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D Fairlie & C Zahos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 1VERTEX RING-INDEXED LIE ALGEBRASDavid Fairliex and Cosmas Zahos{xDepartment of Mathematial Sienes, Durham University, Durham, DH1 3LE, UKDavid.Fairlie�durham.a.uk{High Energy Physis Division, Argonne National Laboratory, Argonne, IL 60439-4815, USAzahos�anl.gov AbstratIn�nite-dimensional Lie algebras are introdued, whih are only partially graded, and arespei�ed by indies lying on ylotomi rings. They may be thought of as generalizations ofthe Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras ofthe loop algebras assoiated with sl(n). In a partiular interesting ase assoiated with sl(3),their indies lie on the Eisenstein integer triangular lattie, and these algebras are expeted tounderlie vertex operator ombinations in CFT, brane physis, and graphite monolayers.1 The New AlgebrasWe briey introdue a lass of in�nite-dimensional vertex-operator Lie algebras. They have twoindies, one of whih laks onventional grading. Instead, its omposition motivates plaing it ona ylotomi ring, whih thus makes it e�etively equivalent to a multiplet of integers. We expetthese algebras to feature in CFT and other areas of physis with enhaned symmetry.Consider the Lie algebras [Jam; J bn℄ = Ja+bm+!an � Ja+bn+!bm ; (1)where the indies a; b; :::; m; n; ::: and the parameter ! may be arbitrary, in general.However, as will beome evident, the hoie of ! as an N -th root of unity, !N = 1, hene1 + ! + !2 + :::+ !N�1 = 0, and a; b; ::: integers, m;n; ::: proportional to integers, yields by far themost interesting family. In that ase, the upper indies are only distint modN , and the lower indiestake values in the ylotomi integer ringZ[!℄, namely, r+s!+k!2+:::+j!N�2. Note the grading ofthe upper indies, but lak of onventional grading for the lower indies, in ontrast to onventionalmaximally graded two-index in�nite Lie algebras suh as [1, 2, 3℄. (The Lie algebras introdued hereappear distint from those based on aÆne quasirystals, assoiated with N -th roots of unity, Coxetergroups, and Penrose pentilings [4℄ | but some intriguing onnetion to these algebras should not beexluded.)This algebra satis�es the Jaobi identity, and possesses the entral element J00 = J�a�!�amJam. Forthe ylotomi family, \Casimir invariants" may be written asJ00 = (Jam)N ; (2)

http://uk.arXiv.org/abs/hep-th/0505053


D Fairlie & C Zahos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 2provided m = 0 if a = 0.In fat, the above Lie algebra might be onstruted from the group algebra of assoiative operatorsJamJ bn = Ja+bm+!an ; (3)whih satisfy (JamJ bn)J k = Jam(J bnJ k): (4)It would be ustomary in suh ases [1℄ to also onsider the antiommutator of these operators, toprodue a partner graded Lie algebra,fJam; J bng = Ja+bm+!an + Ja+bn+!bm : (5)A simple operator realization of this algebra isJam = em exp(x) !a�x; (6)as may be heked by virtue of the translation ation of !�xf(x) = f(x + ln!) !�x. It is easy tosee in this realization that the sale of the a; b is �xed, but that of the m;n is labile, as they an beresaled with no hange to the struture of the algebra.A variant rewriting of this realization results from the simplifying Campbell-Baker-Hausdor�expansion for the partiular operators involved,Jam = !a(�x+ m!a�1 exp(x)): (7)Equivalently, given osillator operators, [�;�y℄ = 1, the above realizations may be written in a formevoative of vertex operators,Jam = em �y !a �y� = !a(�y�+ m!a�1�y): (8)In the ylotomi ase, !N = 1, a; b are equivalent modN , so a; b; :: = 1; 2; :::; N � 1. The N = 2ase, ! = �1, is trivial, as the orresponding lower index ring is that of the onventional integers,and the resulting algebra is essentially the Onsager algebra, a subalgebra of the SL(2) loop algebra,disussed in the next setion.As an aside, a less \asymmetri", albeit more umbersome rewriting of eqn (3) might beV am � J2amwa ; (9)so that eqn (3) reads V amV bn = V a+b!�bm+!an : (10)Antisymmetrization leads to the orresponding notation for the Lie algebra (1),[V am; V bn ℄ = V a+b!�bm+!an � V a+b!bm+!�an : (11)
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D Fairlie & C Zahos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 32 N = 2 Degenerate Case and the Onsager AlgebraOnsager, in his elebrated solution of the two-dimensional Ising model [5℄, introdued the integer-indexed in�nite-dimensional Lie algebra,[Am; An℄ = 4Gm�n; [Gm; An℄ = 2(Am+n �An�m); [Gm; Gn℄ = 0: (12)(Also see [6, 7, 8℄.) Evidently, G�m = �Gm. A potential entral element,G0, is not generated on ther.h.s. of the algebra. Onsager also reognized that his algebra is e�etively a subalgebra of the SL(2)loop algebra (SU(2) enterless Ka-Moody algebra in modern onventions). The loop Lie algebraonsists of three integer-indexed \towers" of elements, with[K+m;K�n ℄ = K0m+n ; [K0m;K�n ℄ = �K�m+n ; [K�m;K�n ℄ = [K0m;K0n℄ = 0: (13)Given the linear involutive automorphism of this algebra,K�m 7! K��m ; K0m 7! �K0�m ; (14)the Onsager algebra is identi�able with the (�xed-point) subalgebra [7℄, ie, the subalgebra invariantunder the automorphism, onsisting of two \towers",Am = 2p2(K+m +K��m); Gm = 2(K0m �K0�m): (15)It an be heked that for N = 2, thus a = 0; 1, the above algebra (1) also ontains the Onsageralgebra as a subalgebra, Am = 2J1m ; Gm = J0m � J0�m : (16)It an then be seen that a graded extension of the Onsager algebra of the type (5) is trivial, sineHm�n � fAm; Ang = 4(J0m + J0�m); (17)hek to be entral, ie, they ommute with all elements, An; Gn.Thus, J0m = �J0�m+onstant; hene, onversely, requiring a trivial graded extension of the On-sager algebra essentially amounts to (3). (Note from eqn (2) that AmAm is not an invariant of theOnsager algebra per se, but only upon this further ondition, AmAm = 4J00 .)The realization (6) redues here toAm = 2em exp(x)(�)�x; Gm = em exp(x) � e�m exp(x): (18)In this realization, the potential andidate for a graded extension,Hm = 4(em exp(x) + e�m exp(x)); (19)manifestly ommutes with all elements, An; Gn .An alternate realization in terms of Pauli matries isAm = 2em�3�1 ; Gm = (em � e�m)�3 ; (20)similarly illustrating the triviality of Hm / 11.
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D Fairlie & C Zahos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 43 N = 3 and the Eisenstein Integer LattieFor N = 3, the resulting algebra appears to be new, sine, for ! = e2�i=3 = �1�!2, the lower indiesare of the formm � k+j! (with integer k; j), losing under addition, subtration, and multipliation.These omprise the Eulidean ringZ[!℄ of Eisenstein-Jaobi integers [9℄, whih de�ne a triangular 2-dlattie with hexagonal rotational symmetry: there are three lines at 60Æ to eah other going througheah suh integer and onneting it to its six nearest neighbors, forming honeyomb hexagons.
u u u uu u u u uu u u uu u u u u

This lattie is of utility in ohesive energy alulations for monolayer graphite [10℄, 3-state-Pottsmodels assoiated with WZW CFT models [13℄, and, perhaps more provoatively, omplexi�es [12℄to de�ne the omplex Leeh lattie, of signi�ane in string theory, and Z3 orbifolds in CFT [11℄.Eah point on the lattie may be onneted to the origin by shifts along the ! root and along thex-axis. A 600 rotation !m, on m � k + j!, for integer oordinates k; j, may be represented by
 kj ! �  0 �11 �1 ! kj ! ; (21)for 
3 = 11 , and 
2 = �11 � 
. Thus, the lower indies of the algebra may be onsidered as adoublet of integers omposing through this rule.We are to illustrate this ase expliitly to stress the di�erenes from onventional loop algebrasand sl(3) generalizations of the Onsager algebra. Instead of the di�erential realization (6), onsidera faithful representation in terms of 3�3 matries. Sylvester's \nonion" basis for GL(3) groups [14℄,is built out of his standard lok and shift unitary unimodular matries,Q � 0B� 1 0 00 ! 00 0 !2 1CA ; P � 0B� 0 1 00 0 11 0 0 1CA ; (22)so that Q3 = P 3 = 11 . These obey the braiding identity PQ = ! QP [14, 15℄. For integer indiesadding mod 3, the omplete set of nine unitary unimodular 3 � 3 matriesM(m1;m2) � !m1m2=2Qm1Pm2 ; (23)
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D Fairlie & C Zahos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 5where My(m1;m2) = M(�m1;�m2), and TrM(m1;m2) = 0, exept for m1 = m2 = 0 mod3, suÆe to spanthe group algebra of GL(3). Sine MmMn = !n�m=2Mm+n ; (24)where m� n � m1n2 �m2n1, they further satisfy the Lie algebra of su(3) [1℄,[Mm;Mn℄ = �2i sin��3m� n� Mm+n : (25)It is then simple to realize (1,3) in the unimodular 3 � 3 matrix representation,Jam = emQ P a; (26)ie, the three \towers",J1m = 0B� 0 em 00 0 em!em!2 0 0 1CA ; J2m = 0B� 0 0 emem! 0 00 em!2 0 1CA ; J0m = 0B� em 0 00 em! 00 0 em!2 1CA : (27)One may ontrast this Lie algebra to not only su(3) loop algebra, but also to its subalgebras,suh as the the sl(3) generalization of the Onsager algebra, introdued by ref [7℄ and onsisting of�ve towers. Spei�ally, the relevant involutive automorphism of su(3) loop algebra, in standardChevalley notation, isH1;2m 7! �H1;2�m ; E�1m 7! E�1�m ; E�2m 7! E�2�m ; E�3m 7! �E�3�m : (28)The subalgebra left invariant under this automorphism onsists of the �ve towers [7℄,H1;2m �H1;2�m ; E1m + E�1�m ; E2m + E�2�m ; E3m �E�3�m ; (29)or, expliitly,h1m = 1p6 0B� em � e�m 0 00 e�m � em 00 0 0 1CA ; h2m = 13p2 0B� em � e�m 0 00 em � e�m 00 0 2e�m � 2em 1CA ;(30)e1m = 1p3 0B� 0 em 0e�m 0 00 0 0 1CA ; e2m = 1p3 0B� 0 0 em0 0 0e�m 0 0 1CA ; e3m = 1p3 0B� 0 0 00 0 em0 �e�m 0 1CA : (31)4 General Case: N > 3, and QuasirystalsFor higher N, the ylotomi integer ringsZ[!℄ are less ompelling, and are only linked to quasirys-tals. Spei�ally, the 2-dimensional omplex plane quasilattie �lls up densely with the set of indies,whih fail to lose to a \sparse" periodi struture analogous to the Eisenstein lattie. A quasirystalis a higher-dimensional deterministi disrete periodi struture whose projetion to an embedded
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D Fairlie & C Zahos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 6\external spae" (in our ase, the omplex plane) yields nonperiodi strutures of enhaned regularity[16℄.For example, for N = 5, motions are symmetri on a 4-dimensional periodi lattie, 
5 = 11 ,and 
4 = �11 �
 �
2 �
3, with 
 � 0BBB� 0 0 0 �11 0 0 �10 1 0 �10 0 1 �1 1CCCA ; (32)so lower indies may be e�etively regarded as a quartet of integers|and, likewise, an N � 1-tupletof integers for higher N . However, projeted on the atual omplex plane, nearby numbers are notneessarily represented by ontiguous points on the 4-d lattie.As indiated at the beginning, there may be links between the present algebras over ylotomi�elds and those on quasirystals whih exhibit a �ve-fold symmetry [4℄. For !5 = 1 and the goldenratio, � � 12(1 + p5), whih satis�es � 2 = 1 + � , one sees that � = �!2 � !3, sine then 1 + ! +!2 + !3 + !4 = 0 follows. There is onsiderable work [4℄ on algebras de�ned over suh quadratinumber �elds,Z[� ℄ =Z+Z� , while the assoiated geometri onstrutions of quasirystal latties areavailable in textbooks [16℄. Possibly, detailed investigations of the onnetion with algebras de�nedover the ylotomi �elds will be a fruitful soure of insight. Given the vertex operator realizationof the Lie algebras introdued here and its evoation of oherent states, useful appliations in CFTand brane physis appear likely.This work was supported by the US Department of Energy, Division of High Energy Physis, ContratW-31-109-ENG-38. Disussions with V Armitage and J Hoppe are aknowledged.Referenes[1℄ D Fairlie, P Flether, and C Zahos, Phys Lett B218 (1989) 203;D Fairlie and C Zahos, Phys Lett B224 (1989) 101-107[2℄ J Hoppe, Phys Lett 215B (1988) 706-710;Int J Mod Phys A4 (1989) 5235-5248[3℄ M Saveliev and A Vershik, Phys Lett 143A (1990) 121-128.[4℄ J Patera and R Twarok, J Phys A 35 (2002) 1551-1574;V Mazorhuk and R Twarok, J Phys A36 (2003) 4363-4373;J Patera, E Pelantov�a, and R Twarok, Phys Lett 246A (1998) 209-213; H C Jeong, E Kim,and C Lee, J Phys A34 (2001) R1-R19[5℄ L Onsager, Phys Rev 65 (1944) 117-149.[6℄ B Davies, J Phys A23 (1990) 2245-2261[7℄ D Uglov, I Ivanov, J Stat Phys 82 (1996) 87-113, [hep-th/9502068℄
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