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Solutions of nonlinear multi-component Euler–Monge partial differential equations
are constructed inn spatial dimensions bydimension-doubling, a method that com-
pletely linearizes the problem. Nonlocal structures are an essential feature of the
method. The Euler–Monge equations may be interpreted as a boundary theory
arising from a linearized bulk system such that all boundary solutions follow from
simple limits of those for the bulk. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1543227#

I. INTRODUCTION

For any theory22 with an infinite number of conservation laws, we may always assemble
conserved currents into a generating function involving a spectral parametera. If that spectral
parameter is independent of any other space–time dimensions in the theory, as is possibl
simplest cases, then effectively the theory possesses anextra dimension.23 Moreover, it is always
possible to openly include this extra dimension in some of the dynamical equations, and n
leave it as adimension sub rosa.

For example, suppose a theory is originally expressed in terms of coordinates (x,t) with an
infinite number of conserved currents:] tr

(n)(x,t)5]xJ
(n)(x,t), nPN. Then by defining

r(x,t,a)[(n(n11)anr (n)(x,t), as opposed to(nanr (n)(x,t), andJ(x,t,a)[(nan11J(n)(x,t),
as opposed to(nanJ(n)(x,t), we have rendered all the conservation laws as a single second-
higher-dimensional partial differential equation~PDE!: ] tr(x,t,a)5]x]aJ(x,t,a), as opposed to
the first-order] tr(x,t,a)5]xJ(x,t,a). Hence our choice for the current generating functions
fully exposed an extra dimension in the PDEs satisfied by those generating functions. The
dimension here does not just ride along as a suppressible label for the currents but it a
explicitly, perhaps even unavoidably, in the dynamical equations. Of course this immed
raises issues about whether the theory requiresa to appear explicitly forall dynamical equations
to be cogently expressed in terms of the original plus extra dimensions, and about cova
properties for the theory in the complete set of dimensions.

In this article we address these issues for a simple but very generally applicable cl
nonlinear PDE’s:10,17The first order Euler–Monge~E-M! equations] tu5(u•¹)u. We find the full
dynamics of thesenonlineartheories are elegantly encoded into a higher dimensional set oflinear
‘‘heat’’ equations obtained through dimension doubling (x)→(x,a), where for each spatial coor
dinatexi there is anassociated coordinategiven by spectral parameterai . The original dynamical
variables are obtained as spectral parameter boundary limits, lima→0Ui(x,t,a)5 ui(x,t,a). The
fact that the higher dimensional theory is linearized strongly argues that this is the right app
to take. In the linearized theory, the pairs (xi ,ai) act like ‘‘light-cone’’ variables in the enlarged se
of dimensions such that the heat equations for all the dynamical variables are of the form]/]t
2( j 51

n ]2/]aj]xj )Ui(x,t,a)50. Thus the extra dimensions appear explicitly and, indeed,
avoidably in these linearized dynamical equations.

a!Electronic mail: curtright@physics.miami.edu
b!Electronic mail: david.fairlie@durham.ac.uk
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We also find Nambu brackets18 of the fields, of all orders up to the full Jacobian, as
remarkable feature of the linearizing maps. We know of only one other field theoretic exa3

where these brackets appear so naturally. Moreover, the linearizing maps arenonlocal in all but
the simplest, one component case. The nonlocal structures appropriate for E-M equations w
components in two spatial dimensions are evocative of phase factors in Wilson loops~cf. strings!,
and when the E-M equations describen component fields in the originaln spatial dimensions
these structures extend to higher dimensional constructions involving integrals overn21 dimen-
sional submanifolds@cf. (n21)-branes#. In the one dimensional, one component case, the E
solution is obtained algebraically from the dimensionally-doubled ‘‘bulk’’ solution for all value
the single spectral parameter. In higher dimensional or multi-component cases the depend
the solutions on the spectral parameters is more involved. Nevertheless, in all cases the s
of the E-M equations may be obtained from simple limits of those for the bulk.

II. HISTORICAL OVERVIEW AND OBJECTIVES

The Euler–Monge equations first appeared in 18th and 19th century studies of
dynamics10 and analytic geometry.17 Riemann took up a study of the equations in the contex
gas dynamics, discussing the equations as a theory of invariants20 ~for a modern textbook treat
ment, see Ref. 8!. His approach is widely applicable to almost all nonlinear flow proble
although it does not triumph over turbulence. A systematic modern discussion of the E-M
tions that synthesizes ideas from both geometry and invariance theory can be found in the
by Dubrovin and Novikov.9 Most contemporary texts and reviews stress the universal role pl
by these nonlinear transport equations in accordance with Whitham’s theory.21 Essentially all
nonlinear waves, even those in dispersive and dissipative media, involve E-M equations, or
variants of them, if the nonlinear wavetrains are slowly varying. This makes the equation
ticularly useful for analyzing the asymptotic behavior of nonlinear solutions. The E-M equa
and their conservation laws also serve as a useful starting point in Polyakov’s stu
turbulence19 but without yet leading to a general solution of the Navier–Stokes equations.

The first order E-M equation]u/]t 5u ]u/]x also gives rise to the Bateman equation4 upon
substituting u5 (]f/]t)/(]f/]x). The resulting second order nonlinear PDE
05fx

2f tt22fxf tf tx1f t
2fxx, and is well known to possess a general implicit solution given

solving tS0(f)1xS1(f)5const, whereS0 andS1 are arbitrary differentiable functions off(x,t).
The structure of this solution incorporates the covariance properties of the PDE: Iff is a solution,
so is any function off. In fact, curiously, the generalization of this solution ton11 functions
S0(f),Si(f) of f(x,t), xÄ(x1 ,...,xn), subject to a single constrainttS0(f)1(xi Si(f)50, is a
‘‘universal solution’’14 to any equation derived from a Lagrangian which is homogeneous
weight one in the first derivatives off.

Thus the Euler–Monge equations appear widespread across a very broad landscape of
and applied mathematics problems, and therefore it is important to understand their solution
many levels as possible. To that end we shall map all solutions of the E-M equations in arb
dimensions into solutions of second-order linear equations. This type of map is reminiscent
Cole–Hopf6,15 transformation~thoroughly reviewed in Ref. 16! used to linearize the Burgers5,15

nonlinear diffusion equation, but there are important differences here. The Cole–Hopf tra
mation only works for curl-freeu, does not use extra dimensions, and fails for 05k ~the diffu-
sivity!. The map to follow works for allu, curl-free or otherwise, does use extra dimensions,
works only fork50. ~We hope to extend the method tokÞ0 and to include the effects of pressu
in subsequent studies.!

III. METHOD AND ELEMENTARY RESULTS

We believe it is best to present our results summarily for the simplest examples of fields
one, two, and three components, and then to extend these results to the general case ofn compo-
011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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nents. We leave out most details but we do sketch the salient features of the derivations.
following, Mn is the n dimensional nonlinear Euler–Monge operator andHn is an associated
hyperbolic heat operator~introduced in Ref. 19!,

Mn[
]

]t
2(

j 51

n

uj

]

]xj

~1!

Hn[
]

]t
2(

j 51

n
]2

]xj]aj
.

To begin, however, we will generalize these two definitions to allow for an arbitrary functionF in
the mostelementaryresults in one spatial dimension. We find that

]

]t
U~x,t,a!5FS ]

]aD ]

]x
U~x,t,a! ~2!

if and only if

]

]t
u~x,t !5F~u~x,t !!

]

]x
u~x,t ! ~3!

where

U~x,t,a![
eau(x,t)21

a
~4!

u~x,t !5
1

a
ln~11aU~x,t,a!!

and F is any function with a formal power series. This simple result follows by direct calcula

S ]

]t
2FS ]

]aD ]

]xD eau(x,t)21

a
5eau(x,t)S ]

]t
u~x,t !2F~u~x,t !!

]

]x
u~x,t ! D . ~5!

The formal solution forU(x,t,a) in terms ofU(x,t50,a) is now obviously given by

~eau(x,t)21!/a5et F(]/]a) ]/]x~~eau(x)21!/a! ~6!

with u(x,t50)5u(x).
The bulk solutionU(x,t,a) may also be viewed as a simple one-parameter deformation o

boundary datau(x,t), with the extra dimension serving as the deformation parameter. In
exceptional one-component case, we may easily extractu(x,t) from U(x,t,a) for any value of the
extra dimensiona as given by the logarithmic expression above. But, in particular, we may ex
u(x,t) as a limit of the bulk solutionu(x,t)5 lima→0U(x,t,a). This immediately yields the time
series solution12 to the previous E-M equation as a limit:

u~x,t !5 lim
a→0

et F(]/]a) ]/]xS eau(x)21

a D5F21F (
j 50

`
t j

~11 j !!

dj

dxj ~F@u~x!# !11 j G , ~7!

where we assumeF ~locally! invertible in the last step.24 While this time series is an immediat
consequence of the previous results, we believe it is neither trivial nor obvious. Similar time
solutions are immediate consequences of all our results. For example, one independent fieu in
spatial dimensions (x,y1 ,...,yn) with dependent ‘‘velocity fields’’ (u,v1(u),...,vn(u)) leads to
011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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]

]t
u~x,y,t !5u~x,y,t !

]

]x
u~x,y,t !1(

i 51

n

v i~u~x,y,t !!
]

]yi
u~x,y,t ! ~8!

if and only if

E
0

u(x,y,t)

du expS au1(
i 51

n

biv i~u!D 5et~]2/]x]a1( i 51
n ]2/]yi]bi ! E

0

u(x,y)

du expS au1(
i 51

n

biv i~u!D .

~9!

Again, this follows by direct calculation, with

U~x,y,t,a,b![E
0

u(x,y,t)

du expS au1(
i 51

n

biv i~u!D ~10!

since

S ]

]t
2

]2

]x]a
2(

i 51

n
]2

]yi]bi
DU~x,y,t,a,b!

5S ]

]t
u~x,y,t !2u~x,y,t !

]

]x
u~x,y,t !2(

i 51

n

v i~u~x,y,t !!
]

]yi
u~x,y,t !D

3expS au~x,y,t !1(
i 51

n

biv i~u~x,y,t !!D . ~11!

So, as given, the higher dimensional heat equation is satisfied by the integral formU(x,y,t,a,b)
if and only if the given one-component generalization of the E-M equations holds. The rhs o
~10! is then just the formal solution of the heat equation.25

The last result does not allow for a simple extraction ofu(x,y,t) from the integral form of
U(x,y,t,a,b) for nonvanishing a,b. However, it does have the simple lim
lima,b→0U(x,y,t,a,b)5u(x,y,t), so extraction is trivial on the boundarya,b→0. This is true of
all the other heat equation solutions to follow. Also note,U(x,y,t,a,b) in this one-component cas
is an integral over the field value. NeverthelessU is still local in all the dimensions, no matter ho
many.

IV. MULTIPLE COMPONENTS AND NONLOCALITY

Locality in the original spatial dimensions willnot hold, however, for maps of multi-
component fields in higher dimensions. This is first illustrated by the next result,

H2U5H2V50, ~12!

if and only if

M2u5M2v50, ~13!

where@«(s)[6 1
2 for s:0]

U~x,y,t,a,b![E
2`

`

dr«~y2r !eau(x,r ,t)1bv(x,r ,t)
]u~x,r ,t !

]r

V~x,y,t,a,b![E
2`

`

dq«~x2q!eau(q,y,t)1bv(q,y,t)
]v~q,y,t !

]q
. ~14!
011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Once again this is established by direct calculation, assumingu, v, and their derivatives vanish
asymptotically inx,y,

H2U~x,y,t,a,b!5eau(x,y,t)1bv(x,y,t)M2u~x,y,t !1bE
2`

`

dr «~y2r !

3eau(x,r ,t)1bv(x,r ,t)S ]u~x,r ,t !

]r
M2v~x,r ,t !2

]v~x,r ,t !

]r
M2u~x,r ,t ! D

~15!

H2V~x,y,t,a,b!5eau(x,y,t)1bv(x,y,t)M2v~x,y,t !1aE
2`

`

dq «~x2q!

3eau(q,y,t)1bv(q,y,t)S ]v~q,y,t !

]q
M2u~q,y,t !2

]u~q,y,t !

]q
M2v~q,y,t ! D .

~16!

The converse result then follows by also using the obvious pair of lim
lima,b→0H2U(x,y,t,a,b)5M2u(x,y,t) and lima,b→0H2V(x,y,t,a,b)5M2v(x,y,t).

As advertised, the two-component map in two spatial dimensions involves a nonlocal
formation between E-M and heat equation solutions: It features line integrals over the or
spatial variables. The map is still local in the extra dimensions, however. This nonlocality i
original dimensions persists and is even extended when more components and more sp
mensions are considered. As a further illustration before giving the generalization to an ar
number of dimensions, we have

H3U5H3V5H3W50, ~17!

if and only if

M3u5M3v5M3w50, ~18!

where

U~x,y,z,t,a,b,c![E dr «~y2r ! eau1bv1cw
]u~x,r ,z,t !

]r

2cE E drds«~y2r ! «~z2s! eau1bv1cw$u,w%rs~x,r ,s,t !,

V~x,y,z,t,a,b,c![E ds«~z2s! eau1bv1cw
]v~x,y,s,t !

]s

2aE E dqds«~x2q! «~z2s! eau1bv1cw$v,u%sq~q,y,s,t !,

W~x,y,z,t,a,b,c![E dq «~x2q! eau1bv1cw
]w~q,y,z,t !

]q

2bE E dqdr «~x2q! «~y2r ! eau1bv1cw$w,v%qr~q,r ,z,t !. ~19!

There are a few essential new ingredients needed to complete the argument by direct calc
in this case. Define Poisson brackets as usual by
011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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$u,v%rs5
]u

]r

]v
]s

2
]u

]s

]v
]r

, ~20!

whereu andv are any two functions of the independent variablesr ands. Then it is straightfor-
ward to show

]

]t
$u,v%zy2

]

]x
~u$u,v%zy!2

]

]y
~v$u,v%zy!2

]

]z
~w$u,v%zy!5$M3u,v%zy1$u,M3v%zy ,

~21!
]

]t
$u,v%xy2

]

]x
~u$u,v%xy!2

]

]y
~v$u,v%xy!2

]

]z
~w$u,v%xy!

5$M3u,v%xy1$u,M3v%xy2$u,v,w%xyz,

as well as similar relations obtained by permutation of dependent and independent variables
last relation we have introduced the totally antisymmetric Nambu triple bracket~i.e., Jacobian, in
this three-dimensional case!

$u,v,w%xyz5
]u

]x
$v,w%yz1

]u

]y
$v,w%zx1

]u

]z
$v,w%xy5

]u

]x
$v,w%yz1

]v
]x

$w,u%yz1
]w

]x
$u,v%yz .

~22!

Once equipped with such relations, the complete derivation of the heat equation and E-M e
lence is tedious, perhaps, but not subtle.~See the generalization to follow for additional details!

The nonlocality appearing in our map for three components in three spatial dimensio
two-dimensional: It features surface integrals over pairs of the original spatial dimensions, p
evocative of membrane-based phase factors. Nonetheless, the map is still local in the extra
sions and the E-M solutions are again trivially given by boundary limits of the bulk construct

V. GENERAL RESULTS

The nonlocality is extended to (n21)-dimensional integrals when n-component linearizi
maps are constructed inn spatial dimensions. This is explicit in the following equations.

HnUk~x,t,a!50 ~23!

if and only if

Mnui~x,t !50 ~24!

for i ,kP$1,...,n% where

Uk~x,t,a![E ¯E dq1¯dqn d~qk2xk!S eakuk21

ak
D

3detS ]

]q1
~«~q12x1!ea1u1! ¯

]

]qn
~«~q12x1!ea1u1!

] � ]

]

]q1
~«~qn2xn!eanun! ¯

]

]qn
~«~qn2xn!eanun!

D
excludekth row
andkth column

. ~25!

The equivalence is shown as follows. Consider only the first component~et sic de similibus!.
011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



as

s

2698 J. Math. Phys., Vol. 44, No. 6, June 2003 T. Curtright and D. Fairlie

Downloaded 26 Apr 2
U1~x,t,a!5E ¯E dq1¯dqn d~q12x1!S ea1u121

a1
D

3detS ]

]q2
~«~q22x2!ea2u2! ¯

]

]qn
~«~q22x2!ea2u2!

] � ]

]

]q2
~«~qn2xn!eanun! ¯

]

]qn
~«~qn2xn!eanun!

D
5E ¯E dq2¯dqn S ea1u121

a1
D

3detS ]

]q2
~«~q22x2!ea2u2! ¯

]

]qn
~«~q22x2!ea2u2!

] � ]

]

]q2
~«~qn2xn!eanun! ¯

]

]qn
~«~qn2xn!eanun!

D ~x1 ,q2 ,¯ ,qn ,t !

5E ¯E dq2¯dqn S ea1u121

a1
D

3« i 2¯ i n

]

]qi 2

~«~q22x2!ea2u2!
]

]qi 3

~«~q32x3!ea3u3!¯
]

]qi n

~«~qn2xn!eanun!,

where in the last expression thei k dummy indices,kP$2,...,n%, are summed from 2 ton, i.e., 1
is excluded. Now we integrate by parts assuming all fields and their derivatives vanishx
→`. To do this, there are clearlyn21 equivalent choices. We elect to integrate]/]qi 2

by parts
to obtain

U1~x,t,a!52« i 2¯ i nE ¯E dq2¯dqn «~q22x2!ea2u2
]

]qi 2
S ea1u121

a1
D

3
]

]qi 3

~«~q32x3!ea3u3!¯
]

]qi n

~«~qn2xn!eanun!

52« i 2¯ i nE ¯E dq2¯dqn «~q22x2!
]u1

]qi 2

3S d i 33d~q32x3!1a3«~q32x3!
]u3

]qi 3
D¯S d i nnd~qn2xn!1an«~qn2xn!

]un

]qi n
D ea"u.

Expanding out the products of the various paired terms in parentheses in the last line give
011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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U1~x,t,a!52« i 2¯ i n
a3¯anE ¯E dq2dq3¯dqn «~q22x2!

3«~q32x3!¯«~qn2xn!
]u1

]qi 2

]u3

]qi 3

¯

]un

]qi n

ea"u

2« i 2¯ i n(j 53

n E dq2 «~q22x2! d j i j

3S )
k53
kÞ j

n S akE dqk «~qk2xk!
]uk

]qi k
D D ]u1

]qi 2

ea"u

2« i 2¯ i n(j 53

n

(
k54
k. j

n E dq2 «~q22x2! d j i j
dkik

3S )
m53

mÞ j ,k

n S amE dqm «~qm2xm!
]um

]qi m
D D ]u1

]qi 2

ea"u2¯

2(
j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj ! S ]u1

]q2

]uj

]qj
2

]u1

]qj

]uj

]q2
D ea"u

2E dq2 «~q22x2!
]u1

]q2
ea"u.

That is to say, the result is given in terms of Nambu brackets18 of all ranks fromn21 down to 2
~i.e., Poisson!, as well as a final single derivative term. Thus

U1~x,t,a!52a3¯anE ¯E dq2dq3¯dqn «~q22x2! «~q32x3!¯«~qn2xn!

3$u1 ,u3 ,...,un%23̄ n ea"u

2(
j 53

n E dq2 «~q22x2!S )
k53
kÞ j

n S akE dqk «~qk2xk! D D
3$u1 ,u3 ,...,uj 21 ,uj 11 ,...,un%23̄ j 21 j 11¯n ea"u

2¯2(
j 53

n

(
k54
k. j

n

ajakE dq2 «~q22x2! E dqj «~qj2xj ! E dqk «~qk2xk!

3$u1 ,uj ,uk%2 jk ea"u

2(
j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj ! $u1 ,uj%2 j ea"u

2E dq2 «~q22x2!
]u1

]q2
ea"u.

In the preceding equation, it is to be understood that the sum( j 53
n in the second term begins at it

lower limit with

2a4¯anE ¯E dq2dq4¯dqn «~q22x2! «~q42x4!¯«~qn2xn! $u1 ,u4 ,...,un%24̄ n ea"u
011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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and terminates at its upper limit with

2a3¯an21E ¯E dq2dq3¯dqn21 «~q22x2! «~q32x3!¯«~qn212xn21!

3$u1 ,u3 ,¯ ,un21%23̄ n21 ea"u.

Next we act with the heat operator onU1(x,t,a). The «’s permit the appropriate ‘‘outside’
~i.e., x) partials to be converted, through integration by parts, into ‘‘inside’’~i.e., q) partials. Also,
factors ofai outside the exponentials produce some extra terms from the cross-partials]2/]xi]ai

in Hn . We obtain

HnU1~x,t,a!52a3¯anE ¯E dq2dq3¯dqn «~q22x2! «~q32x3!¯«~qn2xn!

3Hn~$u1 ,u3 ,...,un%23̄ n ea"u!

1(
i 53

n
]

]ai
~a3¯an!E ¯E dq2dq3¯dqn

]

]xi
@«~q22x2! «~q32x3!¯«~qn2xn!#

3$u1 ,u3 ,...,un%23̄ n ea"u

2(
j 53

n E dq2 «~q22x2!S )
k53
kÞ j

n S akE dqk «~qk2xk! D D
3Hn~$u1 ,u3 ,...,uj 21 ,uj 11 ,...,un%23̄ j 21 j 11¯n ea"u!

1(
j 53

n E dq2 «~q22x2!(
i 53

n
]

]ai

]

]xi S )
k53
kÞ j

n S akE dqk «~qk2xk! D D
3$u1 ,u3 ,...,uj 21 ,uj 11 ,...,un%23̄ j 21 j 11¯n ea"u

21¯2(
j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj ! Hn~$u1 ,uj%2 j ea"u!

1(
i 53

n
]

]ai

]

]xi
S (

j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj !D $u1 ,uj%2 j ea"u

2E dq2 «~q22x2! HnS ]u1

]q2
ea"uD .

The first term~first two lines! on the rhs ofHnU1 reduces to terms linear in the E-M equations f
the u’s. The second term~third and fourth lines! and third term~fifth and sixth lines! on the rhs
combine to give similar terms linear in the E-M equations. And so it goes with subsequent pa
terms on the rhs ofHnU1, until finally the last two terms~last two lines! on the rhs combine to
give terms linear in the E-M equations.

To establish these statements, one needs to use several identities involving the action
heat operator on exponentially weighted derivatives of the component fields, in particul
so-weighted Nambu brackets. For example, these identities range from the simplest for t
Jacobian

Hn~ea"u$u1 ,u2 ,...,un%12̄ n!5ea"u~a•Mnu!$u1 ,u2 ,...,un%12̄ n1ea"u~$Mnu1 ,u2 ,...,un%12̄ n

1$u1 ,Mnu2 ,...,un%12̄ n1¯1$u1 ,u2 ,¯ ,Mnun%12̄ n!

to those involving lower rank Nambu brackets such as
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Hn~ea"u$u2 ,u3 ,...,un%23̄ n!5ea"u~2$u1 ,u2 ,u3 ,...,un%123̄ n1~a•Mnu!$u2 ,u3 ,...,un%23̄ n!

1ea"u~$Mnu2 ,u3 ,...,un%23̄ n1$u2 ,Mnu3 ,...,un%23̄ n1¯

1$u2 ,u3 ,...,Mnun%23̄ n!

including that needed to deal with the first rhs line ofHnU1

Hn~ea"u$u1 ,u3 ,...,un%23̄ n!5ea"u~a•Mnu!$u1 ,u3 ,...,un%23̄ n1ea"u~$Mnu1 ,u3 ,...,un%23̄ n

1$u1 ,Mnu3 ,...,un%23̄ n1¯1$u1 ,u3 ,...,Mnun%23̄ n!

as well as other relations obtained by permutations of the indices of these, etc., all the way
to the final

Hn~ea"u] juk~x,t !!5ea"uS ] j~Mnuk!1~a•Mnu!] juk2(
i

$uk ,ui% j i D
as needed to deal with the last two rhs lines inHnU1 . All such identities are straightforward t
substantiate by direct calculation.

Thus, given the E-M equations for theu’s, the heat equation forU1 follows. Moreover, the
only terms on the rhs ofHnU1 which survive in the limit of vanishing spectral parameters are
last two lines, which give

lim
a→0

HnU1~x,t,a!5Mnu1~x,t !. ~26!

Thus, given the heat equation forU1 , the E-M equation foru1 follows. Similar results obtain for
all the other components, so thatHnUk50 iff Mnuj50.

Formally, time evolution in the bulk is once more given by a simple exponentiation

U~x,t,a!5et( j 51
n ]2/]xj]ajU~x,t50,a!. ~27!

This gives a time-series solution on the boundary upon taking the limita→0.

u~x,t !5 lim
a→0

et( j 51
n ]2/]xj]ajU~x,t50,a! ~28!

with initial boundary datau(x)5 lima→0U(x,t50,a). Moreover, then-fold infinite sequences o
conservation laws for the E-M equations inn spatial dimensions are directly encoded into the b
solutions.

]

]t
Uk~x,t,a!5¹•Jk~x,t,a!, Jk~x,t,a!5¹aUk~x,t,a!, kP$1,2,...,n% . ~29!

Explicit sequences of charge and current densities on the boundary follow immediately
power series expansions in theaj . These conservation laws are elementary consequences o
heat equation obeyed byU.

VI. CONCLUSION

This is as far as we have completed the application of the extra dimensional appro
classical nonlinear PDEs. It remains to apply this approach to other types of nonlinear PD
particular to those higher-order extensions of the E-M equations involving dispersion, such
Korteweg–deVries equation, and to those involving diffusion, such as the Burgers and Na
Stokes equations. Another immediately obvious challenge is to carry the method over to qu
field theories~QFTs!. This will not be done here. However, we suspect that the implementatio
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perators
m
allenge

hysics
have

ons and
nlinear

ically
owship

hys.
;

New J.

and

e

,

hicago,
ese are
hin the

ies will

a power

2702 J. Math. Phys., Vol. 44, No. 6, June 2003 T. Curtright and D. Fairlie

Downloaded 26 Apr 2
these ideas in QFT will involve the use of quantum Nambu brackets~QNBs!, given that the
classical versions of these appear above. QNBs have a long-standing notoriety, but recently7 it has
been shown that theirs is an undeserved bad reputation. QNBs can be defined in terms of o
~or in terms of noncommutative geometry! so as to fulfill their expected roles in the quantu
evolution of dynamical systems. Perhaps these developments will be useful to meet the ch
of quantizing the E-M equations as well as their higher-order generalizations.

As emphasized previously, the Euler-Monge equations appear widespread throughout p
and the mathematics of nonlinear partial differential equations. Based on the maps we
presented to linearize these equations, we have come to the conclusion that extra dimensi
nonlocal structures are ubiquitous features to be found upon analyzing solutions of such no
partial differential equations, and are quite natural constructs in many physical theories.
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