Front. Comput. Sci. China, 2008, 2(3)
DOI110.1007/s11467-008-0000-0

REVIEW ARTICLE

Frontiers of Computer Science in China
Verifying BPEL-like Programs with Hoare Logic

Chenguang LUO!, Shengchao QIN, Zongyan QIU?

1 Department of Computer Science, Durham University, DorBaH1 3LE, United Kingdom
2 LMAM and Department of Informatics, School of Math. ScieacPeking University, Beijing 100871, China

© Higher Education Press and Springer-Verlag 2008

Abstract The WS-BPEL language has recently beconte diverse clients’ demands. To cater for the description of
a de factostandard for modeling Web-based business prdéeb service composition, researchers and industrial ipract
cesses. One of its essential features is the fully progrdstemaioners have proposed several Web service orchestratien la
compensation mechanism. To understand it better, majyages such as XLANG [1], WSFL [2], StAC [3], and WS-
recent works have mainly focused on formal semantic mod®&PEL [4, 5].

for WS-BPEL. In this paper, we make one step forward by
investigating the verification problem for business preess
written in BPEL-like languages. We propose a set of pro

Among these orchestration languages, WS-BPEL has now
become ade factostandard. One important feature of WS-
: : .) e PEL, as well as some other similar languages, is its mech-
rules in Hoare-logic style as an axiomatic verification sgst _ . . :

gnism for supporting long run transactions (LRTs). In any

for a BPEL-like core language containing key features su N e step of an LRT. a fault mav occur and approoriate com-
as data states, fault and compensation handling. We e’ P ' y pprop

. . : L ensation actions may be required. To address such demand,
propose a big-step operational semantics which incorgsr

all these key features. Our verification rules are provendou S-BPEL provides a set of scope-based fault handling and

: . . : .. compensation mechanisms to deal with faults and potential
with respect to this underlying semantics. The application P P

e - : ndoing of some already completed business activities. The
of the verification rules is illustrated via the proof searc . .
- compensation mechanisms are fully programmable, and thus
process for a nontrivial example.

allow users to define any application-specific compensation
rules. Nevertheless, these mechanisms, despite veryléexib
&nd powerful, also bring intricacies into the WS-BPEL lan-

guage specification. As a result, it becomes a challenging
issue to formalize and reason about WS-BPEL processes.

Keywords WS-BPEL, compensation mechanism, oper
tional semantics, axiomatic verification system, sounsines

Many recent works focused mostly on the formal seman-
tics for WS-BPEL, e.g. [6-10]. These pioneering works are

The Internet is now developing at a high speed supportégfy important for reducing possible ambiguity in the lan-
by the web technology. As a result, many web-based aage specification and also for better understanding of the
plications, such as Web services, begin to flourish and pl@pguage. In this paper we will target at an orthogonal but
a more and more significant role in various application a@dqually important problem, the partial correctness of WS-
eas. Web services boost a new approach to the construcBfEL processes. To make the presentation simple, we shall
of business processes where many basic functions are ené@gHs on a subset of WS-BPEL. However, our core language
sulated and provided as individual services on the web, lwhiwill take into account most of the important language feesur

later may be composed to form complex services accordifgWS-BPEL, including data state, fault handling and com-
pensation mechanism. We will design a concise yet novel

operational semantics for our language, and propose a Hoare
logic style verification system on top of it, which will be
E-mail: {chenguang.luo, shengchao.gin}@dur.ac.uk, a@pku.edu.cn proven sound with respect to the underlying semantics. Due

1 Introduction

Received 07.2008; accepted 09.2008

Frontiers of Computer Science in China Instruction for arth

to the complexity of web-based business processes, the cor- BP == {{A:F [(busines-s process)
rectness of such programs remains as a challenge. Our veri- skip (do r_10th|ng)
fication system for BPEL-like language makes one step for- | z:=e (assignment)

>
|

ward towards tackling this challenging problem. To the best invazy (invoke)
of our knowledge, this is the first axiomatic verification sys recay (receive)
tem for a language with data states, scope-based fault and repax (reply)

|
|
|
compensation handling mechanisms. The main contributions | throw (throw a fault)
|

of this paper can be summarized as follows: AA (Sequg_nce)

e We propose a concise yet novel operational semantics | Zﬁf:en Aelse A E;:Igcv(;lltlonal)
for a BPEL-like core language. Although there are some | n:{A?C:F} (scope)
semantic works with similar topics, our semantics is in- 5 T b .

L . . C,F:= “n (compensation)
teresting in that it integrates features like scopes, data | (similar as A)
states, fault handling and compensation in a very simple "'
way. Fig. 1 The Syntax oBPEL*

e We design an assertion language for specifying certain
safety properties for BPEL-like processes, and also pro-
pose a set of axioms and inference rules in Hoare logic
style to form an axiomatic verification system for the)
language. The pre- and postconditions are formulas aermal Wprl<_, and once an error occursiit uses the fault handle
pressed in our assertion language. to deal with it. As for a g(_aneral activity, thekip dogs nothm_g

o We state and prove the soundness of our axiomatic vEq-2 Process, and an assignment simply overwrites a vasable
ification system with respect to the semantics. That {¢2lue to user’s intention.

provable specifications are all semantically valid. Anon- Theiny, rec andrep constitute our abstract model of com-
trivial example is presented to illustrate the applicatiomunication with external Web services. Thdere is an ab-
of the verification rules. straction of call port of some Web service beyond the current

. : . . process we are interested in. In our work we have taken a
The remainder of this paper is organized as follows. Séc

; P most general web model, where™is assumed to have some
introduces our languagBPEL" which is a core subset of arbitrary behavior as far as the current business processais
WS-BPEL. A new operational semantics fBPEL* is then y P

presented in Sec . Sec 2 is devoted to the Hoare logic S rned, as it either returns an arbitrary value or failss #lso

e L o
verification system foBPEL*. Sec 3 deals with the sound-%oss!ble to_ take more specialized models, which is out the
ness of our verification system, while Sec 3 gives a nontrivi%onS'der"’ltlon of this paper.

example proof using our verification system. Related work The throw throws a fault to prevent any other activity in

and concluding remarks follow afterwards. the current scope from being processed, until the end of the
business process — or it is captured somewhere by a fault
handler.

2 TheBPEL" Language The A|| A is a simplification of activities’ parallel com-

osition (flow). To focus more on the novel aspects of WS-

To concentrate on the main aim of this study, we take into dt- : . . :
N PEL, including the fault and compensation handling, we put
count a core subset of the WS-BPEL language, c8RHL", - . . .
some restrictions over this construct so that links betvitsen

which comprises not only the important fault and compensa- . . - .
. . . mponents (i.e. additional control-flow restrictions drs-
tion handling mechanisms but also data states of WS-BP) 8 o 4

allowed inBPEL". We can do so because this issue is almost

processes. L - orthogonal to our focus in this paper and it has already been
The abstract syntax @PEL" is given in Figure 1. Note . .
well investigated by researchers, e.g. [11,12].

that a program written iBPEL" is called abusiness process
(denoted a8P) which may contain an activith and a fault Inside a scope : {A? C: F}, Ais the normal activityC
handlerF. We may sometimes use the general tgmwcess is the compensation handler, aRds the fault handler. In
to refer to an activityh, a compensation handl€; or a fault BPEL*, we assume all names for variables defined in a busi-
handler. The set of all processes is denotedPas ness process are distinct, so are the scope names. This is jus
In Figure 1,x andy stand for variable namesrepresents for simplicity and does not lose generality as we can easily
arithmetic expressions,s for boolean expressions, andor achieve this by a pre-processing step. Under such assump-
scope namedA denotes a general activity, whi®andF are tions, we can refer to a variable or a scope simply by its name,
for compensation and fault handlers, respectively. It istivo with no need of mentioning its enclosing context. We also
noting that the compensation activity: can only appear in assume that the processes under consideration have been sta
these two constructs. ically checked to meet certain basic well-formedness condi
Generally a business process has an activity to performtitens. For instance, the compensation activity will only

Front. Comput. Sci. China

occur in the immediate enclosing scope of the secape been installed) and (2) such information is determined dy-
namically during the execution of the normal activity of peo
n. To record such information along with the scope snapshot,
3 Dynamic Semantics we define the compensation contextis a (possibly empty)
sequence of compensation closuf@sd., . . ., d,], whereby
In this section, we propose a big-step operational sensniiccompensation closukg = (n,s, a1) is a nested structure
for BPEL*. The semantics not only serves as a runtime modich records the state snapsisdor scopen (i.e., the data
for the language, but also acts as a reference semanticstite at the end of the normal execution of scepeThe third
the soundness proof for our axiomatic verification system. glemento; is the compensation context accumulated during
what follows, we will define the runtime states used for tHé&e execution of the normal activity of scope It includes
semantics and then depict the semantic rules. all the compensation closures for those normally completed
immediately-enclosed sub-scopes. When the compensation
handler ofn is invoked, both the scope snapskand the en-
closed contexdv; are restored for the compensation activity.

The nontrivial business processes need often to suppayt lon We do not record the handlers in the context as such in-
running transactions (LRTs), where the exceptional fargs formation can be statically determined for a given business
unavoidable, and as a result the partially completed tasks nProcess. Instead, we assume the availability of a mapping to
need to be revoked accordingly. This kind of processes déch the corresponding handlers:

hard to describe without language support. WS-BPEL deals C - ScopeN-s P

with this necessity with its scope and compensation mech- '

anism, which can be invoked to reverse partially completgchere ScopeNs the set of scope names. For a valid scope

transactions. Since a fault may happen from time to timgamey, € dom(C), C(n) € P is the compensation handler de-
the WS-BPEL specification advocates to keep records of stgfgyd in scopen.

snapshots for the successfully completed scopes, as e ass\we will make use of standard sequence operators given

3.1 Runtime States

ciated compensation handlers may refer to such completigilow (wheren; = [51,. . ., 6,,] andas = [&], ..., 5.]):
states when the compensation is invoked. Our semantics will

record those successfully completed scope snapshots in the 0o - a1 = [00,01,...,0m)

runtime state, similar to the way used in gtial. [6] for hd(a1) = 61

recording compensation closures. To facilitate the haigdli thlaq) =[d2,...,0m]

of faults, we also instrument the runtime state with a baolea ag~az = [01,. ..y 0m, 01, .., 00]

value to indicate whether the current state is a normal state))) _
a faulty state. The formal notations we use are as follows: e define a membership relation as follows:

false if a=]]

f € Status=g¢s {fail, norm} Sca —=q true i hd(a) =

se Val =g Var— Value

| I
a, [3,...,8] € CPCtx=g seq CPCI 0€tl(a) else
8, (n,s, o) € CPCl =¢ ScopeNx Val x CPCtx d¢a =g ~(6€)
o, (hsa) €Y =g Statusx Val x CPCix Based on it we can define the following analogous relation:
In the semantic model, a runtime state= (f,s) is com- nea =g 3s, a1 ¢ (n,S,01) € a
posed of three elements, whdrindicates whether the cur- néa =g ~(n€a)

rent state is normaf & norm) or of a fault = fail), and the
s records current snapshot for the values of all variablesWheren is a scope name and is a compensation context.
the process. The third elemenis the compensation contextinformally, n€« indicates that the compensation handler for
used to record the state snapshots and relative compansdtie scope: has been installed (and hencs scope snapshot
information for successfully completed scopes. appears in).

When a compensation activityn runs, the code to be ex-
ecuted (i.e. the compensation handler defined in sedpe 3.2 Operational Semantics
statically determined. However, the behavior of the compe
sation will depend on not only the scope snapshat abut
also the dynamic execution of the normal activity in scape
that yields the state snapshot. This is due to the fact that
the current compensation may invoke compensation handlers (A, o)~ o
from the immediate sub-scopesiafso its behavior will de-
pend on whether or not each of the sub-scopes has completkéreA is a process, while ands’ denote the initial and
successfully (thus the associative compensation handker final states, respectively.

I'?] this subsection, we present the semantic rules for the pro
cesses IBPEL". The big-step operational semantics for
BPEL* is defined by a set of rules of the form

Frontiers of Computer Science in China Instruction for arth

When a fault has occurred, the process to be executed willThe rule for the parallel composition is as follows:
do nothing but propagate the fault. The rule below describes
this scenario: (s1,52) = split(s, Var(Aq), Var(Az))
O':(fa“,S,Oé) <A1a (norm,sl,[])>w flvsllval)
<A, O'> ~ O <A25 (normaSQa[]» ~ (f27§27a2)

’r_ _ i ~
The following rules define the behavior ekip, assign- ff=fAf, S=9sUs, o =interleavgai,az)~a

ment, andhrow activities from normal states: (A1 || A2, (norm, s a)) ~ (f',s,a)

(skip, (norm,s, &)} ~» (norm, s, &) where the splitting of variable mappings is based on the sep-

(z := e, (norm, s, a)) ~ (norm,s® {zs(e)}, @) aration of variable names:

(throw, (norm, s, a)) ~ (fail, s, a) split(s, Var(A,), Var(A)) =gt
. . ({331 = e1 | xr1 € Var(Al)} Nzxi—>ep € S,
wheres @ S is a state formed byands': {5 5 €5 | 72 € Var(As) A zarses € S}).

(56 9)(x) =g 4 S \F) Whenz € doms in which Var(A;) N Var(A;) = 0. And forf, andf,, f,Af, is
s(z) otherwise \ L 2r 12
defined as

With s(e) to denote the value of expressierunder states, norm. if f. — norm andf. — norm:
fl Af df { - 2 ’

the skip and assignment are analogous to normal imperative fail, otherwise

language. Thehrow here changes the process faulty state to

fail immediately, resulting in its propagation to all followingre jnjtial sub-states; ands, are obtained from the overall
activities until the end of the enclosing scope or the wholg,ies via a spliting operation whose definition is straight-
business process, where it will be dealt with by the faulthag,arg given thatA; and A, do not share variables, i.e.
dler. Var(A;) NVar(Ay) = (. The functioninterleavea, as) re-

When synchronized communication activity a - y SUC- y,ins a merged sequenceafandas by arbitrarily interleav-
ceeds, the value received frammthe other end of communlca-ing elements ofy; andas:

tion, is assigned tg; while failed communication also makes

the process fail. interleavé o, as) =gt [61, 02, . . - , O]
(inva rY, (norm, s, @) ~~ (“orm736_9 {y—v}, @) where we denotea; = [61,1,012,...,01.m] and ag =
(invaz y, (norm, s a)) ~ (fail, s, a) [02.1,02.2,...,02,], and then the following holds:d; €

a1~ag,i=1,2,....om+n; V1<i<j<m-+mn, if §,
d; € a1, 0; =015 andd; = 01+, thens < ¢; and the same
condition fora.

The execution of a scope: {A? C: F} may resultin two
(rec a y, (norm,s,a)) ~ (norm,s@® {y—v},a) different situations: the execution & may complete suc-
cessfully or raise a fault. For the former, the compensation
handler will be installed by adding the compensation clesur
into the compensation context. For the latter, the faulthem

Note that the one-way communications provide an invocati$hinvoked instead.
mechanism for external Web services. Thea y is used to
retrieve parameters from other Web serviags (ts effect is
to update variablg using the value received from the externa
Web service. On the contrary, thep a « replies to other :
external Web services) with the value ofr. Thus its effect (A, (norm, s, [])) ~ (fail, 51, 1)
is just like askip to the current process. (F, (norm, sy, 1)) ~ (fy, &, a2)
Rules for sequence and conditional activities are routine: (n:{A?C:F}, (norm,s a)) ~ (f5, S, az)

(A1, (norm,s, a)) ~ (f,,s1, 1) HereV (n) denotes the set of local varia_ble; of scapeand

<A7 t s7 o; W 1732 ,oz) S1]v(n) takes the_ part of state Iocalmwhlch is the snapshot

2 1,91, &1 29 N, A2
of scopen when it completes execution.

(Ai; Ag, (norm, s, @) ~ (fy, Sz, az) Note that the scope is the only part in the model to deal
with faults. Once a fault is propagated from an activity
to its enclosing scope, it will be caught by the relevanttfaul
handlerF. If the fault handler of the immediately enclosing
s(b) = false (Ag, (norm,s a)) ~ (f;, S, 1) scope ofA throws the fault again rather than completes the
(if b then A else Ay, (norm, s, @) ~ (f,, s, 1) handling, the fault continues its propagation to the neulifa

wherev is the value achieved through the communication.
The rules for the one-way communicatiors a y and
rep a x are as follows:

(recay, (norm,s «a)) ~ (fail,s)
(repaz, (f,sa)) ~ (f,s)

(A, (norm,s,[])) ~» (norm,si,a1) S =S|y
(n:{A?C:F}, (norm,s,a)) ~ (norm,s;, (n,s,a1) -)

s(b) = true (A1, (norm,s a)) ~ (f;,S1,a1)
(if b then A else Ag, (norm,;s, a)) ~ (f;, s, 1)

Front. Comput. Sci. China

5
handler, or meets the end of the process. This is elaborated i
the rules defined above. [true] =X
Next comes the definition of compensation. According to [false] =0
the WS-BPEL Specification [4], our compensation looks for [z]o =0.2(x)
the installed compensation closure of corresponding scope [normal] = {o | 0.1 = norm}
removes it from the compensation context and runs its han- [e]lo = 0.2(e) which is the evaluation result of
dler. If the closure is not installed, the invocation belsdile e under stater
askip. Since we have actually accumulated the compensation [z®¢] = {o | [z]o®]e]o}, wheres has the
contexts, it turns out simple to execute the handler as below semantics of the relational operator
[~P] ={(-0.1,0.2,0.3) | 0 € [P]}
né¢a«a [Pe] ={(c.1,0.2,[]) | o € P}
(n, (norm,s,a)) ~ (norm, s,) [Plvl ={(c.1,02]y,0.3)|c€[P]}
o = (norm, s, a1 ~[(n, S, B)] ~az) [P+n] ={(01,0.2,(n,0.2] V(n)a0-3>) | o€ [P]}
(C(n), (norm, s, B)) ~ (f,51,7) [P-nl =tlelo2a)|oc[PlAa=
[n, o) < (.51, a1~a3) beforgn, 0.3) ~after(n, 0.3)}
’ b T [Pin] ={ol|o€[P] Aneo.3}
Note thatn ¢ o, defined in last section, means that the com- [Psn] = {firstof(n, o) | o€[P] A n€o.3}
pensation handler fot is not installed (hence the closure for [PIQ] = {(c.1A0".1,0.2U0".2,0) [o€[P|A

n does not appear in). a’'€[Q] A a=interleavéo.3,0'.3)}
The rules for the whole business process are as follows: [P*Q] {(01.1,01.2,01.3~02.3) | 01 €[P]A

o2€[Q]}
(A, o) ~ (norm, sy, aq) [P+Q] = {(01.1,01.2,02.3) | 01€[P] A 02€|Q]}
({lA:F [}, o) ~ (norm, sy, 1) iFF’]l . = fﬁﬂ |%| -
(A, o) ~ (fail, 1, a1) PAQE =[PIN
o e PvQl = PIUIQ)
(F, (norm, 31,01) +» (f5, %, 22) [P=0Q =[-PvQ]

{A:F[, o)~ (fy,8,a2)

There is no top-level compensation handler in the business

. .. Fig. 2 Semantics for Assertions
process because no one could invoke it if there were any.

for normal contains all states without fault. Assertiare

4 An Axiomatic System for BPEL* can be in formsc<e, x=e, >e and so forth, to model the
relationship between variableand expression.

As a first step to support mechanized verificationB&EL" To facilitate the description, we use here (and below)

processes, we propose in this section a set of inference rute denote the-th element of tuples. For instance, given

in the style of a Floyd-Hoare logic. o = (f,s,a), we will haves.1 =f, 0.2 =sando.3 = a. In
the definition;neo.3, defined in last section, denotes that the

4.1 Assertion Language compensation handler for scopss installed inoc. We also

use three operations to extract information w.r.t. seofrem

To specify properties foBPEL* processes, apart from the qmpensanon context:

usual logical operations, we shall make use of some logical
constructs that are specific for compensation related reaso firstof(n, o) =gt (norm, 0.2 & s, 8)

ing. The syntax for the assertion languagesnis: if 0.3 = a1~[(n,S, B)]~azs An ¢ oy
P € Assn beforen, a)—q {a,if_ né¢a
P ::= true | false | normal | z&e | ~P | P | P|y | &n.a) o, if a=a1~[(n,s, B)]~az Angay

Pin | P |Pin | Pun | P[P | PxP| PP | after(n. o) — {[],if né¢a
-P | PAP | PVP | P=P (- 0) =0\ i a=a1~[(n,s, B)|~az A n¢ay

Note thatz, e andn denote a variable name, an expressidiiperationfirstof(n, o) extracts froma = ¢.3 the first state
and a scope name, respectively. Thalenotes a relational snapshot fon, and merges it withr.2. In the casex ¢ 0.3,
operator in{=, <, >, <, >}. firstof(n, o) is undefinedbefordn, «) returns the largest pre-
In the axiomatic system, each assertion is viewed as a &ebf o which contains no closure for scopeandafter(n, «)
of states that satisfy the assertion. The semantics fossdlira returns the sub-sequencewhfter the first closure for scope
tions is given in Figure 2. n, or the empty sequence when there is no such closure in
Among all assertion constructsue andfalse are modeled Among the semantics for the assertions, some relating to
as the whole and empty sets of states, respectively. Seznarftow, scope, and compensation are worth illustration.

Frontiers of Computer Science in China Instruction for arth

The assertionB|y andP|Q are used in verification of flow all the assumptions made on communication activities. it th
constructs. In the first on] is a set of variables arfél|y re- paper, we focus only on the verification of individual busisie
stricts the domain of variable mappia@ (wheres € [P])to processes.

V. For example(z>0 A y<0)|{,3 = »>0. The second one, Remembering that in the operational semantics for com-
P|Q, enumerates all possible interleaving cases of compensamications with external Web services, we have addressed
tion contexts of states ifP] and[Q], respectively. that their behaviors can be arbitrary, either to deliverlaeva

The following assertions mainly concern scope and coror to fail. However, to verify a business process involving
pensation.~P reverses all the faulty states in eagle [P] communications more precisely, we need to put more restric-
(from norm to fail and vice versa). This corresponds to thBons over semantics of the communications. These restric-
verification of throw activity and fault handler which changtions take the form of a set of specificatiof®} ¢ {Q}, where
the process faulty stat®. reserves the first and second comeachc is any one ofinv a = y, rec a y, Or rep a x, represent-
ponents of states but empties their compensation contektg. a communication that might be executed by the process
This is useful for verifying scopes whose inner actiitpe- with the environment. We usE to denote a set of such spec-
gins with empty compensation context. ifications and use it as a context of the verification rules. Fo

AssertionP.,, extracts each state from set[P], sets its example, for a specificatiofP} inva x y {Q} € T, the pre-
compensation context to the closuie 0.2}y (,,),0.3), and conditionP acts as an assertion imposed on the current pro-
forms a new set with all of these states. cess to ensure that information sent out (the value)cfat-

As its form suggestsP_,, performs an “elimination” of isfies the requirement of the environment, whilects as an
scope namer “from” the elements in[P]. It extracts first assumption made on the environment: the result sent back
the compensation contextfrom each state dfP], then finds by the environment (final value of) satisfies the constraint
the first compensation closure with nameand removes it to described byQ, with a possible substitution of the communi-
form a new context. If there is no such closure found, ther¢ation channel and variable names.

o will be the original context. The semantics Bf ,, is the The proof rules in our verification system are of the form
set of states with these newly formed C,TH {P} A{Q}, whereC, defined earlier, is the mapping

WhatP,,, does is, informally, to “restrict{P] to the set of from scope names to associated compensation handlers, and
states in which the compensation context contains a closurés the set of specifications defined above. We shall now
with namen, P,,, “locates” the first occurrence of the closur@resent the syntax-directed proof rules in our logic.
with namen in each state iffP], and forms a set of states
from these closures. 4.2 Consequence Rule

PxQ and PxQ are for compensation contexts concatena-

tion and replacement between assertions, respectivelg. Tihe only structural rule in our axmmatl_c system is the con-
first appends the compensation contexts witis model to sequence rule for precondition weakening and postcomditio

those ofP's, to accumulate new compensation closure basggengthening:
on old ones, according to scope’s behavior. The second dis- PP CTH{PIA{Q}] Q=0

cards directly the compensation contexts of the staté%sin CTr(PIA{Q (conseq
semantics, because of the manner of compensation handlers. ’
An assertion is modeled as a set containing all the states
which satisfy it. Thus we define 4.3 BPEL -specific Rules
o =P g0 <[Pl The rules forskip and assignment are simple:
C, T+ {P} skip {P} (skip)

A specification in our system takes the ordinary form
{P} A{Q}, whereP, Q € AssnandA € P is an activity.

One thing notable is that a business process may COMMie rule forthrow is clear too:
nicate via activitiesnv, rec andrep with external processes,
which are essentially other Web services within the same ap- C, T+ {P} throw {—normalA(PV~P)} (throw)
plication or from third party. As a result, whether a busies
process behaves in a desired way might depend on the ldrere we do not need to care whether the pre-condition is nor-
ternal processes being interacted with. Hence, a busimess al, because the type of faultis notin the range of our cairren
cess is more like an open system which makes the verificatmmsideration.
problem rather challenging. Our proposal is to verify each For the basic communication activities, the rules need to
business process separately according to certain depgnderse their assumed specificationsZin For the convenience
order in the first step. We assume that specifications for coof-description, we assume the variable names in the pre-
munication activities are available in the verification ofeo and postconditions are correspondent with those used in the
business process. When all relevant business processes iaxocations. Meanwhile, as is stated in former section, in
been verified separately, we can then check the consisténcthe verification of the process, a trip{€} A {Q} in T can

C,TH{normal AP [e/x]} x := e {P} (assign

Front. Comput. Sci. China

also be used to verify a triple whose pre- and postconditibiote that the rul¢scope captures two cases. One stands for

have the same denotation of compensation contexts, suclh@&sscenario where a fault occursinin that case the control

{PxR} A{QxR}. And in this situation it must be guaranteedransfers to the fault handler, and the compensation handle

that the denotations of compensation contexts in both - dor scopen is not installed. The other is for the normal com-

postcondition are the same. pletion of A and the concatenation of this scope’s compensa-
If the environment can be modeled as a subseioahal, tion context to the process state.

thenrec sets the variable’s value to what the specification de- Then the most intricate rule in our system, the named com-

notes. Or it just propagates the fault. pensation, comes as follows:
{normal} recav {Q} € T ~normal AP = Q
—normal = Q [v/y] (rec) P, AP=Q
C,TE {true} recay {Q[v/y]} C,TH{(Pin)sn} C(n) {R}
R«P_,, = Q

whereQ [v/y] is an assertion formed by substituting each
occurrence ofv in Q by y, for filling the gap between the C,TH{P} n{Q}
specification inT and the current process. Becauseap's
analogous behavior &kip, its rule is also the same.

(compensate

In this rule, the behavior of a named compensation is degicte
with the relevant compensation handler. If the pre-coaditi

C.,TH {P}repaz {P} (rep) does not entail a scope namethe post-condition must be
automatically satisfied. Otherwise, the snapshots’ seth@s
The semantics of two-way invocation is simple: pre-condition for the compensation handler) is extractet! a

the post-condition is a combination of the fault and vagabl
mapping states after the handler’s execution, and the compe
sation context with the elimination of the first compensgatio
closure named.

At last is the rule for the whole business process:

{P}invauv{Q}eT
C.THA{P}invazy{Q[u,v/z,yl}
Note that these rules depend dn- the set of specifications

assumed on communication activities.
The rules for control structures are as follows.

(inv)

C,TH{P}A{R}

—normal A P = Q (normal AR) = Q
C, T+ {normal A P} A{R} C,TH {~(-normal AR)} F {Q} b
¢, TH{R}B{Q} (seq CTF{PI{A F}{Q (bp)
C,TH{P} A B{Q}
—normal AP = Q
C, T+ {normal APA b} A{Q} 5 Soundness
C,TF {normal AP A —b} B{Q} , . o o
C,TF {P}if bthen Aeclse B {Q} (if) This section is d(_evote_d to the squ_n_dness of our verlflca_ltlon
_) system. We will first give two definitions and then formalize
whereb is a boolean expression of the fone. the soundness theorem and its proof.

Since we assume that the different parallel flows share no
variables, the rule for the parallel structures is givenas pefinition 1 (Validity). We denote that a tripleR} A {Q}

isvalidunderC, T, i.e.C,T = {P} A{Q},ifforall o € &, if
—normal AP = (QQ;)*P ’ ¥ / I
C.TH{P.lv,} A{Q)} o = Pand(A, o) ~ ¢’ for somes’, thens’ E Q.

C.TH {Pclv, } B{Qy} (flow) Definition 2 (Soundness) Our verification system for
C, T {P} Al[B {(Q[Q)*P} BPEL" issoundf all provable specifications are indeed valid,
thatis, ifC, T+ {P} A{Q}, thenC,T = {P} A{Q}.

whereV; andV, are disjoint variable sets amdlandB only
modify variables inv; andV,, respectively.

Now we present the two most significant rules, which re-
veal the essential features of our language. The rule fgresco

The theorem for soundness can be stated as below:

Theorem 1. The Hoare logic for BPEL presented in this

is as follows: :
paper is sound.
—normal A\P=Q
C,TH {normal AP} A{R} As is indicated by Definition 2 above, we need to show
(normal AR) 1, xP = Q that, for anyP,A Q, if C,TH{P} A{Q}, thenC,T[E
C,TE {~(-normal AR)} F {Q} {P} A{Q}. The proof can be accomplished by structural in-

C.,TH{P}n:{A?7C:F}{Q} (SCOP¢ gyction overA.

Proof. The verification ofC, T+ {P} A{Q} (denoted as)
can be a process such as

(some premises) (some other premises)

C,TH{P}A{Q}

From the perspective of backwards reasoning, a:rgleould
be utilized ont according toA’s structure, and from this rule

some other premises need to be verified with similar back
ward verifications until all the premises are axioms or known

facts. As an illustration, iR isC, TH {P} {| A; : Fy [} {Q},
then we must verifyC, T+ {P} A{R}, (normal AR) = Q
andC, T+ {~(—-normal AR)} F {Q}, according to thel(p)
rule. Hence the last rule used to verifyt depends on the

structure of the activith. Therefore, the following cases are

organized according to the structurefgfwhich is equivalent
to r to some extent.

e Case gkip). The last rule- for this is kip):
C, T+ {P} skip {P}

Since(skip, o) ~ o, it is easy to see that rulaKip) is
sound in our system.

e Case { := ¢). The corresponding rule issign):
C,TE {normal A Ple/z]} x := e {P}

The proof for rule &ssigr) simply follows the canonical

Hoare logic’s proof using the Substitution Theorem and

thus is omitted here.
e Case throw). The last rule to apply igiirow):

C,T = {P} throw {ﬁnorma| A (P\/ NP)}

Take anyo such thate = P. If 0.1 = fail, then we
have (throw, o) ~» ¢ and o = —normal A P. Other-
wise, if 0.1 = norm, then we have(throw, o) ~ o’
whereo’ = (fail, 0.2, 0.3), ando’ = —normalA ~P. So
we getC, T |= {P} throw {—normal A (P V ~P)}.

e Case fec a y).

{normal}recav {Q} €T
—normal = Q [v/y]

C,TF {true} recay {Q[v/y]}

For the proof of the ruleréc), if o = normal, then
since {normal} rec a v {Q} is already known for the
communication, the model of postconditid® [v/y]

should contain the final state transited fram (ei-

ther (norm,o0.2 @ {y—v},0.3) or (fail,0.2,0.3), ac-

cording to the communication’s behavior).
wise if ¢ = -normal, then from the semantics for
—normal = Q [v/y] we knowo = Q [v/y]. Therefore

we conclude in this case.

Other-

Frontiers of Computer Science in China Instruction for arth

e Casefepa x).

C,TH{P}repazx {P}

Since the communication of reply does not change the
process status, rulee) shares the same proofsiigs.

Caseinvaxy).

{P}invauv{Q}teT
C,TE{P}invazy{Qu,v/z,y]}

The proof can be completed in the similar way as that of
recay.

Case A; B). The rule applied in this case is€Q:

—normal A\P=Q
C, T+ {normal A P} A{R}
C,TH{R}B{Q}
C,TH{P}A B{Q}

The prooffor rule $eq is classical, except that the faulty
state is taken into consideration first. That is, for any
stateo |= P, if 0.1 = fail, theno = —normal A P and
thuso = Q. If not, then takes™ as (A, o) ~ o*, we
haves* = R. And from(B, ¢*) ~» ¢’ and the inductive
assumption, it holds that = Q.

Case {f b then Aelse B). In this case the condition rule
(if) is applied:

—normal A\P=Q
C,TF {normal AP A D} A{Q}
C,TF {normal AP A —=b} B{Q}

C, T {P} if b then Aelse B {Q}

The proof of the condition rule is also similar as the
classical one. Except for the abnormal state, consider
any o where .1 =norm. Then no matter whether

o = normal AP A b oro = normal A P A —b, for some

o' and o* that (A, o)~ ¢’ in the first case and
(B, o) ~ o* in the second, we always get = Q and

o* = Q from inductive assumption.

Case A || B). The last rule used islow):

—normal A P = (Q; |Q,)*P
C.THA{Pv, } A{Q:}
C.TH{Pv} B{Qy}

C, TH{P} AlIB{(Q:|Q2)+P}

Take anyo = normal AP (the case foro.1 = fail is
like other rules), from the premises and the inductive
assumption we know thatA, (0.1,0.2]s,,[])) ~ o}
and (B, (0.1,0.2]s,,[])) ~ g}, for some o] E Q,

oh = Q,. Hence(o}.1 Aoh.1,01.2U0%.2,interleave
(01.3,04.3)~0.3) E (Q;]|Q,)*P, and thus we conclude
in this case.

Front. Comput. Sci. China

e Case i : {A7C:F}). Rule Gcopg is the last rule ap-
plied in the proof folC, TH {P} n: {A? C: F} {Q}:

—normal AP = Q
C,TF {normal AP} A{R}
(normal AR) 1, P = Q
C,TE {~(-normal AR)} F {Q}

C,TH{P}n:{A?C:F}{Q}

The following cases are discussed foral= P.

— If 0.1 =fail, from inductive assumption and
the premise—-normal AP = Q, we haveo |=
—normal A P, and thusr = Q.

— If 0.1 = norm, then takeo, = (0.1,0.2,[]), and
hence we haver = normal AP.. With induc-
tive assumption and the premise, denotir[gas
(A, o.) ~ ol, theno. = Ris achieved.

x If 0/.1 =norm, theno! = normal AR, and
o', = (0l.1,00.2,(n,0..2|y(n),0..3)) F
(normal AR) 4y, and still ¢ = (d/,.1,
0! ,-2,0",.3-0.3) = (normal A R) 1, xP.
We geto’ = Q from the last implication.

x If ol.1 =fail, then of E ~(—normal A R)
where of = (norm,0..2,0..3). From the

inductive assumption and the semantics

(F, of) ~ o’ for someos’, we haves’ E Q.
This completes our proof facope

e Case (in):
—normal AP = Q
P, AP=0Q
C, TEA{(Pn)n} C(n) {R}
RxP_, = Q
C,TH{P} 9n {Q}

For the rule of compensation, consider anj= P in the
following cases.
— If 0.1 = fail, then directly we have = Q.

Itis similar as the scope rule with compensation handler
eliminated. For any = Pand(A, o) ~ ¢’ for someo’
there are the following two cases:
— ¢’.1 = norm. From (normal A R) = Q, we know
thate’ = Q.
—o'.1=fail. If (F, (norm,o’.2,0".3)) ~» o* for
somec™, then we haver™ |= Q from the premise
C,TE {~(-normal AR)} F {Q}.

Besides the aforesaisls possible structures directly re-
lated to rules, sometimes we may be not able to verify
C,TF {P} A{Q} with an existing rule but can verify
C,TH {P'} A{Q'} whereP’ is weaker tha? and/orQ’

is stronger thar@. Thus the structural rulecénseq is
employed in such cases:

P=>P CTF{P}A{Q}

C,TH{P}A{Q}

For all o =P and (A, o) ~ ¢’ for somecs’, we have
o =P from P= P and also(A, o) ~» o* for some
o* = Q. Then fromQ’ = Q we geto* = Q. Hence
o* is thes’ we need and the proof for this rule is com-
pleted.

Q=0

Above are all the cases of our structural induction, and
each of them is proven to be sound. Hence this completes
our proof for the soundness. O

6 Example

In this section a purchase example is exhibited to illustrat
the verification of a real business process, which is a madifie
version of that in [13].

The general flow of the example is as follows. First the
process receives the price for each single item (storedrin va
ablep) and the class of the customer from other service with

— If 0.1 # fail and there are no compensation clocommunication (into variablg). Then it decides the discount
sures named in o’s compensation context, thenratio according to the customer class, and receives the amou
o = =Py, AP by definition, and thuss = Q of items to store int. After having all the items purchased, it

which conforms to the operational semantics.

computes the shipping fare according to the value 8t last

— Otherwise, we need to run the compensation halhle real average price (including shipping cost) for eagmit
dler namech. Denotes,, = firstof(n, o), and we is calculated and replied, which may incur fault and hende ca

haveo, = (Pn)« and hencelC(n), o,) ~ o),
for some o/, while ¢/, ER Then take
o= (f,0,a1~[(n,c*, B)]~a2),

for compensation.
This business process, denoted&s is written inBPEL*

and we have below.

o' = (0),.1,0%.2,a1~as) = R«P_,, and thus {
o' = Q. From all discussion above, we conclude 71 : {recap; ¢:=p?p:= —p:skip};
this case. recby;

if y =1 then

e Case {|{A: F[}). The last rule applied in the proof for
the whole business process will be the rudp)(

C,TH{P}A{R}
(normal AR) = Q
C, T {~(-normal AR)} F {Q}

C,TH{P} {A:F[}{Q}

ng: {p:=px0.57p:=px2:skip}

else

ng: {p:=px087p:=px1.25:skip};

ng:{recct; p:=pxt?p:=p/t:skip};
if £ > 500 then

ns : {p:=p+5007?p:=p— 500 : skip}

Frontiers of Computer Science in China Instruction for arth

10
else and the semantics and the derivations of these assertidins wi
ng:{p:=p+t?p:=p—t:skip}; be introduced in the following descriptions. With them as
if t > 0 then p:=p/t;rep d p else throw bridges we will try to verify the three subgoals separately.
Ing; Ins; Ing; Ins; Ing; Ing For the first subgoaly, it can still be divided into six sub-
[+ goals, sincéA is a sequence made up of six other activities,

The specification for us to verify ignormal} BP{Q} including two scopes, one basic communication activity and
where Q is p=¢/24500/t V p=0.8¢+500/t V p=¢q/2+1V three conditional judgments. We will denote these acésiti
p=0.8¢+1 V p=—q. The first four parts of the disjunctions inasA;, Aq, . . . , A; according to their original orders BP, and
Q present the different situations of discount ratio and shipall these six subgoa(s; ;,i = 1,2, ..., 6, defined as below:
ping fare, while the lasp= — ¢ is the case where a fault is
compensated. This specification states thaBRfstarts in Gii:C,TEA{Pi} A {Pit1}

a normal state and terminates at last, it should establish {here; = 1,2,...,6,P; = normal andP; = R (Note that
postconditiorQ, provided that the specifications of the comihep,, . . ., P; are what have been described above.) We will
munication activities are as follows: demonstrate the verification of each subgoal.

For G,1, sinceA; is the scoper; and the precondition
is normal, we will use thescoperule to divide it further into
three subgoals:

{normal} rec a y {normal A y>0}
{normal} rec by {normal A (y=1V y=2)}
{normal} rec ¢ y {normal A y#£0}

Here we give an outline of the verification f@&P with Giaa:{normalc} recap; ¢ :=p{Pi1}
the backwards searching strategy. First, for the whole-busi G2 (normal APy 1) jn, % normal = P,
ness process, we use the rulehyf to get three subgoals Gi3: {~(mnormal A Py1)} skip {P2}

G1, G2, G for further verification: For the first subgoal, the ruleseq rec and assign
Gy : C.TF {normal} A {R are used, to get thaP, ; is normal A p=g. W|th this
! {normal} A {R} result and the second subgoal the strongestis de-

Gs : (normal AR) = Q , X
Gg . C, TE {N(ﬂnormal A R)} F {Q} rived a.-s (normal A\ P:(Z)+n1* norma!. For the th"'d. sub-
goal, since—normal A P; ; = false, it holds automatically.

where A stands for the codes before the last : in the prdhen G is verified with the postconditio?,, that is,
cess,Q is the postcondition we want to verifi, represents (normal A p=q)4n, * normal.

the six compensationsi{g; 1ns; Tng; Tns; Ing; Ing), and Next we will examineZ; 2. Here the rule ofecis applied
R should be both strong enough to deri@eand still suffi- to Py andrec b y, with the result of postconditioRs which is
ciently weak ag='s precondition to geQ. A possibleRcan (y=1V y=2) A Px.

be the assertion below: SubgoalG; 3 concerns the firsf construct of the process,
and its verification is an application of ruife with the result
of two other subgoals

G131 :C,TE {normal A P3 A y=1} Ay 3 {P4}

(normal A (p=q/2+500/t vV p=0.8¢+500/tV
p=¢q/2+1V p=0.8¢+1)) V (-normalA ~ Pg)

wherePs is Gisz:C,TH {normal APs A —y=1} By 5 {Py}
normalA i
whereA; 3 andB, 3 are scopes; andns, respectively. They
((t < 500 = ((y=1 = p=0.5qt +)A can be verified similarly as, (using rulesscopeandassigp,
(y#1 = p=0.8qt +1)) 155\ and we get the postconditidh :
t > 500 = ((y=1 = p=0.5¢t + 500)A
(y#1 = p=0.8qt 4 500)) s)* Ps) normal A g=XA
. ((y=1 = (p=0.5¢)1n, A
where P5 stands for the set of states for compensation ac- y#1 = (p=0.8¢) 40y)% P2)
. ns

cumulated in the previous execution of the process, from a

semantics perspective (and so are the other assertions to b&1,4 is to verify the Hoare triple for scopes. Fol-

depicted below); its definition is lowing similar way of G ; it can be verified withPs as
normal A (((y=1 = p=0.5¢t) A (y#£1 = p=0.8qt)) 4n,* P4).

normal A (((y=1 = p=0.5qt) A (y#1 = p=0.8qt))+n,*Ps) G, 5 again seeks the verification of the secéhcbnstruct.

With the approach like that a¥; 3 (splitting it into two sub-

wherePy is goals) we can achiewey:

normal A (((y=1 = (p=0.5¢) 4n,)A normalA
(y#1 = (p=0.8¢)+n,))* P2) ((t <500 = ((y=1 = p=0.5qt + t)A
whereP; is (y#1 = p=0.8qt + 1)) yns A\
t> 500 = ((y=1 = p=0.5qt + 500)A
(normal A p=q) 1, * normal (y#1 = p=0.8qt + 500)) 1)* P5)

Front. Comput. Sci. China 11

The last subgoal7 ¢, is slightly different from the former nested transactions [15]. There are a few attempts to fermal
two if’s. It is also first divided into two subgoals: ize workflow languages [3,16-18], and still many of them are

G161 :C, TE {normal APg At>0} p:=p/t;repdp {R} about compensation.

G162 :C,TE {normal A Pg A =t>0} throw {R} . .
T On the semantics of such languages there are many in-
in which the fir_st subgoal’s verific_ation is as the fOVVestigations. Qiu anet al. [6] provided a formal opera-
mer ones, with the postconditionp=q/2+500/tV tional semantics for a simplified version of BPELAWS to
p=0.8¢+500/t V p=q/2+1V p=0.8¢+1. (Note that gpecify the execution path of a process with possible com-
we omit the part for compensation and present a weakinsation behavior. In that work, they adopted an abridgmen
assertion here.) However, the second one usettb@/rule of BPEL4WS which was followed by a series of works with
to force a conjunction of-normal with the precondition. simjjar objective. Then they provided a formal semantias fo

Therefore the whole postcondition farR, is as follows: fault handling, compensations, and parallel processdsreit
(normal A (p=q/2+500/t vV p=0.8¢+500/tV spect to the original informal description by the BPEL4WS
p=q/2+1V p=0.8¢+1)) V (~normalA ~ Pg) Specification [19], with a clarification to some of its elusiv

parts. Meanwhile they proved the completeness of the de-
duction of their semantics. Besides their work, there alle st
. . X many others to formalize the semantics of these languages
remaining work s to verify the subgois. from different perspectives. Bruni ared al. [20] presented

G equals_ t, T {t<0. A Po} F {.Q}’ Whe_reF s the € an operational semantics for a series of languages, which in
guence of six compensations. Similarly, this can be d|V|d%g

into si baoal ing th I q h subgoal uded the compensation concept. Pu ahdl [7] also pre-
INto Six subgoals using theeqrule, and each sUbgoal 1Sqqhiaq g abridged edition of WS-BPEL, discussed its oper-
solved equally with rulecompensate We will illustrate its

ith the first t i ; q ational semantics, and defined the equivalence between two
“539; w h enrs tr\]No compentsr? |onts or scopeanans, processes with its proposeebi-simulation. He anet al. [9]
and Ihe ofhers are the same as these two. focused on the process equivalence from the perspective of

Slncet<Q implies thatt <500, it can be deducted that thean observation-oriented model and its algebraic laws. Zhu
compensation context forg must be installed, and thus we

. . and et al. [10] made a link among different semantics (op-
have only two possible cases to consider[; y1). We now e(ﬁg\tional, denotational and algebraic) of the WS-BPEL lan-

It is clear that a conjunction aformal and thisR automati-
cally impliesQ, which is demanded in the subg@al. So the

take the first case as an example, in which the precondition

i age with the approach of the unifying theories of program-
these compensations can be reduced as gﬂng. Some of t?\z semantics prop)i)sgd in these V\?orkgs may
normal A y=1 A t<500A also be enhanced as suitable underlying semantics for our ve
(p=0.5qt+t) yns*x (p=0.5Gt) 4, * ification system, while our semantics is mainly distingeigh
(p=0.5q) 4+ no* (P=q)n, * normal from theirs in that it incorporates variable mappings inhbot

where we denote the as right-associative to prevent excessrogram run_ume states _and compensathn contexts, egablm
parentheses. Using once the ratempensateve get concrete variable valuations to be stored in the semantics.

normal A y=1 A <500/ Apart from the work on semantic models, researchers have
(P=0-5qt) -n, % (p=0.5¢) 1, x also tried to model and verify the WS-BPEL processes. Duan
(P=q)-+n, * normal andet al. [21] introduced a logic model to formally specify
to remove the compensation context@ffrom the states (on the semantics of workflow and its composite tasks described
the level of semantics). as WS-BPEL abstract processes, and made a deduction of the

Then for the subgoal concerning, since in this case it weakest precondition for workflow. Another work by Duan
is not installed in the compensation context (which can @&det al. [22] put some restrictions to such model and found
seen from the structure of the assertion), its effect, dualeo an algorithm to proof the abstract processes’ correctrfass.
compensatgs like askip. and et al. [23] proposed some techniques and related tools

Therefore we use the rule four times more om;, tO analyze interactions of composite Web services written i
i =4...1respectively, to verify each remaining subgoal anBPEL4WS. The BPEL4WS specifications [19] are first trans-
gain the final assertion lated into an intermediate representation, and then vetie
SPIN [24]. Hamadi and Benatallah [17] transformed the for-
mal semantics of the WS-BPEL composition operators to an
which implies thapp = —¢, and henc&®). This completes the expression of Petri nets, and hence allowed the verification
whole process’ verification. of properties and the detection of inconsistencies bothimwit
and between services. Pu aedal [25] adopted a similar
method by using model checker UPPAAL [26] to verify the
7 Related Work correctness of BPEL4AWS program including temporal prop-

erties. However, none of these works have attempted in veri-
The concept of compensation dates back to Sagas [14] d&yidg WS-BPEL-like fault handling and compensation as we

normal A y=1 A t<500 A p= — q

12

have done in this paper.

8 Conclusions and Future Work

In this paper we proposed an axiomatic system to verify thes,
correctness oBPEL" processes. Here we have concentrated
on an important core subset of WS-BPEL, nam8REL".

This subset reflects the key features of the language appeal-
ing to us, say, fault states, variable mappings and compens#-
tion contexts; meanwhile it keeps our mechanism both pre-
cise and concise, rather than builds up a huge and compli-
cated system trying to cover all aspects of WS-BPEL. We
have formalized these features into program runtime states
and create@PEL*’s operational semantics with state transi-
tion rules, according to the OASIS Standard [4]. Based on
this, we have set up the assertions to abstract and expeess th
novel language features, leaving the Hoare triples forfiveri 8.
cation and their semantics as a natural result. The veiditat
rules forBPEL* are also formalized after the underlying op-
erational semantics. With respect to such semantics, we ha\?-
proven the soundness of this system by structural induction
on BPEL"’s constructs, and provided an example as an illust
tration to the verification process of our system.

Our possible future works following this mainly include
two aspects. The first is to extend the logic to cover more lan-1.
guage features of WS-BPEL. As our original intention is to
propose a concise yet novel system to verify WS-BPEL's fault
handling and compensation mechanism, we omitted soni@-
language constructs which may cause the verification rule to
be uncontrollable under current model, say, partner liaks,
compensation activities and while loops. These languaae fet3:
tures may require further invention of verification techrég
such as invariants on compensation contexts, and are worth
being a natural subsequence of our further work. The second
aspect aims at mechanizing the verification system for prac-
tical use, which involves some kind of verification conditio 15.
generators to create the verification conditions, somereas
ers to discharge the produced subgoals, and some verificatio
algorithm to integrate these together. 16.

Acknowledgements We appreciate the precious comments from
the anonymous reviewers. This work is supported by UK EPSRC
project EP/E021948/1 and China NNSF project 60773161. 17.

18.
References

1. Thatte S. XLANG: web service for business process del9.
sign. http://www.gotdotnet.com/team/xml_wsspecs/glah
default.htm, Microsoft, 2001

2. Leymann F. WSFL: web services flow language. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSHEE,.p 20.
IBM, 2001

3. Butler M, Ferreira C. An operational semantics for stdena
guage for modelling long-running business transactions. |

Frontiers of Computer Science in China Instruction for arth

Proceedings of Sixth International Conference on Coordina
tion Models and Languages, LNCS 2949, 2004, 87-104

. Alves A, Arkin A, Askary S, et al. Web services business pro

cess execution language version 2.0. http://docs.o@&Bs-0
org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html, OASIS Standard
2007

Barreto C, Bullard V, Erl T, et al. Web services business pr
cess execution language version 2.0 primer. http://d@siso
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.ht®ASIS
Standard, 2007

Qiu Z, Wang S, Pu G, et al. Semantics of bpel4ws-like fault
and compensation handling. In: Proceedings of Internation
Symposium of Formal Methods Europe, LNCS 3582, 2005,
350-365

Pu G, Zhu H, Qiu Z, et al. Theoretical foundation of
scope-based compensable flow language for web service. In:
Proceedings of International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS'06),
LNCS 4037, 2006, 251-266

Qiu Z, Zhao X, Cai C, et al. Towards the theoretical fouratat

of choreography. In: Proceedings of Sixteenth Internation
World Wide Web Conference (WWW 2007), 2007, 973-982
He J, Zhu H, Pu G. A model for bpel-like languages. Froatier
of Computer Science in China, 2007, 1(1):9-19

0. Zhu H, He J, Li J, et al. Algebraic approach to linking the

semantics of web services. In: Proceedings of Fifth IEEE In-
ternational Conference on Software Engineering and Formal
Methods, 2007, 315-328

Xu Q, de Roever W, He J. The rely-guarantee method for veri
fying shared variable concurrent programs. Formal Aspeftts
Computing, 1997, 9(2):149-174

Zhu H. Linking the semantics of a multithreaded discesent
simulation language. PhD thesis, London South Bank Univer-
sity, 2005

Fowler M, Scott K. UML distilled : a brief guide to the stan
dard object modeling language. Addison-Wesley, 2000
Garcia-Molina H, Salem K. Sagas. In: Proceedings of the
Association for Computing Machinery Special Interest Grou
on Management of Data 1987 Annual Conference, 1987, 249—
259

Moss J. Nested Transactions: An Approach to Reliable Dis
tributed Computing. PhD thesis, Massachusetts Institlite o
Technology, 1981

Aalst W, Dumas M, Hofstede A, et al. Analysis of web seggic
composition languages: The case of bpeldws. In: Procesding
of the 22nd International Conference on Conceptual Modelin
2003, 200-215

Hamadi R, Benatallah B. A petri net-based model for web
service composition. In: Proceedings of the 14th Australas
Database Conference, 2003, 191-200

Brogi A, Canal C, Pimentel E, et al. Formalizing web ser-
vice choreographies. Electronic Notes of Theoretical Com-
puter Science, 2004, 105:73-94

Andrews T, Curbera F, Dholakia H, et al. Business proerss
cution language for web services 1.1. http://downloaddeu
ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-]

2003

Bruni R, Melgratti H, Montanari U. Theoretical foundais

for compensations in flow composition languages. In: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2005, 209-220

Front. Comput. Sci. China 13

21. Duan Z, Bernstein A, Lewis P, et al. Semantics based efifi 24. Holzmann G. The Spin Model Checker — Primer and Refer-

22.

23.

tion and synthesis of bpeldws abstract processes. In: dece
ings of IEEE International Conference on Web Services, 20025.
734-737

Duan Z, Bernstein A, Lewis P, et al. A model for abstract pr
cess specification, verification and composition. In: Pedee

ings of the 2nd International Conference on Service Oriente26.
Computing, 2004, 232-241

Fu X, Bultan T, Su J. Analysis of interacting bpel web gzs.

In: Proceedings of Thirteenth International World Wide Web
Conference (WWW 2004), 2004, 621-630

ence Manual. Addison-Wesley, 2003

Pu G, Zhao X, Wang S, et al. Towards the semantics and-verifi
cation of bpeld4ws. In: Proceedings of the International kVor
shop on Web Languages and Formal Methods (WLFM 2005),
2005

Bengtsson J, Larsen K, Larsson F, et al. Uppaal — a totd sui
for automatic verification of real-time systems. In: Pratee
ings of the DIMACS/SYCON Workshop on Hybrid Systems
11l : Verification and Control, 1996, 232—-243

