2 = 1
2E = 1

2∇2|Φ|2 obtained
both from this approximation, and from a numeric
implementation of the Nahm transform, forC = 8,
yields the plots inFig. 1. The two upper subfigures us
the approximate solution, with|DΦ|2 truncated nea
x = ±C, y = 0; while two lower subfigures use th
Higgs field obtained from the numerical Nahm tran
form. The two methods yield the same picture, exc
where one expects the approximation to break dow

To summarize, the appearance of an infinite ch
of 1-monopoles is as follows. IfC (the ratio between
the monopole size and the period) is small, then
has a chain of small monopoles, each roughly sp
ical in shape, strung along a line (in this case,
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erical
Fig. 1. |Φ|2 and |DΦ|2 on thexy-plane, forC = 8. The upper figures use the approximate solution, and the lower figures use a num
solution.
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z-axis). For largeC, however, the energy density b
comes approximately constant in thez-direction, and
is peaked along two lines parallel to thez-axis, each
a distanceC from it. The numerical results indicat
that the zeros of the Higgs fieldΦ are located on the
z-axis, atz = 2πn for n ∈ Z; but for largeC, Φ is
very close to zero on the whole of the planar segm
−C < x < C, y = 0.

3. Monopole sheets

By a monopole sheet we mean a solution of(1)
which is periodic in two of the three dimensions (s
the x and y directions), and satisfies an approp
ate boundary condition in thez-direction. In other
words, the field lives onR × T 2. The general pat
tern for the Nahm transform is that monopoles
R3−l × T l correspond to solutions of(1) on R × T l

which are independent of the remaining 2− l coordi-
nates. The casesl = 0 (monopoles onR3 correspond-
ing to solutions of the Nahm equations onR) and
l = 1 ([1], discussed in the previous section) are w
established; but not much is known about thel = 2
case. In view of the general pattern, one would exp
that the Nahm transform of a monopole onR × T 2

will be another monopole onR × T 2. It remains to
be seen whether or not this is the case in gen
(and under what circumstances), but we shall see
that the simplest (Abelian) example confirms this p
ture.

Consider the well-known homogeneous U(1) gauge
field, with gauge potentialAj = 1

2iB(−y, x,0). Here
B is a real constant, which represents the magn
flux density through thexy-plane. With Higgs field
Φ = −iBz, we have a U(1) solution of the mono-
pole equations(1). This field is doubly-periodic (up
to gauge) in thex andy directions, with periodsλx

and λy respectively, provided we impose the Dir
quantization conditionBλxλy = 2πN , with N being
an integer. Geometrically,N is the first Chern class o
the U(1) bundle onT 2. For simplicity in what follows,
let us takeλx = 1 = λy andN = 1, so thatB = 2π .
The Nahm transform of the field involves the norm
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izable solutions of�Ψ = 0, where

(11)� =
[

Dz − iΦ − Z 2Ds + iS̄
2Ds̄ + iS −Dz − iΦ − Z

]
.

Heres = x + iy, Dj = ∂j +Aj , (X,Y,Z) are the dua
coordinates (X andY are periodic, with the dual pe
riod 2π ), andS = X + iY . The boundary condition
onΨ are

(12)

Ψ (x + 1, y, z) = Ψ (x, y, z)exp(−iπy)

Ψ (x, y + 1, z) = Ψ (x, y, z)exp(iπx)

Ψ (x, y, z) → 0 asz → ±∞


 .

Putting in the homogeneous U(1) field described
above gives the system

�

[
g

f

]
=

[
gz − (2πz − Z)g + 2fs + (πs̄ + iS̄)f

2gs̄ − (πs − iS)g − fz − (2πz + Z)f

]

(13)= 0.

A solution of (13), satisfying the required bounda
conditions, isg = 0 and

f (x, y, z) = Λϑ3(πs − iS/2)

(14)

× exp

[
−1

2
(2πz + Z)2 + (S̄ − iπs̄)y

]
.

Here ϑ3 is the theta-function ϑ3(ζ ) = 1 +
2
∑∞

k=1 exp(−πk2)cos(2kζ ), and Λ is a normaliza-
tion constant determined by

∫ |f |2 d3x = 1. We can
then compute the Nahm transform of(Φ,Aj ): these
are U(1) fields on theXYZ-space, and are given by

Ãj =
∫

Ψ † ∂

∂Xj
Ψ d3x = 1

2π
(0,−iX,0),

Φ̃ = −i
∫

zΨ †Ψ d3x = iZ

2π
.

This is essentially the same solution as we started
(except that the periods are dual to the original on
So this U(1) monopole sheet is “self-reciprocal”[7]
under the Nahm transform.

What about non-Abelian monopole sheets?
analogy with the Abelian case, we expect the bou
ary condition inz to be thatΦ is linear inz, and|DΦ|
tends to a positive constant, asz → ∞. In [2], it was
argued that the embedding of the U(1) example into
SU(2) may legitimately be thought of as an SU(2)

monopole sheet. Part of the argument came from lo
ing at the normalizable zero-modes of the embedd
The calculations in[2] did not impose periodicity in
thexy-plane, and the version below is a variant wh
does.

Let us write Φ = Φaσa/(2i), Aj = Aa
jσ

a/(2i),
whereσa denote the Pauli matrices. The embedd
solution is

Φ̂ = −2πz
σ 3

2i
, Âj = π(−y, x,0)

σ 3

2i
.

We consider a perturbation

(15)Φ = Φ̂ + φ, Aj = Âj + aj ,

whereφ andaj are infinitesimal. We can takeφ3 =
0 = a3

j , since we are only interested in “non-Abelia

fluctuations. WritingWj = a1
j + ia2

j andW4 = φ1 +
iφ2, and imposing the monopole equations(1) together
with a gauge conditionDjaj + [Φ,φ] = 0, gives the
system

(16)�0

[
W1 − iW2

−W3 + iW4

]
= 0= �0

[
W3 + iW4

W1 + iW2

]
,

where�0 is the operator(11) with Z = S = S̄ = 0.
The same boundary conditions(12) as before apply
here as well, in order for the perturbation to be n
malizable and doubly-periodic. So a solution of(16)
is given by

(17)W1 = iW2 = αf0, W4 = iW3 = βf0,

whereα andβ are complex constants, andf0 is the
function (14) with Z = S = S̄ = 0. This suggests[2]
that the “Abelian” monopole sheet belongs to a fo
parameter family of doubly-periodic SU(2) mono-
pole sheets. However, it remains to be shown whe
these actually exist—in other words, whether the ze
modes(17)correspond to actual solutions.

To see what these solutions may look like, ho
ever, we can plot the perturbed fields(15). Clearly
the perturbations are concentrated on the planez = 0.
In Fig. 2, the quantities|Φ|2 and |DΦ|2 are plotted
on z = 0, for 0 � x � 2 and 0� y � 2 (covering
four fundamental cells). The fieldΦ is obtained from
(15) and(17), with coefficientβ = 0.5. The doubly-
periodic nature of the field is evident. The unperturb
Higgs fieldΦ̂ is identically zero onz = 0, whereas the
perturbed fieldΦ has exactly one zero in each ce
Φ is non-zero forz �= 0, and grows linearly withz.
Similarly, the energy density|DΦ|2 takes the constan
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(a)

(b)

Fig. 2. SU(2) monopole sheet: perturbation of homogeneous solution. (a)|Φ|2 on z = 0; (b) |DΦ|2 − π2 on z = 0.
the
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valueB2/4= π2 in the unperturbed case, whereas
perturbed version is non-constant nearz = 0 and is
peaked whereΦ has its zero.

Clearly much analysis remains to be done in t
case, to confirm that solutions exist, understand t
moduli space, and work out the details of the Na
transform. Work in this direction is currently und
way.
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