
Front. Comput. Sci. China, 2008, 2(3)
DOI 10.1007/s11467-008-0000-0

Frontiers of Computer Science in China

Verifying BPEL-like Programs with Hoare Logic

Chenguang LUO1, Shengchao QIN1, Zongyan QIU2

1 Department of Computer Science, Durham University, Durham DH1 3LE, United Kingdom
2 LMAM and Department of Informatics, School of Math. Sciences, Peking University, Beijing 100871, China

c© Higher Education Press and Springer-Verlag 2008

Abstract The WS-BPEL language has recently become
a de factostandard for modeling Web-based business pro-
cesses. One of its essential features is the fully programmable
compensation mechanism. To understand it better, many
recent works have mainly focused on formal semantic models
for WS-BPEL. In this paper, we make one step forward by
investigating the verification problem for business processes
written in BPEL-like languages. We propose a set of proof
rules in Hoare-logic style as an axiomatic verification system
for a BPEL-like core language containing key features such
as data states, fault and compensation handling. We also
propose a big-step operational semantics which incorporates
all these key features. Our verification rules are proven sound
with respect to this underlying semantics. The application
of the verification rules is illustrated via the proof search
process for a nontrivial example.

Keywords WS-BPEL, compensation mechanism, opera-
tional semantics, axiomatic verification system, soundness

1 Introduction

The Internet is now developing at a high speed supported
by the web technology. As a result, many web-based ap-
plications, such as Web services, begin to flourish and play
a more and more significant role in various application ar-
eas. Web services boost a new approach to the construction
of business processes where many basic functions are encap-
sulated and provided as individual services on the web, which
later may be composed to form complex services according

Received 07.2008; accepted 09.2008

E-mail: {chenguang.luo, shengchao.qin}@dur.ac.uk, zyqiu@pku.edu.cn

to diverse clients’ demands. To cater for the description of
Web service composition, researchers and industrial practi-
tioners have proposed several Web service orchestration lan-
guages such as XLANG [1], WSFL [2], StAC [3], and WS-
BPEL [4,5].

Among these orchestration languages, WS-BPEL has now
become ade factostandard. One important feature of WS-
BPEL, as well as some other similar languages, is its mech-
anism for supporting long run transactions (LRTs). In any
single step of an LRT, a fault may occur and appropriate com-
pensation actions may be required. To address such demand,
WS-BPEL provides a set of scope-based fault handling and
compensation mechanisms to deal with faults and potential
undoing of some already completed business activities. The
compensation mechanisms are fully programmable, and thus
allow users to define any application-specific compensation
rules. Nevertheless, these mechanisms, despite very flexible
and powerful, also bring intricacies into the WS-BPEL lan-
guage specification. As a result, it becomes a challenging
issue to formalize and reason about WS-BPEL processes.

Many recent works focused mostly on the formal seman-
tics for WS-BPEL, e.g. [6–10]. These pioneering works are
very important for reducing possible ambiguity in the lan-
guage specification and also for better understanding of the
language. In this paper we will target at an orthogonal but
equally important problem, the partial correctness of WS-
BPEL processes. To make the presentation simple, we shall
focus on a subset of WS-BPEL. However, our core language
will take into account most of the important language features
of WS-BPEL, including data state, fault handling and com-
pensation mechanism. We will design a concise yet novel
operational semantics for our language, and propose a Hoare
logic style verification system on top of it, which will be
proven sound with respect to the underlying semantics. Due



2
Frontiers of Computer Science in China Instruction for authors

to the complexity of web-based business processes, the cor-
rectness of such programs remains as a challenge. Our veri-
fication system for BPEL-like language makes one step for-
ward towards tackling this challenging problem. To the best
of our knowledge, this is the first axiomatic verification sys-
tem for a language with data states, scope-based fault and
compensation handling mechanisms. The main contributions
of this paper can be summarized as follows:

• We propose a concise yet novel operational semantics
for a BPEL-like core language. Although there are some
semantic works with similar topics, our semantics is in-
teresting in that it integrates features like scopes, data
states, fault handling and compensation in a very simple
way.

• We design an assertion language for specifying certain
safety properties for BPEL-like processes, and also pro-
pose a set of axioms and inference rules in Hoare logic
style to form an axiomatic verification system for the
language. The pre- and postconditions are formulas ex-
pressed in our assertion language.

• We state and prove the soundness of our axiomatic ver-
ification system with respect to the semantics. That is,
provable specifications are all semantically valid. A non-
trivial example is presented to illustrate the application
of the verification rules.

The remainder of this paper is organized as follows. Sec
introduces our languageBPEL∗ which is a core subset of

WS-BPEL. A new operational semantics forBPEL∗ is then
presented in Sec . Sec 2 is devoted to the Hoare logic style
verification system forBPEL∗. Sec 3 deals with the sound-
ness of our verification system, while Sec 3 gives a nontrivial
example proof using our verification system. Related work
and concluding remarks follow afterwards.

2 The BPEL∗ Language

To concentrate on the main aim of this study, we take into ac-
count a core subset of the WS-BPEL language, calledBPEL∗,
which comprises not only the important fault and compensa-
tion handling mechanisms but also data states of WS-BPEL
processes.

The abstract syntax ofBPEL∗ is given in Figure 1. Note
that a program written inBPEL∗ is called abusiness process
(denoted asBP) which may contain an activityA and a fault
handlerF. We may sometimes use the general termprocess
to refer to an activityA, a compensation handlerC, or a fault
handlerF. The set of all processes is denoted asP.

In Figure 1,x andy stand for variable names,e represents
arithmetic expressions,b is for boolean expressions, andn for
scope names.A denotes a general activity, whileC andF are
for compensation and fault handlers, respectively. It is worth
noting that the compensation activity�n can only appear in
these two constructs.

Generally a business process has an activity to perform its

BP ::= {| A : F |} (business process)
A ::= skip (do nothing)

| x := e (assignment)
| inv a x y (invoke)
| rec a y (receive)
| rep a x (reply)
| throw (throw a fault)
| A;A (sequence)
| if b then A else A (conditional)
| A ‖ A (flow)
| n : {A ? C : F} (scope)

C,F ::= �n (compensation)
| . . . (similar as A)

Fig. 1 The Syntax ofBPEL∗

normal work, and once an error occurs it uses the fault handler
to deal with it. As for a general activity, theskip does nothing
to a process, and an assignment simply overwrites a variable’s
value to user’s intention.

The inv, rec andrep constitute our abstract model of com-
munication with external Web services. Thea here is an ab-
straction of call port of some Web service beyond the current
process we are interested in. In our work we have taken a
most general web model, where “a” is assumed to have some
arbitrary behavior as far as the current business process iscon-
cerned, as it either returns an arbitrary value or fails. It is also
possible to take more specialized models, which is out the
consideration of this paper.

The throw throws a fault to prevent any other activity in
the current scope from being processed, until the end of the
business process — or it is captured somewhere by a fault
handler.

The A ‖ A is a simplification of activities’ parallel com-
position (flow). To focus more on the novel aspects of WS-
BPEL, including the fault and compensation handling, we put
some restrictions over this construct so that links betweenits
components (i.e. additional control-flow restrictions) are dis-
allowed inBPEL∗. We can do so because this issue is almost
orthogonal to our focus in this paper and it has already been
well investigated by researchers, e.g. [11,12].

Inside a scopen : {A ? C : F}, A is the normal activity,C
is the compensation handler, andF is the fault handler. In
BPEL∗, we assume all names for variables defined in a busi-
ness process are distinct, so are the scope names. This is just
for simplicity and does not lose generality as we can easily
achieve this by a pre-processing step. Under such assump-
tions, we can refer to a variable or a scope simply by its name,
with no need of mentioning its enclosing context. We also
assume that the processes under consideration have been stat-
ically checked to meet certain basic well-formedness condi-
tions. For instance, the compensation activity� n will only



Front. Comput. Sci. China
3

occur in the immediate enclosing scope of the scopen.

3 Dynamic Semantics

In this section, we propose a big-step operational semantics
for BPEL∗. The semantics not only serves as a runtime model
for the language, but also acts as a reference semantics in
the soundness proof for our axiomatic verification system. In
what follows, we will define the runtime states used for the
semantics and then depict the semantic rules.

3.1 Runtime States

The nontrivial business processes need often to support long-
running transactions (LRTs), where the exceptional faultsare
unavoidable, and as a result the partially completed tasks may
need to be revoked accordingly. This kind of processes are
hard to describe without language support. WS-BPEL deals
with this necessity with its scope and compensation mech-
anism, which can be invoked to reverse partially completed
transactions. Since a fault may happen from time to time,
the WS-BPEL specification advocates to keep records of state
snapshots for the successfully completed scopes, as the asso-
ciated compensation handlers may refer to such completion
states when the compensation is invoked. Our semantics will
record those successfully completed scope snapshots in the
runtime state, similar to the way used in Qiuet al. [6] for
recording compensation closures. To facilitate the handling
of faults, we also instrument the runtime state with a boolean
value to indicate whether the current state is a normal stateor
a faulty state. The formal notations we use are as follows:

f ∈ Status=df {fail, norm}
s∈ Val =df Var ⇀ Value

α, [δ, . . . , δ] ∈ CPCtx=df seq CPCl
δ, 〈n, s, α〉 ∈ CPCl =df ScopeN× Val× CPCtx
σ, (f, s, α) ∈ Σ =df Status× Val× CPCtx

In the semantic model, a runtime stateσ = (f, s, α) is com-
posed of three elements, wheref indicates whether the cur-
rent state is normal (f = norm) or of a fault (f = fail), and the
s records current snapshot for the values of all variables in
the process. The third elementα is the compensation context
used to record the state snapshots and relative compensation
information for successfully completed scopes.

When a compensation activity�n runs, the code to be ex-
ecuted (i.e. the compensation handler defined in scopen) is
statically determined. However, the behavior of the compen-
sation will depend on not only the scope snapshot ofn, but
also the dynamic execution of the normal activity in scopen
that yields the state snapshot. This is due to the fact that (1)
the current compensation may invoke compensation handlers
from the immediate sub-scopes ofn, so its behavior will de-
pend on whether or not each of the sub-scopes has completed
successfully (thus the associative compensation handler has

been installed) and (2) such information is determined dy-
namically during the execution of the normal activity of scope
n. To record such information along with the scope snapshot,
we define the compensation contextα as a (possibly empty)
sequence of compensation closures[δ1, δ2, . . . , δn], whereby
a compensation closureδi = 〈n, s, α1〉 is a nested structure
which records the state snapshots for scopen (i.e., the data
state at the end of the normal execution of scopen). The third
elementα1 is the compensation context accumulated during
the execution of the normal activity of scopen. It includes
all the compensation closures for those normally completed
immediately-enclosed sub-scopes. When the compensation
handler ofn is invoked, both the scope snapshotsand the en-
closed contextα1 are restored for the compensation activity.

We do not record the handlers in the context as such in-
formation can be statically determined for a given business
process. Instead, we assume the availability of a mapping to
fetch the corresponding handlers:

C : ScopeN→ P

whereScopeNis the set of scope names. For a valid scope
namen ∈ dom(C), C(n) ∈ P is the compensation handler de-
fined in scopen.

We will make use of standard sequence operators given
below (whereα1 = [δ1, . . . , δm] andα2 = [δ′1, . . . , δ

′
n]):

δ0 · α1 = [δ0, δ1, . . . , δm]
hd(α1) = δ1
tl(α1) = [δ2, . . . , δm]
α1aα2 = [δ1, . . . , δm, δ′1, . . . , δ

′
n]

We define a membership relation as follows:

δ∈α =df







false if α = [ ]
true if hd(α) = δ
δ∈tl(α) else

δ /∈α =df ¬(δ∈α)

Based on it we can define the following analogous relation:

n∈α =df ∃s, α1 • 〈n, s, α1〉 ∈ α
n/∈α =df ¬(n∈α)

wheren is a scope name andα is a compensation context.
Informally, n∈α indicates that the compensation handler for
the scopen has been installed (and hencen’s scope snapshot
appears inα).

3.2 Operational Semantics

In this subsection, we present the semantic rules for the pro-
cesses inBPEL∗. The big-step operational semantics for
BPEL∗ is defined by a set of rules of the form

〈A, σ〉 σ′

whereA is a process, whileσ andσ′ denote the initial and
final states, respectively.



4
Frontiers of Computer Science in China Instruction for authors

When a fault has occurred, the process to be executed will
do nothing but propagate the fault. The rule below describes
this scenario:

σ = (fail, s, α)

〈A, σ〉 σ

The following rules define the behavior ofskip, assign-
ment, andthrow activities from normal states:

〈skip, (norm, s, α)〉 (norm, s, α)

〈x := e, (norm, s, α)〉 (norm, s⊕ {x7→s(e)}, α)

〈throw, (norm, s, α)〉 (fail, s, α)

wheres⊕ s′ is a state formed bysands′:

(s⊕ s′)(x) =df

{

s′(x) whenx ∈ dom s′

s(x) otherwise

With s(e) to denote the value of expressione under states,
the skip and assignment are analogous to normal imperative
language. Thethrow here changes the process faulty state to
fail immediately, resulting in its propagation to all following
activities until the end of the enclosing scope or the whole
business process, where it will be dealt with by the fault han-
dler.

When synchronized communication activityinv a x y suc-
ceeds, the value received froma, the other end of communica-
tion, is assigned toy; while failed communication also makes
the process fail.

〈inv a x y, (norm, s, α)〉 (norm, s⊕ {y 7→ν}, α)

〈inv a x y, (norm, s, α)〉 (fail, s, α)

whereν is the value achieved through the communication.
The rules for the one-way communicationsrec a y and

rep a x are as follows:

〈rec a y, (norm, s, α)〉 (norm, s⊕ {y 7→ν}, α)

〈rec a y, (norm, s, α)〉 (fail, s, α)

〈rep a x, (f, s, α)〉 (f, s, α)

Note that the one-way communications provide an invocation
mechanism for external Web services. Therec a y is used to
retrieve parameters from other Web services (a). Its effect is
to update variabley using the value received from the external
Web service. On the contrary, therep a x replies to other
external Web services (a) with the value ofx. Thus its effect
is just like askip to the current process.

Rules for sequence and conditional activities are routine:

〈A1, (norm, s, α)〉 (f1, s1, α1)
〈A2, (f1, s1, α1)〉 (f2, s2, α2)

〈A1;A2, (norm, s, α)〉 (f2, s2, α2)

s(b) = true 〈A1, (norm, s, α)〉 (f1, s1, α1)

〈if b then A1 else A2, (norm, s, α)〉 (f1, s1, α1)

s(b) = false 〈A2, (norm, s, α)〉 (f1, s1, α1)

〈if b then A1 else A2, (norm, s, α)〉 (f1, s1, α1)

The rule for the parallel composition is as follows:

(s1, s2) = split(s,Var(A1),Var(A2))
〈A1, (norm, s1, [ ])〉 (f1, s

′
1, α1)

〈A2, (norm, s2, [ ])〉 (f2, s
′
2, α2)

f ′ = f1∧f2 s′ = s′1∪s′2 α′ = interleave(α1, α2)aα

〈A1 ‖ A2, (norm, s, α)〉 (f ′, s′, α′)

where the splitting of variable mappings is based on the sep-
aration of variable names:

split(s,Var(A1),Var(A2)) =df

({x1 7→ e1 | x1 ∈ Var(A1)} ∧ x1 7→e1 ∈ s,
{x2 7→ e2 | x2 ∈ Var(A2) ∧ x2 7→e2 ∈ s}).

in which Var(A1) ∩ Var(A2) = ∅. And for f1 andf2, f1∧f2 is
defined as

f1 ∧ f2 =df

{

norm, if f1 = norm andf2 = norm;
fail, otherwise.

The initial sub-statess1 ands2 are obtained from the overall
states via a splitting operation whose definition is straight-
forward given thatA1 and A2 do not share variables, i.e.,
Var(A1) ∩ Var(A2) = ∅. The functioninterleave(α1, α2) re-
turns a merged sequence ofα1 andα2 by arbitrarily interleav-
ing elements ofα1 andα2:

interleave(α1, α2) =df [δ1, δ2, . . . , δm+n]

where we denoteα1 = [δ1,1, δ1,2, . . . , δ1,m] and α2 =
[δ2,1, δ2,2, . . . , δ2,n], and then the following holds:δi ∈
α1aα2, i = 1, 2, . . . ,m+ n; ∀ 1 ≤ i < j ≤ m+ n, if δi,
δj ∈ α1, δi = δ1,s and δj = δ1,t, thens < t; and the same
condition forα2.

The execution of a scopen : {A ? C : F} may result in two
different situations: the execution ofA may complete suc-
cessfully or raise a fault. For the former, the compensation
handler will be installed by adding the compensation closure
into the compensation context. For the latter, the fault handler
is invoked instead.

〈A, (norm, s, [ ])〉 (norm, s1, α1) s′ = s1⌋V (n)

〈n : {A ? C : F}, (norm, s, α)〉 (norm, s1, 〈n, s
′, α1〉 · α)

〈A, (norm, s, [ ])〉 (fail, s1, α1)
〈F, (norm, s1, α1)〉 (f2, s2, α2)

〈n : {A ? C : F}, (norm, s, α)〉 (f2, s2, α2)

HereV (n) denotes the set of local variables of scopen, and
s1⌋V (n) takes the part of state local ton, which is the snapshot
of scopen when it completes execution.

Note that the scope is the only part in the model to deal
with faults. Once a fault is propagated from an activityA
to its enclosing scope, it will be caught by the relevant fault
handlerF. If the fault handler of the immediately enclosing
scope ofA throws the fault again rather than completes the
handling, the fault continues its propagation to the next fault



Front. Comput. Sci. China
5

handler, or meets the end of the process. This is elaborated in
the rules defined above.

Next comes the definition of compensation. According to
the WS-BPEL Specification [4], our compensation looks for
the installed compensation closure of corresponding scope,
removes it from the compensation context and runs its han-
dler. If the closure is not installed, the invocation behaves like
a skip. Since we have actually accumulated the compensation
contexts, it turns out simple to execute the handler as below:

n /∈ α
〈�n, (norm, s, α)〉 (norm, s, α)

σ = (norm, s, α1a[〈n, s′, β〉]aα2)
〈C(n), (norm, s⊕ s′, β)〉 (f1, s1, γ)

〈�n, σ〉 (f1, s1, α1aα2)

Note thatn /∈ α, defined in last section, means that the com-
pensation handler forn is not installed (hence the closure for
n does not appear inα).

The rules for the whole business process are as follows:

〈A, σ〉 (norm, s1, α1)
〈{| A : F |}, σ〉 (norm, s1, α1)

〈A, σ〉 (fail, s1, α1)
〈F, (norm, s1, α1)〉 (f2, s2, α2)
〈{| A : F |}, σ〉 (f2, s2, α2)

There is no top-level compensation handler in the business
process because no one could invoke it if there were any.

4 An Axiomatic System forBPEL∗

As a first step to support mechanized verification forBPEL∗

processes, we propose in this section a set of inference rules
in the style of a Floyd-Hoare logic.

4.1 Assertion Language

To specify properties forBPEL∗ processes, apart from the
usual logical operations, we shall make use of some logical
constructs that are specific for compensation related reason-
ing. The syntax for the assertion languageAssnis:

P ∈ Assn
P ::= true | false | normal | x⊙∼e | ∼P | Pǫ | P⌋V |

P+n | P−n | P↾n | P∗n | P||P | P⋆P | P∗P |
¬P | P∧P | P∨P | P⇒P

Note thatx, e andn denote a variable name, an expression
and a scope name, respectively. The⊙∼ denotes a relational
operator in{=, <,>,≤,≥}.

In the axiomatic system, each assertion is viewed as a set
of states that satisfy the assertion. The semantics for all asser-
tions is given in Figure 2.

Among all assertion constructs,true andfalse are modeled
as the whole and empty sets of states, respectively. Semantics

|[true]| = Σ
|[false]| = ∅
|[x]|σ = σ.2(x)
|[normal]| = {σ | σ.1 = norm}
|[e]|σ = σ.2(e) which is the evaluation result of

e under stateσ
|[x⊙∼e]| = {σ | |[x]|σ⊙∼|[e]|σ},where⊙∼ has the

semantics of the relational operator
|[∼P]| = {(¬σ.1, σ.2, σ.3) | σ ∈ |[P]|}
|[Pǫ]| = {(σ.1, σ.2, [ ]) | σ ∈ P}
|[P⌋V]| = {(σ.1, σ.2⌋V, σ.3) | σ∈|[P]|}
|[P+n]| = {(σ.1, σ.2, 〈n, σ.2⌋V (n), σ.3〉) | σ ∈ |[P]|}
|[P−n]| = {(σ.1, σ.2, α) | σ ∈ |[P]| ∧ α =

before(n, σ.3)aafter(n, σ.3)}
|[P↾n]| = {σ | σ∈|[P]| ∧ n∈σ.3}
|[P∗n]| = {firstof(n, σ) | σ∈|[P]| ∧ n∈σ.3}
|[P||Q]| = {(σ.1 ∧ σ′.1, σ.2 ∪ σ′.2, α) | σ∈|[P]|∧

σ′∈|[Q]| ∧ α=interleave(σ.3, σ′.3)}
|[P⋆Q]| = {(σ1.1, σ1.2, σ1.3aσ2.3) | σ1∈|[P]|∧

σ2∈|[Q]|}
|[P∗Q]| = {(σ1.1, σ1.2, σ2.3) | σ1∈|[P]| ∧ σ2∈|[Q]|}
|[¬P]| = Σ \ |[P]|
|[P∧ Q]| = |[P]| ∩ |[Q]|
|[P∨ Q]| = |[P]| ∪ |[Q]|
|[P ⇒ Q]| = |[¬P∨ Q]|

Fig. 2 Semantics for Assertions

for normal contains all states without fault. Assertionx⊙∼e
can be in formsx<e, x=e, x>e and so forth, to model the
relationship between variablex and expressione.

To facilitate the description, we use here (and below)σ.i
to denote thei-th element of tupleσ. For instance, given
σ = (f, s, α), we will haveσ.1 = f, σ.2 = s andσ.3 = α. In
the definition,n∈σ.3, defined in last section, denotes that the
compensation handler for scopen is installed inσ. We also
use three operations to extract information w.r.t. scopen from
compensation contextα:

firstof(n, σ) =df (norm, σ.2⊕ s, β)
if σ.3 = α1a[〈n, s, β〉]aα2 ∧ n /∈ α1

before(n, α)=df

{

α, if n /∈ α
α1, if α=α1a[〈n, s, β〉]aα2 ∧ n/∈α1

after(n, α) =df

{

[ ], if n /∈ α
α2, if α=α1a[〈n, s, β〉]aα2 ∧ n/∈α1

Operationfirstof(n, σ) extracts fromα = σ.3 the first state
snapshot forn, and merges it withσ.2. In the casen /∈ σ.3,
firstof(n, σ) is undefined.before(n, α) returns the largest pre-
fix of α which contains no closure for scopen, andafter(n, α)
returns the sub-sequence ofα after the first closure for scope
n, or the empty sequence when there is no such closure inα.

Among the semantics for the assertions, some relating to
flow, scope, and compensation are worth illustration.



6
Frontiers of Computer Science in China Instruction for authors

The assertionsP⌋V andP||Q are used in verification of flow
constructs. In the first one,V is a set of variables andP⌋V re-
stricts the domain of variable mappingσ.2 (whereσ ∈ |[P]|) to
V. For example,(x>0 ∧ y≤0)⌋{x} = x>0. The second one,
P||Q, enumerates all possible interleaving cases of compensa-
tion contexts of states in|[P]| and|[Q]|, respectively.

The following assertions mainly concern scope and com-
pensation.∼P reverses all the faulty states in eachσ ∈ |[P]|
(from norm to fail and vice versa). This corresponds to the
verification of throw activity and fault handler which change
the process faulty state.Pǫ reserves the first and second com-
ponents of states but empties their compensation contexts.
This is useful for verifying scopes whose inner activityA be-
gins with empty compensation context.

AssertionP+n extracts each stateσ from set|[P ]|, sets its
compensation context to the closure〈n, σ.2⌋V (n), σ.3〉, and
forms a new set with all of these states.

As its form suggests,P−n performs an “elimination” of
scope namen “from” the elements in|[P]|. It extracts first
the compensation contextα from each state of|[P]|, then finds
the first compensation closure with namen, and removes it to
form a new contextα. If there is no such closure found, then
α will be the original context. The semantics ofP−n is the
set of states with these newly formedα.

WhatP↾n does is, informally, to “restrict”|[P]| to the set of
states in which the compensation context contains a closure
with namen, P∗n “locates” the first occurrence of the closure
with namen in each state in|[P]|, and forms a set of states
from these closures.

P⋆Q and P∗Q are for compensation contexts concatena-
tion and replacement between assertions, respectively. The
first appends the compensation contexts withinQ’s model to
those ofP’s, to accumulate new compensation closure based
on old ones, according to scope’s behavior. The second dis-
cards directly the compensation contexts of the states inP’s
semantics, because of the manner of compensation handlers.

An assertion is modeled as a set containing all the states
which satisfy it. Thus we define

σ |= P =df σ ∈ |[P]|.

A specification in our system takes the ordinary form
{P} A {Q}, whereP,Q ∈ AssnandA ∈ P is an activity.

One thing notable is that a business process may commu-
nicate via activitiesinv, rec andrep with external processes,
which are essentially other Web services within the same ap-
plication or from third party. As a result, whether a business
process behaves in a desired way might depend on the ex-
ternal processes being interacted with. Hence, a business pro-
cess is more like an open system which makes the verification
problem rather challenging. Our proposal is to verify each
business process separately according to certain dependency
order in the first step. We assume that specifications for com-
munication activities are available in the verification of one
business process. When all relevant business processes have
been verified separately, we can then check the consistency of

all the assumptions made on communication activities. In this
paper, we focus only on the verification of individual business
processes.

Remembering that in the operational semantics for com-
munications with external Web services, we have addressed
that their behaviors can be arbitrary, either to deliver a value
or to fail. However, to verify a business process involving
communications more precisely, we need to put more restric-
tions over semantics of the communications. These restric-
tions take the form of a set of specifications{P} c {Q}, where
eachc is any one ofinv a x y, rec a y, or rep a x, represent-
ing a communication that might be executed by the process
with the environment. We useT to denote a set of such spec-
ifications and use it as a context of the verification rules. For
example, for a specification{P} inv a x y {Q} ∈ T , the pre-
conditionP acts as an assertion imposed on the current pro-
cess to ensure that information sent out (the value ofx) sat-
isfies the requirement of the environment, whileQ acts as an
assumption made on the environment: the result sent back
by the environment (final value ofy) satisfies the constraint
described byQ, with a possible substitution of the communi-
cation channel and variable names.

The proof rules in our verification system are of the form
C,T ⊢ {P} A {Q}, whereC, defined earlier, is the mapping
from scope names to associated compensation handlers, and
T is the set of specifications defined above. We shall now
present the syntax-directed proof rules in our logic.

4.2 Consequence Rule

The only structural rule in our axiomatic system is the con-
sequence rule for precondition weakening and postcondition
strengthening:

P ⇒ P′ C,T ⊢ {P′} A {Q′} Q′ ⇒ Q
C,T ⊢ {P} A {Q}

(conseq)

4.3 BPEL∗-specific Rules

The rules forskip and assignment are simple:

C,T ⊢ {P} skip {P} (skip)

C,T ⊢ {normal ∧ P [e/x]} x := e {P} (assign)

The rule forthrow is clear too:

C,T ⊢ {P} throw {¬normal∧(P∨∼P)} (throw)

Here we do not need to care whether the pre-condition is nor-
mal, because the type of fault is not in the range of our current
consideration.

For the basic communication activities, the rules need to
use their assumed specifications inT . For the convenience
of description, we assume the variable names in the pre-
and postconditions are correspondent with those used in the
invocations. Meanwhile, as is stated in former section, in
the verification of the process, a triple{P} A {Q} in T can



Front. Comput. Sci. China
7

also be used to verify a triple whose pre- and postcondition
have the same denotation of compensation contexts, such as
{P⋆R} A {Q⋆R}. And in this situation it must be guaranteed
that the denotations of compensation contexts in both pre- and
postcondition are the same.

If the environment can be modeled as a subset ofnormal,
thenrec sets the variable’s value to what the specification de-
notes. Or it just propagates the fault.

{normal} rec a v {Q} ∈ T
¬normal ⇒ Q [v/y]

C,T ⊢ {true} rec a y {Q [v/y]}
(rec)

whereQ [v/y] is an assertion formed by substituting each
occurrence ofv in Q by y, for filling the gap between the
specification inT and the current process. Because ofrep’s
analogous behavior toskip, its rule is also the same.

C,T ⊢ {P} rep a x {P} (rep)

The semantics of two-way invocation is simple:

{P} inv a u v {Q} ∈ T
C,T ⊢ {P} inv a x y {Q [u, v/x, y]}

(inv)

Note that these rules depend onT – the set of specifications
assumed on communication activities.

The rules for control structures are as follows.

¬normal ∧ P ⇒ Q
C,T ⊢ {normal ∧ P} A {R}

C,T ⊢ {R} B {Q}

C,T ⊢ {P} A; B {Q}
(seq)

¬normal ∧ P ⇒ Q
C,T ⊢ {normal ∧ P∧ b} A {Q}
C,T ⊢ {normal ∧ P∧ ¬b} B {Q}

C,T ⊢ {P} if b then A else B {Q}
(if)

whereb is a boolean expression of the formx⊙∼e.
Since we assume that the different parallel flows share no

variables, the rule for the parallel structures is given as

¬normal ∧ P ⇒ (Q1||Q2)⋆P
C,T ⊢ {Pǫ⌋V1

} A {Q1}
C,T ⊢ {Pǫ⌋V2

} B {Q2}

C,T ⊢ {P} A||B {(Q1||Q2)⋆P}
(flow)

whereV1 andV2 are disjoint variable sets andA andB only
modify variables inV1 andV2, respectively.

Now we present the two most significant rules, which re-
veal the essential features of our language. The rule for scopes
is as follows:

¬normal ∧ P ⇒ Q
C,T ⊢ {normal ∧ Pǫ} A {R}
(normal ∧ R)+n⋆P ⇒ Q

C,T ⊢ {∼(¬normal ∧ R)} F {Q}

C,T ⊢ {P} n : {A ? C : F} {Q}
(scope)

Note that the rule(scope) captures two cases. One stands for
the scenario where a fault occurs inA. In that case the control
transfers to the fault handler, and the compensation handler
for scopen is not installed. The other is for the normal com-
pletion ofA and the concatenation of this scope’s compensa-
tion context to the process state.

Then the most intricate rule in our system, the named com-
pensation, comes as follows:

¬normal ∧ P ⇒ Q
¬P↾n ∧ P ⇒ Q

C,T ⊢ {(P↾n)∗n} C(n) {R}
R∗P−n ⇒ Q

C,T ⊢ {P} �n {Q}
(compensate)

In this rule, the behavior of a named compensation is depicted
with the relevant compensation handler. If the pre-condition
does not entail a scope namen, the post-condition must be
automatically satisfied. Otherwise, the snapshots’ set (asthe
pre-condition for the compensation handler) is extracted and
the post-condition is a combination of the fault and variable
mapping states after the handler’s execution, and the compen-
sation context with the elimination of the first compensation
closure namedn.

At last is the rule for the whole business process:

C,T ⊢ {P} A {R}
(normal ∧ R) ⇒ Q

C,T ⊢ {∼(¬normal ∧ R)} F {Q}

C,T ⊢ {P} {| A : F |} {Q}
(bp)

5 Soundness

This section is devoted to the soundness of our verification
system. We will first give two definitions and then formalize
the soundness theorem and its proof.

Definition 1 (Validity). We denote that a triple {P} A { Q}
is valid underC,T, i.e. C,T |= {P} A {Q}, if for all σ ∈ Σ, if
σ |= P and〈A, σ〉 σ′ for someσ′, thenσ′ |= Q.

Definition 2 (Soundness). Our verification system for
BPEL∗ issoundif all provable specifications are indeed valid,
that is, ifC,T ⊢ {P} A {Q}, thenC,T |= {P} A {Q}.

The theorem for soundness can be stated as below:

Theorem 1. The Hoare logic for BPEL∗ presented in this
paper is sound.

As is indicated by Definition 2 above, we need to show
that, for any P,A,Q, if C,T ⊢ {P} A {Q}, then C,T |=
{P} A {Q}. The proof can be accomplished by structural in-
duction overA.



8
Frontiers of Computer Science in China Instruction for authors

Proof. The verification ofC,T ⊢ {P} A {Q} (denoted ast)
can be a process such as

(some premises)
...
··· · · ·

(some other premises)
...
···

C,T ⊢ {P} A {Q}

From the perspective of backwards reasoning, a ruler should
be utilized ont according toA’s structure, and from this rule
some other premises need to be verified with similar back-
ward verifications until all the premises are axioms or known
facts. As an illustration, ifA is C,T ⊢ {P} {| A1 : F1 |} {Q},
then we must verifyC,T ⊢ {P} A {R}, (normal ∧ R) ⇒ Q
andC,T ⊢ {∼(¬normal ∧ R)} F {Q}, according to the (bp)
rule. Hence the last ruler used to verifyt depends on the
structure of the activityA. Therefore, the following cases are
organized according to the structure ofA, which is equivalent
to r to some extent.

• Case (skip). The last ruler for this is (skip):

C,T ⊢ {P} skip {P}

Since〈skip, σ〉 σ, it is easy to see that rule (skip) is
sound in our system.

• Case (x := e). The corresponding rule is (assign):

C,T ⊢ {normal ∧ P[e/x]} x := e {P}

The proof for rule (assign) simply follows the canonical
Hoare logic’s proof using the Substitution Theorem and
thus is omitted here.

• Case (throw). The last rule to apply is (throw):

C,T ⊢ {P} throw {¬normal ∧ (P∨ ∼P)}

Take anyσ such thatσ |= P. If σ.1 = fail, then we
have 〈throw, σ〉 σ and σ |= ¬normal ∧ P. Other-
wise, if σ.1 = norm, then we have〈throw, σ〉 σ′

whereσ′ = (fail, σ.2, σ.3), andσ′ |= ¬normal∧ ∼P. So
we getC,T |= {P} throw {¬normal ∧ (P∨ ∼P)}.

• Case (rec a y).

{normal} rec a v {Q} ∈ T
¬normal ⇒ Q [v/y]

C,T ⊢ {true} rec a y {Q [v/y]}

For the proof of the rule (rec), if σ |= normal, then
since {normal} rec a v {Q} is already known for the
communication, the model of postconditionQ [v/y]
should contain the final state transited fromσ (ei-
ther (norm, σ.2⊕ {y 7→ν}, σ.3) or (fail, σ.2, σ.3), ac-
cording to the communication’s behavior). Other-
wise if σ |= ¬normal, then from the semantics for
¬normal ⇒ Q [v/y] we knowσ |= Q [v/y]. Therefore
we conclude in this case.

• Case (rep a x).

C,T ⊢ {P} rep a x {P}

Since the communication of reply does not change the
process status, rule (rep) shares the same proof ofskip’s.

• Case (inv a x y).

{P} inv a u v {Q} ∈ T
C,T ⊢ {P} inv a x y {Q [u, v/x, y]}

The proof can be completed in the similar way as that of
rec a y.

• Case (A; B). The rule applied in this case is (seq):

¬normal ∧ P ⇒ Q
C,T ⊢ {normal ∧ P} A {R}

C,T ⊢ {R} B {Q}

C,T ⊢ {P} A; B {Q}

The proof for rule (seq) is classical, except that the faulty
state is taken into consideration first. That is, for any
stateσ |= P, if σ.1 = fail, thenσ |= ¬normal ∧ P and
thusσ |= Q. If not, then takeσ∗ as 〈A, σ〉 σ∗, we
haveσ∗ |= R. And from〈B, σ∗〉 σ′ and the inductive
assumption, it holds thatσ′ |= Q.

• Case (if b then A else B). In this case the condition rule
(if ) is applied:

¬normal ∧ P ⇒ Q
C,T ⊢ {normal ∧ P∧ b} A {Q}
C,T ⊢ {normal ∧ P∧ ¬b} B {Q}

C,T ⊢ {P} if b then A else B {Q}

The proof of the condition rule is also similar as the
classical one. Except for the abnormal state, consider
any σ where σ.1 = norm. Then no matter whether
σ |= normal ∧ P∧ b or σ |= normal ∧ P∧ ¬b, for some
σ′ and σ∗ that 〈A, σ〉 σ′ in the first case and
〈B, σ〉 σ∗ in the second, we always getσ′ |= Q and
σ∗ |= Q from inductive assumption.

• Case (A ‖ B). The last rule used is (flow):

¬normal ∧ P ⇒ (Q1||Q2)⋆P
C,T ⊢ {Pǫ⌋V1

} A {Q1}
C,T ⊢ {Pǫ⌋V2

} B {Q2}

C,T ⊢ {P} A||B {(Q1||Q2)⋆P}

Take anyσ |= normal ∧ P (the case forσ.1 = fail is
like other rules), from the premises and the inductive
assumption we know that〈A, (σ.1, σ.2⌋s1 , [ ])〉 σ′

1

and 〈B, (σ.1, σ.2⌋s2 , [ ])〉 σ′
2, for some σ′

1 |= Q1,
σ′
2 |= Q2. Hence(σ′

1.1 ∧ σ′
2.1, σ

′
1.2 ∪ σ′

2.2, interleave
(σ′

1.3, σ
′
2.3)aσ.3) |= (Q1||Q2)⋆P, and thus we conclude

in this case.



Front. Comput. Sci. China
9

• Case (n : {A ? C : F}). Rule (scope) is the last rule ap-
plied in the proof forC,T ⊢ {P} n : {A ? C : F} {Q}:

¬normal ∧ P ⇒ Q
C,T ⊢ {normal ∧ Pǫ} A {R}
(normal ∧ R)+n⋆P ⇒ Q

C,T ⊢ {∼(¬normal ∧ R)} F {Q}

C,T ⊢ {P} n : {A ? C : F} {Q}

The following cases are discussed for allσ |= P.
– If σ.1 = fail, from inductive assumption and

the premise¬normal ∧ P ⇒ Q, we have σ |=
¬normal ∧ P, and thusσ |= Q.

– If σ.1 = norm, then takeσǫ = (σ.1, σ.2, [ ]), and
hence we haveσ |= normal ∧ Pǫ. With induc-
tive assumption and the premise, denotingσ′

ǫ as
〈A, σǫ〉 σ′

ǫ, thenσ′
ǫ |= R is achieved.

∗ If σ′
ǫ.1 = norm, then σ′

ǫ |= normal ∧ R, and
σ′
+n = (σ′

ǫ.1, σ
′
ǫ.2, 〈n, σ

′
ǫ.2⌋V (n), σ

′
ǫ.3〉) |=

(normal ∧ R)+n, and still σ′ = (σ′
+n.1,

σ′
+n.2, σ

′
+n.3 · σ.3) |= (normal ∧ R)+n⋆P.

We getσ′ |= Q from the last implication.
∗ If σ′

ǫ.1 = fail, then σ′
F |= ∼(¬normal ∧ R)

where σ′
F = (norm, σ′

ǫ.2, σ
′
ǫ.3). From the

inductive assumption and the semantics
〈F, σ′

F〉 σ′ for someσ′, we haveσ′ |= Q.
This completes our proof forscope.

• Case (�n):

¬normal ∧ P ⇒ Q
¬P↾n ∧ P ⇒ Q

C,T ⊢ {(P↾n)∗n} C(n) {R}
R∗P−n ⇒ Q

C,T ⊢ {P} �n {Q}

For the rule of compensation, consider anyσ |= P in the
following cases.

– If σ.1 = fail, then directly we haveσ |= Q.
– If σ.1 6= fail and there are no compensation clo-

sures namedn in σ’s compensation context, then
σ |= ¬P↾n ∧ P by definition, and thusσ |= Q
which conforms to the operational semantics.

– Otherwise, we need to run the compensation han-
dler namedn. Denoteσn = firstof(n, σ), and we
haveσn |= (P↾n)∗n and hence〈C(n), σn〉 σ′

n

for some σ′
n, while σ′

n |= R. Then take
σ = (f, σ, α1a[〈n, σ∗, β〉]aα2), and we have
σ′ = (σ′

n.1, σ
′
n.2, α1aα2) |= R∗P−n, and thus

σ′ |= Q. From all discussion above, we conclude
this case.

• Case ({| A : F |}). The last rule applied in the proof for
the whole business process will be the rule (bp):

C,T ⊢ {P} A {R}
(normal ∧ R) ⇒ Q

C,T ⊢ {∼(¬normal ∧ R)} F {Q}

C,T ⊢ {P} {| A : F |} {Q}

It is similar as the scope rule with compensation handler
eliminated. For anyσ |= P and〈A, σ〉 σ′ for someσ′

there are the following two cases:
– σ′.1 = norm. From (normal ∧ R) ⇒ Q, we know

thatσ′ |= Q.
– σ′.1 = fail. If 〈F, (norm, σ′.2, σ′.3)〉 σ∗ for

someσ∗, then we haveσ∗ |= Q from the premise
C,T ⊢ {∼(¬normal ∧ R)} F {Q}.

• Besides the aforesaidA’s possible structures directly re-
lated to rules, sometimes we may be not able to verify
C,T ⊢ {P} A {Q} with an existing rule but can verify
C,T ⊢ {P′} A {Q′} whereP′ is weaker thanP and/orQ′

is stronger thanQ. Thus the structural rule (conseq) is
employed in such cases:

P ⇒ P′ C,T ⊢ {P′} A {Q′} Q′ ⇒ Q
C,T ⊢ {P} A {Q}

For all σ |= P and 〈A, σ〉 σ′ for someσ′, we have
σ |= P′ from P ⇒ P′ and also〈A, σ〉 σ∗ for some
σ∗ |= Q′. Then fromQ′ ⇒ Q we getσ∗ |= Q. Hence
σ∗ is theσ′ we need and the proof for this rule is com-
pleted.

Above are all the cases of our structural induction, and
each of them is proven to be sound. Hence this completes
our proof for the soundness. 2

6 Example

In this section a purchase example is exhibited to illustrate
the verification of a real business process, which is a modified
version of that in [13].

The general flow of the example is as follows. First the
process receives the price for each single item (stored in vari-
ablep) and the class of the customer from other service with
communication (into variabley). Then it decides the discount
ratio according to the customer class, and receives the amount
of items to store int. After having all the items purchased, it
computes the shipping fare according to the value oft. At last
the real average price (including shipping cost) for each item
is calculated and replied, which may incur fault and hence call
for compensation.

This business process, denoted asBP, is written inBPEL∗

below.
{|

n1 : {rec a p; q := p ? p := −p : skip};
rec b y;
if y = 1 then
n2 : {p := p× 0.5 ? p := p× 2 : skip}

else

n3 : {p := p× 0.8 ? p := p× 1.25 : skip};
n4 : {rec c t; p := p× t ? p := p/t : skip};
if t > 500 then
n5 : {p := p+ 500 ? p := p− 500 : skip}



10
Frontiers of Computer Science in China Instruction for authors

else

n6 : {p := p+ t ? p := p− t : skip };
if t > 0 then p := p/t; rep d p else throw

: �n6; �n5; �n4; �n3; �n2; �n1

|}
The specification for us to verify is{normal} BP{Q}

where Q is p=q/2+500/t ∨ p=0.8q+500/t∨ p=q/2+1∨
p=0.8q+1 ∨ p=−q. The first four parts of the disjunctions in
Q present the different situations of discount ratio and ship-
ping fare, while the lastp=− q is the case where a fault is
compensated. This specification states that, ifBP starts in
a normal state and terminates at last, it should establish the
postconditionQ, provided that the specifications of the com-
munication activities are as follows:

{normal} rec a y {normal ∧ y>0}
{normal} rec b y {normal ∧ (y=1 ∨ y=2)}

{normal} rec c y {normal ∧ y 6=0}

Here we give an outline of the verification forBP with
the backwards searching strategy. First, for the whole busi-
ness process, we use the rule ofbp to get three subgoals
G1, G2, G3 for further verification:

G1 : C,T ⊢ {normal} A {R}
G2 : (normal ∧ R) ⇒ Q
G3 : C,T ⊢ {∼(¬normal ∧ R)} F {Q}

whereA stands for the codes before the last : in the pro-
cess,Q is the postcondition we want to verify,F represents
the six compensations (�n6; �n5; �n4; �n3; �n2; �n1), and
R should be both strong enough to deriveQ and still suffi-
ciently weak asF’s precondition to getQ. A possibleR can
be the assertion below:

(normal ∧ (p=q/2+500/t ∨ p=0.8q+500/t∨
p=q/2+1 ∨ p=0.8q+1)) ∨ (¬normal∧ ∼ P6)

whereP6 is

normal∧
((t ≤ 500 ⇒ ((y=1 ⇒ p=0.5qt+ t)∧

(y 6=1 ⇒ p=0.8qt+ t))+n5
∧

t > 500 ⇒ ((y=1 ⇒ p=0.5qt+ 500)∧
(y 6=1 ⇒ p=0.8qt+ 500))+n6

)⋆ P5)

whereP5 stands for the set of states for compensation ac-
cumulated in the previous execution of the process, from a
semantics perspective (and so are the other assertions to be
depicted below); its definition is

normal∧(((y=1 ⇒ p=0.5qt)∧(y 6=1 ⇒ p=0.8qt))+n4
⋆ P4)

whereP4 is

normal ∧ (((y=1 ⇒ (p=0.5q)+n2
)∧

(y 6=1 ⇒ (p=0.8q)+n3
))⋆ P2)

whereP2 is

(normal ∧ p=q)+n1
⋆ normal

and the semantics and the derivations of these assertions will
be introduced in the following descriptions. With them as
bridges we will try to verify the three subgoals separately.

For the first subgoalG1, it can still be divided into six sub-
goals, sinceA is a sequence made up of six other activities,
including two scopes, one basic communication activity and
three conditional judgments. We will denote these activities
asA1,A2, . . . ,A6 according to their original orders inBP, and
call these six subgoalsG1,i, i = 1, 2, . . . , 6, defined as below:

G1,i : C,T ⊢ {Pi} Ai {Pi+1}

wherei = 1, 2, . . . , 6,P1 = normal andP7 = R. (Note that
theP2, . . . ,P5 are what have been described above.) We will
demonstrate the verification of each subgoal.

For G1,1, sinceA1 is the scopen1 and the precondition
is normal, we will use thescoperule to divide it further into
three subgoals:

G1,1,1 : {normalǫ} rec a p; q := p {P1,1}
G1,1,2 : (normal ∧ P1,1)+n1

⋆ normal ⇒ P2

G1,1,3 : {∼(¬normal ∧ P1,1)} skip {P2}

For the first subgoal, the rulesseq, rec and assign
are used, to get thatP1,1 is normal ∧ p=q. With this
result and the second subgoal the strongestP2 is de-
rived as (normal ∧ p=q)+n1

⋆ normal. For the third sub-
goal, since¬normal ∧ P1,1 = false, it holds automatically.
Then G1,1 is verified with the postconditionP2, that is,
(normal ∧ p=q)+n1

⋆ normal.
Next we will examineG1,2. Here the rule ofrec is applied

to P2 andrec b y, with the result of postconditionP3 which is
(y=1 ∨ y=2) ∧ P2.

SubgoalG1,3 concerns the firstif construct of the process,
and its verification is an application of ruleif with the result
of two other subgoals

G1,3,1 : C,T ⊢ {normal ∧ P3 ∧ y=1} A1,3 {P4}
G1,3,2 : C,T ⊢ {normal ∧ P3 ∧ ¬y=1} B1,3 {P4}

whereA1,3 andB1,3 are scopesn2 andn3, respectively. They
can be verified similarly asn1 (using rulesscopeandassign),
and we get the postconditionP4:

normal ∧ q=X∧
((y=1 ⇒ (p=0.5q)+n2

∧
y 6=1 ⇒ (p=0.8q)+n3

)⋆ P2)

G1,4 is to verify the Hoare triple for scopen4. Fol-
lowing similar way ofG1,1 it can be verified withP5 as
normal ∧ (((y=1 ⇒ p=0.5qt) ∧ (y 6=1 ⇒ p=0.8qt))+n4

⋆ P4).
G1,5 again seeks the verification of the secondif construct.

With the approach like that ofG1,3 (splitting it into two sub-
goals) we can achieveP6:

normal∧
((t ≤ 500 ⇒ ((y=1 ⇒ p=0.5qt+ t)∧

(y 6=1 ⇒ p=0.8qt+ t))+n5
∧

t > 500 ⇒ ((y=1 ⇒ p=0.5qt+ 500)∧
(y 6=1 ⇒ p=0.8qt+ 500))+n6

)⋆ P5)



Front. Comput. Sci. China
11

The last subgoal,G1,6, is slightly different from the former
two if ’s. It is also first divided into two subgoals:

G1,6,1 : C,T ⊢ {normal ∧ P6 ∧ t>0} p := p/t; rep d p {R}
G1,6,2 : C,T ⊢ {normal ∧ P6 ∧ ¬t>0} throw {R}

in which the first subgoal’s verification is as the for-
mer ones, with the postconditionp=q/2+500/t∨
p=0.8q+500/t ∨ p=q/2+1 ∨ p=0.8q+1. (Note that
we omit the part for compensation and present a weaker
assertion here.) However, the second one uses thethrow rule
to force a conjunction of¬normal with the precondition.
Therefore the whole postcondition forA,R, is as follows:

(normal ∧ (p=q/2+500/t ∨ p=0.8q+500/t∨
p=q/2+1 ∨ p=0.8q+1)) ∨ (¬normal∧ ∼ P6)

It is clear that a conjunction ofnormal and thisR automati-
cally impliesQ, which is demanded in the subgoalG2. So the
remaining work is to verify the subgoalG3.

G3 equals toC,T ⊢ {t<0 ∧ P6} F {Q}, whereF is the se-
quence of six compensations. Similarly, this can be divided
into six subgoals using theseq rule, and each subgoal is
solved equally with rulecompensate. We will illustrate its
usage with the first two compensations for scopesn6 andn5,
and the others are the same as these two.

Sincet<0 implies thatt≤500, it can be deducted that the
compensation context forn6 must be installed, and thus we
have only two possible cases to consider (y=1; y 6=1). We now
take the first case as an example, in which the precondition of
these compensations can be reduced as

normal ∧ y=1 ∧ t≤500∧
(p=0.5qt+t)+n6

⋆ (p=0.5qt)+n4
⋆

(p=0.5q)+n2
⋆ (p=q)+n1

⋆ normal

where we denote the⋆ as right-associative to prevent excess
parentheses. Using once the rulecompensatewe get

normal ∧ y=1 ∧ t≤500∧
(p=0.5qt)+n4

⋆ (p=0.5q)+n2
⋆

(p=q)+n1
⋆ normal

to remove the compensation context ofn6 from the states (on
the level of semantics).

Then for the subgoal concerningn5, since in this case it
is not installed in the compensation context (which can be
seen from the structure of the assertion), its effect, due torule
compensate, is like askip.

Therefore we use the rule four times more on�ni,
i = 4 . . . 1 respectively, to verify each remaining subgoal and
gain the final assertion

normal ∧ y=1 ∧ t≤500 ∧ p=− q

which implies thatp = −q, and henceQ. This completes the
whole process’ verification.

7 Related Work

The concept of compensation dates back to Sagas [14] and

nested transactions [15]. There are a few attempts to formal-
ize workflow languages [3,16–18], and still many of them are
about compensation.

On the semantics of such languages there are many in-
vestigations. Qiu andet al. [6] provided a formal opera-
tional semantics for a simplified version of BPEL4WS to
specify the execution path of a process with possible com-
pensation behavior. In that work, they adopted an abridgment
of BPEL4WS which was followed by a series of works with
similar objective. Then they provided a formal semantics for
fault handling, compensations, and parallel processes with re-
spect to the original informal description by the BPEL4WS
Specification [19], with a clarification to some of its elusive
parts. Meanwhile they proved the completeness of the de-
duction of their semantics. Besides their work, there are still
many others to formalize the semantics of these languages
from different perspectives. Bruni andet al. [20] presented
an operational semantics for a series of languages, which in-
cluded the compensation concept. Pu andet al. [7] also pre-
sented an abridged edition of WS-BPEL, discussed its oper-
ational semantics, and defined the equivalence between two
processes with its proposedn-bi-simulation. He andet al. [9]
focused on the process equivalence from the perspective of
an observation-oriented model and its algebraic laws. Zhu
and et al. [10] made a link among different semantics (op-
erational, denotational and algebraic) of the WS-BPEL lan-
guage with the approach of the unifying theories of program-
ming. Some of the semantics proposed in these works may
also be enhanced as suitable underlying semantics for our ver-
ification system, while our semantics is mainly distinguished
from theirs in that it incorporates variable mappings in both
program runtime states and compensation contexts, enabling
concrete variable valuations to be stored in the semantics.

Apart from the work on semantic models, researchers have
also tried to model and verify the WS-BPEL processes. Duan
andet al. [21] introduced a logic model to formally specify
the semantics of workflow and its composite tasks described
as WS-BPEL abstract processes, and made a deduction of the
weakest precondition for workflow. Another work by Duan
andet al. [22] put some restrictions to such model and found
an algorithm to proof the abstract processes’ correctness.Fu
and et al. [23] proposed some techniques and related tools
to analyze interactions of composite Web services written in
BPEL4WS. The BPEL4WS specifications [19] are first trans-
lated into an intermediate representation, and then verified use
SPIN [24]. Hamadi and Benatallah [17] transformed the for-
mal semantics of the WS-BPEL composition operators to an
expression of Petri nets, and hence allowed the verification
of properties and the detection of inconsistencies both within
and between services. Pu andet al. [25] adopted a similar
method by using model checker UPPAAL [26] to verify the
correctness of BPEL4WS program including temporal prop-
erties. However, none of these works have attempted in veri-
fying WS-BPEL-like fault handling and compensation as we



12
Frontiers of Computer Science in China Instruction for authors

have done in this paper.

8 Conclusions and Future Work

In this paper we proposed an axiomatic system to verify the
correctness ofBPEL∗ processes. Here we have concentrated
on an important core subset of WS-BPEL, namely,BPEL∗.
This subset reflects the key features of the language appeal-
ing to us, say, fault states, variable mappings and compensa-
tion contexts; meanwhile it keeps our mechanism both pre-
cise and concise, rather than builds up a huge and compli-
cated system trying to cover all aspects of WS-BPEL. We
have formalized these features into program runtime states,
and createdBPEL∗’s operational semantics with state transi-
tion rules, according to the OASIS Standard [4]. Based on
this, we have set up the assertions to abstract and express the
novel language features, leaving the Hoare triples for verifi-
cation and their semantics as a natural result. The verification
rules forBPEL∗ are also formalized after the underlying op-
erational semantics. With respect to such semantics, we have
proven the soundness of this system by structural induction
on BPEL∗’s constructs, and provided an example as an illus-
tration to the verification process of our system.

Our possible future works following this mainly include
two aspects. The first is to extend the logic to cover more lan-
guage features of WS-BPEL. As our original intention is to
propose a concise yet novel system to verify WS-BPEL’s fault
handling and compensation mechanism, we omitted some
language constructs which may cause the verification rule to
be uncontrollable under current model, say, partner links,all
compensation activities and while loops. These language fea-
tures may require further invention of verification techniques
such as invariants on compensation contexts, and are worth
being a natural subsequence of our further work. The second
aspect aims at mechanizing the verification system for prac-
tical use, which involves some kind of verification condition
generators to create the verification conditions, some reason-
ers to discharge the produced subgoals, and some verification
algorithm to integrate these together.

Acknowledgements We appreciate the precious comments from
the anonymous reviewers. This work is supported by UK EPSRC
project EP/E021948/1 and China NNSF project 60773161.

References

1. Thatte S. XLANG: web service for business process de-
sign. http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
default.htm, Microsoft, 2001

2. Leymann F. WSFL: web services flow language. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
IBM, 2001

3. Butler M, Ferreira C. An operational semantics for stac, alan-
guage for modelling long-running business transactions. In:

Proceedings of Sixth International Conference on Coordina-
tion Models and Languages, LNCS 2949, 2004, 87–104

4. Alves A, Arkin A, Askary S, et al. Web services business pro-
cess execution language version 2.0. http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, OASIS Standard,
2007

5. Barreto C, Bullard V, Erl T, et al. Web services business pro-
cess execution language version 2.0 primer. http://docs. oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html,OASIS
Standard, 2007

6. Qiu Z, Wang S, Pu G, et al. Semantics of bpel4ws-like fault
and compensation handling. In: Proceedings of International
Symposium of Formal Methods Europe, LNCS 3582, 2005,
350–365

7. Pu G, Zhu H, Qiu Z, et al. Theoretical foundation of
scope-based compensable flow language for web service. In:
Proceedings of International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’06),
LNCS 4037, 2006, 251–266

8. Qiu Z, Zhao X, Cai C, et al. Towards the theoretical foundation
of choreography. In: Proceedings of Sixteenth International
World Wide Web Conference (WWW 2007), 2007, 973–982

9. He J, Zhu H, Pu G. A model for bpel-like languages. Frontiers
of Computer Science in China, 2007, 1(1):9–19

10. Zhu H, He J, Li J, et al. Algebraic approach to linking the
semantics of web services. In: Proceedings of Fifth IEEE In-
ternational Conference on Software Engineering and Formal
Methods, 2007, 315–328

11. Xu Q, de Roever W, He J. The rely-guarantee method for veri-
fying shared variable concurrent programs. Formal Aspectsof
Computing, 1997, 9(2):149–174

12. Zhu H. Linking the semantics of a multithreaded discreteevent
simulation language. PhD thesis, London South Bank Univer-
sity, 2005

13. Fowler M, Scott K. UML distilled : a brief guide to the stan-
dard object modeling language. Addison-Wesley, 2000

14. Garcia-Molina H, Salem K. Sagas. In: Proceedings of the
Association for Computing Machinery Special Interest Group
on Management of Data 1987 Annual Conference, 1987, 249–
259

15. Moss J. Nested Transactions: An Approach to Reliable Dis-
tributed Computing. PhD thesis, Massachusetts Institute of
Technology, 1981

16. Aalst W, Dumas M, Hofstede A, et al. Analysis of web services
composition languages: The case of bpel4ws. In: Proceedings
of the 22nd International Conference on Conceptual Modeling,
2003, 200–215

17. Hamadi R, Benatallah B. A petri net-based model for web
service composition. In: Proceedings of the 14th Australasian
Database Conference, 2003, 191–200

18. Brogi A, Canal C, Pimentel E, et al. Formalizing web ser-
vice choreographies. Electronic Notes of Theoretical Com-
puter Science, 2004, 105:73–94

19. Andrews T, Curbera F, Dholakia H, et al. Business processexe-
cution language for web services 1.1. http://download.boulder.
ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf,
2003

20. Bruni R, Melgratti H, Montanari U. Theoretical foundations
for compensations in flow composition languages. In: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2005, 209–220



Front. Comput. Sci. China
13

21. Duan Z, Bernstein A, Lewis P, et al. Semantics based verifica-
tion and synthesis of bpel4ws abstract processes. In: Proceed-
ings of IEEE International Conference on Web Services, 2004,
734–737

22. Duan Z, Bernstein A, Lewis P, et al. A model for abstract pro-
cess specification, verification and composition. In: Proceed-
ings of the 2nd International Conference on Service Oriented
Computing, 2004, 232–241

23. Fu X, Bultan T, Su J. Analysis of interacting bpel web services.
In: Proceedings of Thirteenth International World Wide Web
Conference (WWW 2004), 2004, 621–630

24. Holzmann G. The Spin Model Checker — Primer and Refer-
ence Manual. Addison-Wesley, 2003

25. Pu G, Zhao X, Wang S, et al. Towards the semantics and verifi-
cation of bpel4ws. In: Proceedings of the International Work-
shop on Web Languages and Formal Methods (WLFM 2005),
2005

26. Bengtsson J, Larsen K, Larsson F, et al. Uppaal — a tool suite
for automatic verification of real-time systems. In: Proceed-
ings of the DIMACS/SYCON Workshop on Hybrid Systems
III : Verification and Control, 1996, 232–243


