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Extra dimensions and nonlinear equations
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Solutions of nonlinear multi-component Euler—Monge partial differential equations
are constructed in spatial dimensions bglimension-doublinga method that com-
pletely linearizes the problem. Nonlocal structures are an essential feature of the
method. The Euler—Monge equations may be interpreted as a boundary theory
arising from a linearized bulk system such that all boundary solutions follow from
simple limits of those for the bulk. @003 American Institute of Physics.
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[. INTRODUCTION

For any theor§? with an infinite number of conservation laws, we may always assemble the
conserved currents into a generating function involving a spectral parametéthat spectral
parameter is independent of any other space—time dimensions in the theory, as is possible in the
simplest cases, then effectively the theory possessestam dimensiof> Moreover, it is always
possible to openly include this extra dimension in some of the dynamical equations, and not just
leave it as adimension sub rosa

For example, suppose a theory is originally expressed in terms of coordimatgsvith an
infinite number of conserved currents,p™(x,t)=a,J™(x,t), neN. Then by defining
p(x,t,a)==,(n+1)a"pM(x,t), as opposed t&,a"pM(x,t), andJ(x,t,a)==,a" IV (x,t),
as opposed t&,a"J((x,t), we have rendered all the conservation laws as a single second-order
higher-dimensional partial differential equati@PDE): d,p(X,t,a) = dyd,J(X,t,a), as opposed to
the first-orderd,p(x,t,a) = d,J(x,t,a). Hence our choice for the current generating functions has
fully exposed an extra dimension in the PDEs satisfied by those generating functions. The extra
dimension here does not just ride along as a suppressible label for the currents but it appears
explicitly, perhaps even unavoidably, in the dynamical equations. Of course this immediately
raises issues about whether the theory requires appear explicitly forall dynamical equations
to be cogently expressed in terms of the original plus extra dimensions, and about covariance
properties for the theory in the complete set of dimensions.

In this article we address these issues for a simple but very generally applicable class of
nonlinear PDE'S?!" The first order Euler—MongéE-M) equationsi;u=(u-V)u. We find the full
dynamics of thesaonlineartheories are elegantly encoded into a higher dimensional dieieair
“heat” equations obtained through dimension doubling-¢ (x,a), where for each spatial coor-
dinatex; there is arassociated coordinatgiven by spectral parametay. The original dynamical
variables are obtained as spectral parameter boundary limitg, Jldh(x,t,a)= u;(x,t,a). The
fact that the higher dimensional theory is linearized strongly argues that this is the right approach
to take. In the linearized theory, the pairss (a;) act like “light-cone” variables in the enlarged set
of dimensions such that the heat equations for all the dynamical variables are of thesfaim (
—E?:lazl&ajaxj)ui(x,t,a)=O. Thus the extra dimensions appear explicitly and, indeed, un-
avoidably in these linearized dynamical equations.

3E|ectronic mail: curtright@physics.miami.edu
BElectronic mail: david.fairlie@durham.ac.uk

0022-2488/2003/44(6)/2692/12/$20.00 2692 © 2003 American Institute of Physics

Downloaded 26 Apr 2011 to 129.234.252.65. Redistribution subject to AIP license or copyright; see http:/jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 44, No. 6, June 2003 Extra dimensions and nonlinear equations 2693

We also find Nambu brackéfsof the fields, of all orders up to the full Jacobian, as a
remarkable feature of the linearizing maps. We know of only one other field theoretic example
where these brackets appear so naturally. Moreover, the linearizing mapsrdoealin all but
the simplest, one component case. The nonlocal structures appropriate for E-M equations with two
components in two spatial dimensions are evocative of phase factors in Wilson(ébogtsings,
and when the E-M equations describecomponent fields in the original spatial dimensions
these structures extend to higher dimensional constructions involving integrala-ededimen-
sional submanifold$cf. (n—1)-brane% In the one dimensional, one component case, the E-M
solution is obtained algebraically from the dimensionally-doubled “bulk” solution for all values of
the single spectral parameter. In higher dimensional or multi-component cases the dependence of
the solutions on the spectral parameters is more involved. Nevertheless, in all cases the solutions
of the E-M equations may be obtained from simple limits of those for the bulk.

Il. HISTORICAL OVERVIEW AND OBJECTIVES

The Euler—-Monge equations first appeared in 18th and 19th century studies of fluid
dynamics® and analytic geometry/. Riemann took up a study of the equations in the context of
gas dynamics, discussing the equations as a theory of invafidfas a modern textbook treat-
ment, see Ref. )8 His approach is widely applicable to almost all nonlinear flow problems,
although it does not triumph over turbulence. A systematic modern discussion of the E-M equa-
tions that synthesizes ideas from both geometry and invariance theory can be found in the review
by Dubrovin and NovikoV. Most contemporary texts and reviews stress the universal role played
by these nonlinear transport equations in accordance with Whitham’s tHeBsgentially all
nonlinear waves, even those in dispersive and dissipative media, involve E-M equations, or simple
variants of them, if the nonlinear wavetrains are slowly varying. This makes the equations par-
ticularly useful for analyzing the asymptotic behavior of nonlinear solutions. The E-M equations
and their conservation laws also serve as a useful starting point in Polyakov's study of
turbulencé® but without yet leading to a general solution of the Navier—Stokes equations.

The first order E-M equationu/dt =u du/dx also gives rise to the Bateman equafiopon
substituting u= (d@/adt)/(ddldx). The resulting second order nonlinear PDE is
0= ¢>2<¢n—2¢x¢t¢tx+ ¢t2¢xx, and is well known to possess a general implicit solution given by
solvingtSy( @) +xS;(¢) = const, wheres, andS; are arbitrary differentiable functions @f(x,t).

The structure of this solution incorporates the covariance properties of the PPES # solution,

so is any function ofgp. In fact, curiously, the generalization of this solutionrte- 1 functions
So(#),Si(¢) of p(x,t), x=(Xq,...,X,), Subject to a single constraity(¢) +=x; S;(4)=0, is a
“universal solution”'* to any equation derived from a Lagrangian which is homogeneous of
weight one in the first derivatives @f.

Thus the Euler—Monge equations appear widespread across a very broad landscape of physics
and applied mathematics problems, and therefore it is important to understand their solutions at as
many levels as possible. To that end we shall map all solutions of the E-M equations in arbitrary
dimensions into solutions of second-order linear equations. This type of map is reminiscent of the
Cole—Hopf'*® transformation(thoroughly reviewed in Ref. J6used to linearize the Burger¥
nonlinear diffusion equation, but there are important differences here. The Cole—Hopf transfor-
mation only works for curl-freai, does not use extra dimensions, and fails fer /© (the diffu-
sivity). The map to follow works for all, curl-free or otherwise, does use extra dimensions, but
works only fork=0. (We hope to extend the method#e* 0 and to include the effects of pressure
in subsequent studigs.

lll. METHOD AND ELEMENTARY RESULTS

We believe it is best to present our results summarily for the simplest examples of fields with
one, two, and three components, and then to extend these results to the generahceseod-
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nents. We leave out most details but we do sketch the salient features of the derivations. In the
following, M, is the n dimensional nonlinear Euler—Monge operator &tigl is an associated
hyperbolic heat operatdimtroduced in Ref. 19

J J
=—— u
Ma= 51 121 Lox;
" @
J J
Ttn= E_jzl %} 93

To begin, however, we will generalize these two definitions to allow for an arbitrary funtion
the mostelementaryresults in one spatial dimension. We find that

d Jd
Uta)=F| |- U(xta) 2
if and only if
J t)y=F t J t 3
SHUD=F(u(x,0) —u(x.) 3
where
eau(x,t)_l
U(x,t,a)=
a

. 4
u(x,t)= aln(1+aU(x,t,a))

and F is any function with a formal power series. This simple result follows by direct calculation

e
at

The formal solution folJ (x,t,a) in terms ofU(x,t=0,a) is now obviously given by

d
oda

d

eau(x,t) -1
5 -

— gau(x.t) iu(x t)—F(u(x t))iU(X t) )
a ot ' T ox e

(eau(x,t) —1)/a= gl F(dlda) a/aX((eau(x) —1)/a) (6)

with u(x,t=0)=u(x).

The bulk solutionJ(x,t,a) may also be viewed as a simple one-parameter deformation of the
boundary datau(x,t), with the extra dimension serving as the deformation parameter. In this
exceptional one-component case, we may easily exti@gt) from U(x,t,a) for any value of the
extra dimensiom as given by the logarithmic expression above. But, in particular, we may extract
u(x,t) as a limit of the bulk solutiomu(x,t) =lim,_oU(x,t,a). This immediately yields the time
series solutiotf to the previous E-M equation as a limit:

” th d

2 At g Fluep™ i, @

J=0

U(X t): lim et F(alda) al ox —_g—-1

a—0

eau(x) -1
a

where we assumEg (locally) invertible in the last stef* While this time series is an immediate
consequence of the previous results, we believe it is neither trivial nor obvious. Similar time series
solutions are immediate consequences of all our results. For example, one independeninfield
spatial dimensionsx,y,,...,y,) with dependent “velocity fields” ¢,v4(u),...,v,(u)) leads to
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d
EU(xyt) U(xyt) U(xyt)+2v(U(xyt))—U(xyt) (8)

if and only if

n

u(x,y,t) n u(x,y)
f du exp( au+ Y, bivi(u))ze‘("z’ﬁxf’a”P132’0yi5bi> f du exp( au+ Y, bivi(u)>.
=1 0 =1

0

€)
Again, this follows by direct calculation, with
u(x,y,t) "
U(x,y,t,a,b)zf duexpl au+ >, bwi(u) (10)
0 i=1
since
& n
(o?t axda .Z &y,ab) Uixy.t.ab)
n
2 iyttt Loy - S 0 v
=| Uy, D= Uy, - u(x.y.t) 2 vi(u(x,y, ))ayiU(x,y, )
n
xexn( au(x,y,t) + >, bivi(U(x,y,t)))- (11
=1

So, as given, the higher dimensional heat equation is satisfied by the integrdUformt,a,b)
if and only if the given one-component generalization of the E-M equations holds. The rhs of Eq.
(10) is then just the formal solution of the heat equation.

The last result does not allow for a simple extractioruéx,y,t) from the integral form of
u(x,y,t,a,b) for nonvanishing a,b. However, it does have the simple limit
lim, b oU(X,y,t,a,b)=u(x,y,t), so extraction is trivial on the boundaayb— 0. This is true of
all the other heat equation solutions to follow. Also nai€x,y,t,a,b) in this one-component case
is an integral over the field value. Neverthelesss still local in all the dimensions, no matter how
many.

IV. MULTIPLE COMPONENTS AND NONLOCALITY

Locality in the original spatial dimensions wilhot hold, however, for maps of multi-
component fields in higher dimensions. This is first illustrated by the next result,

H,U=H,V=0, (12
if and only if
Muu=Mov=0, (13

where[g(s)= * 5 for s=0]

* au(x,r,t)
= _ au(x,r,t) +bov(x,r,t)
u(x,y,t,a,b) fﬁxdrs(y rye —
* 17 VY, t
V(x,y,t,a,b)Ef_ dge (x— q)eu(@y.0+bu(@y.0 —”(gqy ), (14)
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Once again this is established by direct calculation, assumning and their derivatives vanish
asymptotically inx,y,

HoU(X,y,t,a,b) = U0 Fbeey D A y(x,y 1)+ bf dre(y—r)

au(x,r,t) dv(x,r,t)
ar

><ea‘“(”v‘)“’“(x“)(—ar Mav(X,r,t)— Mzu(x,r,t))

(19

H,oV(X,y,t,a,b) =eBUy:D OO Af g (x y t) + af dg e(x—q)

Ju(q,y,t au(q,y,t
xemtattnt@nd] O gy - M piq 0.

(16)

The converse result then follows by also wusing the obvious pair of limits
limg b oHU(X,y,t,a,b)=Myu(x,y,t) and lim, , .oHV(X,y,t,a,b)=Mov(X,y,t).

As advertised, the two-component map in two spatial dimensions involves a nonlocal trans-
formation between E-M and heat equation solutions: It features line integrals over the original
spatial variables. The map is still local in the extra dimensions, however. This nonlocality in the
original dimensions persists and is even extended when more components and more spatial di-
mensions are considered. As a further illustration before giving the generalization to an arbitrary
number of dimensions, we have

H3U=H3V=H3W=0, 17)
if and only if
Mau= Mzv=Mzw=0, (18)
where
au(x,r,z,t
U(X,y,z,t,a,b,c)zf dre(y—r) gau+bu+cw %

—cffdrdSS(y—r)s(z—s) edutbutew iy wl (x,r,8,1),

Jv(X,y,s,t
V(x,y,z,t,a,b,c)zf dse(z—s) gdutbvtew v(a—ys)
—aJqudSS(x—q)s(z—S) eUTP Oy, Uty(aY.S ),

aw(q,y,z,t)

W(X,y,Z,t,a,b,c)EJ dg e(x—q) gau+bu+cw o

—bffdqdrs(x—q)s(y—r)ea“+b"+°""{w,v}qr(q,r,z,t). (19

There are a few essential new ingredients needed to complete the argument by direct calculation
in this case. Define Poisson brackets as usual by
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————— (20

whereu andv are any two functions of the independent variablesxds. Then it is straightfor-
ward to show

d d J J
E{uvv}zy_ 5(U{U,U}Zy) - @(U{U,U}Zy)— E(W{U,U}zy):{M3U,U}zy+{U,M30}zy,
(21)
J J d J
E{uiv}xy_ 5(u{uvv}xy) - E(U{uiv}xy)_ E(W{uiv}xy)
:{M3u=v}xy+{U1M30}xy_{uvvvW}xyzy

as well as similar relations obtained by permutation of dependent and independent variables. In the
last relation we have introduced the totally antisymmetric Nambu triple bracketJacobian, in
this three-dimensional case

au Jau au Jau dv oW
{valw}xyz:&{viw}yz‘l" E{U'W}ZX—‘F E{va}xy:a_x{vvw}yz"' &{W!u}yﬁ" a_x{uiv}yz-
(22

Once equipped with such relations, the complete derivation of the heat equation and E-M equiva-
lence is tedious, perhaps, but not subtieee the generalization to follow for additional details.

The nonlocality appearing in our map for three components in three spatial dimensions is
two-dimensional: It features surface integrals over pairs of the original spatial dimensions, perhaps
evocative of membrane-based phase factors. Nonetheless, the map is still local in the extra dimen-
sions and the E-M solutions are again trivially given by boundary limits of the bulk constructions.

V. GENERAL RESULTS

The nonlocality is extended tn{1)-dimensional integrals when n-component linearizing
maps are constructed imspatial dimensions. This is explicit in the following equations.

H,U(x,t,a)=0 (23
if and only if
Mpui(x,1)=0 (24)

fori,ke{1,...,n} where

efik—1
Uk(X,t,a)Ef"‘fdQ1“‘dQn (= X) Ta
(e x)EY) (e X e
f7Q1 1 1 &qn 1 1
x de : - : . (25
(oG X))~ ((G Xy €M)
a0, noon a0, noon excludekth row

andkth column

The equivalence is shown as follows. Consider only the first compdeésic de similibus
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ef1tii—1
Ul(X,t:a):J Jd(h -dg, 6(gq1—Xy)
d d
Tas (B(M2=x)e®22) - = —(8(dp—Xp)8%2)

a9, dQn
x de : :

d d
g, (A x)e) e 2o ((dn = X)€%

:f .-.f dqqun

d
_ aru
—aqz(s(qz Xp)€e%2"2)

a

gdtl1— 1)

(e(gp—xp)e%22)

d0n
Xde (Xqu21‘“ vqnvt)
J
a_qz(s(Qn_Xn)eanun) a_qn(s(Qn_Xn)ean ")
efi—1
:f...quz...dqn a

1% J d
XSizmi”Wiz(S(qz_xz)eazuz)Wis(s(%_xs)easus)'”Win(e(q”_xn)eanun)’

where in the last expression thedummy indiceske{2,...,n}, are summed from 2 to, i.e., 1

is excluded. Now we integrate by parts assuming all fields and their derivatives vanish as
—o. To do this, there are clearly—1 equivalent choices. We elect to integrak?qi2 by parts

to obtain

ett1i—1
a

d

Ul(X.taa):_Siz“-inf J dq2-~~dqns(q2—x2)ea2“25
12

J
azu _ anup
&q.g(s(qs X3)e%3)- - 70 (e(gn—X,)€%tn)

n

au,

&, |J quz “dgn e(g—X2) —— aq;
12

X ey,

Us
0i,36(03—X3) +aze(gz— X3)_) "<5inn5(Qn_Xn)+an8(Qn

5q|3 aql

Expanding out the products of the various paired terms in parentheses in the last line gives
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U1(X.t,a):—8i2--~in33"'anJ J dajodas: - -doin £(g2— X2)

Jup duz Uy .

>< —X “ee —X _
e(g3—X3) - e(dn—Xp ﬁqiz aqi3 aa;

n

n
_8i2'~'inj§=:3qu28(q2_X2) 5jij

&Uk &Ul au
akJ daye(Qe—X) =——| | ==—¢€

x(ﬁ

3 aq;, ) | 94,
n n
iy, > | dgze(g—xy) Oji. Vi
=3 k=4 !
k>j
: au au
% a d —X m _1ea‘u_...
( n1_=[_3 ( mj Am &(Am— Xm) &Qim)> aqiz
m#j,k

n
;3 aJquzs(qz xz)qu,s(q, xp(07qz Ja, q, 70, ©

Juq au
- dQZS(%_Xz)a_qze .

That is to say, the result is given in terms of Nambu brac¢Retsall ranks fromn—1 down to 2
(i.e., Poissop as well as a final single derivative term. Thus

U1(X,t,a):_as”'anf f dg,dgs - -dd, e(d2—Xz) (03— X3) *&(dn—X,)

|

n n
_m_j23 kZA ajakf dQ28(Q2_X2)qui‘9(qi_XJ)fkoS(q"_xk)
k>j

X{Ul,U3,...,Un}23..n ea'u

n n
_2 dQ28(QZ—X2)( H
%

akJ dajy & (k= Xx)

a-u
X{Ul,U3,...,Uj_l,Uj+1,...,Un}23...j_11‘+1...ne

X{ug,Uj, Ui €%
n
_123 aj | ddze(d2—Xz) f daj £(q;—X;j) {us,ujfz; e

duq au
- dQ28(Q2—X2)(9—qze :

In the preceding equation, it is to be understood that theE[.‘Lpg in the second term begins at its
lower limit with

—a4---anf f ddzddy - -dgy, &(02—X2) £(Aa—Xa)"*&(An—Xn) {U1,Us, ... Un}2s..n €
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and terminates at its upper limit with

_as"'an—lf f dg,dgs - -dan -1 8(d2—X2) (d3—Xz) -&(Un-1—Xn-1)

X{Uy,U3, " ,Un_1}23..n—1 €%

Next we act with the heat operator & (x,t,a). The &'s permit the appropriate “outside”
(i.e.,x) partials to be converted, through integration by parts, into “inside, q) partials. Also,
factors ofa; outside the exponentials produce some extra terms from the cross-péftialsia;
in H,. We obtain

HoU (X ta)= _aS"'anf J' dg,dgs - -da, e(d2—Xz) (03— X3)*&(qn—X,)

X Hn({uq,Uz,...,Us}og..n €FY)

d
+23a_a,(a3 an)f"'JdQZdQI\}"'dqnﬁ_Xi[s(QZ_xz)8(Q3_X3)"'8(Qn_xn)]

X{Ul,U3,...,Un}23.‘n ea'u

_2 fdQ28(Q2_X2)(H
= ol

akj da S(Qk_xk)) )

X Hp({Ug,Ug, e Uj -1, Uj g1, Unf2g -1+ 1.0 €5
n (9 a n
+2, | daze(az- x2)2 ([[ akf qus(qk—xk)))

L da; X
k#j
au
X{Ug,Ug, e Uy, Uj gy Unbog - 1j+ 10 €

- ajf dg, (g2 —Xy) f dg; e(9;—X;) Hna({uy,u;},; €*Y)
]=3

n

Z Z aJJ da; e(g2—Xz) J dq]'S(qJ'_Xj)) {ug,ujhp e

d
da; JX;

f daz e(dz2—X2) Hy ( a0, et .
The first term(first two lineg on the rhs ofH,,U, reduces to terms linear in the E-M equations for
theu’s. The second terntthird and fourth linesand third term(fifth and sixth line$ on the rhs
combine to give similar terms linear in the E-M equations. And so it goes with subsequent pairs of
terms on the rhs of{,U, until finally the last two termglast two lines on the rhs combine to
give terms linear in the E-M equations.

To establish these statements, one needs to use several identities involving the action of the
heat operator on exponentially weighted derivatives of the component fields, in particular on
so-weighted Nambu brackets. For example, these identities range from the simplest for the full
Jacobian

Hn(ea.u{ul,U2 yree ,Un}lz..n) = ea'”(a~ Mnu){ul ,U2 yoos ,Un}lz...n+ ea‘u({Mnul ,U2 yree ,Un}lz...n
+{U11Mnu21---vun}lz---n+' ’ '+{U1,U2,' o rMnun}12-~~n)

to those involving lower rank Nambu brackets such as
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Hn(€*{uy, Uz, ... Untoz..n) = €% (—{U1,Up, U3, ... Unt123. .n T (8 MpU){Uz,Us, ... Un}az )
+eM({Mpuz,Uz,... Utz .nt{Uz, MpUs, ... Untog . n o
+{uy,Usz,...,MyUntaz..n)

including that needed to deal with the first rhs line?ofU ;

Hn(€¥{uq,Ug,... . Unt2z..n) =€*(@ Muu){uy,Us, ... Un}og..n T €3 ({ MUy, U3, ... Un} oz n
+{Uy, MpUz,... Unfoz..nt e+ {Ug,Uz,....MuUntog..n)

as well as other relations obtained by permutations of the indices of these, etc., all the way down
to the final

Ha(€%9ju(x,1)) = €% 95 (MaUi) + (@ Mot djui— 25 {uic,uily

as needed to deal with the last two rhs linesHRpU, . All such identities are straightforward to
substantiate by direct calculation.

Thus, given the E-M equations for thes, the heat equation fad, follows. Moreover, the
only terms on the rhs of{,U which survive in the limit of vanishing spectral parameters are the
last two lines, which give

limH,U1(x,t,a) = M,ui(X,t). (26)

a—0

Thus, given the heat equation for,, the E-M equation fou, follows. Similar results obtain for
all the other components, so tHahU, =0 iff M,u;=0.
Formally, time evolution in the bulk is once more given by a simple exponentiation

U(x,t,a) =e'=i-177%%jy(x,t=0,a). 27

This gives a time-series solution on the boundary upon taking the dimio.

u(x,t)=lime'>j-1 ™7y (x,t=0,) (28)
a—0

with initial boundary datau(x)=1lim,_,oU(X,t=0,a). Moreover, then-fold infinite sequences of
conservation laws for the E-M equationsrirspatial dimensions are directly encoded into the bulk
solutions.

%Uk(x,t,a):V-Jk(x,t,a), J(x,t,@=VU(x,t,a), ke{l,2,..,n}. (29

Explicit sequences of charge and current densities on the boundary follow immediately from
power series expansions in tae. These conservation laws are elementary consequences of the
heat equation obeyed Hy.

VI. CONCLUSION

This is as far as we have completed the application of the extra dimensional approach to
classical nonlinear PDEs. It remains to apply this approach to other types of nonlinear PDEs, in
particular to those higher-order extensions of the E-M equations involving dispersion, such as the
Korteweg—deVries equation, and to those involving diffusion, such as the Burgers and Navier—
Stokes equations. Another immediately obvious challenge is to carry the method over to quantum
field theories QFT9. This will not be done here. However, we suspect that the implementation of
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these ideas in QFT will involve the use of quantum Nambu brack@iBs), given that the
classical versions of these appear above. QNBs have a long-standing notoriety, but Tédeamly

been shown that theirs is an undeserved bad reputation. QNBs can be defined in terms of operators
(or in terms of noncommutative geometrso as to fulfill their expected roles in the quantum
evolution of dynamical systems. Perhaps these developments will be useful to meet the challenge
of quantizing the E-M equations as well as their higher-order generalizations.

As emphasized previously, the Euler-Monge equations appear widespread throughout physics
and the mathematics of nonlinear partial differential equations. Based on the maps we have
presented to linearize these equations, we have come to the conclusion that extra dimensions and
nonlocal structures are ubiquitous features to be found upon analyzing solutions of such nonlinear
partial differential equations, and are quite natural constructs in many physical theories.
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