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A number of simple analytic theories have been proposed to define an effective plasma frequency in
two-dimensional �2D� periodic systems containing metallic elements such as an array of metal rods in a simple
square lattice. Such metallic structures are considered using a frequency-dependent plane-wave complex band
structure approach. Detailed results are presented for the pass and stop bands for a range of rod diameters. In
addition, the value of the effective plasma frequency is extracted and compared with the predictions of existing
analytic models. For the structures considered the effective plasma frequency is in the THz regime.
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I. INTRODUCTION

Some time ago Pendry et al.1,2 considered the problem of
the plasma frequency of an array of thin metallic wires,
which is a structure whose low frequency response can be
characterized in terms of an effective plasma frequency, be-
low which propagating electromagnetic modes do not occur.
In their case the theory was specifically designed to deal with
very thin wires with an effective plasma frequency shifted
into the GHz range from the bulk metal value �1015 Hz.
Since then a number of alternative simple analytic theories
have been proposed in order to deal with this problem.3–5 In
the current work we apply a frequency dependent, plane-
wave based, complex photonic band structure approach to
the calculation of the effective plasma frequency for a series
of structures consisting of an array of circular metal rods in a
two-dimensional �2D� square lattice. The plane-wave ap-
proach is potentially applicable to a variety of situations in
which the permittivity depends on frequency. There has been
considerable controversy concerning the results to be ex-
pected in the case of much lower frequencies and rather
larger lattice spacings where the skin depth and rod diameter
are comparable �see for example Markos and Soukoulis6 and
references therein�. However, in our calculations, we are
concerned with the case where the skin depth is significantly
smaller than the rod diameter, and therefore some of the
problems encountered at lower frequencies do not apply. The
details of the theory are described in Sec. II with the results
presented in Sec. III. Comparison with existing analytic
theories for the effective plasma frequency are found in Sec.
IV and conclusions in Sec. V.

II. THEORY

The theory described follows a similar formulation to that
of our earlier work concerning complex electronic band
structure,7 and recent complex photonic band structure stud-
ies of equifrequency surfaces for superprism applications8

carried out within our group. The approach is similar to, but
different in some details to that described by Gu et al.9 We
begin by assuming a system with frequency-independent
background relative permittivity �b into which we introduce
a 2D periodic array of rods of arbitrary cross section aligned

parallel to the z direction, as shown in Fig. 1. The relative
permittivity within the rods is taken to be of the general
frequency-dependent form ���� which may have real and
imaginary components that completely characterize the re-
sponse of the rods. For completeness we consider the situa-
tions in which the electric field is polarized either parallel
�TM� or perpendicular �TE� to the rods although it is the
former case with which we are primarily concerned. In what
follows we consider only nonmagnetic materials for which
the permeability is �0.

A. TM polarization: E-field polarized in z direction,
parallel to rod axis

We take

E� �r�,t� = E� ��� ,t� = � 0

0

Ez��� �
�e−i�t,

H� �r�,t� = H� ��� ,t� = �Hx��� �
Hy��� �

0
�e−i�t,

where r� is the position vector, �� = �x ,y� is the 2D position
vector and the electric field in the z direction can be ex-
pressed as a Fourier series expansion in terms of the recip-
rocal lattice vectors g�

FIG. 1. An array of arbitrary shaped rods in a square lattice.
Within the rods the frequency-dependent permittivity ���� �=����
and elsewhere ���� �=�b, a constant background value.
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Ez��� � = �
g�

Eg�
ei�k�+g� �·�� . �1�

k� is a wave vector perpendicular to the z direction. We then
have, from Maxwell’s equations

� � E� ��� ,t� = i��0H� ��� ,t�, � � H� ��� ,t� = − i��0���� �E� ��� ,t�

and hence

� � � � E� ��� ,t� = i��o � � H� ��� ,t� = i��0�− i��0���� �E� ��� ,t�� =
�2

c2 ���� �E� ��� ,t� .

This equation has only a z component and so, dropping the
common e−i�t factor, we have

�
g�

Eg�
�k� + g� �2ei�k�+g� �·�� =

�2

c2 ���� ��
g�

Eg�
ei�k�+g� �·�� , �2�

where we have made use of �1� to obtain the expression for
����E� ��� , t� on the left-hand side of �2�.

We now write the spatial dependence of the permittivity
���� � in the form

���� � = �b + ����� − �b�S��� � ,

where

S��� � = 1 within the �-dependent region,

S��� � = 0 elsewhere.

We then employ a Fourier series expansion S��� �
=�g��Sg��e

ig��·�� so that �2� can be rewritten in the form

�
g�

Eg�
�k� + g� �2ei�k�+g� �·�� =

�2�b

c2 �
g�

Eg�
ei�k�+g� �·��

+ F1����
g��,g�

Sg��Eg�
ei�k�+g�+g���·�� , �3�

where, for convenience, we have defined F1���= �2

c2 �����
−�b�.

Multiplying �3� by e−i�k�+G� �·��, where G� is any reciprocal
lattice vector, and integrating over a unit cell we obtain a set
of equations

EG�	�k� + G� �2 −
�2�b

c2 
 = F1����
g�

SG� −g�
Eg�

. �4�

In matrix form these equations can be combined to give
ME� =F1���SE� where M is a diagonal matrix with elements
given by

MG� ,G� = �k� + G� �2 −
�2�b

c2 ,
the matrix S has elements given by the Fourier components
SG� ,g�

=SG� −g�
and the components of the eigenvector E� are the

E-field expansion coefficients Eg�
. If we then take k� =kû�

where û� is a two-dimensional unit vector in the x-y plane

defining the wave vector direction, �4� can be rewritten in the
form

k2IE� + kAE� + BE� = CE� ,

or k2IE� + kAE� = �C − B�E� = DE� , �5�

where

I is the identity matrix,

A only has diagonal elements given by AG� ,G� = 2G� · û� ,

B only has diagonal elements given by BG� ,G� = G2 −
�2

c2 �b,

C has the elements CG� ,g�
= F1���SG� ,g�

.

In a standard plane-wave photonic band structure calculation
as employed by Plihal and Maradudin,10 for example, 1 /���� �
is expanded as a Fourier series and the eigenvalue equation is
such that �2 can be found for a given k� . However, here �5� is
reformulated as a matrix of order 2n�2n, where n is the
number of plane waves employed in the expansion of the E
field to give the general complex eigenvalue equation

� 0 I

D − A
�� E�

kE�
� = k� E�

kE�
� �6�

from which we may obtain the general complex wave vec-
tors k for the direction û� for a given fixed � as long as ����
is known. We can then perform a frequency scan to obtain
the complex photonic band structure. The electric field can
also be obtained from the eigenvectors of Eq. �6� �and then
the magnetic field from the appropriate Maxwell equation�
but we do not give any results for the field profiles in this
work.

B. TE polarization: H-field polarized in z direction,
parallel to rod axis

We take

H� �r�,t� = H� ��� ,t� = � 0

0

Hz��� �
�e−i�t,
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E� �r�,t� = E� ��� ,t� = �Ex��� �
Ey��� �

0
�e−i�t,

where

Hz��� � = �
g�

Hg�
ei�k�+g� �·�� .

In this case we employ Maxwell’s equations in the form

� � E� ��� ,t� = i��0H� ��� ,t�

and

1

���� �
� � H� ��� ,t� = − i��0E� ��� ,t�

and combining them gives

� � 	 1

���� �
� � H� ��� ,t�
 = − i��0 � � E� ��� ,t� = − i��0�i��oH� ��� ,t�� =

�2

c2 H� ��� ,t� . �7�

The reciprocal of the permittivity can be written as

1

���� �
=

1

�b
−

����� − �b�
�b����

· S��� � =
1

�b
�1 − F2���S��� �� , �8�

where

F2��� =
���� − �b

����
.

�Note that for the cases considered in Sec. III, F2���
1 but
we do not make use of this approximation.�

Substitution of �8� in �7� leads to

� � ��1 − F2���S��� �� � � H� ��� ,t�� =
�2�b

c2 H� ��� ,t� . �9�

We then proceed in a similar manner to before by inserting
the plane wave expansions for S��� � and Hz��� � in �9� to give

�
g�

Hg�
�k� + g� �2ei�k�+g� �·�� − F2����

g� ,g��

Sg��Hg�
�k� + g� � · �k� + g�

+ g���ei�k�+g�+g���·�� =
�2�b

c2 �
g�

Hg�
ei�k�+g� �·�� . �10�

Multiplying �10� by e−i�k�+G� �·��, and integrating over a unit cell
gives, after some rearrangement

HG� �k� + G� �2 −
�2�b

c2 HG� = F2����
g�

SG� −g�
�k� + G� � · �k� + g� �Hg�

.

�11�

We can write �11� in matrix form as

MH� = k2IH� + kAH� + BH� = F2���S�H� , �12�

where M, A, and B are the same matrices as defined in the
case of TM polarization, H� is a vector with the Hg�

expansion
coefficients for components, and the elements of the matrix
S� are given by

SG� ,g�
� = �k� + G� � · �k� + g� �SG� −g�

= �k2 + kû� · �G� + g� � + G� · g� �SG� −g�
.

The right-hand side of Eq. �12� can be rewritten as

F2���S�H� = �k2P + kQ + R�H� ,

where

P has the elements given by PG� ,g�
= F2���SG� −g�

,

Q has the elements given by QG� ,g�
= F2���SG� −g�

û� · �G� + g� � ,

R has the elements given by RG� ,g�
= F2���SG� −g�

G� · g� .

With these definitions we can rewrite Eq. �12� in the form

MH� = k2IH� + kAH� + BH� = k2PH� + kQH� + RH�

or

k2�I − P�H� + k�A − Q�H� = �R − B�H� . �13�

Multiplying Eq. �13� by the inverse matrix �I− P�−1 gives

k2IH� + kA�H� = D�H� , �14�

where we define A�= �I− P�−1�A−Q�, D�= �I− P�−1�R−B�.
We then observe that Eq. �14� has identical structure to

Eq. �5� as it can be rewritten in the form

� 0 I

D� − A�
�� H�

kH�
� = k� H�

kH�
� . �15�

If ���� is known, we may again obtain the general complex
wave vectors k for the direction û� for a given � and then
scan through frequency dependent to map out the associated
complex photonic band structure.

It is noted that alternative plane-wave complex photonic
band structure approaches have been described by Treacy11

and Shi et al.12 �these authors employ a different expansion
of ���� � or 1/���� � which leads to a somewhat different for-
mulation� and complex band structure results have also been
given by Pendry et al.2 for a thin 2D thin wire array. Both the
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approaches of Gu et al.9 and Pearce et al.13 can also deal
with general ���� including imaginary components but in all
of the above cases9,11–13 a frequency-dependent Fourier se-
ries expansion is employed leading to somewhat different
formulations from that employed in our work.

III. RESULTS

We now apply the theory described in Sec. II to the situ-
ation in which we have a 2D square array of circular metal
rods of diameter 2r and lattice constant a=200 �m. A set of
structures is considered with a range of rod diameters from
10–120 �m. The lattice period of 200 �m is similar, al-
though somewhat smaller, to that employed in the experi-
mental work of Pimenov and Loidl14 who considered 2D
arrays of copper and steel wires. The values of r and the
period have been chosen to ensure an effective plasma fre-
quency in the THz regime. This is a regime which is acces-
sible to fabrication employing standard lithographic and
sputtering techniques.

For the purposes of the calculation we take the back-
ground relative permittivity �b=1 as appropriate for air and
for the circular rods we take

���� = 1 −
�p

2

��� + i�c�
, �16�

where �p is the bulk metal plasma frequency and �c is a
constant describing the absorption. In this case we employ
the values of Ordal et al.15 for gold: �p=2��2.175
�1015 s−1, �c=2��6.5�1012 s−1.

To begin, we present typical complex photonic band
structure results for the TM case, both excluding and includ-
ing the absorption term in Eq. �16�. These are shown in Figs.
2 and 3, respectively. �In the figures it should be noted that
there is no special significance to the sign of the real and
imaginary k components: the k values come in pairs with
positive and negative imaginary components corresponding
to decay in opposite directions. The sign convention em-
ployed here is purely for plotting convenience.� These par-
ticular calculations were performed with the wave vector in
the �100� direction for midrange 50 micron diameter rods
and employed 805 plane waves for the expansion of the E
field. In the plots, k is given in units of 2� /a and the results
in Fig. 2 indicate that the main purely imaginary solutions
are heavily attenuated; indeed Im�k�
0.15�2� /a, corre-
sponding to the center of the general complex solution cen-
tred at about 1 THz implies a decay length for E of about 1
lattice constant. Note that for these general complex wave
vectors, the real part of k is attached to the edge of the
Brillouin zone and solutions with Re�k�= ±0.5�2� /a are
equivalent as they differ by a reciprocal lattice vector. In the
range displayed, the results indicate that there are two bands
in which propagation is possible between about 0.67
→0.84 THz and 1.16→1.53 THz: in these regions the value
of k is purely real. Note that when solutions are purely real or
purely imaginary, as in this case, there is no energy dissipa-
tion and we would conclude that any electromagnetic �EM�
wave impinging on a semi-infinite system would be either

100% reflected, if the imaginary component of k is nonzero,
or may propagate to some extent through the structure, de-
pending on the reflection coefficient at the surface, if k is
purely real.

We now consider the effect of the inclusion of the absorp-
tion term �c as demonstrated by the results in Fig. 3. In this
case all k are of general complex form, and hence a degree of
energy dissipation is always present, as we would expect for
a metal, although the respective real or imaginary compo-
nents may be very small. We see that there is no qualitative

FIG. 2. �Color online� Complex photonic band structure in the
�100� direction for 50 micron diameter rods in a 200 micron period
square lattice. The absorption term is omitted in this calculation.
Dotted and dashed lines relate to purely imaginary k values and the
solid lines relate to purely imaginary, purely real, or their connected
general complex solutions.

FIG. 3. �Color online� Complex photonic band structure in the
�100� direction for 50 micron diameter rods in a 200 micron period
square lattice. The absorption term is included in this calculation. In
this case all solutions are general complex �with solid, dotted and
dashed real and imaginary solutions paired as shown�.
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change in the overall band structure except in the case of the
most heavily attenuated solution which displays a significant
dip in the imaginary component and a corresponding signifi-
cant peak in its real component. This region indicates the
existence of both positive, negative, and infinite group ve-
locities, although the interpretation of this is somewhat open
to question since we have energy dissipation and such
heavily attenuated solutions. Although it is clearly more
problematic to define the band edge in this case, the rela-
tively small value of the imaginary component of k, corre-
sponding to the general area of our original pass bands, in-
dicates that for any finite structure significant propagation
may still be possible in the same ranges as indicated by our
original calculations without the �c term. In view of this we
shall for the moment follow the widespread convention of
neglecting the �c term, and in what follows define the band
edges as the frequencies at which k changes from purely
imaginary to purely real or vice versa.

With the neglect of �c, we show in Fig. 4 the evolution of
the pass bands �purely real k regions� as a function of rod
diameter. The positions of the band edges have been estab-
lished using 877 plane waves, which our calculations indi-
cate give convergence to about 2% for the lowest frequency
solutions in which we are primarily interested. A significant
feature of the first two bands displayed is that, despite an
order of magnitude change in rod diameter, and a much
larger change in fill factor, the change in position of the
bands is relatively modest, especially in the case of band 2,
the center of which only shifts from about
1.2 THz to 1.7 THz as rod diameter is increased from
10 to 100 �m. The center of band 1 shifts by a factor of
about 2 over the same range. In addition we note a consistent
narrowing of both bands with increasing diameter. We note
that the existence of such pass and stop band regions, which
can be modified in width and position by varying period and
rod diameter, is potentially useful in THz filter applications.
Experiments are currently being conducted by other workers
in Durham in an attempt to establish the reliability of our
theoretical predictions concerning the detailed form of the

pass and stop bands for the above series of 200 �m period
structures.

In principle, to simulate fully the effects of absorption
within the metal rods when the absorption term is included,
we might expect that it would be necessary to represent the
detailed form of the E field within the skin depth region near
the surface of the rods. For the frequencies considered the
skin depth is a small fraction of a micrometer and it is well
beyond the capabilities of our calculations to represent the E
field profile accurately with the number of plane waves em-
ployed. In practice it is clear from our calculations that
whereas the convergence of the value of the imaginary com-
ponent is in fact rather poorer than, for example, the position
of the band edges, it can nevertheless still provide some in-
formation concerning at least the minimum decay length
within the structure �the trend in the value of Im�k� in the
“pass band” regions is to decrease with increasing number of
plane waves�. In the case of the 10 �m diameter rods, the
indicated E field decay length appears to be in excess of 75
periods and, at least for fairly low diameter rods, the decay
length is roughly proportional to rod diameter and hence
area. Even for 50 �m diameter rods, the decay length is
indicated to be in excess of 15 periods. Tests indicate that the
decay lengths are not greatly changed even with a signifi-
cantly increased value of �c, particularly for the second pass
band, so we would confidently expect to observe substantial
transmission through finite structures. For the large diameter
rods, e.g. 
100 �m or similar, the convergence of the imagi-
nary component of k is significantly worse and the losses
appear to be rather high, suggesting that the narrower pass
bands indicated in the absorption-free calculations may not
be achievable in practice.

IV. EFFECTIVE PLASMA FREQUENCY

In addition to the more detailed results concerning the
general form of the photonic band structure, we can also
make use of the results in Fig. 4 to define an effective plasma
frequency, or cut-off frequency, for this series of structures.
This is the lowest frequency at which propagation is allowed
through the structure when k first becomes purely real with
increasing frequency at the bottom of the first pass band.
This value is plotted in Fig. 5 as a function of rod diameter.
To give an indication of the possible consequences of con-
vergence errors we also display a line in which the calculated
values have been reduced by 2%. Some simple analytical
expressions for the effective plasma frequency �p,ef f have
previously been given by various authors as listed below:
Pendry et al.1,2

�p,ef f
2 =

c2

2�a2 ln�a/r�
,

Sarychev and Shalaev3

�p,ef f
2 =

c2

2�a2�ln��2a/r� + �/2 − 3�
,

Maslovski et al.4

FIG. 4. Evolution of the pass bands �real k regions� as a function
of rod diameter for 200 �m period structures.
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�p,ef f
2 =

c2

2�a2 ln�a2/�4r�a − r���
,

Tretyakov5

�p,ef f
2 =

c2

2�a2�ln�a/�2�r�� + 0.5275�
,

and these plots are also shown in the figure.
We note that such simplified analytic models are not able

to account for the detailed band structure effects resulting
from the electromagnetic field distribution within the system
and their range of validity may be unclear. In the case of
Pendry et al.2 the theoretical model was designed to apply to
thin wire structures and the prototype system consisted of a
2 �m diameter wire in a 5 mm period square lattice. Simi-
larly, the Tretyakov expression is stated as being valid with
r	a /100. In the case of the large diameter rods considered
in the present work the band structure effects cannot be dis-
counted, the thin wire assumptions clearly do not apply, and
hence our calculations represent an important independent
indicator of the range of validity of these simpler models. In
comparing our results with those of the Pendry et al. model
we might initially conclude that their model is rather poor.
However, given that the model was originally devised explic-
itly for the case of very thin wires it may be more appropriate
to conclude that it is surprisingly good under the circum-
stances. The Tretyakov results are in reasonable agreement
for the smaller rod diameters �although still at much greater
diameters than the suggested range of validity� but become
much higher than our results for larger diameters. The results
of both Sarychev and Shalaev and Maslovski are in quite
good agreement with the present work, although on balance
those of Maslovski, appear to be superior, particularly at the
higher rod diameters. We note that the plane-wave calcula-
tions cannot be expected to perform well at very small rod

diameters, and indeed below about 10 �m they appear some-
what erratic due to the limited number of plane waves em-
ployed in the calculation, which is insufficient to define the
structure reliably in such cases. Although the results them-
selves are not reliable in the small diameter regime, we note
that at very small diameters the plane-wave calculations give
numerical results which are consistent with a simple effec-
tive medium model with the results agreeing almost exactly

with the expression �p,ef f
2 =

f�p
2

4�2 = f�p
2 where f is the metallic

fill factor.
Without the �c absorption term the calculations involve

no energy dissipation and the plane-wave calculation in ef-
fect attempts to exclude the E field from the metallic regions
within the limitations imposed by the finite number of plane
waves used. In this case the convergence of the results ap-
pears to be good, as already discussed. The method also
gives results in agreement with the work of Kuzmiak et al.16

when applied to structures in which the effective plasma fre-
quency is much closer to the bulk value i.e. in the regime
where the lattice constant is near the bulk plasma frequency
wavelength in free space. The method of Kuzmiak et al. is
essentially a modified standard plane-wave approach de-
signed to take advantage of the specific form of the permit-
tivity expression ����=1−�p

2 /�2, but does not work in more
general frequency-dependent cases. Due to the relatively low
value of the effective plasma frequency in our structures,
which is well removed from the bulk value, we have also
performed standard plane wave photonic band structure cal-
culations employing a large and constant negative value for
����, as this may be considered likely to give reasonable
results in this regime. However, we find that although it is
possible to identify bands of the same form as those in the
current calculations, the convergence is significantly worse
and we believe this more than justifies the use of the 2n
�2n matrices required for the complex band structure cal-
culations. Given that in our calculations the fields are prima-
rily confined to the “background” regions with very little
penetration into the metal rods, the explicit separation of
���� � or 1/���� � into background plus rod regions, rather than
using a single Fourier expansion can be expected to have
been an aid to convergence: this is unlike the other
formulations9,11–13 which do not employ such a separation
and thus require a completely different Fourier expansion at
each �. We simply have the same Fourier expansion but a
different F1��� or F2���.

As an additional test of the plane-wave approach, we have
carried out calculations to obtain results for the experimental
structures studied by Pimenov and Loidl14 and observe that
the positions of the calculated bands appear to be entirely
consistent with their transmission results.

In practice, the concept of an effective plasma frequency
in such periodic structures applies only to the TM polariza-
tion for which we have presented detailed results. In this case
the system basically behaves as a standard waveguide struc-
ture with the results controlled by the boundary condition at
the surface of the rods which effectively means that E→0
within the rods very close to the surface. The detailed behav-
ior within the skin depth region is generally not important for
the general form of the photonic band structure. For the TE

FIG. 5. �Color online� The effective plasma frequency as a func-
tion of rod diameter as obtained in the present calculations ��A� a
line is also shown with values reduced by 2%� and using the ex-
pressions of Pendry et al. �B�, Sarychev and Shalaev �C�, Maslovski
�D�, and Tretyakov �E�.
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polarization the requirement that E is perpendicular to the
axis of the rods leads to results rather similar to those seen
for a standard dielectric structure, as observed by Sigalas et
al.17 We find that the TE polarization photonic bands are
consistent with the predictions of Kuzmiak et al. and also the
experimental and theoretical FDTD results of Sigalas et al.,
and in this case show little structure apart from some narrow
band gaps. In particular, there is no effective plasma or cut-
off frequency for this polarization.

V. CONCLUSIONS

We have employed a theoretical formalism for computing
the plane-wave complex photonic band structure of a system
containing components having a general frequency-
dependent permittivity. In the regime considered this has sig-
nificantly better convergence properties than a standard
plane-wave calculation employing a large constant negative
value for �, which is an otherwise fairly reasonable approach
to take. In applying the formalism to the calculation of the
photonic band structure of a square array of metal rods, we
obtain a well-converged band structure displaying a charac-
teristic series of pass bands and a cut-off or effective plasma

frequency in the THz region in the case of 200 �m period
structures. Experimental work by others in Durham is cur-
rently underway in an attempt to verify our theoretical pre-
dictions for the detailed band structures. Although we nomi-
nally considered gold rods in our calculations, the results are
expected to be essentially identical for any metallic rod
structure with similar rod diameter and period and typical
bulk plasma frequency. The THz region considered is suffi-
ciently far from the bulk plasma frequency that the precise
value of �p is not important in determining the detailed nu-
merical results. In comparing the results for our calculated
effective plasma frequency with those of simpler analytic
models which do not account for the detailed band structure
effects, and therefore whose range of validity is uncertain,
we conclude that the model of Maslovski4 appears to be most
consistent with our results over the range considered. We
anticipate that the THz region pass bands displayed in our
results may be utilisable in THz filter applications.
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