AIE06001 1/18 12/07/05 12:54 am

log no. AIE06001

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2006), 20, 1-18. Printed in the USA.
Copyright © 2006 Cambridge University Press 0890-0604/06 $16.00
DOI: 10.1017/S089006040606001X

Learning inexpensive parametric design models using an
augmented genetic programming technique

PETER C. MATTHEWS,! DAVID W.F. STANDINGFORD,? CARREN M.E. HOLDEN,?
AND KEN M. WALLACE*

!School of Engineering, University of Durham, Durham, United Kingdom

2BAE Systems, Advanced Technology Centre, Filton, Bristol, United Kingdom

3Aerodynamic Methods and Tools, Airbus UK, Filton, Bristol, United Kingdom
4Engineering Design Centre, University of Cambridge Engineering Department, Cambridge, United Kingdom

(RECEIVED October 16, 2003; AcCEPTED May 3, 2005)

Abstract

Previous applications of genetic programming (GP) have been restricted to searching for algebraic approximations
mapping the design parameters (e.g., geometrical parameters) to a single design objective (e.g., weight). In addition,
these algebraic expressions tend to be highly complex. By adding a simple extension to the GP technique, a powerful
design data analysis tool is developed. This paper significantly extends the analysis capabilities of GP by searching for
multiple simple models within a single population by splitting the population into multiple islands according to the
design variables used by individual members. Where members from different islands “cooperate,” simple design
models can be extracted from this cooperation. This relatively simple extension to GP is shown to have powerful
implications to extracting design models that can be readily interpreted and exploited by human designers. The full

analysis method, GP heuristics extraction method, is described and illustrated by means of a design case study.

Keywords: Data Mining; Design Model Induction; Genetic Programming; Knowledge Elicitation; Metamodels

1. INTRODUCTION

A designer’s ability to rapidly identify and modify concep-
tual designs is based on their tacit domain knowledge. This
knowledge takes the form of relationships between the design
parameters (aspects of the design a designer has control
over) and design objectives (aspects of the design resulting
from the designer’s choices). These relationships will be
dependent on the particular design family, and can be con-
sidered as a tacit model. Typically, this tacit knowledge is
the result of extensive experience of designing other prod-
uct family members. Tacit knowledge has been defined as
“knowledge which cannot be articulated easily” (Shadbolt
& Milton, 1999). Obtaining such knowledge through expe-
rience requires time. One method for accelerating this pro-
cess is by providing the knowledge explicitly. However,

Reprint requests to: Peter C. Matthews, School of Engineering, Uni-
versity of Durham, Durham DH1 3LE, UK. E-mail: p.c.matthews@
durham.ac.uk

transforming a designer’s tacit knowledge into explicit
knowledge is known to be a costly and not always a totally
accurate method (Ahmed, 2001).

This research aims to build computational methods for
extracting design knowledge from previous design exem-
plars, and for reporting this back to designers in an intuitive
manner. This knowledge will take the form of simple alge-
braic relationships between design parameters and objec-
tives. The quality of these heuristic relationships can be
further improved through expert interpretation. On the sur-
face, the use of experts appears to counter the argument of
developing the computational analysis method in the first
place. However, the extracted relationships provide a basis
for the expert to document the domain, as opposed from
providing this documentation with no starting point. Fig-
ure 1 shows the overall procedure for generating this report
using the genetic programming heuristics extraction method
(GP-HEM).

Given a set of coarse relationships, it then becomes pos-
sible to search more rapidly the design space. A designer

Figure 1

AIE06001 2/18 12/07/05 12:54 am

2

P.C. Matthews et al.

Parameterize Populate Design
Design Family Family Database

Genetic Programming Report:
Algorithm Coarse Design Model

Fig. 1. The overall procedure for generating the design relationship report. This paper concentrates on the right-hand side of the

figure.

fn 1 can specify a desired value for a given design variable! and

the (relevant) relationships then provide an estimate of what
the set of related design variables should be. Further, as
these relationships are explicit, they provide knowledge
regarding the nature of the relationship between sets of vari-
ables, most frequently as a set of tradeoffs between subsets
of design variables. This represents a significant improve-
ment over “black box” methods, for example, neural net-
works, where the domain can be modeled; however, there is
no explicit understanding of the model. Using such a black
box method requires a trial and error approach to searching
the design domain. For a similar reason the extracted rela-
tionships must be kept simple: it is possible to learn a highly
accurate model, and report the exact algebraic expression.
However, these relationships are too complex to provide
understanding, and hence can provide little direction to a
designer.

To illustrate the aim of this method, consider a bicycle
design. Most bicycles can be described by a common set of
design variables (wheel size, position of top bar, stiffness,
weight, cost, etc.). In addition to the “engineering” vari-
ables, subjective variables can also be added such as “desir-
ability,” as perhaps measured by sales volume. When
designing a new bicycle, a designer will have a target spec-
ification. This specification will determine targets for a sub-
set of the design variables. The designer’s task is then to
provide firm values for the remaining design variables, poten-
tially modifying some of those provided in the original spec-
ification where they prove to be infeasible. The relationships
are used to provide this information. Note that it is also
possible to make estimates on the subjective elements of
the design, as these relationships are also extracted.

The total knowledge extraction method comprises a num-
ber of components, each of which will be described in detail.
At the core is the GP component. This alone searches for
increasingly complex and accurate models for the given
product family. However, the aim is not to provide a single,
“grand-unifying” model of the domain but rather a collec-
tion of loosely related simple micromodels. This is achieved
through a component that ensures the GP is “pressured”
into generating these simple micromodels. Finally, there is
the reporting component, which is used at the end of the
method to provide a meaningful report of the micromodels.

Figure 2 Figure 2 illustrates the interaction between the components.

' A design variable is either a design parameter (e.g., length, material,
etc.) or design objective (e.g., weight, cost, esthetic properties), and the
full set of variables defines the design problem space.

These micromodels will be described in greater detail later
in the paper.

The remainder of the paper discusses the background to
this research (Section 2), followed by a more extensive
description of the GP algorithm (Section 3). The applica-
tions of the GP, including the supporting components, are
then be described (Section 4). The method is illustrated
with a case study, including an analysis of the results (Sec-
tion 5). Finally, a general discussion of the method con-
cludes the paper (Section 6).

2. BACKGROUND: ENGINEERING
KNOWLEDGE

There are a number of methods for eliciting domain knowl-
edge. These can be split into two main subdivisions: deduc-
tive and inductive. The deductive methods require domain
experts to provide a set of rules or cases that can be used to
deduce new examples of the domain. Inductive methods are
the reverse of this: from a set of examples they obtain rules
that describe the relationships between these. This work
looks at using the results of an inductive approach and inter-
preting these to provide the rules that a deductive method
requires.

2.1. Design representation

It is assumed that the designs are to be represented para-
metrically. This is a common encoding method where the
relevant design variables are the parameters of the design
representation model. A design instance is then described

Genetic Programming
Component

Micro Models
Component

7N
)
Y

Report
Component

Fig. 2. The interaction between the components: the algorithm iterates
between the GP and the micromodels components until termination, when
the report generation module is used.

fn 2

AIE06001 3/18 12/07/05 12:54 am

Learning inexpensive parametric design models

by the associated (typically numerical) values taken by these
parameters (Eastman et al., 1991; Green, 1997; Malmqvist
& Schachinger, 1997). This does have the drawback of
restricting the domain into a single representation; how-
ever, it is possible to allow sufficient flexibility by careful
abstraction of the domain. For example, the bicycle exam-
ple could detail all the possible saddle configurations; how-
ever, these are unlikely to have a major impact on the
remainder of the domain, and hence, it is acceptable to
assume that these can be represented simply by the saddle
connection point only. In addition to the design parameters
(e.g., geometry, material, etc.), this representation must also
contain all the objective design criteria (e.g., weight, cost)
and the subjective criteria that have been measured previ-
ously (e.g., suitable for city riding). The set of design param-
eters, objective, and subjective criteria® all form the design
variable set. The analysis method will seek relationships
between all these design variables.

2.2. Engineering design knowledge needs

The knowledge needs of designers changes as they gain
experience. Popovic (2004) classifies the designer exper-
tise level in part according to how many design rules and
constraints a designer can mentally manage at any one time.
Hence, to improve the capacity of novice designers, it is
beneficial to present design rules and constraints in an intu-
itive manner, that is, one that requires less mental effort to
process. Although this will impact the complexity of design
rules and constraints, the benefit is that designers are able
to process more rapidly a larger scope of the total design
model.

In addition to the cognitive aspects of the knowledge
presentation, it is also necessary to consider the type of
knowledge that designers require. Ahmed and Wallace (2004)
report on empirical evidence quantifying the relative vol-
umes of novice queries for specific types of design infor-
mation. Of these queries, the two largest categories were
related to company and design process. Clearly, these are
considered important by the novice designers but as they
are process related, these will not contain significant prod-
uct knowledge. The next most significant set of queries
relate more closely to product, and are classified under “how
does it work,” “what are the tradeoffs,” “what is a typical
value,” and “what issues to consider.” This product type
knowledge can be represented by the relationships between
product design parameters and objectives.

2.3. Knowledge engineering management methods

Knowledge engineering methods are concerned with elicit-
ing domain knowledge from experts for future use. This

2The subjective criteria will be included, and hence referred to, as
design objectives.

3

has two aspects: the acquiring specific knowledge, and the
storage and structuring of this knowledge.

Eliciting specific knowledge is primarily concerned with
the rationale and rules that generate designs (Blessing, 1994;
Arciszewski, 1997; Smith & Morrow, 1999). Although these
rules can provide more explicit guidance during design, a
major challenge is to identify the appropriate rule at any
given point in the design process. Examples of this are rule-
based design systems, for example, Siddall (1986), Arafat
et al. (1993), Thornton (1996), and Arciszewski (1997).
Critically, a large investment is needed to elicit these rules.
This typically involves interviewing design experts, and
then encoding and structuring the rules so that they can be
readily accessed (Modesitt, 1992). This approach tends to
be expensive to implement (Ahmed, 2001).

The storage aspects extend beyond the physical nature
and media that is used to record design knowledge. Assum-
ing that some archival media is being used, there is the
issue of structuring and retrieving the information. This must
address the granularity of the design data to be stored and
how this is to be structured. These issues are researched by
product and project data management groups. Such data-
bases can be used to populate a case-based reasoning design
tool (Leake et al., 1999; Reich & Barai, 1999; Roseman,
2000). This approach allows designers to identify the most
similar previous designs. These designs are then used as
starting points for new designs, provided the designer under-
stands the effects of any modifications made. Such an
approach provides no rationale about how such previous
designs were reached, unless this is explicitly included.
Hence, there is a need to link the storage with rationale
used to create the design in the first instance.

The method introduced in this paper aims to exploit design
databases that lack rationale. Through the analysis of such
databases, explicit design knowledge is to be extracted, pro-
viding rationale for these designs. By providing explicit
understanding of the relationships in the domain, it will
also be possible to create new designs more rapidly. Fur-
ther, there is the potential of discovering new domain rules
that were overlooked by domain experts.

2.4. Induction methods

Induction methods are data driven as opposed to expert
driven, which is the case with the knowledge engineering
approaches. This provides an advantage in cases where expert
availability is limited, but sufficient prior data is available
to build a model of the product family. There are a number
of induction methods, ranging widely in the transparency
of the models they generate (Andrews et al., 1995; Hecker-
man, 1999; Maire, 1999; Hong et al., 2000; Hwang & Yang,
2002). A brief overview of a sample of these is provided,
starting with neural networks, one of the least transparent
approaches.

Neural networks have been shown to be able to learn
complex mappings well (Lawrence et al., 1996). The ben-

AIE06001 4/18 12/07/05 12:54 am

4

efits of using neural networks lies in the wide range of
domains they can be applied to, and the speed at which they
perform at once trained. These benefits are underpinned by
a strong theoretical understanding of how they learn and
the performance and accuracy that can be expected of neu-
ral networks. However, the internal structure of the trained
network remains opaque. This is a problem, as it difficult to
understand how the input and output variables are related.
Without this understanding, all that can be done is to use
the neural network in a trial and error mode, which is an
inefficient search strategy. There has been work on extract-
ing simple and intelligible rules from these networks
(Corbett-Clark, 1998; Huang & Xing, 2002; Matthews,
2002). This is a posttraining process, which provides explicit
rules that can then be validated by an expert, and poten-
tially edited if necessary. This provides a combined strategy
to gain insights into the domain. However, this is a more
complex process than acquiring the rules directly from the
data.

Data mining methods are a large collection of methods
that, in general, generate association rules from large data-
bases. In contrast to neural networks, these are explicit rules.
However, the rules are difficult to interpret, and are most
often used as part of some other algorithm, for example,
credit card fraud detection (Michalski & Kaufman, 1997).
Data mining is primarily used to classify accurately and
efficiently new cases into previously determined catego-
ries. As these methods are commonly used for computer
identification of, for example, fraud detection, importance
is given to the statistical significance of data mining results.
The understanding of the limits of data mining methods
represents one of the major benefits of this approach. How-
ever, the rules generated by the data mining methods are
rarely used to provide greater insight into the original prob-
lem domain.

Automated science discovery methods provide insights
into a domain where only empirical evidence is available.
These methods iteratively build and test rules on a given set
of observations, guided by a set of functional operators
Zytkow, 1999, 2000). Several empirical applications are
cited, including physics, chemistry, and astronomy. Lan-
gley et al. (1987) introduced an algorithm for building math-
ematical equations from a given set of observation variables.
This algorithm searches for equations that result in constant
values for given subsets of observations, and use these to
build further equations until some equation remains con-
stant for all observations. This final equation represents a
law for the given domain. The science discovery methods
represent an implementation of the scientific method, and
therefore, inherit the rigor that this thorough approach pro-
vides. Unfortunately, these discovery methods tend to be
exhaustive, and hence, computationally expensive. In addi-
tion, for the science discovery methods, it is assumed that
all the necessary observations are included.

For further reference on machine learning techniques and
methods, Michalski and Tecuci (1994) and Mitchell (1997)

P.C. Matthews et al.

provide thorough overviews of the domain, and Arcisze-
wski and Ziarko (1992) discuss a selection of methods from
an engineering perspective.

2.5. Summary: Criteria for an HEM

Engineering design knowledge presents an interesting set
of requirements: a designer must have an understanding of
how the various design variables are interrelated, but at the
same time seeks new areas that are likely to challenge this
understanding. Therefore, to support a designer, it will be
necessary to provide these relationships in a nonconstrain-
ing manner. A large single unifying model is likely to con-
strain. For this reason, this approach proposes to offer a set
of small (micro) models representing certain aspects of the
domain. These loosely related micromodels represent a set
of heuristics to be used by a designer searching for a good
concept that can then be further analyzed by more expen-
sive tools. The micromodels will be simple enough that the
engineering principles can be seen without compromising
accuracy, providing domain understanding, and hence, the
ability to search the design space intelligently.

3. EVOLUTIONARY SEARCH ALGORITHMS

Evolutionary search algorithms are in general generate and
test beam searches (Mitchell, 1997). These are searches
where a large number of potential solutions are considered,
and the search for better solutions is biased in the direction
of the current best set of solutions. Hence, the current “pop-
ulation” of solutions is used to generate the next population
of solutions for consideration. The heuristic used to gener-
ate the new population members from the old population
was inspired from Darwinian survival of the fittest theory.
Solutions that are “fitter” are stochastically combined with
each other to generate new solutions. The theory is that
some of the new solutions will have been combined from
(or inherited) “good” parts of their parents, and hence, will
also be fitter. This is a stochastic process, and the combina-
tions are performed randomly biased by the measured fit-
ness of the parent solutions.

Genetic algorithms (GAs) are a successful and well-
known implementation of this technique for numerical opti-
mization problems where the problem representation is fixed
(Goldberg, 1989). This approach has been shown to work
well in domains where traditional gradient search-based tools
perform poorly due to the cost of computing gradients (Jen-
kins, 1996; Gen & Cheng, 2000). After a number of gener-
ations, the solution population lies mainly in a region of
good solutions. Clearly, there are two criteria needed for a
domain to be suitable for this approach. First, solutions in
the domain must be expressible in a fixed format, for exam-
ple, a real-valued vector. Second, there must be a predeter-
mined fitness function that can evaluate candidate solutions.
It appears that the GA approach is suitable for a family of

Figure 3

21?

AIE06001 5/18 12/07/05 12:54 am

Learning inexpensive parametric design models

products, because they are all described using a fixed for-
mat, provided a suitable fitness function exists.

3.1. GP

GP is an evolutionary search algorithm (Koza, 1992; Koza
et al., 1999). With GP, a more flexible solution represen-
tation is adopted. Instead of a fixed vectorlike structure, a
tree structure is used. This allows the representation of
functional forms (see Fig. 3). Functions are built up from
primitive functional elements (e.g., addition and multipli-
cation in algebra, or LISP functions). These functions form
the nodes of a tree. The arguments of these functions are
then subtrees, the terminal nodes being the function vari-
ables or constants. GP uses the same sexual recombination
approach to generate the new solution space, but the oper-
ators are modified to apply to tree structures. This search
results in identifying tree structures that provide good solu-
tions, as evaluated by the provided fitness function. An
example would be identifying an algebraic expression that
curve fits the given dataset well. Unless there is some
evolutionary pressure to keep these tree structures small,
they are able to grow arbitrarily large if this improves
their fitness score.

3.2. Island approach

As there is no great need in evolutionary computing searches
for new candidate solutions to be generated synchro-
nously, a number of evolutionary algorithms were devel-

%D

s(z?) =1

Functional Nodes

s(+)=2

Generation 1

a |
a b

5

oped for distributed computing environments. One of the
earlier versions of this was applied to optimization of Walsh
polynomials, distributing the solution populations to dif-
ferent independent GAs (Tanese, 1989). Two methods were
compared, one where the GAs were left running indepen-
dently of each other, and one where a small portion of the
population was allowed to “migrate” between the other-
wise independent GAs. Cohoon et al. (1987) defined a set
of basic migration policies. These determine how mem-
bers of different “islands” can migrate between islands: a
mesh structure restricts migration between neighbors, a
star allows migration through a central point, linear/
circular is a one-dimensional mesh, and random removes
any restriction to the interisland migration. This island
approach provided nearly linear acceleration when the pro-
cessing was distributed between independent processors.
Further studies demonstrated that this could be improved
to superlinear acceleration by controlling the migration
more carefully (Belding, 1995; Andre & Koza, 1996).

More practical applications of the island approach appear
later. Potter et al. (1995) use the island approach to evolve
a robot controller that has two competing strategies. The
two strategies are evolved independently (one on each
island); however, this application was sensitive to the ini-
tial seeding. Further work developed the island approach to
string matching and neural networks (Potter, 1997; Potter
& De Jong, 2000). This provided a better understanding of
the behaviors of niches in the overall population, and how
these niches can cooperate to provide some emergent
behavior.

Terminal Nodes

L] L]

(V) =1
Generation 2

z? v

a b

Fig. 3. The creation of functional trees, using functional nodes for addition, squaring, and square root and terminal nodes a and b.

Figure 4

AIE06001 6/18 12/07/05 12:54 am
6 P.C. Matthews et al.
Perform GP
operations
Y
Y
Generate _ | Compute Compute N Generate
Initial Population "1 Islands (PAM) Fitness Final Report

Fig. 4. The overall process flow of the GP-HEM. Each iteration modifies the current population to provide the population of the next

iteration.

Wiegand et al. (2001) formalized the above approaches,
and provided a general framework for cooperative coevo-
lutionary algorithms. This work investigated more general
questions about evaluating the collaborative nature between
the islands and how many islands should be used.

3.3. Combining the EC elements

We have just described the core computational ideas that
are to be adopted in the search for simple useful design
relationships. As the aim is to search for arbitrary algebraic
structures, the GP approach is the most suitable for this
task. This will allow for the flexibility that can be achieved
using algebraic structures that would not naturally occur if
adopting the GA encoding method. As noted, the algebraic
relationships can become arbitrarily large unless pressure is
applied to keep them small. However, it is important to
identify potential complex relationships. This will be
achieved by using the island approach: individual solutions
will be kept simple, and similar solutions will be developed
on their own island. The interaction of these islands will
represent the more complex behavior. Hence, it will be pos-
sible to report these complex behaviors by reporting the
linkage between a pair of these islands that each represent a
simple behavior. This linkage is identified through “collab-
orative” behavior between islands. The next section expands
on these ideas.

4. SEARCHING FOR DESIGN RELATIONSHIPS

The GP approach is adapted in a novel manner to search for
design relationships. As noted in the previous section, the
island approach proved not only to accelerate the search,
but also provided a wider variety of solutions. This is a key
factor in developing and implementing the search method.
The search method is divided into three major processes:
islands creation, fitness measurement, and final reporting,
and these are linked as shown in Figure 4. Each of these is
now described, after first discussing the problem domain.

4.1. Problem domain

The GP-HEM developed in this paper is based around real-
valued design variables. This, in turn, provides a restriction

on the type of design domain that can be analyzed fruit-
fully. The approach identifies simple algebraic relation-
ships between subsets of design variables. Hence, it is
necessary for the problem domain to be described using
such components. In addition, the nature of the relation-
ships being extracted is mostly continuous.?

As the design domain must be specified to this paramet-
ric granularity, this appears to be most applicable to the
embodiment design phase. However, these algebraic rules
can be interpreted as design guidelines, which provide a
greater understanding of the design family. This understand-
ing can then be applied at the earlier conceptual design
stage, leading to better quality design concepts.

Because of the constraints on design representation, this
approach appears to be most suited to mechanically ori-
ented design domains. Similar approaches exist, for exam-
ple, Ishino and Jin (2002) apply GP to understand designers’
intent in a mechanical gear design domain. Such domains
are more likely to be continuous in the design parameters,
and hence, more suitable to this approach. There is evi-
dence that a similar approach has also provided interesting
results in chemical process engineering (Lakshminaray-
anan et al., 2000). It should be possible to apply this approach
to other design domains, provided a sufficiently continuous
problem area is being analyzed. Both these methods apply a
GP to identify the mapping between the design parameters
and a single design objective. Where designs have multiple
objectives, this process is repeated once for each objective.

Highly discontinuous domains are not expected to be suc-
cessfully modeled by this approach, for example, in soft-
ware design where very small design changes can result in
large performance changes. In addition, the modeling of
software design in a conceptual manner is a nontrivial task.

4.2. Assumptions

A number of assumptions are made on the nature of the
design domain, the available data, and type of models that
are to be extracted. First, it is assumed that the design domain
is continuous (or no less than piecewise continuous) in the

3Exceptions are of the form 1/(x — y), which is discontinuous along
X=y.

fn3

AIE06001 7/18 12/07/05 12:54 am

Learning inexpensive parametric design models

design variables. This assumption permits the search for
algebraic models, rather than classification type models. It
also allows simpler approximation functions to be created.
This leads to the second assumption: the data is real valued
and all present (no missing values). Thus, algebraic expres-
sions constructed from the design variables can be directly
evaluated as a real number. The third and final assumption
is that micromodels provide a meaningful representation of
the design domain. It is assumed that by combining micro-
models, and thus in particular enabling direct relationships
between subsets of design objectives, meaningful and inter-
esting domain relationships will be identified with the
GP-HEM.

4.3. Island creation

The islands GP approaches described in Section 3.2 simply
distributed the solution population between processors arbi-
trarily. For the GP-HEM, each island represents a meaning-
ful subset of design variables, and therefore there is a need
for more careful distribution of the population between the
islands. However, it is not known beforehand which design
variables belong together. The approach adopted for the
GP-HEM is to cluster the population of candidate solu-
tions, and to treat each cluster independently as if it were a
real island. This requires a metric to determine how the
objects are to be clustered. This poses a challenge, because
there are no inexpensive metrics for the functional space
being searched by the GP. The following sections describe
how this clustering can be achieved.

4.3.1. Clustering method

The partitioning around medoids (PAM) algorithm (Kauf-
man & Rousseeuw, 1990) was selected as the clustering
algorithm, because it is simple and identifies a member of
each cluster as a representative for its cluster. This repre-
sentative element is called the cluster’s medoid. Other clus-
tering algorithms typically compute a prototypical point that
represents a “truer” center; however, this is not possible to
do with the functional forms. Each island then represents a
particular “micromodel” class, and it is desired that these
are to be as diverse as possible with respect to the design
aspects they address. Therefore, the metric should be based
on the contents of the functional form (i.e., the design vari-
ables that are being used in the function). Kusiak (2001)
uses similar ideas with rough sets to allow for potentially
overlapping rules.

4.3.2. Function space pseudometric

A pseudometric was developed to reflect these cluster-
ing requirements. This provides a means of measuring sim-
ilarity between different algebraic expressions so that they
can be clustered using PAM. It was also desired to be able
to identify functionally identical expressions that occur
commonly using the GP process. For example, the two

7

distinct function trees representing x + yandx +y +y + x
are seen as being identical, as they are equivalent by a
multiplicative factor. The function space is projected into
a fixed sized hash vector, to which the Euclidean distance
metric can be applied. The hash vector is given by the
proportion of each design parameter’s presence in the func-
tion. In the example above, the two hash vectors would be
(1, 1) and (2, 2), respectively. When these are normalized,
the two hash vectors become equal, and therefore have
zero distance between them.

The function hashes exist in a metric space and hence
can be clustered by PAM, the clustering algorithm. PAM
provides a set of clusters and medoids that are used as rep-
resentatives for their associated cluster. These clusters are
treated as the islands described previously. Further details
of the PAM algorithms are given in Appendix A.

4.3.3. Interisland migration policy

In addition to the generation of the islands it is necessary
to define the policy on inter- and intracluster crossovers.
The aim is to have most crossovers produced from within
their own island (intraisland). In addition, a few interisland
crossovers are performed to promote a small degree of
genetic variety within each island. These interisland cross-
overs are done by taking all the medoids, treating them as a
single island, and applying the intraisland crossover proce-
dure to this set. The remaining genetic operators (mutation
and injection) only involve single candidates, and so no
special consideration is required. The final population is
evaluated again for fitness, and the procedure repeated, gen-
erating a new set of islands. With the new set of islands, it is
possible that the island boundaries are shifted. This allows
for the nature of each island to evolve as well as the whole
population.

4.4. The fitness function

The fitness function provides the bias that directs the GP
search. This function must reflect the desired properties of
the better solutions, and it is typically computed by a func-
tion independent of the solution set. The aim is for the
GP-HEM to discover pairs of functions that contain differ-
ent terminal nodes, but have a high covariance coefficient.
This is because the method is based on a cooperating coevo-
lutionary approach, where “halves” of the micromodels are
generated by the GP. Such pairs describe interesting phe-
nomena that are being observed within the dataset. How-
ever, this is based strictly on the current population as
opposed to some external measurement. As a result, it is no
longer possible to compare fitness values across generations.

The candidate solutions are clustered into different islands
based on the symbols they contained, and within each island
it is expected that candidates have a high covariance. The
algorithm therefore does not compare the covariance of a
candidate solution with that of other members of that
solution’s island. In a further runtime optimization mea-

AIE06001 8/18 12/07/05 12:54 am

8

sure, the candidate is only measured against the medoids of
the other islands. This is because the medoid is the repre-
sentative of the island, and it will have a high covariance
between itself and its fellow island members.

The aim is to keep the functions simple. To achieve this,
a penalty is given to longer functions. Hence, the desired
properties of the fitness function for a given solution mem-
ber (f) can be summarized as follows:

1. the average covariance f has with the other islands’
medoids must be high, because this suggests that fis a
meaningful design expression when compared to the
other medoids; and

2. the number of terms used in f should be kept low, but
not so low that trivial expressions are overly pro-
moted, because this suggests that f is likely to be
comprehensible.

Based on this, the fitness function is expressed as follows:

> Sk

SEM

fitness (f) = |M[log(len(f) +1)°

(1)

where M is the set of medoids; Sy, is the covariance between
functions f and g; and len(f) is the length of function f,
which is counted by the number of terminal nodes.

4.5. Termination and final report

Evolutionary computing algorithms are typically termi-
nated when the maximum fitness score achieves a preset
level. This requires the fitness scores to be comparable
between generations, which is not the case with the
GP-HEM. Hence, the termination criteria in this case are
crudely set to terminate the GP search algorithm after a
preset number of iterations.

On termination of the evolutionary search algorithm, the
results are compiled into a final report. This report is effec-
tively the user interface of the method, and hence, it is
important to ensure this report is meaningful to designers.
This is achieved by reporting the functions in the simplest
version possible. The report identifies pairs of functions
that are both highly correlated and quite different with respect
to the terminal nodes they contain.

The first step of the reporting function is to take a final
measurement of the fitness of all the candidate solutions.
This is performed in the same manner as previously and
thus requires the population to be clustered into islands one
last time. The next step is to identify “high-quality” pairs of
candidate solutions from the population. This quality is mea-
sured by the pairs that have high covariance; are short; and
come from different islands. This is computed for the func-
tion pair (f, g), where f and g are from different islands, as
follows:

P.C. Matthews et al.

_ |ng|
~ log(len(f) + len(g))’

Qfg (2)

Function pairs are then reported, starting with the asso-
ciated pair that scored the highest quality measure. The
report displays the two functional form, in standard alge-
braic format, and the quality score for that pair.

5. CASE STUDY: FLAT SCREEN DISPLAY

To test and illustrate the functionality of the GP-HEM a
small design case study was developed. A flat screen dis-
play domain was created by defining a small set of relation-
ships between the design parameters (aspects of the design
determined by the designer) and objectives (aspects of the
design determined by the parameters). These relationships
were designed to be sufficiently complex that all the design
objectives could not only be expressed in terms of the design
parameters. As the relationships were known before the analy-
sis, it was possible to measure how well the analysis method
performs.

5.1. Design space definition

The design space of the panel was represented by four design
parameters and four objective criteria, forming an eight
dimensional space. The design parameters were: width (x),
height (y), depth (d), and material (p), all of which were
randomly sampled from a uniform distribution. The objec-
tive criteria were weight, cost, life expectancy, and sales
volume. These were related as follows:

weight = xydp + ey, (3)

life = p + &y, “)

units = 10g,, (35)
life

cost = —— + gy, (6)
units

where gy and g, represent noise and are randomly sampled
values from a normal and uniform distribution, respec-
tively. Note that the number of units sold was modeled only
by a random value. This represents the subjective nature of
the customer population. A key aim of this case study was
to find out an explicit relationship for this objective based
on the remaining parameters. In addition, all objectives had
a small amount of Gaussian noise added. This was sup-
posed to represent the noise occurring in real-world domains
due to other factors that this simple model did not include.

Finally, a database of 200 examples was created from
this model. This represented the “past designs” that would
form the basis of the analysis. The size of this database was
set similar to other product databases that would be analyzed.

AIE06001 9/18 12/07/05 12:54 am

Learning inexpensive parametric design models
5.2. Domain analysis

In addition to supplying a database of previous examples,
the GP-HEM has three running parameters that need to
be supplied. These determine how the analysis will be
performed:

1. population size: how many relationships to hold for
consideration during each iteration;

2. number of clusters: how many islands to create; and

3. number of iterations: number of generations to allow
the search process to run.

For this case study, the parameters were as follows: the
population size was set to 100, this population was to be
split into 10 clusters, and the GP was allowed to run for 10
generations. After the run, the top 10 relationships (pair-
ings) were reported as follows:

wtand d quality = 1.39520

rho and life quality = 1.37310

wt and wt + units quality = 0.91024
wt and rtho + wt quality = 0.91024
life/cost and units quality = 0.91011
d/y and d quality = 0.90143

d and life * d quality = 0.89774

life and units * cost quality = 0.89401
d and wt/life quality = 0.88777

wt and life * d quality = 0.88747

SO A BN =

—_

Although most of these relationships do not fully extract
components of the original model, a number of useful design
heuristics are reported. Further, this report illustrates how
the quality function [Eq. (2)] scores the pairings.

The following paragraphs analyze the report with respect
to each of the design objectives.

5.2.1. Weight-related relationships

This was the only relationship not to be fully discovered.
Coarse approximations for weight are given in relation-
ships 1, 9, and 10 (note that relationships 9 and 10 are
effectively the same). The principal reason that the full rela-
tionship for weight is difficult to recover is that a total of
five terms are required. The fitness and quality functions
both penalize heavily on total expression length, which in
this case is overly severe. Relationship 1 (i.e., the strongest
according to the quality measure) does express that the thick-
ness of the design has the strongest effect on the design
weight. A more accurate version can be inferred from rela-
tionships 2 and 10, which is that weight is strongly depen-
dent on the thickness times the material density (p).

Relationships 3 and 4 are of little meaning, as weight is
repeated in both halves of the relationship. This has the
effect of increasing the covariance, and hence the quality
score artificially.

5.2.2. Life-related relationships

Life was directly linked to the material choice (p). This
was introduced as a single trivial relationship to test if the
method would be able to extract these. This was extracted
in relationship 2. The fact that it was not rated as the top
relationship in terms of quality is a reflection of the effect
of added noise.

5.2.3. Units-related relationships

The units objective, designed to reflect the sales vol-
ume, was drawn from a uniformly random sample. This
was done to reflect the subjective nature of this objec-
tive, at least to the degree that it could not be described
by the design parameters alone. Relationships 5 and 8
accurately report on the relationships between units and
the rest of the product description. Relationship 3 also
involves units; however, this is only as part of a relation-
ship between the weight and itself and thus should be
discounted.

5.2.4. Cost-related relationships

The cost objective could only be derived from other design
objectives. This was to demonstrate one of the motivating
factors of this approach: the ability to identify design rela-
tionships not only derivable from design parameters. Such
relationships are important in design, as they provide knowl-
edge about the tradeoffs that are made regarding a product’s
objectives. Although it is often feasible to infer such rela-
tionships from the design parameters, these tend to be dif-
ficult to identify.

In this case study, this relationship is reported twice in
different, but equivalent, formats. This relationship was accu-
rately reported in relationships 5 and 8. Again, the low
positioning of these reflects how the quality function penal-
izes long expressions (they both have a total of three terms)
and the effect of the added noise.

5.3. Method parameter sensitivity

The GP-HEM has four principal parameters: number of clus-
ters to use, population size, crossover policy, and number of
generations to run for before terminating. A series of inde-
pendent experiments were run to investigate the sensitivity
of the GP-HEM to each of these parameters. A common
datum point is used throughout all the experiments as a
reference point.

As discussed in Section 4.5, one drawback with the
GP-HEM is the difficulty in measuring fitness indepen-
dently of a given generation and cluster configuration. The
development of the quality function [Eq. (2)] provides some
measure independent measure of the final report, allowing
different runs of the GP-HEM to be compared. In addition
to this, an additional manual evaluation for the final report
was used. Function pairs were classified into one of five
different categories:

Table 1

AIE06001 10/18 12/07/05 12:54 am

10

perfect: the function pair is a complete representation of
the a design relationship;

good: the function pair is sufficient to identify a trend in
the design relationship;

average: the function pair has a component of the design
relationship, but would require some further analysis
to identify the design trend;

misleading: the function pair has a component of the
design relationship, but expressed in a misleading man-
ner; and

wrong: the function pair is completely wrong.

Independent GP-HEM runs can be compared by the cat-
egorization profile of each run. Although it might appear to
be ideal to extract perfect relationships, a designer is likely
to prefer to identify trends in the design domain. As such, a
desirable profile is one with a high number of good and
average relationships and a low number of misleading and
wrong relationships.

5.3.1. Number of islands

The number of islands, or clusters, determines how many
different types of “half” relationships can be classified.
Clearly, it is essential to set the number of clusters no lower
than the number of half relationships that exist in the design
domain. However, it is unlikely that this number is known a
priori. Therefore, it is good practice to set the number of
islands slightly higher than would be expected for the design
domain.

The GP-HEM was executed using the flat screen display
data set with a series of different clustering settings. The
results are presented in Table 1 using the profiles and qual-
ity measures. From here, it is can be seen that k = 3 pro-
duces the “best” results, in terms of the total number of
good and average relationships. An alternative view would
be to consider that k = 10, the datum setting, is best in terms
of minimizing wasted effort due to wrong or misleading
relationships. It is worth noting that the quality range (min/
max Q) is nearly constant for all k settings.

Table 1. Classification profiles and quality ranges for cluster
number experiments

k P G A M w min Q max Q t(s)
2 0 0 4 5 13 0.65 0.91 588.2
3 2 1 10 1 8 0.88 1.40 577.1
5 2 5 2 3 10 0.87 1.40 639.4
Datum 2 2 3 9 6 0.86 1.40 565.4
15 1 0 2 10 9 0.90 1.40 660.7
20 2 0 5 8 7 0.90 1.40 712.4
Datum, k = 10.

P.C. Matthews et al.

Table 2. Experiment schedule for the GP
cross-over policy

Id Elite Cross Mutate
1 10 (L) 40 (L) 10 (L)
2 10 (L) 40 (L) 20 (H)
3 10 (L) 70 (H) 10 (L)
4 20 (M) 40 (L) 15 (M)
5 20 (M) 40 (L) 10 (M)
6 25 (H) 55 (M) 10 (L)
7 25 (H) 70 (L) 5 (vL)
Datum 20 (M) 55 (M) 15 (M)

All values are percentages. Note that experiment 7
required a very low mutate setting to ensure that the sum =
100%.

5.3.2. GP policy

At the core of any GP algorithm lies the crossover policy.
This defines what proportion of the next generation arises
from sexual reproduction (crossover), mutation, elite reten-
tion, and random injection. The sum of these four must add
up to 100% of the new population, and so there were 3
degrees of freedom for this set of experiments. The exper-
iments explicitly changed the crossover, mutation, and elit-
ism proportions allowing the random injection level to be
determined by the remaining available population. Each
parameter was tested at a low, medium, and high setting,
the datum being all three parameters set at medium. Due to
the time required to manually inspect each set of results, a
subset of the total possible 27 experiments was drawn up.

This experiment schedule is listed in Table 2, and the pro- Table 2

file results are listed Table 3.

For more detailed analysis, the raw result table is reor-
dered for each policy parameter. For each parameter, the
table is presented in order of ascending value of that param-
eter. Trends for each policy parameter were identified in
term of how the profile changed as each individual param-

Table 3. Profile results from the GP cross-over policy
assessment

1d EXM P G A M w
1 LLL 5 3 3 7 4
2 LLH 2 4 3 8 5
3 LHL 0 6 3 9 4
4 MLM 2 5 3 6 6
5 MHL 1 2 7 12 0
6 HML 3 3 7 3 6
7 HHL 1 4 8 2 7
Datum MMM 2 2 3 9 6

E, elite; X, cross-over; M, mutate; PGAMW, number of relationships
per assessment category.

AIE06001 11/18 12/07/05 12:54 am

Learning inexpensive parametric design models

Table 4. Profile trends for GP policy

parameters
Elite
Id E P G A M w
1 L 5 3 3 7 4
2 L 2 4 3 8 5
3 L 0 6 3 9 4
4 M 2 5 3 6 6
5 M 1 2 7 12 0
D M 2 2 3 9 6
6 H 3 3 7 3 6
7 H 1 4 8 2 7
Cross-over
1d X P G A M W
1 L 5 3 3 7 4
2 L 2 4 3 8 5
4 L 2 5 3 6 6
6 M 3 3 7 3 6
D M 2 2 3 9 6
3 H 0 6 3 9 4
5 H 1 2 7 12 0
7 H 1 4 8 2 7
Mutate

1d M P G A M w
1 L 5 3 3 7 4
3 L 0 6 3 9 4
5 L 1 2 7 12 0
6 L 3 3 7 3 6
7 L 1 4 8 2 7
4 M 2 5 3 6 6
D M 2 2 3 9 6
2 H 2 4 3 8 5

Table 4 eter was increased. From Table 4, we can note the follow-

ing: a high elitism policy is better; a high crossover policy
is better; and a low mutate policy is worst. In respect to the
mutate policy, the better policy depends on if the object is
to maximize the good and average relationships (in which
case use high mutate), or minimize misleading and wrong
(in which case use medium mutate).

5.3.3. Population

The population represents the number of relationships
under consideration in the GP-HEM algorithm. As the rela-
tionships are algebraic, there are infinitely many distinct
forms that can be created using the given design variables.
However, as the aim is to identify simple relationships, this
reduces the number of potential candidates. In the flat screen
design domain, it would be feasible to enumerate and test
all relationships consisting of up to five symbols. However,
this approach would not scale to more complex domains.

11
Table 5. Varying the population size used by GP-HEM
n P G A M w min Q max Q 1(s)
20 2 0 2 4 14 0.72 1.35 135.8
50 2 4 4 8 4 0.71 1.40 271.6
Datum 2 5 2 3 10 0.87 1.40 565.4
150 2 2 0 3 15 0.89 1.40 1162.1
200 2 2 0 0 18 091 1.40 2087.9

Datum, n = 100.

The population size was varied between 50 and 200, each
time evaluating the final relationships.

Table 5 contains the results of these runs. From this table
it can be seen that there is an optimal population at about
n = 50. This is interesting, as it clearly demonstrates that
large populations are detrimental to the quality of the final
result. However, it is important to bear in mind that the
number of clusters will also have an effect on the final
outcome: for the smaller populations each cluster will hold
few members and for the large population each cluster will
hold many members that potentially should not be in the
same cluster.

5.3.4. Number of design variables

The GP-HEM uses the design variables as the building
blocks for the algebraic relationships. Increasing the num-
ber of variables represents an increase in the domain com-
plexity. For this experiment, redundant variables were added.
These variables took on random values that had no relation-
ship either to the rest of the design or to each other. There-
fore, it was not expected that these variables should appear
in meaningful design relationships. However, it must be
noted that although the number of variables was increased,
there was no similar increase in the number of islands. As a
result, each island “contained” more variables on average.

Table 6 contains the results of this these runs. The results
show that the GP-HEM is relatively robust to a small increase
in the number of (redundant) variables. When the increase
becomes large (v = 12 and 16), numerous completely wrong

Table 6. Applying the GP-HEM to the design domain with
redundant design variables added

v P G A M w min Q max Q t(s)
Datum 2 5 2 3 10 0.87 1.40 565.4
10 2 2 1 8 9 0.72 1.40 643.4
12 2 4 2 0 14 0.89 1.40 724.9
16 1 1 1 4 15 0.71 1.40 680.1

Datum: v = 8, the basic screen design domain.

Table 5

Table 6

Table 7

Table 8

AIE06001 12/18 12/07/05 12:54 am

12

Table 7. Varying the sample size used by the GP-HEM

N P G A M w min Q max Q t(s)

50 3 2 0 8 9 0.90 1.40 389.2
100 2 3 0 15 1 0.86 1.41 467.8
Datum 2 5 2 3 10 0.87 1.40 565.4
400 1 3 0 13 5 0.89 1.39 893.8
600 2 2 2 10 6 0.91 1.40 1444.0

Datum, N = 200.

relationships are being reported. However, this will be partly
biased due to the number of islands remaining fixed.

5.3.5. Sensitivity to data sample size

An important aspect of any machine learning approach is
the volume of data required to obtain “good” results. This
set of runs illustrates how the GP-HEM performs with vary-
ing amounts of data from which to learn the relationships.
The data sample size was varied between 50 and 600 data
points.

Table 7 contains the results for these runs. Overall, there
is relatively little change in the profile of the results and the
range of quality scores. However, with fewer points, there
will be a more significant change in the confidence in the
relationships. In addition, this set of runs also illustrates
how the computational time increases with the increased
sample size.

5.3.6. Sensitivity to noise

In addition to the sensitivity to sample size, it is impor-
tant to consider how well a machine learning algorithm
handles noisy data sets. In this set of runs, a controlled
amount of noise was added to the sample generated from
the domain model, ranging from o = 0 to 1.0.

Table 8 contains the results for these runs. Interestingly,
there is very little difference in the profile of the relation-
ships extracted. The main difference in the results between
the various noise levels is given by the reduced quality
measurements. This is to be expected, as the quality score is
based on the covariance between the relationships that will
be reduced as a result of adding noise to the original data.

Table 8. Varying the added noise level to the data

s P G A M w min Q max Q t(s)
0.00 2 2 1 13 4 0.90 1.44 552.7
0.05 2 2 1 12 5 0.90 1.40 560.9
Datum 2 5 2 3 10 0.87 1.40 565.4
0.50 1 2 1 14 4 0.88 1.37 614.5
1.00 0 2 0 13 7 0.82 1.27 605.2

Datum, o = 0.1.

P.C. Matthews et al.

Table 9. Relationship profiles after varying number of
generations

n P G A M w min Q max Q 1(s)

1 4 2 4 12 0 0.90 1.40 131.9
2 3 4 3 10 2 0.89 1.40 163.1
5 2 6 3 10 1 0.89 1.40 344.6
Datum 2 5 2 3 10 0.87 1.40 565.4
15 0 8 1 19 3 0.88 1.40 907.4
20 2 4 5 9 1 0.89 1.40 1363.2

Datum, n = 10.

5.3.7. Convergence and termination criteria

The GP-HEM adopted the simple termination criteria of
halting after a predetermined number of generations. A set
of experiments was run to identify the trends in the perfor-
mance of GP-HEM with varying the run length from 1 gen-
eration through to 20 generations.

Table 9 contains the relationship profiles for all the runs
of varying lengths. The primary interest is in the relation-
ships that are classified under good and average. The results
show that this stabilizes at nine relationships in total from
five generations onward. The poorest two relationship
classes, misleading and wrong, remain stable throughout.
The perfect relationships reduce rapidly from a relatively
high count early in the run through to a stable count of two
in later generations.

5.3.8. Computational complexity and scalability issues

The code was written as a set of Matlab functions. This
provided a good code developing and testing environment
at the cost of execution speed. The bottleneck within this
environment lies in the evaluation of the population against
the design data. Each relationship is evaluated for each data
point, mapping it onto a real value using the Matlab eval
procedure. The amount of time required for this operation
is primarily a function of the complexity of the relation-
ship. By the nature of the GP-HEM’s aims, this function
complexity is bounded stochastically through the fitness
function, and hence, for the purposes of this complexity
analysis it shall be assumed to be constant. If there is a
population of N expressions and a total of d data points, the
total computational complexity in terms of function evalu-
ations is (ONd) per generation. In addition to this, the data
resulting from the expression evaluations is used to com-
pute the covariance between each pair of expressions, which
has complexity O(N?2). The run times on the all the exper-
iments with the flat screen display (v = 8 design variables,
d = 200 data points, and N = 100 expressions) ranged
between 120 and 2000 s, with the datum point taking about
350 s. The greatest variance in run time arose through vary-
ing the relationship population size. This time variance is
due to the variance arising in the length of the individual

Table 9

AIE06001 13/18 12/07/05 12:54 am

Learning inexpensive parametric design models

expressions, which is a stochastic variable. However, with
each generation, the potential maximum complexity of the
relationships increases. These results were obtained run-
ning Matlab on a single 2.8-GHz Intel-based processor with
1 GB of RAM available.

The second computational bottleneck lies in the cluster-
ing algorithm. The clustering algorithm is supplied with
pairwise distances between all the population members, and
then it greedily identifies the best clustering of these (see
Appendix A). In addition, this is only weakly dependent on
how many design variables there are. The term weakly is
used in this case as the Matlab evaluation function in this
case appears to be near constant with respect to the number
of variables. The number of design variables only comes
into effect when computing the pairwise distance between
two relationships using the hash function described in Sec-
tion 4.3.2, and then only has a small effect on the total
computation time for that function. The complexity of the
PAM algorithm is O (N?), which dominates the O (Nv) com-
plexity of the hashing functions (where v is the number of
design variables) as it is expected that v < N.

The computational complexity of the GP operations will
be O(N), as there is one operation per new population mem-
ber. The complexity of the termination decision is constant
under this implementation: it is simply a check on how
many generations have been produced. Finally, the compu-
tational complexity of the final report generation is similar
to the fitness evaluation, namely O(N?) + O(Nd).

In addition to the computational complexity issues, the
data volume needed for trustworthy results also needs to be
considered. Effectively, this asks the question: how small a
(data) scale can be meaningfully processed with the
GP-HEM? This is dependent on how noisy the data set is.
The majority of the experiments run for this paper had a
relatively small amount of noise added (o = 0.1), and used
a total of 200 data points. This proved to be ample data, and
similar results were obtained using both noisier data sets
and smaller data sets. The GP-HEM scales well in terms of
number of design variables, provided the number of islands
used is also scaled. Trials with extra independent variables
were run, with little effect to the final outcome. The number
of islands effectively controls the complexity: increasing
the number of islands decreases the complexity of the expres-
sions in the population. However, with more islands to spread
the population (and complexity) across will require the gen-
eration of a lengthier final report.

The only aspect that has not been considered when scal-
ing the problem domain is the interpretation of the results.
With a more complex domain, the extracted relationships
will also be more complex. In this paper, a simple case
study is used to demonstrate and test the approach. The
relationships are easily evaluated by a “domain expert.”
The next development phase for the GP-HEM requires test-
ing in more complex domains, and reviewing how this affects
the time required by the domain experts to review the interim
results.

13

5.4. Discussion

The analysis of this design case study has illustrated the
nature of the relationships that can be extracted, along with
some of the weaknesses of the implementation. A signifi-
cant number of design heuristics were extracted that pro-
vide an understanding of how the design variables are related
through tradeoffs. These were not only based on design
parameters, but they also could provide an understanding
of how the design characteristics were related.

The principal weakness is evident in the scoring func-
tions, both fitness [Eq. (1)] and quality [Eq. (2)]. It is not
possible to compare fitness function score directly between
population generations. This is important to enable measur-
ing of how well the population is improving overall between
generations and to provide a more intelligent stop criteria.
The quality scoring function has two drawbacks: first, it
penalizes important long expression too heavily, and sec-
ond it scores tautological relationships too highly (e.g., rela-
tionship 3). The first issue should be able to be rectified by
modifying the nature of the length penalty. The second issue
will require an extra penalty component to the quality func-
tion reflecting on the amount of overlap in design variables
between the two halves of the relationship.

6. CONCLUSIONS

The GP-HEM introduced in this paper is a novel means for
extracting simple rules from a database of previous designs.
This provides a means for more rapidly documenting the
design domain by providing relationships between the key
design variables. Once this documentation exists, it can be
used by a larger population of designers, in particular where
the design of the product is possibly being undertaken by
nonexperts. It is important that their creativity is kept within
feasible design constraints and that the best estimates are
provided for the objective functions. This is to provide high-
quality feedback rapidly to designers, potentially through
an expert systemlike interface. As such, the quantitative
rules are effectively transformed into qualitative design heu-
ristics. This allows designers to explore rapidly the concep-
tual design space intelligently, with minimal restriction on
creativity.

6.1. Comparison of GP-HEM with other data
mining approaches

Data mining, and more specifically, methods for gaining
rule-based understanding of data sets, has been of interest
since computational resources have become readily acces-
sible. There are two independent drivers for this research:
ever larger databases require digesting to present a manage-
able overview of the data, and to provide computationally
simpler versions of complex models using data samples
taken from the complex models. This paper has been pri-
marily concerned with the second driver.

AIE06001 14/18 12/07/05 12:54 am

14

Model induction methods can be broadly divided into
two categories: classifiers, and regression models. Classifi-
ers provide a true/false test that a given data point belongs
to a specific class. These classifiers are analyzed and char-
acterized according to their prediction strength. This pro-
vides a good understanding of how well any classifier
performs. As described in Section 2.4, neural networks can
be trained to classify and these can then be examined to
extract the classification rules (Corbett-Clark, 1998; Huang
& Xing, 2002). Although these rules do provide transpar-
ency to the neural network, they do not provide comprehen-
sibility. More recently, Johansson et al. (2004) and Duch
et al. (2004) identify with this need for comprehensibility.
Both papers report on methods for generating comprehen-
sible classifier rules. Johansson et al. (2004) use GP tech-
niques for identifying comprehensible propositional logic
statements that encode classification rules. These are eval-
uated based on their accuracy and comprehensibility, effec-
tively trading accuracy for comprehensibility. Unfortunately,
no details are provided on the nature of these metrics. Duch
et al. (2004) also extracts propositional classification rules,
but optimizes the extracted rules using a specific set of rule
transformations that trade rule accuracy against simplicity.

Regression rules provide mappings between continuous
input variables and output variables. The nature of the map-
ping will be determined in part by the regression model and
its parameter settings. In general terms, the aim is to iden-
tify suitable models such that the error in mapping of a
known dataset is minimized (Wegkamp, 2003). However,
even when constraining the complexity, the space of all
models is huge. Early “science discovery” methods used
exhaustive search algorithms to greedily search the model
space (Langley et al., 1987); however, this approach does
not take model comprehensibility into account. Support vec-
tor machines (SVMs) provide another type of regression
model. The SVM has the ability to approximate more com-
plex models using direct summation of a small number of
basis functions. The SVM approach has been applied in a
wide range of engineering domains and compares well to
other metamodeling techniques (Nair et al., 2002; Clarke
et al., 2003). However, although SVMs perform well in
terms of error minimization, they do not provide compre-
hensible models that can be readily understood by design-
ers. A review of a number of other metamodeling methods
for engineering design is provided by Simpson et al. (2001).
This review does stress the importance of comprehensibil-
ity, and highlights the challenges when multiple objectives
are to be taken into account.

The GP-HEM identifies simple regression models with a
critical difference to the above methods: all the above
reported methods treat design parameters and objectives
differently. They aim to identify a set of independent regres-
sion models o; = f;(x) for each design objective, o;. This is
a natural approach, as it provides explicit models for each
design objective independently. However, designers also
benefit from understanding the tradeoffs made between

P.C. Matthews et al.

objectives. Identifying relationships between objectives thus
provides the designer with a clear holistic understanding of
the product’s behavior. An example of this is given by rela-
tionship 5 (life/cost and units), relating the three design
objectives (Section 5.2.3).

The GP-HEM identification method is based on a novel
implementation of the islands approach from the well-
known GP methodology. This simple addition to the GP
methodology greatly extends the nature of the rules that are
reported. As noted previously, “traditional” regression model
identification methods search for equations for each objec-
tive function independently, using only the design param-
eters as terminal nodes for the function trees. The approach
adopted in this paper removes that restriction. As demon-
strated in the case study (Section 5), there are relationships
that cannot be described using only design parameters. These
frequently represent some behavior external to the design,
for example, the customer population’s subjectivity. How-
ever, these are very important relationships to extract and
use when designing products.

The weakness of with the GP-HEM is that there is little
direct control over the accuracy of the micromodels. Partial
control is exerted through the fitness function, which pro-
motes accurate micromodels through measuring how well
the models correlate given the data sample taken from the
domain. The comprehensibility is similarly controlled by
promoting smaller micromodels. However, as the evolution-
ary algorithm is stochastic, it is not possible to predict exactly
how the models progress. This is a significant difference to
the deterministic approaches used by most other methods
described in Section 2.4.

The empirical results demonstrate that simple relation-
ships are being successfully extracted. These relationships
tend to require expert interpretation to provide understand-
ing of the domain, as they are not necessarily extracted in
the most meaningful form. However, these are still helpful
in providing insight into the trends and tradeoffs between
sets of parameters. Such relationships can be used to direct
designers towards how to modify designs to match new
design requirements.

6.2. Future work

There are aspects of this approach that require further work.
As with all evolutionary approaches, the key element is
the fitness function. The empirical evidence presented in
the examples and the case study indicates that the parsi-
mony bias is too strong, thus preventing the more complex
solutions from being reported. Further, a major difficulty
in this implementation is the lack of population-independent
fitness metrics. As the current fitness metric [Eq. (1)] is
based on the current population, it is impossible to track
the overall performance of the search between genera-
tions. One possible technique to be explored is replacing
the current single fitness function by a set of competing
fitness functions and to use Pareto ranking to determine an

22?

AIE06001 15/18 12/07/05 12:54 am

Learning inexpensive parametric design models

individual’s relative fitness compared to the rest of the
population.

In addition, there are other GP techniques that could
improve the performance, for example, encapsulation (Koza
et al., 1999). This identifies useful subtrees that should be
treated as atomic nodes by introducing them as new termi-
nal nodes during the evolutionary process. However, there
is little research available to help identify these subtrees.
Further work relating to the use of GP should also consider
seeding the initial population with likely first order esti-
mates of candidate solutions that could be obtained from
techniques such as principal components analysis.

This work represents ongoing research to address these
issues. The aim is to provide a toolkit for examining data-
bases of prior products and provide concise and readily
interpretable relationships governing the product family.

ACKNOWLEDGMENTS

This work was undertaken while the corresponding author was
fully funded by the University Technology Partnership, a collab-
orative research project between the Universities of Cambridge,
Sheffield, and Southampton; and with industrial partners BAE
Systems and Rolls-Royce, PLC. The authors thank the anony-
mous referees for their comments.

REFERENCES

Ahmed, S. (2001). Understanding the use and reuse of experience in engi-
neering design. PhD Thesis. University of Cambridge, Engineering
Department.

Ahmed, S., & Wallace, K.M. (2004). Understanding the knowledge needs
of novice designers in the aerospace industry. Design Studies 25(2),
155-173.

Andre, D., & Koza, J. (1996). A parallel implementation of genetic pro-
gramming that achieves super-linear performance. Proc. Int. Conf. Par-
allel and Distributed Processing Techniques and Applications (Hamid,
R., Ed.), Vol. 3, pp. 1163-1174, Athens, GA.

Andrews, R., Diederich, J., & Tickle, A.B. (1995). Survey and critique of
techniques for extracting rules from trained artificial neural networks.
Knowledge-Based Systems 8(6), 373-389.

Arafat, G.H., Goodman, B., & Arciszewski, T. (1993). Ramzes: a
knowledge-based system for structural concepts evaluation. Comput-
ing Systems in Engineering 4(2-3), 211-221.

Arciszewski, T. (1997). Engineering semantic evaluation of decision rules.
Journal of Intelligent and Fuzzy Systems 5, 285-295.

Arciszewski, T., & Ziarko, W. (1992). Knowledge Acquisition in Civil
Engineering, pp. 50-68. New York: American Society of Civil
Engineers.

Belding, T.C. (1995). The distributed genetic algorithm revisited. Proc.
Sixth Int. Conf. Genetic Algorithms (Eshelman, L., Ed.), pp. 114-121.
San Francisco, CA: Morgan Kaufmann.

Blessing, L.T.M. (1994). A process-based approach to computer-supported
engineering design. PhD Thesis. University of Twente.

Clarke, S.M., Griebsch, J.H., & Simpson, T.W. (2003). Analysis of support
vector regression for approximation of complex engineering analyses.
Proc. ASME 2003 Design Engineering Technical Conf., Paper No.
DETC2003/DEC48759, Chicago.

Cohoon, J.P., Hegde, S.U., Martin, W.N., & Richards, D. (1987). Punctu-
ated equilibria: a parallel genetic algorithm. Proc. Second Int. Conf.
Genetic Algorithms and Their Application, pp. 148—154. Hillsdale, NJ:
Erlbaum.

Corbett-Clark, T.A. (1998). Explanation from neural networks. PhD The-
sis. Oxford University, Department of Engineering Science.

15

Duch, W., Setiono, R., & [.]Zurada, J.M. (2004). Computational intelli-
gence methods for rule-based data understanding. Proceedings of the
IEEE 92(5), 771-805.

Eastman, C.M., Bond, A.H., & Chase, S.C. (1991). A formal approach for
product model information. Research in Engineering Design 2(2),
65-80.

Gen, M., & Cheng, R. (2000). Genetic Algorithms and Engineering Opti-
mization. New York: Wiley.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison—Wesley.

Green, G. (1997). Modelling concept design evaluation. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 11(3),
211-217.

Heckerman, D. (1999). Learning in graphical models, adaptive computa-
tion and machine learning. In A Tutorial on Learning with Bayesian
Networks, pp. 301-354. Cambridge, MA: MIT Press.

Hong, T.P., Wang, T.T., Wang, S.L., & Chien, B.C. (2000). Learning a
coverage set of maximally general fuzzy rules by rough sets. Expert
Systems with Applications 19(2), 97-103.

Huang, S.H., & Xing, H. (2002). Extract intelligible and concise fuzzy
rules from neural networks. Fuzzy Sets and Systems 132(2), 233-243.

Hwang, S.Y., & Yang, W.S. (2002). On the discovery of process models
from their instances. Decision Support Systems 34, 41-57.

Ishino, Y., & Jin, Y. (2002). Estimate design intent: a multiple genetic
programming and multivariate analysis approach. Advanced Engineer-
ing Informatics 16(2), 107-125.

Jenkins, W.M. (1996). A genetic algorithm for structural design optimiza-
tion. Proc. NATO Advanced Science Institutes. Series F: Computer
and Systems Sciences. Emergent Computing Methods in Engineering
Design: Applications of Genetic Algorithms and Neural Networks, Vol.
149, pp. 30-52. Berlin: Springer—Verlag.

Johansson, U., Niklasson, L., & Kdonig, R. (2004). Accuracy vs. compre-
hensibility in data mining models. Proc. Seventh Int. Conf. Informa-
tion Fusion (Svensson, P., & Schubert, J., Eds.), Vol. 1, pp. 295-300,
Mountain View, CA.

Kaufman, L., & Rousseeuw, P.J. (1990). Finding Groups in Data: An
Introduction to Cluster Analysis, Probability and Mathematical Statis-
tics. New York: Wiley.

Koza, JR. (1992). Genetic Programing: On the Programming of Comput-
ers by Means of Natural Selection, Complex Adaptive Systems. Cam-
bridge, MA: MIT Press.

Koza, JR., Bennet, F. H., III, Andre, D., & Keane, M.A. (1999). Genetic
Programming I11: Darwinian Invention and Problem Solving. San Fran-
cisco, CA: Morgan Kaufmann.

Kusiak, A. (2001). Rough set theory: a data mining tool for semiconductor
manufacturing. IEEE Transactions on Electronic Packaging Manufac-
turing 24(1), 44-50.

Lakshminarayanan, S., Fujii, H., Grosman, B., Dassau, E., & Lewin, D.R.
(2000). New product design via analysis of historical databases. Com-
puters and Chemical Engineering 24(2-7), 671-676.

Langley, P., Simon, H.A., Bradshaw, G.L., & [.]Zytkow, JM. (1987). Sci-
entific Discovery: Computational Explorations of the Creative Pro-
cesses. Cambridge, MA: MIT Press.

Lawrence, S., Tsoi, A.C., & Back, A.D. (1996). Function approximation
with neural networks and local methods: Bias, variance and smooth-
ness. Proc. Australian Conf. Neural Networks (Bartlett, P., Burkitt, A.,
& Williamson, R., Eds.), pp. 16-21, Australian National University.

Leake, D.B., Birnbaum, L., Hammond, K., Marlow, C., & Yang, H.
(1999). Case-Based Reasoning Research and Development 1999. Lec-
ture Notes in Artificial Intelligence, Vol. 1650, pp. 482—-496. Berlin:
Springer—Verlag.

Maire, F. (1999). Ruleextraction by backpropogation of polyhedra. Neural
Networks 12(4-5), 717-725.

Malmgqpvist, J., & Schachinger, P. (1997). Towards an implementation of
the chromosome model—Focusing the design specification. Proc. 11th
Int. Conf. Engineering Design (Riitahuhta, A., Ed.), Vol. 3, pp. 203~
212, Tampere University of Technology.

Matthews, P.C. (2002). The application of self organizing maps in concep-
tual design. PhD Thesis. University of Cambridge, Engineering
Department.

Michalski, R.S., & Kaufman, K.A. (1997). Data mining and knowledge
discovery: areview of issues and a multistrategy approach. In Machine
Learning and Data Mining: Methods and Applications, pp. 71-112.
Chichester: Wiley.

23?

?2?

o

22?

22?

AIE06001 16/18 12/07/05 12:54 am

16

Michalski, R.S., & Tecuci, G., Eds. (1994). Machine Learning: A Multi-
strategy Approach, Vol. IV. San Francisco, CA: Morgan Kaufmann.

Mitchell, T.M. (1997). Machine Learning. New York: McGraw-Hill.

Modesitt, K.L. (1992). Basic principles and techniques in knowledge acqui-
sition. In Knowledge Acquisition in Civil Engineering, pp. 11-49. New
York: American Society of Civil Engineers.

Nair, P.B., Choudhury, A., & Keane, A.J. (2002). Some greedy learning
algorithms for sparse regression and classification with Mercer ker-
nels. Journal of Machine Learning Research, 3, 781-801.

Popovic, V. (2004). Expertise development in a product design—Strategic
and domainspecific knowledge connections. Design Studies 25(5),
527-545.

Potter, M.A. (1997). The design and analysis of a computational model of
cooperative coevolution. PhD Thesis. George Mason University.

Potter, M.A., & De Jong, K.A. (2000). Cooperative coevolution: an archi-
tecture for evolving coadapted subcomponents. Evolutionary Compu-
tation 8(1), 1-29.

Potter, M.A., De Jong, K.A., & Grefenstette, J.J. (1995). A coevolutionary
approach to learning sequential decision rules. In Proc. Sixth Int. Conf.
Genetic Algorithms (Eshelman, L., Ed.), pp. 366—-372. San Francisco,
CA: Morgan Kaufmann.

Reich, Y., & Barai, S.V. (1999). Evaluating machine learning models for
engineering problems. Artificial Intelligence in Engineering 13(2),
257-272.

Roseman, M. (2000). Case-based evolutionary design. Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 14(1),
17-29.

Shadbolt, N.R., & Milton, N. (1999). From knowledge engineering to
knowledge management. British Journal of Management 10, 309-322.

Siddall, J.N. (1986). Probabilistic modelling in design. ASME Journal of
Mechanisms, Transmissions, and Automation in Design 108(3),
330-335.

Simpson, T.W., Peplinski, J.D., Koch, PN., & Allen, JK. (2001). Meta-
models for computer-based engineering design: survey and recommen-
dations. Engineering with Computers 17, 129-150.

Smith, R.P., & Morrow, J. (1999). Product development process modeling.
Design Studies 20(3), 237-261.

Tanese, R. (1989). Distributed genetic algorithms for function optimiza-
tion. PhD Thesis. University of Michigan.

Thornton, A.C. (1996). The use of constraint-based design knowledge to
improve the search for feasible designs. Engineering Applications of
Artificial Intelligence 9(4), 393—402.

Wegkamp, M. (2003). Model selection in nonparametric regression. The
Annals of Statistics 31(1), 252-273.

Wiegand, R.P, Liles, W.C., & De Jong, K.A. (2001). An empirical analy-
sis of collaboration methods in cooperative coevolutionary algorithms.
Proc. Genetic and Evolutionary Computation Conf. (GECCO2001)
(Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.-M.,
Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., & Burke, E.,
Eds.), pp. 1235-1242. San Francisco, CA: Morgan Kaufmann.

Zytkow, JLM. (1999). The melting pot of automated discovery: principles
for a new science. In Discovery Science: Second Int. Conf. Lecture
Notes in Artificial Intelligence, Vol. 1721, pp. 1-12. Berlin:
Springer—Verlag.

Zytkow, JLM. (2000). Automated discovery: a fusion of multidisciplinary
principles. In Advances in Artificial Intelligence. Lecture Notes in Arti-
ficial Intelligence, Vol. 1822, pp. 443—448. Berlin: Springer—Verlag.

APPENDIX A: PAM CLUSTERING
ALGORITHM

The GP-HEM method uses clustering to separate individual can-
didate solutions into sets of “similar” solutions. As with all clus-
tering algorithms, each cluster is given a representative description.
For most clustering algorithms, this representative is computed
from the cluster members (e.g., taking the average value of numer-
ical parameters representing the clustered objects). In the GP-HEM
algorithm, this is not possible as the space is not continuous. Instead,
it is necessary to identify a member from each cluster to represent
the cluster.

P.C. Matthews et al.

Table A.1. Raw data set for PAM illustration

Id x Coordinate y Coordinate
1 1.0 4.0
2 5.0 1.0
3 5.0 2.0
4 5.0 4.0
5 10.0 4.0
6 25.0 4.0
7 25.0 6.0
8 25.0 7.0
9 25.0 8.0
10 29.0 7.0

The PAM algorithm is based around searching for a predeter-
mined set of representative objects (medoids) from a given set
(Kaufman and Rousseeuw, 1990). Briefly, the algorithm operates
as follows to identify k medoids from a data set:

—_

. Initially, k distinct objects are chosen arbitrarily as medoids.

2. For each object, the nearest medoid is identified and its dis-
tance noted.

3. The total distance between objects and their medoids is then
summed for this configuration. A greedy algorithm then
searches for the best set of medoids.

4. Each medoid is individually swapped for each nonmedoid,
and the total distance is measured each time (similar to steps
2 and 3).

5. The swap that results in the minimum total distance is kept.

This process is repeated from step 2 until no further swaps

result in a lower total distance.

The results of this algorithm are the k& medoids. Cluster
membership is then determined according to which medoid is
nearest.

Y
8 .9
*s *10

6 .7
4 4 .1 .4 .5 .6
2 .3

*2

. T T X

5 10 15 20 25 30

Fig. A.1. A two-dimensional data plot of 10 objects.

AIE06001 17/18 12/07/05 12:54 am

Learning inexpensive parametric design models 17
Table A.2. Distance and clusters for first iteration Table A.3. Distance and clusters for last iteration
Distance to Distance to
Id Part 1 Part 5 Minimum Medoid Id Part 4 Part 8 Minimum Medoid
1 0.00 9.00 0.00 1 1 4.00 24.19 4.00 4
2 5.00 5.83 5.00 1 2 3.00 20.88 3.00 4
3 4.47 5.39 4.47 1 3 2.00 20.62 2.00 4
4 4.00 5.00 4.00 1 4 0.00 20.22 0.00 4
5 9.00 0.00 0.00 5 5 5.00 15.30 5.00 4
6 24.00 15.00 15.00 5 6 20.00 3.00 3.00 8
7 24.08 15.13 15.13 5 7 20.10 1.00 1.00 8
8 24.19 15.30 15.30 5 8 20.22 0.00 0.00 8
9 24.33 15.52 15.52 5 9 20.40 1.00 1.00 8
10 28.16 19.24 19.24 5 10 24.19 4.00 4.00 8
93.70 23.00
A.1. Nlustration computed between all pairs of points. If K = 2 clusters are to be

identified, then the algorithms starts be arbitrarily choosing two

medoid candidates, say points 1 and 5. A new table can be drawn

up, for each point computing the distance to point 1 and point 5.

Table A.2 contains this information and also identifies the clusters Table A2
for this case. Clearly, this is not a very good clustering. At the final

iteration, the medoids are points 4 and 8. Table A.3 is the distance Table A3
table for this case. Figure A.2 illustrates these two clustering Figure A2
configurations.

This example is taken from Kaufman and Rousseeuw (1990).
Table A1 Table A.1 contains the coordinates of 10 objects, which have been
Figure A1 plotted in Figure A.1. From this data, the euclidean distances are

Peter Matthews is a Lecturer in design informatics at the
School of Engineering at the University of Durham. He
obtained a BA in mathematics (1994), a MS in computer
science (1995), and a PhD in engineering design (2002)
from University of Cambridge. He then remained at Cam-
bridge for another year as a Research Associate. Dr. Mat-
thews’ core research interests are in applying machine
2\] learning techniques to design problems.

David Standingford graduated with first class honors in
5 10 15 20 o5 30 applied mathematics .from the Univ§rsity of Adelaide in
y 1993. He completed his PhD in numerical methods for aero-
dynamics at the University of Adelaide in 1997 and then
worked at the University of Delaware for 2 years under a
8 | NASA contract for microgravity fluid dynamics research.
Subsequently, he moved to BAE SYSTEMS in 2000, where
he is now the Group Leader for fluid dynamics in the Depart-
ment of Mathematical Modelling, BAE Systems Advanced
Technology Center (Sowerby). Dr. Standingford is also the
Industrial Coordinator for the Rolls-Royce/BAE Systems
University Technology Partnership for Design, in collabo-
ration with the Universities of Cambridge, Southampton,
and Sheffield.

Carren Holden has worked for 20 years in decision sup-
5 10 15 20 o5 30 port and process improvement research for commercial and
military aircraft for BAE SYSTEMS until recently at its
Advanced Technology Centre, Sowerby, in Bristol. She

Fig. A.2. The clustering of the first and last iteration.

AIE06001 18/18 12/07/05 12:54 am

18

obtained her PhD in 2005 at the University of Southampton
under the supervision of Professor Andy Keane. Dr. Holden
is currently working in the Flight Physics Department of
Airbus, UK.

Ken Wallace is Professor of engineering design at the Uni-
versity of Cambridge. He is Chairman of the Engineering

P.C. Matthews et al.

Design Centre and Codirector of the Rolls-Royce/BAE Sys-
tems University Technology Partnership for Design. In 1968
he completed a university apprenticeship with Rolls-Royce
Aerospace, during which time he obtained his BS in mechan-
ical engineering from the University of Manchester Insti-
tute of Science and Technology. He is a Fellow of the Royal
Academy of Engineering, the Institution of Mechanical Engi-
neers, and the Institution of Engineering Designers.

