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hos{xDepartment of Mathemati
al S
ien
es, Durham University, Durham, DH1 3LE, UKDavid.Fairlie�durham.a
.uk{High Energy Physi
s Division, Argonne National Laboratory, Argonne, IL 60439-4815, USAza
hos�anl.gov Abstra
tIn�nite-dimensional Lie algebras are introdu
ed, whi
h are only partially graded, and arespe
i�ed by indi
es lying on 
y
lotomi
 rings. They may be thought of as generalizations ofthe Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras ofthe loop algebras asso
iated with sl(n). In a parti
ular interesting 
ase asso
iated with sl(3),their indi
es lie on the Eisenstein integer triangular latti
e, and these algebras are expe
ted tounderlie vertex operator 
ombinations in CFT, brane physi
s, and graphite monolayers.1 The New AlgebrasWe brie
y introdu
e a 
lass of in�nite-dimensional vertex-operator Lie algebras. They have twoindi
es, one of whi
h la
ks 
onventional grading. Instead, its 
omposition motivates pla
ing it ona 
y
lotomi
 ring, whi
h thus makes it e�e
tively equivalent to a multiplet of integers. We expe
tthese algebras to feature in CFT and other areas of physi
s with enhan
ed symmetry.Consider the Lie algebras [Jam; J bn℄ = Ja+bm+!an � Ja+bn+!bm ; (1)where the indi
es a; b; :::; m; n; ::: and the parameter ! may be arbitrary, in general.However, as will be
ome evident, the 
hoi
e of ! as an N -th root of unity, !N = 1, hen
e1 + ! + !2 + :::+ !N�1 = 0, and a; b; ::: integers, m;n; ::: proportional to integers, yields by far themost interesting family. In that 
ase, the upper indi
es are only distin
t modN , and the lower indi
estake values in the 
y
lotomi
 integer ringZ[!℄, namely, r+s!+k!2+:::+j!N�2. Note the grading ofthe upper indi
es, but la
k of 
onventional grading for the lower indi
es, in 
ontrast to 
onventionalmaximally graded two-index in�nite Lie algebras su
h as [1, 2, 3℄. (The Lie algebras introdu
ed hereappear distin
t from those based on aÆne quasi
rystals, asso
iated with N -th roots of unity, Coxetergroups, and Penrose pentilings [4℄ | but some intriguing 
onne
tion to these algebras should not beex
luded.)This algebra satis�es the Ja
obi identity, and possesses the 
entral element J00 = J�a�!�amJam. Forthe 
y
lotomi
 family, \Casimir invariants" may be written asJ00 = (Jam)N ; (2)
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hos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 2provided m = 0 if a = 0.In fa
t, the above Lie algebra might be 
onstru
ted from the group algebra of asso
iative operatorsJamJ bn = Ja+bm+!an ; (3)whi
h satisfy (JamJ bn)J 
k = Jam(J bnJ 
k): (4)It would be 
ustomary in su
h 
ases [1℄ to also 
onsider the anti
ommutator of these operators, toprodu
e a partner graded Lie algebra,fJam; J bng = Ja+bm+!an + Ja+bn+!bm : (5)A simple operator realization of this algebra isJam = em exp(x) !a�x; (6)as may be 
he
ked by virtue of the translation a
tion of !�xf(x) = f(x + ln!) !�x. It is easy tosee in this realization that the s
ale of the a; b is �xed, but that of the m;n is labile, as they 
an beres
aled with no 
hange to the stru
ture of the algebra.A variant rewriting of this realization results from the simplifying Campbell-Baker-Hausdor�expansion for the parti
ular operators involved,Jam = !a(�x+ m!a�1 exp(x)): (7)Equivalently, given os
illator operators, [�;�y℄ = 1, the above realizations may be written in a formevo
ative of vertex operators,Jam = em �y !a �y� = !a(�y�+ m!a�1�y): (8)In the 
y
lotomi
 
ase, !N = 1, a; b are equivalent modN , so a; b; :: = 1; 2; :::; N � 1. The N = 2
ase, ! = �1, is trivial, as the 
orresponding lower index ring is that of the 
onventional integers,and the resulting algebra is essentially the Onsager algebra, a subalgebra of the SL(2) loop algebra,dis
ussed in the next se
tion.As an aside, a less \asymmetri
", albeit more 
umbersome rewriting of eqn (3) might beV am � J2amwa ; (9)so that eqn (3) reads V amV bn = V a+b!�bm+!an : (10)Antisymmetrization leads to the 
orresponding notation for the Lie algebra (1),[V am; V bn ℄ = V a+b!�bm+!an � V a+b!bm+!�an : (11)
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hos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 32 N = 2 Degenerate Case and the Onsager AlgebraOnsager, in his 
elebrated solution of the two-dimensional Ising model [5℄, introdu
ed the integer-indexed in�nite-dimensional Lie algebra,[Am; An℄ = 4Gm�n; [Gm; An℄ = 2(Am+n �An�m); [Gm; Gn℄ = 0: (12)(Also see [6, 7, 8℄.) Evidently, G�m = �Gm. A potential 
entral element,G0, is not generated on ther.h.s. of the algebra. Onsager also re
ognized that his algebra is e�e
tively a subalgebra of the SL(2)loop algebra (SU(2) 
enterless Ka
-Moody algebra in modern 
onventions). The loop Lie algebra
onsists of three integer-indexed \towers" of elements, with[K+m;K�n ℄ = K0m+n ; [K0m;K�n ℄ = �K�m+n ; [K�m;K�n ℄ = [K0m;K0n℄ = 0: (13)Given the linear involutive automorphism of this algebra,K�m 7! K��m ; K0m 7! �K0�m ; (14)the Onsager algebra is identi�able with the (�xed-point) subalgebra [7℄, ie, the subalgebra invariantunder the automorphism, 
onsisting of two \towers",Am = 2p2(K+m +K��m); Gm = 2(K0m �K0�m): (15)It 
an be 
he
ked that for N = 2, thus a = 0; 1, the above algebra (1) also 
ontains the Onsageralgebra as a subalgebra, Am = 2J1m ; Gm = J0m � J0�m : (16)It 
an then be seen that a graded extension of the Onsager algebra of the type (5) is trivial, sin
eHm�n � fAm; Ang = 4(J0m + J0�m); (17)
he
k to be 
entral, ie, they 
ommute with all elements, An; Gn.Thus, J0m = �J0�m+
onstant; hen
e, 
onversely, requiring a trivial graded extension of the On-sager algebra essentially amounts to (3). (Note from eqn (2) that AmAm is not an invariant of theOnsager algebra per se, but only upon this further 
ondition, AmAm = 4J00 .)The realization (6) redu
es here toAm = 2em exp(x)(�)�x; Gm = em exp(x) � e�m exp(x): (18)In this realization, the potential 
andidate for a graded extension,Hm = 4(em exp(x) + e�m exp(x)); (19)manifestly 
ommutes with all elements, An; Gn .An alternate realization in terms of Pauli matri
es isAm = 2em�3�1 ; Gm = (em � e�m)�3 ; (20)similarly illustrating the triviality of Hm / 11.
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eFor N = 3, the resulting algebra appears to be new, sin
e, for ! = e2�i=3 = �1�!2, the lower indi
esare of the formm � k+j! (with integer k; j), 
losing under addition, subtra
tion, and multipli
ation.These 
omprise the Eu
lidean ringZ[!℄ of Eisenstein-Ja
obi integers [9℄, whi
h de�ne a triangular 2-dlatti
e with hexagonal rotational symmetry: there are three lines at 60Æ to ea
h other going throughea
h su
h integer and 
onne
ting it to its six nearest neighbors, forming honey
omb hexagons.
u u u uu u u u uu u u uu u u u u

This latti
e is of utility in 
ohesive energy 
al
ulations for monolayer graphite [10℄, 3-state-Pottsmodels asso
iated with WZW CFT models [13℄, and, perhaps more provo
atively, 
omplexi�es [12℄to de�ne the 
omplex Lee
h latti
e, of signi�
an
e in string theory, and Z3 orbifolds in CFT [11℄.Ea
h point on the latti
e may be 
onne
ted to the origin by shifts along the ! root and along thex-axis. A 600 rotation !m, on m � k + j!, for integer 
oordinates k; j, may be represented by
 kj ! �  0 �11 �1 ! kj ! ; (21)for 
3 = 11 , and 
2 = �11 � 
. Thus, the lower indi
es of the algebra may be 
onsidered as adoublet of integers 
omposing through this rule.We 
are to illustrate this 
ase expli
itly to stress the di�eren
es from 
onventional loop algebrasand sl(3) generalizations of the Onsager algebra. Instead of the di�erential realization (6), 
onsidera faithful representation in terms of 3�3 matri
es. Sylvester's \nonion" basis for GL(3) groups [14℄,is built out of his standard 
lo
k and shift unitary unimodular matri
es,Q � 0B� 1 0 00 ! 00 0 !2 1CA ; P � 0B� 0 1 00 0 11 0 0 1CA ; (22)so that Q3 = P 3 = 11 . These obey the braiding identity PQ = ! QP [14, 15℄. For integer indi
esadding mod 3, the 
omplete set of nine unitary unimodular 3 � 3 matri
esM(m1;m2) � !m1m2=2Qm1Pm2 ; (23)
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hos Vertex Ring-indexed Lie Algebras hep-th/0505053 ANL-HEP-PR-05-29 5where My(m1;m2) = M(�m1;�m2), and TrM(m1;m2) = 0, ex
ept for m1 = m2 = 0 mod3, suÆ
e to spanthe group algebra of GL(3). Sin
e MmMn = !n�m=2Mm+n ; (24)where m� n � m1n2 �m2n1, they further satisfy the Lie algebra of su(3) [1℄,[Mm;Mn℄ = �2i sin��3m� n� Mm+n : (25)It is then simple to realize (1,3) in the unimodular 3 � 3 matrix representation,Jam = emQ P a; (26)ie, the three \towers",J1m = 0B� 0 em 00 0 em!em!2 0 0 1CA ; J2m = 0B� 0 0 emem! 0 00 em!2 0 1CA ; J0m = 0B� em 0 00 em! 00 0 em!2 1CA : (27)One may 
ontrast this Lie algebra to not only su(3) loop algebra, but also to its subalgebras,su
h as the the sl(3) generalization of the Onsager algebra, introdu
ed by ref [7℄ and 
onsisting of�ve towers. Spe
i�
ally, the relevant involutive automorphism of su(3) loop algebra, in standardChevalley notation, isH1;2m 7! �H1;2�m ; E�1m 7! E�1�m ; E�2m 7! E�2�m ; E�3m 7! �E�3�m : (28)The subalgebra left invariant under this automorphism 
onsists of the �ve towers [7℄,H1;2m �H1;2�m ; E1m + E�1�m ; E2m + E�2�m ; E3m �E�3�m ; (29)or, expli
itly,h1m = 1p6 0B� em � e�m 0 00 e�m � em 00 0 0 1CA ; h2m = 13p2 0B� em � e�m 0 00 em � e�m 00 0 2e�m � 2em 1CA ;(30)e1m = 1p3 0B� 0 em 0e�m 0 00 0 0 1CA ; e2m = 1p3 0B� 0 0 em0 0 0e�m 0 0 1CA ; e3m = 1p3 0B� 0 0 00 0 em0 �e�m 0 1CA : (31)4 General Case: N > 3, and Quasi
rystalsFor higher N, the 
y
lotomi
 integer ringsZ[!℄ are less 
ompelling, and are only linked to quasi
rys-tals. Spe
i�
ally, the 2-dimensional 
omplex plane quasilatti
e �lls up densely with the set of indi
es,whi
h fail to 
lose to a \sparse" periodi
 stru
ture analogous to the Eisenstein latti
e. A quasi
rystalis a higher-dimensional deterministi
 dis
rete periodi
 stru
ture whose proje
tion to an embedded
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e" (in our 
ase, the 
omplex plane) yields nonperiodi
 stru
tures of enhan
ed regularity[16℄.For example, for N = 5, motions are symmetri
 on a 4-dimensional periodi
 latti
e, 
5 = 11 ,and 
4 = �11 �
 �
2 �
3, with 
 � 0BBB� 0 0 0 �11 0 0 �10 1 0 �10 0 1 �1 1CCCA ; (32)so lower indi
es may be e�e
tively regarded as a quartet of integers|and, likewise, an N � 1-tupletof integers for higher N . However, proje
ted on the a
tual 
omplex plane, nearby numbers are notne
essarily represented by 
ontiguous points on the 4-d latti
e.As indi
ated at the beginning, there may be links between the present algebras over 
y
lotomi
�elds and those on quasi
rystals whi
h exhibit a �ve-fold symmetry [4℄. For !5 = 1 and the goldenratio, � � 12(1 + p5), whi
h satis�es � 2 = 1 + � , one sees that � = �!2 � !3, sin
e then 1 + ! +!2 + !3 + !4 = 0 follows. There is 
onsiderable work [4℄ on algebras de�ned over su
h quadrati
number �elds,Z[� ℄ =Z+Z� , while the asso
iated geometri
 
onstru
tions of quasi
rystal latti
es areavailable in textbooks [16℄. Possibly, detailed investigations of the 
onne
tion with algebras de�nedover the 
y
lotomi
 �elds will be a fruitful sour
e of insight. Given the vertex operator realizationof the Lie algebras introdu
ed here and its evo
ation of 
oherent states, useful appli
ations in CFTand brane physi
s appear likely.This work was supported by the US Department of Energy, Division of High Energy Physi
s, Contra
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