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Abstract

We give a complete account of the Schrödinger representation approach to the cal-
culation of the Weyl anomaly of N = 4 SYM from the AdS/CFT correspondence.
On the AdS side, the 1/N2 correction to the leading order result receives contri-
butions from all the fields of Type IIB Supergravity, the contribution of each field
being given by a universal formula. The correct matching with the CFT result is
thus a highly non-trivial test of the correspondence.
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1 Introduction: the basic calculation

When Super-Yang-Mills theory is coupled to a non-dynamical, external metric, gij , the

Weyl anomaly, A, is the response of the ‘free-energy’ (i.e. the logarithm of the partition
function), F , to a scale transformation of that metric. This is a quantum effect, since the

classical theory is scale-invariant, but the one-loop result is exact because supersymmetry
prevents higher loops from contributing. The result is proportional to N2 − 1 and Hen-

ningson and Skenderis showed [1] that the N2 part is correctly reproduced by a tree-level
calculation in five-dimensional gravity confirming the Maldacena conjecture to leading

order in large N . Reproducing quantum effects in a gauge theory from classical gravity is
itself truly remarkable but to go beyond the leading order and reproduce the −1 requires

much more than just classical gravity, it needs the computation of Superstring loops. This
is a stringent test of the details of the conjecture because although the graviton alone is

responsible for the leading order result, all the species of fields in IIB Supergravity con-
tribute at subleading order. The purpose of this paper is to show that the subleading

contribution to the Weyl anomaly of Super-Yang-Mills theory is indeed obtained from
quantum loops in Supergravity, confirming the Maldacena conjecture to this order.

The metric for d+ 1-dimensional Anti-de Sitter (AdSd+1) space can be written

ds2 = Gµν dX
µ dXν = dr2 + z−2ηijdx

idxj , z = exp(r/l) , (1)

with ηij the d-dimensional Minkowski metric, and l a constant. The Riemann tensor is

Rµνλρ = − 1

l2
(GµλGνρ −GνλGµρ) , (2)

which leads to the (d+1)-dimensional Einstein equation

Rµν = − d

l2
Gµν , (3)

with the cosmological constant Λ = −d(d−1)/2l2 and R = −d(d+1)/l2. The boundary of

this space occurs at r = −∞ and at r = ∞ (which is just a point because the ‘warp-factor’,
z−2 vanishes there). Following [1] we will treat this boundary as though it occurred at

z = exp(r0/l) ≡ τ and send the cut-off, τ , to zero at the end of our calculations, so the
metric restricted to the boundary is ηij/τ

2.

Maldacena conjectured an equivalence between Type IIB String Theory compactified
on AdS5×S5 (the bulk theory) and 4-dimensional Super-Yang-Mills theory in Minkowski

space (the boundary of AdS5) with gauge-group SU(N). The string compactification is
driven by the presence of N D3-branes which generate a 5-form flux. Performing the

functional integral for the Superstring theory with the fields taking prescribed values on
the boundary of AdS5 is meant to reproduce the generating functional of Green functions

for operators, Ω, in the Yang-Mills theory. The identification between the boundary fields

and the various Ω has been made on the basis of symmetry for many operators, and there
is a precise relationship between the couplings in the two theories. After a Wick rotation

the conjecture may be written as
∫

DΦ e−SIIB

∣

∣

∣

Φ(r=−∞)=Φ̂
=
∫

DAe−SY M+
∫

d4x Φ̂Ω(A) . (4)
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This is only a formal statement since the left-hand-side written in terms of the string fields
of IIB Superstring theory is not well-defined. (Nonetheless, an observation that will be

crucial later is that this ill-defined functional of the boundary fields, Ψ[Φ̂] corresponds to
Feynman’s construction of the vacuum wave-functional.) Taking Ω as the stress-tensor of

the gauge theory allows the source Φ̂ to be interpreted as a perturbation to the Minkowski

metric, so that in the absence of other sources the right-hand-side becomes the partition
function for Super-Yang-Mills theory in the perturbed metric, gij, whose logarithm we

denote by F [g]. The Weyl anomaly, A, is then δF =
∫

d4x
√
gδσA when δgij = 2δσgij.

On general grounds, [3] [4], A = aE + c I where E is the Euler density, (RijklRijkl −
4RijRij + R2)/64, and I is the square of the Weyl tensor, I = (−RijklRijkl + 2RijRij −
R2/3)/64. A one-loop calculation [4] gives A as the sum of contributions from the six

scalars, two fermions and gauge vector of the Super-Yang-Mills theory, (all in the adjoint
with dimension N2 − 1)

A =
(6s+ 2f + gv)(N

2 − 1)

16π2
. (5)

When the heat-kernel coefficients s, f , and gv are expressed in terms of E and I this
becomes

A = −(N2 − 1)(E + I)

π2
, (6)

so a = c = −(N2−1)/(2π2) and supersymmetry protects this from higher-loop corrections.
Equation (4) shows how to find F [g] in the Superstring theory. At leading order in N we

can replace strings by fields, and neglect all the fields in the resulting Supergravity theory
except the graviton, so SIIB reduces to the Einstein-Hilbert action with cosmological term,

whilst the functional integral itself can be computed in the saddle-point approximation
and so reduces to the exponential of minus the action computed with the metric satsfying

Einstein’s equation and coinciding (up to a conformal factor) with gij when restricted to
the boundary. By solving this boundary value problem in perturbation theory Henningson

and Skenderis [1] were able to compute A to leading order in large-N .

Rather than use perturbation theory the Weyl anomaly can be calculated more sim-
ply by using an exact solution to the Einstein equations that is more general than (1).

Replacing the Minkowski metric ηij by a d-dimensional Einstein metric ĝ, (R̂ij = R̂ ĝij/4
and R̂ = constant), and modifying the warp-factor

ds2 = Gµν dX
µ dXν = dr2+z−2 eρĝij(x) dx

idxj , eρ/2 = 1−C z2 , C =
l2R̂

4 d(d− 1)
, (7)

results in a bulk metric that still satisfies (2) and (3). The metric restricted to the

‘boundary’ at z = τ = is ĝ up to a conformal factor. We now specialise to d = 4. The
greater generality of this metric is useful because it allows us to calculate the anomaly

coefficients a and c by making special choices for ĝ. Were we to calculate the anomaly
for Ricci flat ĝ, so that E = −I = RijklRijkl/64 we would find the combination a− c. By

taking instead a ĝ for which R̂ijkl = R̂ (ĝikĝjl − ĝjkĝil) /12 so that I = 0 and E = R̂2/384
we would obtain the coefficient a. The Einstein-Hilbert action evaluated in this metric is

SEH =
1

16πGN

∫

d5X
√
G (R + 2Λ) = − 1

2πGN l2

∫

dr d4x

z4

√

ĝ (1 − Cz2)4 (8)
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The integral over r diverges as the boundary is approached, hence the need for the
cut-off. Because the anomaly depends on just two numbers, a and c, it is sufficient to

consider a Weyl scaling of the boundary metric, δgij = 2δσgij, with constant δσ, and this
can be achieved by keeping ĝ fixed, but varying r0 by δr0 = lδσ, so

δF ≈ −δσ l ∂
∂r0

SEH = − δσ

2πGN l

∫ d4x

τ 4

√

ĝ (1 − Cτ 2)4 (9)

The divergent parts of this as τ ↓ 0 can be cancelled by adding counter-terms to the

action, but the finite contribution, proportional to C2, cannot, so we obtain the bulk
tree-level contribution to the anomaly as

Atree = − 3l3

482πGN
R2 = − l3

2πGN
(E + I) . (10)

The gravitational coupling is related to N and l via GN = πl3/(2N2), [1], so this repro-
duces the leading term in (6). (Note that it is easy to check that the Gibbons-Hawking

boundary action does not contribute to this calculation of A so we have not included it
in our discussion).

To go beyond the leading order and compute the bulk one-loop contribution to the
Weyl anomaly, δA, requires making sense of the left-hand-side of (4). We will approximate

the IIB Superstring theory by IIB Supergravity, which means neglecting higher orders in
α′. Even so the left-hand-side is ill-defined. At the time we began our work there was no

known action for this theory, but rather a set of classical equations of motion consistent
with Supersymmetry which were analysed in [13] to obtain the mass spectrum for the

theory compactified on AdS5 × S5. It was not obvious that these equations of motion
could be derived from an action, but in Section 6 we construct one that yields the equations

of motion to quadratic order in the quantum fluctuations of the fields which is what is
needed to obtain the one-loop contribution to the anomaly in the bulk theory. Integrating

out these fluctuations would give a functional determinant for each of the infinite number

of fields in the compactification. To compute these in the conventional fashion requires
the use of the heat-kernels for differential operators defined on a five-dimensional manifold

with boundary, again these were unknown at the time we began. We will adopt a different
approach based on the interpretation of Ψ as a wave-functional which satisfies a functional

Schrödinger equation from which it can be constructed. Because this is a Hamiltonian
approach it involves four-dimensional differential operators whose heat-kernel coefficients

are already tabulated. Furthermore, because it treats the five-dimensional bulk fields in
terms of their values on the boundary it is ideally suited to discussing the Maldacena

conjecture.
Consider, for the sake of illustration, a scalar field of mass m. To quadratic order in

the field there are no interactions other than those with the background metric, so the
action is

Sφ =
1

2

∫

d5X
√
G
(

Gµν∂µφ ∂νφ+m2φ2
)

=
1

2

∫

d4x dr

z4

√

ĝ e2ρ
(

φ̇2 + z2e−ρĝij∂iφ ∂jφ+m2φ2
)

≡ 1

2

∫

d4x dr

z4

√

ĝ e2ρ φΩs φ , (11)
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(here the dot denotes differentiation with respect to r) whilst the norm on fluctuations of
the field, from which the functional integral volume element Dφ can be constructed is

||δφ||2 =
∫

d5X
√
Gδφ2 =

∫

d4x dr

z4

√

ĝ e2ρ δφ2 . (12)

We will interpret the co-ordinate r as Euclidean time, so to construct a Schrödinger equation

we first re-define the field by setting φ = z2 e−ρϕ to make the ‘kinetic’ term in the action

into the standard form, and remove the explicit r-dependence from the integrand of the
norm. The action becomes

Sφ

=
1

2

∫

d4x dr
√

ĝ

(

ϕ̇2 + z2e−ρϕ

(

2 +
R̂

6

)

ϕ+
(

m2 +
4

l2

)

ϕ2

)

− 1

2

∫

d4x
√

ĝ
(

ρ̇+
2

l

)

ϕ2 ,

= Sϕ + Sb , (13)

where 2 is the 4-dimensional covariant Laplacian constructed from ĝ. Note that 2 +
R̂
6

is the operator associated with a conformally coupled four-dimensional scalar field,

its appearance should not be a surprise given that isometries of AdS act as conformal
transformations on its boundary. Also note that the mass has been modified to an effective

mass
√

m2 + 4/l2.
The one-loop contribution of a scalar field to the left-hand-side of (4) is

∫

Dφ e−Sφ

∣

∣

∣

φ(r=r0)=φ̂
(14)

where the ‘boundary’ is taken at the cut-off, r0, rather than r = −∞. In terms of the
‘canonical’ field ϕ this is

e−Sb

∫

Dϕ e−Sϕ

∣

∣

∣

ϕ(r=r0)=ϕ̂
≡ e−Sb+W [ϕ̂,g] (15)

Since the integral is Gaussian, W takes the form

W [ϕ̂] = F +
1

2

∫

d4x
√

ĝ ϕ̂Γ ϕ̂ (16)

where Γ is a differential operator and F = −1
2
log DetΩs is the free-energy of the scalar

field, whose variation under a Weyl transformation is the goal of our computation. As we

have already observed, this functional integral can be interpreted as the vacuum wave-
functional at Euclidean ‘time’ r0, and so it satisfies a functional Schrödinger equation that

can be read-off from the action Sϕ, thus if Ψ = expW [ϕ] then

∂

∂r0
Ψ = −1

2

∫

d4x
√

ĝ
{

− ĝ−1 δ2

δϕ2
+ τ 2e−ρϕ

(

2 +
R̂

6

)

ϕ+
(

m2 +
4

l2

)

ϕ2
}

Ψ . (17)

So Γ satisfies
∂

∂r0
Γ = Γ2 − τ 2e−ρ

(

2 +
R̂

6

)

−
(

m2 +
4

l2

)

, (18)
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which can be solved in powers of the differential operator by expanding

Γ =
∞
∑

n=0

bn(r0)
(

2 + R̂/6
)n

. (19)

This gives

b0 = ±
√

m2 +
4

l2
(20)

in which we take the minus sign to give a normalisable wave-functional. The other coeffi-

cients in (19) have the property that we will make use of later of vanishing as the cut-off,
r0 is taken to −∞.

The free-energy is determined in terms of the functional trace of Γ:

∂

∂r0
F =

1

2
Tr Γ (21)

which can be regulated using a heat-kernel

Tr Γ =
∞
∑

n=0

bn(r0)

(

− ∂

∂s

)n

Tr exp
(

−s
(

2 + R̂/6
))

(22)

with s small. The heat-kernel has the well-known Seeley-de Witt expansion for small s

Tr exp
(

−s
(

2 + R̂/6
))

=
∫

d4x
√

ĝ
1

16π2s2

(

1 + s a1(x) + s2 a2(x) + s3 a3(x) + ..
)

(23)

with
√
ĝ a2 =

√
g 8(2E − 3I)/45. As s is made smaller and |r0| larger the only surviving

contribution comes from 1, a1 and a2. The coefficients of 1 and a1 diverge, but that of a2

is finite.
As well as fixing W , these equations directly determine the Weyl anomaly1. As in the

leading order calculation we consider a constant scaling of the boundary metric resulting
from a shift in r0, δr0 = lδσ, so

∫

d4x
√
g δA = l ∂

∂r0
F = l

2
Tr Γ. The divergent parts of this

can be cancelled by adding counter-terms to F , but the finite contribution proportional
to a2 cannot, so we obtain the anomaly as δA = −

√
l2m2 + 4 a2/(32π2). Now the mass

dependence can be neatly expressed in terms of the scaling dimension of the field restricted
to the boundary, ∆, because

√
l2m2 + 4 = ∆ − 2 so we arrive at

δA = −∆ − 2

32π2
a2 . (24)

1In our calculation of the anomaly, to remove the cutoff dependence from the functional inner-product
we imposed non-standard boundary conditions on the bulk field. The resulting wave-functional differs
only by a boundary term from that obtained by the standard procedure (diagonalising the asymptotic
part of the bulk field corresponding to the larger scaling dimension) and gives the same Weyl anomaly.
For masses in a certain range, it is also possible to diagonalise the asymptotic corresponding to the
smaller scaling dimension [11]; this gives a different result for the anomaly. For certain compactifications,
for example when S5 is replaced by T 1,1, this ambiguity becomes important, but in the present case the
spectrum contains no modes with masses in the appropriate range. All of this is discussed in more detail
in [8].
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Although we have derived this formula for a scalar field it applies to all the species of
fields in IIB Supergravity. To see this requires decomposing the appropriate action into

‘canonical’ fields so as to identify the appropriate four-dimensional operators and effective
masses. We will describe the details of this in the subsequent sections of this paper, but

the upshot of this decomposition of five-dimensional fields into four-dimensional variables

is to introduce into the four-dimensional operators precisely those couplings to R̂ that
render them conformally covariant. Thus a2 for a five-dimensional gauge field is the

combination of heat-kernel coefficients for the operator associated with a four-dimensional
gauge field, just as that for a minimally coupled five-dimensional scalar is associated with

a conformally coupled four-dimensional scalar.
The scaling dimensions ∆ are related to the bulk masses which were originally worked

out in [13]. In Table 1 we display the corresponding values of ∆ − 2. The multiplets are
labelled by an integer p ≥ 2, and the fields form representations of SU(4) ∼ SO(6). The

four-dimensional heat-kernel coefficients have also been known for a long time and we use
the values given by [14, 15]. In Table 2 we list these for the cases of a Ricci flat boundary

and for a boundary of constant R̂.
If we denote the values of a2 for the fields φ, ψ, Aµ, Aµν , ψµ, hµν by s, f, v, a, r, and g

respectively then the contribution from a generic (p ≥ 4 ) multiplet is

(

∑

(∆ − 2)a2

)

p≥4
= (−4s + 4a+ r + f + 2v)

p

3

−(105s+ g + 26a+ 8r + 72f + 48v)
p3

12

+(16v + 20f + 10a+ 4r + 25s+ g)
p5

12
(25)

whilst for the p = 3 multiplet it is

(

∑

(∆ − 2)a2

)

p=3
= 244f + 18g + 266s+ 218v + 148a+ 64r . (26)

The p = 2 multiplet contains gauge fields requiring the introduction of Faddeev-Popov
ghosts. Their parameters are given in Table 3 along with the decomposition of the five-

dimensional components of fields into four-dimensional pieces.

12v − 30s+ 6r − 10f + 2g (27)

and if we include the scalars, spinors and antisymmetric tensors the total contribution of

the p = 2 multiplet is

(

∑

(∆ − 2)a2

)

p=2
= 12v − 6s+ 6r + 6f + 2g + 12a (28)

Substituting the values of the heat kernel coefficients for a Ricci flat boundary shows that

the contribution of each supermultiplet vanishes implying that a = c [5]. However if we do
not specialise to this case we have to deal with the sum over multiplets labelled by p. We

will evaluate this divergent sum by weighting the contribution of each supermultiplet by
zp. The sum can be performed for |z| < 1, and we take the result to be a regularisation of

the weighted sum for all values of z. Multiplying this by 1/(z−1) and integrating around
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the pole at z = 1 gives a regularisation of the original divergent sum2. In this way all the
members of any given supermultiplet are treated on an equal footing. This yields

∑

(∆ − 2)a2 = 8s+ 4f + 2v (29)

which remarkably depends only on the heat-kernel coefficients of fields in the Super-Yang-
Mills theory. In the next section we will see that decomposing a five-dimensional vector

into longitudinal and transverse pieces and solving the Schrödinger equation for them
relates the heat-kernel coefficient for a vector field, v, to that for a four-dimensional gauge-

fixed Maxwell field, v0, by v = v0 + 2s− 2s0. s0 is the coefficient for a minimally coupled
four-dimensional scalar (Faddeev-Popov ghost), showing that v− 2s = v0 − 2s0 = gv [16].

Therefore we finally arrive at the one-loop contribution to the Weyl anomaly

δA = −
∑ (∆ − 2)a2

32π2
= −6s + 2f + gv

16π2
(30)

which is precisely what is needed to reproduce the subleading term in the exact Weyl
anomaly of Super-Yang-Mills theory and verify the Maldacena conjecture.

A final point concerns the finiteness of the boundary theory. The divergence of the
coefficients a0 and a1 in (23) renormalises the boundary cosmological and Newton con-

stants, respectively, but we would expect these renormalisations to disappear in the full
theory. If we wrote down (23) in some superfield formalism, we would have to take the

same proper-time separation for fields of different spin. So it makes sense to sum the
contributions of all Supergravity fields to these coefficients. If we do so, the total a0 con-

tribution cancels by virtue of the equal number of bosonic and fermionic modes. The total

a1 contribution also cancels, but only after we apply the same regularisation that we used
to sum the a2 coefficients. So we find as expected that there is no overall renormalisation

of the boundary Newton or cosmological constants [9].

2 Weyl Anomaly for Fermions

The Euclidean action for a spin-1/2 fermion in the metric (7) is

∫

dd+1x
√
Gψ̄(γµDµ −m)ψ. (31)

The spin-covariant derivative is defined via the funfbein

V α
0 =

1

z
δα
0 , V α

i =
1

z
eρ/2Ṽ α

i , (32)

where Ṽ α
i is the vierbein for the boundary metric. Making the change of variables

ψ = z2e−ρψ̃ causes the volume element in the path-integral to become the usual flat-

space one, and the kinetic term in the action acquires the usual form. The action can be
written

2This regularisation is equivalent to simply taking a cut-off p = Λ in the summation of supermultiplets
with p ≥ 4 and removing Λ dependent divergent terms at Λ → ∞ from the regularised sum. Both these
regularisations preserve supersymmetry, as they must.
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∫

dd+1x ¯̃ψ
(

γ0∂0 + ze−ρ/2γiD̃i −m
)

ψ̃. (33)

The Di derivative is spin-covariant with respect to the boundary metric.
We impose the following boundary conditions on ψ̃:

Q+ψ̃(0, x) = u(x) = Q+u(x), ψ̃†(0, x)Q− = u†(x) = u†(x)Q−, (34)

for some local projection operators Q±. The remaining projections are represented by
functional differentiation. The partition function takes the form

Ψ[u, u†] = exp[f + u†Γu], (35)

and the Schrödinger equation that it satisfies can be written

∂

∂r0
Ψ = −

∫

ddx

(

u†Q− +
δ

δu
Q+

)

h

(

Q+u+Q−
δ

δu†

)

Ψ, (36)

where h = τe−ρ/2γ0γiD̃i − γ0m. Assume without loss of generality that m ≥ 0. If we
make the specific choice Q± = 1

2
(1 ± γ0), we can write (36) as

∂

∂r0
Ψ = −

[

mu†
δ

δu†
−m

δ

δu
u− τe−ρ/2u†γ · D̃u+ τe−ρ/2 δ

δu
γ · D̃ δ

δu†

]

Ψ. (37)

Acting on (35) this implies that

Γ̇ = −2mΓ + τe−ρ/2γ · D̃ − Γ2τe−ρ/2γ · D̃, (38)

while f satisfies

ḟ =
1

2
Tr(−m+ Γτe−ρ/2γ · D̃). (39)

The factor of 1/2 takes into account the fact that the trace is over constrained variables.
So that we can regulate this with a heat-kernel, we expand Γ in terms of the positive-

definite operator (γ · D̃)2:

Γ = γ · D̃
∞
∑

n=0

dn(r0)(γ · D̃)2n. (40)

Notice that the coefficients dn all vanish as r0 → −∞. The equation (38) is eas-
ily solved in terms of Bessel functions, but to regulate (39) we again use a heat-kernel

expansion

Tr(−m+ Γτγ · D̃) =





∞
∑

n=0

dn(r0)

(

− ∂

∂s

)n+1

−m



Tr exp
(

−s(γ · D̃)2
)

, (41)

where the heat-kernel has a Seeley-de Witt expansion like (23). The contribution

proportional to the a2 coefficient of (γ · D̃)2 is finite as s → 0 and r0 → −∞ and
determines the anomaly, which is therefore proportional to m. But since m = ∆ − 2 we

have as before
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δA = −∆ − 2

32π2
a2 . (42)

For the spin-3/2 Rarita-Schwinger field the action that we obtain by diagonalising
the five-dimensional action has the same form as the spin-1/2 field, and the Schrödinger

equation takes the form (36). Thus the above discussion is essentially unchanged, leading
again to an anomaly proportional to m = ∆ − 2.

3 Vector Fields

We now wish to demonstrate that the result (24) extends to higher spin fields as well. We
begin by considering the decomposition of a five-dimensional vector gauge field in AdS in

terms of ‘canonical’ fields from which we can construct a functional Schrödinger equation.
The classical action for a U(1) gauge field in the metric (7) is

Sgv =
1

2

∫

d4x dr
√

ĝ
(

(Ȧi − ∂iAr)(Ȧj − ∂jAr) ĝ
ijeσ + (∂iAj − ∂jAi)(∂rAs − ∂sAr)ĝ

irĝjs
)

,

(43)

where we have set exp σ = exp(ρ)/z2. We choose as a gauge condition that Ar be constant,

so that the Euler-Lagrange equation corresponding to varying Ar,

∇i (ĝ
ijȦj) = 0 (44)

must be imposed as a constraint, with ∇ the Levi-Civita connection constructed from ĝij.

If we change variables from A to A = eσ/2A the kinetic term assumes the canonical form
and the action becomes

Sgv =
1

2

∫

d4x dr
√

ĝ
(

ȦiȦj ĝ
ij +

1

l2
AiAj ĝ

ij + e−σ(∂iAj − ∂jAi)(∂rAs − ∂sAr) ĝ
irĝjs

)

,

(45)
whilst the general co-ordinate invariant inner product on variations of the gauge field,

(from which the functional integral volume element can be constructed) also takes the
form appropriate to a canonical field theory

|| δA ||2 =
∫

d4x dr
√

ĝ eσ δAiδAj ĝ
ij =

∫

d4x dr
√

ĝ δAiδAj ĝ
ij . (46)

We can now write down the functional Schrödinger equation satisfied by

Ψ =
∫

DAe−S
∣

∣

∣

A(r=r0)=Â
(47)

Treating r as a Euclidean time and quantising using Ȧi → −(ĝij/
√
ĝ) δ/δAj

∂

∂r0
Ψ =

−1

2

∫

d4x
√

ĝ
(

− 1

ĝ
ĝij

δ2

δAiδAj
+

1

l2
AiAj ĝ

ij +

e−σ(∂iAj − ∂jAi)(∂rAs − ∂sAr) ĝ
irĝjs

)

Ψ . (48)
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The constraint is imposed weakly, i.e. as a condition on Ψ:

∇i

(

gij
δ

δAj

− σ̇

2
Ai

)

Ψ = 0 . (49)

This can be analysed by decomposing A as

A = Ã + ∇ϕ , ∇i(ĝ
ijÃj) = 0 , (50)

so that
δ

δAj
=

δ

δÃj

+ ∇j
2

−1 δ

δϕ
(51)

The constraint becomes
(

1√
ĝ

δ

δϕ
+
σ̇

2
2ϕ

)

Ψ = 0 , (52)

with solution

Ψ = exp
(

− σ̇
4

∫

d4x
√

ĝϕ2ϕ
)

Ψ0[Ã] (53)

(48) now implies that Ψ0 satisfies

∂

∂r
Ψ0 = (54)

−
(

1

2

∫

d4x dr
√

ĝ

(

−1

ĝ
ĝij

δ2

δÃiδÃj

+
1

l2
ÃiÃj ĝ

ij + e−σ Ãi

(

2 +
R̂

4

)

Ãj ĝ
ij

)

+
σ̇

4
Tr1s

)

Ψ0 .

Comparing this to (17) shows that the Weyl anomaly of the gauge field is given by an

effective mass of 1/l2 and the heat-kernel of the operator 2 + R̂
4

acting on divergenceless

four-dimensional vectors. Now the projector onto divergenceless four-dimensional vectors
is P i

j = δi
j + ∇j2

−1∇i and (2 + R̂/4)∇j = ∇j
2 when acting on scalars, so

(

2 + R̂/4
)n P =

(

2 + R̂/4
)n

+ ∇2
n−1∇ (55)

hence

Tr
(

e−s(2+R̂/4)P
)

= Tr e−s(2+R̂/4) − Tr e−s2 (56)

i.e. the trace of the heat-kernel for 2 + R̂/4 acting on divergenceless vectors is equal to
the trace of the heat-kernel for 2+ R̂/4 acting on unconstrained four-dimensional vectors

minus the trace of the heat-kernel for the operator 2 acting on scalars,[17]. Given the
origin of the term σ̇

4
Tr1s we regulate it using the heat-kernel for 2 acting on scalars. If

we denote the a2 Seeley-de Witt coefficients for the 2 + R̂
4

acting on unconstrained four-
dimensional vectors by v0 and for 2 acting on scalars by s0, then the 1-loop contribution

of the gauge-field to the boundary Weyl anomaly is δA = −(v0 − 2s0)/(32π2). This com-

bination of heat-kernel coefficients is precisely that that arises in the Weyl anomaly of a
four-dimensional gauge-field after gauge-fixing in the Lorentz-gauge, the 2s0 correspond-

ing to the Faddeev-Popov ghosts which are minimally coupled to the metric. This should
not be surprising since the two pieces of this expression do not correspond to conformally

invariant actions, but their sum, a four-dimensional gauge-theory, does.
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The S5 compactification of IIB Supergravity produces mass terms to be added to the
action Sgv of the form

Smgv =
m2

2

∫

d4x dr
√
GGµνAµAν =

m2

2

∫

d4x dr
√

ĝ
(

e2σA2
r + eσ ĝijAiAj

)

. (57)

This breaks the gauge invariance and couples Ar to the longitudinal part of Ai. To
decouple these degrees of freedom we change variables to Ãi, which is constrained to be

divergenceless, and u and w, where

Ai = Ãi + ∇i

(

u+ 2
−1/2e−σ∂r

(

e3σ/2w
))

, Ar = ∂ru+ 2
1/2e−σ/2w , (58)

so that the mass term becomes

Smgv =
m2

2

∫

d4x dr
√

ĝe2σ
(

e−σĝijÃiÃj + u̇2 + e−σu2u+ wΩw w
)

, (59)

where

Ωw w = e−σ/2∂r

(

e−σ∂r

(

e3σ/2w
))

− e−σ
2w (60)

u decouples from Sgv which becomes

Sgv =
1

2

∫

d4x dr
√

ĝ
(

∂rÃi ∂rÃj ĝ
ijeσ + Ãi

(

2 + R̂/4
)

Ãj ĝ
ij + e2σ wΩ2

v w
)

(61)

The norm on fluctuations of the field copies the form of the mass term:

|| δA ||2 =
∫

d4x dr
√

ĝe2σ
(

e−σĝijδÃiδÃj + δu̇2 + e−σδu2 δu+ δwΩ δw
)

, (62)

so that the functional integration volume element factorises into

DA = DÃDu
√

DetΩs Dw
√

Det Ωw (63)

where Ωs is the same operator that occurred earlier in the discussion of the scalar field
(11). When m is non-zero the integral over u in

∫ DA exp(−Sgv − Smgv) generates

1/
√

DetΩs which cancels the corresponding Jacobian factor, and the integral over w

generates 1/
√

Det Ωw(Ωw +m2), part of which cancels the Jacobian factor for w, leaving

1/
√

Det (Ωw +m2). Representing this determinant as another functional integral means
that we can re-write the original functional integral as

∫

DAe−Sgv−Smgv

=
∫

DÃ e− 1
2

∫

d4x dr
√

ĝ(∂rÃi ∂rÃj ĝijeσ+Ãi(2+R̂/4) Ãj ĝij)

×
∫

Dw e− 1
2

∫

d4x dr
√

ĝ e2σw (Ω+m2) w (64)

After a partial integration the action in the w-integral reduces to that of a scalar field in
AdS5

∫

d4x dr
√

ĝ e2σw (Ω +m2)w

=
∫

d4x dr
√

ĝ
(

e−σ
(

∂r

(

e3σ/2w
))2

+ eσw2w + e2σm2w2
)

=
∫

d4x dr
√

ĝ e2σ
(

ẇ2 +
(

m2 − 3

4

(

σ̈ + σ̇2
)

)

w2 + e−σw2w
)

. (65)
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Given that σ̈+ σ̇2 = 4/l2 we see that the squared mass has been shifted m2 → m2−3. As

we saw in (24) this contributes to the Weyl anomaly with a coefficient
√

(l2m2 − 3) + 4 =√
l2m2 + 1. If we make a change of variables similar to that for a gauge-vector Ã = eσ/2Ã

to turn the ‘kinetic term’ into canonical form then, just as for the gauge-vector the action
acquires a term A2 which shifts the mass m2 → m2 + 1/l2 so that the coefficient of the

Weyl anomaly is again
√
l2m2 + 1. Thus δA for the product of functional integrals in (64)

is −
√
l2m2 + 1 v/(32π2). It remains to identify the combination of heat-kernel coefficients

in v. We can do this by comparing this result with the corresponding calculation for the

gauge-vector. When m = 0 the functional integral over u does not produce 1/
√

DetΩs

because the appropriate part of the action vanishes, so the Jacobian factor does not

cancel, but rather the integration generates the volume of gauge transformations which
has to be divided out in order to restrict the integral to physical degrees of freedom.

Now the uncancelled Jacobian factor involves the determinant of the operator associated
with a massless scalar field in AdS, so it contributes mith an ‘effective mass’

√
4 and

heat kernel coefficient s (belonging to the conformally coupled operator 2− R̂/6 in four-
dimensions) and the ‘wrong’ sign, because it is a Jacobian. So, computed this way the

Weyl anomaly of a gauge-vector is −(v−2s)/(32π2), but since we have already found this
to be −(v0−2s0)/(32π2) we conclude that v = v0 +2s−2s0, as stated in the introduction.

Finally we give an alternative derivation of the above results using a five-dimensionally
covariant formulation, which is useful in the study of more complicated systems like the

graviton case in Section 4 and the case of an anti-symmetric tensor in Section 5. The

five-dimensional Lagrangian is

LA =
√
g [

1

4
FµνF

µν +
1

2
m2AµA

µ ] . (66)

With Rµν = −4l−2gµν , the equation of motion for the massive case can be written as

(−2 − 4l−2 +m2)Aµ = 0 , ∇µAµ = 0 , (67)

suggesting that we decompose the path-integral variable as Aµ = Âµ+∂µϕ with ∇µÂµ = 0,

ZA =
∫

DAe−
∫

LA =
∫

DÂ e−
∫ √

g[ 1
4
F 2(Â)+ 1

2
m2Â2]

∫

Dϕ|△s|
1
2 e−

1
2
m2
∫ √

g ϕ△sϕ , (68)

where △s = −2 acting on the scalar ϕ and the factor |△s|
1
2 = Det(−2)

1
2 arises from the

Jacobian. For m2 6= 0, the Jacobian is suppressed by the path-integral for ϕ and we have

Zmassive = ZÂ =
∫

DÂ e− 1
2

∫ √
g Âa(−2−4l−2+m2)Âa ≡ |△m2

Â
|− 1

2 , (69)

while for m2 = 0,
∫ Dϕ corresponds to the gauge volume and has to be removed from ZA,

Zmassless = ZA/
∫

Dϕ = |△m2=0
Â

|− 1
2 |△s|

1
2 , (70)

As shown in the above, the anomaly contribution for the massive vector is written as
−
√
m2l2 + 1 v/32π2, while a five-dimensional minimally coupled scalar with mass m2 gives

−
√
m2l2 + 4 s/32π2. Therefore the anomaly contribution is

Zmassive ⇒ −
√
m2l2 + 1

32π2
v , Zmassless ⇒ − 1

32π2
(v − 2s) , (71)

identical to the above result obtained in the canonical formulation.
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4 Graviton

For the complete proof of (30), we also have to investigate the graviton sector since

there appears a contribution from the five-dimensional (ghost) vector field, as shown in
Table 3. The Lagrangian for the five-dimensional graviton is obtained by expanding the

Einstein-Hilbert action with cosmological constant Λ,

LG = κ−2 √g (−R + 2Λ) . (72)

w.r.t. hµν = gµν − gAdS
µν . The term quadratic in hµν becomes

LG2 = κ−2√g [
1

4
h̃µν(−gµλgντ 2 − 2Rµλντ + 2Rµλgντ ) h

λτ − 1

2
∇µh̃µν∇λh̃ ν

λ

−h̃µν Eµλ h
λ

µ − 1

2
Λ h̃µν hµν ] , (73)

where h̃µν = hµν − 1
2
gµν h

λ
λ and Eµλ = Rµλ − 1

4
Rgµλ. We decompose hµν into their

traceless and trace parts; φµν = hµν − 1
5
gµν h

λ
λ and h = hλ

λ. With φµν and h, LG2 is

expressed in the constant curvature background as

LG2 = Lφ + Lh + Lharm. ,

Lφ =
1

4
κ−2√g (∇λφµν∇λφµν − 2l−2 φµνφµν) ,

Lh = − 3

40
κ−2√g (h (−2) h + 8l−2 h2) , (74)

Lharm. = −1

2
κ−2√g∇µh̃µν∇λh̃ ν

λ = −1

2
κ−2√g (∇µφµν −

3

10
∇νh)(∇λφ ν

λ − 3

10
∇νh) .

We note that the quadratic action SG2 =
∫ LG2 is invariant under a finite transformation

hµν = h′µν + ∇µVν + ∇νVµ or equivalently,

φµν = φ′
µν + 2∇(µVν) , h = h′ + 2∇µVµ , (75)

where ∇(µVν) is the symmetric and traceless part of ∇µVν .

Next we add a mass term to LG2,

LG2 + Lm2 ≡ LG2 +
1

4
κ−2√g m2 h̃µνhµν = LG2 +

1

4
κ−2√g m2 (φµνφµν −

3

10
h2) , (76)

where the form h̃abhab is required (instead of hµνhµν) to produce a mass term arising from

the compactification of ten-dimensional Type IIB theory on S5 [13].
The equation of motion for the massive graviton can be cast into the form,

−2φµν − 2l−2φµν +m2φµν = 0 , −2h + 8l−2h +m2h = 0 . (77)

Decomposing φµν = φ̂µν +3∇(µ∇ν)h/8(m2+3l−2), we can see that φµν in the first equation

can be replaced with φ̂µν which satisfies the transversal condition ∇µφ̂µν = 0, indicating
that the partition function for the massive graviton is described by the path integral w.r.t.

φ̂µν and h.
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We decompose the path-integral variable φµν = φ̂µν + 2∇(µVν) such that ∇µφ̂µν = 0

and transform h as h = ĥ+2∇µVµ. Then using the invariance of SG2[φ, h] =
∫ LG2 under

the gauge transformation, we see that the variable Vµ only appears in the mass term,

ZG =
∫

DφDh e−
∫

(LG2+Lm2) =
∫

Dφ̂DVDĥ |△v|
1
2 e−

∫

LG2[φ̂,ĥ]−
∫

Lm2 [φ̂,ĥ,V ]

=
∫

Dφ̂ e−
∫

Lm2

φ̂

∫

DVDĥ |△v|
1
2 e

−
∫

Lm2

ĥ,V , (78)

where

Lm2

φ̂
=

1

4
κ−2√g [∇λφ̂µν∇λφ̂µν + (m2 − 2l−2) φ̂µνφ̂µν ] , (79)

Lm2

ĥ,V
= − 3

25
κ−2√g [ĥ (−2) ĥ + 5l−2 ĥ2]

+
1

4
κ−2√g m2 [2 Vµ△µν

v Vν −
3

10
(ĥ+ 2∇µVµ)

2] , (80)

and the operator △v acting on a vector field Vν is

△ ν
v µ Vν ≡ −2∇ν∇(µVν) = (−2

ν
µ + 4l−2δ ν

µ − 3

5
∇µ∇ν)Vν . (81)

which can be factorized under the decomposition of the path integral variable Aµ =

Âµ + ∂µϕ with ∇µÂµ = 0 as

|△v|−
1
2 =

∫

DAe− 1
2

∫ √
g Aµ△µν

v Aν

=
∫

DÂe− 1
2

∫ √
g Âµ(−2+4l−2)Âµ

∫

Dϕ |△s|
1
2 e−

4
5

∫ √
g ϕ(△2

s+5l−2△s)ϕ (82)

= |△m2=8l−2

Â
|− 1

2 |△s + 5l−2|− 1
2 ,

where |△m2

Â
|− 1

2 is given in (69).

For m2 6= 0, the path-integral for Vµ and ĥ in (78) is performed in a similar way after
decomposing Vµ = V̂µ + ∂µϕ s.t. ∇µV̂µ = 0,

∫

DVDĥ |△v|
1
2 e

−
∫

Lm2

ĥ,V

= |△m2=8l−2

Â
| 12 |△s + 5l−2| 12

∫

DV̂ e− 1
2
κ−2m2

∫ √
g Vµ(−2+4l−2)V µ ×

×
∫

DϕDĥ |△s|
1
2 e−

β
4
κ−2

∫ √
g [ 8

5
ĥ△sĥ+(8l−2+m2)ĥ2− 20

3
m2 ϕ(△2

s+8l−2△s)ϕ−4m2 ĥ△sϕ]

= |△s + 5l−2| 12 |△s|
1
2

∣

∣

∣

∣

∣

8
5
△s + 8l−2 +m2 −2m2 △s

−2m2 △s −20
3
m2 (△2

s + 8l−2△s)

∣

∣

∣

∣

∣

− 1
2

∼ |△s + 8l−2 +m2|− 1
2 , (83)

while the φ̂-integral in (78) is denoted as

∫

Dφ̂ e−
∫

Lm2

φ̂ =
∫

Dφ̂ e− 1
4
κ−2

∫ √
g φ̂µν(−2−2l−2+m2)φ̂µν ≡ |△m2

φ̂
|− 1

2 , (84)
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which gives
ZG = |△m2

φ̂
|− 1

2 |△s + 8l−2 +m2|− 1
2 . (85)

Compared with (77), we see that the determinant |△s + 8l−2 + m2|− 1
2 stems from the

trace part h, which however is coupled to other scalars π and b in ten dimensional Type
IIB theory on S5 and indeed is given by π as h = (16/15)π for the massive case (m2 =

k(k + 4)l−2, k ≥ 1) [13]. As the mass spectrum of π and b is listed in Table III of [13]

and has already been counted in our sum of KK-modes, the anomaly contribution from
the massive graviton corresponds to the φ̂-mode, |△m2

φ̂
|− 1

2 .

For m2 = 0, we have to take into account the trace mode. From (78), (79), (80) with

m2 = 0, we have

ZG =
∫

Dφ̂ e−
∫

Lm2

φ̂

∫

Dĥ e− 2β
5

κ−2
∫ √

g ĥ(−2+5l−2)ĥ
∫

DV |△v|
1
2

= |△m2=0
φ̂

|− 1
2 |△s + 5l−2|− 1

2 |△m2=8l−2

Â
| 12 |△s + 5l−2| 12

∫

DV

= |△m2=0
φ̂

|− 1
2 |△m2=8l−2

Â
| 12
∫

DV , (86)

where
∫ DV corresponds to the gauge volume of the massless graviton theory and thus

has to be discarded from ZG.
Solving the Schrödinger equation, we see that the anomaly contribution from the

traceless and transversal φ̂-mode, |△m2

φ̂
|− 1

2 is −
√
m2l2 + 4 g/32π2 with a mass-independent

parameter g, while as noted in Section 2, |△m2=8l−2

Â
|− 1

2 gives −
√

8 + 1v/32π2 = −3v/32π2.
Therefore the anomaly contributions from the massive and massless graviton are

Zmassive
G ⇒ −

√
m2l2 + 4

32π2
g , Zmassless

G ⇒ − 1

32π2
(2g − 3v) , (87)

where v = v0 + 2s− 2s0, which completes the proof of (30).

5 Anti-symmetric Tensor

Finally, we consider the theory of a massive anti-symmetric field Bµν . The five-dimensional
Lagrangian is given as

LB =
√
g [

1

24
FµνλF

µνλ +
1

2
m2BµνB

µν ] (88)

=
1

2

√
g [(∇λBµν)

2 − 2(∇µBµν)
2 +Bλτ (2R µ

λ δ ν
τ −R µν

λτ )Bµν +m2BµνBµν ] .

As in the vector case, we decompose Bµν into the transversal part B̂µν with ∇µB̂µν = 0
and the gauge mode ∂[µζν]. Then the partition function is written as

ZB =
∫

DB e−
∫

LB =
∫

DB̂ e−
∫ √

g[ 1
24

F 2(B̂)+ 1
2
m2B̂2]

∫

Dζ |△ζ|
1
2 e−

1
4
m2
∫ √

g ζµ△µν
ζ

ζν , (89)
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where the determinant of the operator △µν
ζ = −2

µν − 4l−2gµν +∇µ∇ν is expressed under

the decomposition ζµ = ζ̂µ + ∂µφ with ∇µζ̂µ = 0,

|△ζ|−
1
2 =

∫

Dζ e− 1
2

∫ √
g ζµ△µν

ζ
ζν =

∫

Dζ̂ e− 1
2

∫ √
g ζ̂µ△µν

ζ
ζ̂ν

∫

Dφ |△s|
1
2

= |△m2=0
Â

|− 1
2 |△s|

1
2

∫

Dφ , (90)

where |△m2=0
Â

|− 1
2 is given in (69), showing that the determinant diverges due to the gauge

invariance of △µν
ζ under δζµ = ∂µ φ. For m2 6= 0, however the determinant is suppressed

by the path integral w.r.t. ζ and the remaining part in (89) contributes to the Weyl
anomaly as

Zmassive
B =

∫

DB̂ e−
∫ √

g[ 1
24

F 2(B̂)+ 1
2
m2B̂2] ⇒ − |m|

32π2
b , (91)

where b is a mass independent parameter. For m2 = 0, the path integral for B̂µν gives no
effect to the anomaly, although there remains the Jacobian in (89) giving

∫

Dζ |△ζ|
1
2 = |△m2=0

Â
| 12 |△s|−

1
2 (
∫

Dφ)−1
∫

Dζ̂ Dφ |△s|
1
2 = |△m2=0

Â
| 12
∫

Dζ̂ , (92)

where
∫ Dζ̂ for the constrained variable ζ̂µ with ∇µζ̂µ = 0 corresponds to the gauge volume

of the theory and has to be removed, which leads to the contribution to the anomaly

Zmassless
B = |△m2=0

Â
| 12 ⇒ − 1

32π2
(−v) . (93)

Thus the vector parameter arising from the massless Bµν is also given by v = v0−2s0+2s.

Note that, however, the massless anti-symmetric tensor only appears in the doubleton
supermultiplet, which consists of the first three fields with p = 1 in Table 1, that is, A(1)

µν

with △− 2 = 0. As the doubleton is known to correspond to the center-of-mass degree
of freedom of the boundary theory, that is, the U(1) factor of U(N) = SU(N) × U(1)

Super-Yang-Mills, we did not count the doubleton sector in the summation (30).

6 Diagonalisation of the Spectrum

To construct the spectrum we reduce the ten-dimensional Type IIB Supergravity action
about the AdS5 × S5 background, expanding in S5 spherical harmonics to obtain a five-

dimensional action on AdS5. For the purposes of calculating the one-loop Weyl anomaly,
we need the quadratic part of the 5d action. At the time that we began this work,

this had not been calculated 3 , so we constructed an action that reproduces the field
equations of ten-dimensional Type IIB Supergravity, expanded in S5 harmonics. The

difficulties associated with a Lagrangian description of self-dual field strengths can be
avoided by expanding in S5 harmonics before constructing the Lagrangian: thus the

action we construct is local in AdS5 but not in the ten-dimensional space.

3A construction of the quadratic action has since been given in [12]. This is equivalent to the action
we constructed and describe here, although the details of the derivation are different.
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6.1 Graviton

To begin with we exclude couplings between the metric and gauge field, and consider the
five-dimensional equations of motion that arise from pure ten-dimensional gravity on the

AdS5 × S5 background. Decomposing the ten-dimensional metric into backround values
and fluctuations as gmn = ġmn + hmn, we have

Ṙµν =
4

l2
gµν , Ṙαβ = − 4

l2
gαβ , (94)

where gµν is the deformed AdS5 metric (7), and gαβ is the metric of S5. Indices will be

raised and lowered with these metrics.

The ten-dimensional Einstein term can be written to quadratic order as

√
gR|ġ+h = (

√

ġṘ) − hmn(
√

ġṘmn − 1

2

√

ġġmnṘ) −

−1

2
hmn

(
√

ġE pq
mn hpq +

1

2
ġpqhpq(

√

ġṘmn − 1

2

√

ġġmnṘ) −

−1

2

√

ġhmnṘ +
1

2

√

ġġmnh
pqṘpq −

1

2

√

ġġmnġ
pqE rs

pq hrs

)

, (95)

where Roman indices refer to ten-dimensional coordinates, and Emnpq is a second-order

differential operator. Call the part quadratic in hmn S2. We will impose the gauge
conditions

Dαhαβ = 0, Dαhαµ = 0. (96)

From the ten-dimensional Einstein equations (94) we have

Ṙ = 0

Ṙmnhmn =
4

l2
(hµ

µ − hα
α). (97)

Also,

−hmnṘmrsnh
rs =

1

l2
(hµνhµν − hµ

µh
υ
υ) +

1

l2
(hαβhαβ − hα

αh
β
β)

hmnṘr
mhnr =

4

l2
(hµυhµυ − hαβhαβ)

ġpqE rs
pq hrs =

1

2
(22x + 2y)h

m
m −DmDnh

mn

hmnE pq
mn hpq = hmn(

1

2
(2x + 2y) +DmDnh

r
r −DmD

rhrn), (98)

so that

−2S2√
ġ

=
1

2
hmn(2x + 2y)hmn − 1

2
hm

m(2x +
1

2
2y)h

n
n +

+hmnDmDnh
r
r − hmnDmD

rhrn

+
5

l2
hµυhµυ − 5

l2
hαβhαβ +

3

l2
hµ

µh
υ
υ −

3

l2
hα

αh
β
β. (99)
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Taking a variation of the action (95) with respect to hmn gives the equation of motion
(neglecting mass terms)

2Ṙmn − ġmnṘ = (2x + 2y)hmn − ġmn(2x +
1

2
2y)h

p
p +D(mDn)h

p
p

+ġmnD
pDqhpq − 2D(mD

rhn)r. (100)

This contracts to

Ṙ = (2x +
1

2
2y)h

p
p −DpDqhpq, (101)

whence

2Ṙ(µν) = (2x + 2y)h
′
µν +D(µDν)h

′µ
µ − 2D(µD

ρh′ν)ρ

= 2E1.1
(µν). (102)

Here h′µν is defined by a linearised Weyl shift: hµν = h′µν − 1
3
gµνh

α
α. Round brackets

indicate that an index pair is symmetrised with the trace removed. In writing (102) we

made use of the gauge conditions (96). Also, we have

2gµνRµν = (22x + 2y)h
α
α − 5

3
(2x + 2y)h

′µ
µ − 2DµDνh′µν

= 10E1.2, (103)

2R(αβ) = (2x + 2y)h(αβ) + (D(αDβ)h
α
α − 16

15
D(αDβ)h

′µ
µ ) − 2D(αD

µhβ)µ

= 2E3.1
αβ + 2E3.2

αβ − 2E3.3
αβ , (104)

2gαβRαβ = (2x −
1

15
2y)h

′µ
µ + 2yh

α
α

= 10E3.4, (105)

2Rµα =
(

δν
µ(2x + 2y) −DµD

ν
)

hνα +Dα

(

Dµ(h
α
α +

8

15
h′µµ ) −Dνh′µν

)

= 2E2.1
µα + 2E2.2

αµ . (106)

The equations of motion arising from the action S2 imply the vanishing of the quantities

(102)-(106). We expand everything in S5 spherical harmonics as follows:

h′µν =
∑

Hµν(x)Y (y), hµα =
∑

Bµ(x)Yα(y),

h(αβ) =
∑

φ(x)Y(αβ)(y), hα
α =

∑

π(x)Y (y). (107)

When we include the couplings to the antisymmetric field, the equations of motion (102)-
(106) give the equations of motion E1.1-E3.4 in Table II of [13], each being proportional

to a single spherical harmonic. We will refer throughout to the equations in Table II of
([13]) since they give a convenient way of checking the coefficients of coupling and mass

terms.
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6.2 Antisymmetric Tensor

Again we begin by excluding couplings to the metric, and seek to construct an action
that reproduces the equations of motion in Table II of [13]. We decompose the ten-

dimensional four-index antisymmetric tensor in terms of background values and fluctua-
tions as Amnpq = Ȧmnpq + amnpq and expand the fluctuations amnpq in spherical harmonics

as follows:

aµνρσ =
∑

bµνρσ(x)Y (y),

aµνρα =
∑

bµνρ(x)Yα(y),

aµναβ =
∑

bµν(x)Y[αβ](y),

aµαβγ =
∑

φµ(x)ǫδǫαβγDδYǫ(y),

aαβγδ =
∑

b(x)ǫǫαβγδDǫY (y). (108)

Consider the action

S40 = bǫµνρστ∂µbνρστ + 12b2yb−
1

2
bµνρσbµνρσ. (109)

Varying b gives M1:
5∂[µbνρστ ] − ǫµνρστ2yb. (110)

Varying bµνρσ gives M2.2:
−ǫτµνρσ∂τb− bµνρσ. (111)

Now consider the action

S31 =
1

2
bµνρbµνρ + bµνρǫστ

µνρ∂σφτ + 3φτ△yφτ . (112)

Varying bµνρ gives M3.2:
bµνρ + ǫστ

µνρ∂σφτ , (113)

while varying φτ gives
−ǫστ

µνρ∂σb
µνρ + 6△yφτ , (114)

which is equivalent to M2.1:
4∂[µbνρσ] + ǫτµνρσ△yφτ . (115)

Finally, consider the action

S22 = b+µν∂ρb
−
στ ǫ

µνρστ − ib+µν
√

−∆yb
−
µν . (116)

Varying b+µν gives

∂ρb
−
στ ǫ

µνρστ − i
√

−∆yb
−
µν , (117)

which corresponds to M3.1.
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6.3 Gravitational Couplings

To generate the correct couplings to gravity in the equations of motion for the antisym-
metric tensor we make the modifications

S40 → S40
int = S40 +

12

l
Hb− 32

l
πb, (118)

S31 → S31
int = S31 +

6

l
φτBτ , (119)

where H = Hµ
µ . The action at this stage is

S2 + A1S
40
int + A2S

31
int + A3S

22
int, (120)

and the normalisations can be fixed by considering the terms in the Einstein equations

generated by the interactions. The contribution to E1.2 is −12
l
A1b. Now in equation E1.2

of [13] we find a term

1

3l
ǫµνρστ∂µbνρστ = −8

l

(

1

2l
H − 4

3l
π + 2yb

)

, (121)

where we used the equation of motion M1. So if 12
l
A1 = 8

l
2y, the correct coupling is

generated, along with some mass terms. Note that 2y has zero modes. This choice also

generates the correct coupling in equation M3.4.
The contribution of the interaction terms to E2.1

µα is 3
l
A2φµ. In equation E2.1 we find

the interaction terms

−
(

− 2

3l
ǫνρστ
µ ∂νbρστ +

4

l
∆yφµ

)

, (122)

which we can rewrite with the help of M2.1 as

−8

l
∆yφµ +

4

l2
Bµ. (123)

So we can take A2 = −4
3
∆y. The normalisation of A3 does not need to be fixed, as the

action is diagonal in the field b±µν .

6.4 Mass Terms

To calculate the mass terms we will drop the existing mass terms from S2 and add a mass

term to the action:

Smass = −1

2
B1h

µνhµν −
1

2
B2(h

µνgµν)
2 − 1

2
B3h

αβhαβ −

−1

2
B4(h

αβgαβ)2 − Chα
αh

µ
µ − 1

2
Dhα

µh
µ
α. (124)

The coefficients of the mass terms are easily determined from the Einstein equations.

From E3.1 we find B3 = − 1
l2

, while E1.1 gives B1 = 1
l2

. E3.4, after a bit of calculation,
leads to the equations
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5B2 − 3C +
1

l2
= 0, 3B4 − 5C +

25

l2
= 0, (125)

while E1.2, rewritten as before with the help of M1 to eliminate the four-index antisym-
metric field, gives

3B2 − 5C +
7

l2
= 0, 5B4 − 3C +

31

l2
= 0. (126)

These have the consistent solution B2 = 1
l2

, C = 2
l2

, B4 = − 5
l2

. Finally, E2.1 gives

D = − 6
l2

, where this includes an extra −2 that arises because we wrote the action S2 in
terms of 2y instead of ∆y.

The final form of Smass, is then

Smass =
1

l2
=
(

−1

2
H(µν)H(µν) +

1

2
φ2 + 6φµφµ − 3

5
H2 +

64

15
π2
)

. (127)

where we have written everything in terms of harmonically expanded fields, but the ex-

plicit dependence on spherical harmonics has been suppressed.

6.5 Diagonalisation

Writing the complete action so far in terms of the expanded fields gives:

S = −1
4
H(µν)(2x + 2y)H(µν) − 1

2
DµH

(µν)DρH(ρν) − 1
2l2
H(µν)H(µν) − 1

4
φ(2x + 2y)φ+

+
1

2l2
φ2 − 1

2
φµ(2x + 2y)φµ − 1

2
Dµφ

µDνφ
ν +

6

l2
φµφµ +H

(

3

25
2x +

1

5
2y

)

H −

− 3

5l2
H2 + π

(

2

225
2x −

2

15
2y

)

π +
64

15l2
π2 − 8

30
H2yπ − 3

10
HDµDνH(µν) +

+
2

3
b̃
(

ǫµνρστ∂µbνρστ − 12(1 − δI,0)b̃+
12

l
H − 32

l
π
)

− 1

3
bµνρσ

2ybµνρσ −

−8

3

(

1

2
bµνρ∆ybµνρ + bµνρǫ στ

µνρ ∂σ∆yφτ − 3∆yφ
τ∆yφτ +

6

l
∆yφ

τBτ

)

+

+A3

(

b+µν∂ρb
−
στ ǫ

µνρστ − ib+µν
√

−∆yb
−
στ

)

. (128)

We have defined b̃ = 2yb for future convenience, and the delta function δI,0 is equal to 1
for the spherical harmonic for which 2y has eigenvalue 0. In [13] the fields bµνρ and bµνρσ

were algebraically eliminated from the equations of motion. This is equivalent to shifting

the fields: bµνρ = bqµνρ + bcµνρ and bµνρσ = bqµνρσ + bcµνρσ, where the “classical” parts satisfy
equations of motion corresponding to M2.1 and M2.2:

∆yb
c
µνρ + ǫ στ

µνρ ∂σ∆yφτ = 0, (129)

bcµνρσ + ǫ τ
µνρσ ∂τ b̃ = 0. (130)

The quantum parts decouple and are non-dynamical, while the part of the action involving
φτ and b̃ becomes

21



8
(

−2∂[σφτ ]∆y∂
[σφτ ] + ∆yφ

τ∆yφτ −
2

l
∆yφ

τBτ

)

−

−8b̃
(

(−2x2
−1
y − 1)b̃− 1

l
H +

8

3l
π
)

. (131)

In this expression we have assumed for the moment that the eigenvalue of 2y is non-zero.
Acting on φµ and Bµ, ∆y has the eigenvalues − 1

l2
(k + 1)(k + 3), where k = 1, 2, 3, . . ..

Also, 2y = ∆y + 4
l2

. We can diagonalise the φµ, Bµ system by putting

A(1)
µ = Bµ − 4

l
(k + 3)φµ, A(2)

µ = Bµ − 4

l
(k + 1)φµ, (132)

and the masses take the expected values M2l2 = (k2 − 1) and M2l2 = (k + 3)(k + 5)
respectively.

To diagonalise the graviton, we make the orthogonal decomposition

H(µν) = ĥµν +D(µΛν) +D(µDν)2
−1
x φ̃, (133)

where the components satisfy the transversality conditions Dµĥµν = DµΛµ = 0. Inserting
this decomposition into (128) there are no cross-terms. The φ̃ part of the action becomes

φ̃
(

3

25
2x +

(

− 3

5l2
− 1

5
2y

)

+
1

l2
2

−1
x 2y

)

φ̃− 6

5
H
(

1

5
2x −

1

l2

)

φ̃. (134)

To get rid of the 2
−1
x dependence we introduce an additional field ψ. (134) becomes

φ̃
(

3

25
2x −

3

5l2
− 1

5
2y

)

φ̃+ 2φ̃ψ − l2ψ2x2
−1
y ψ − 6

5
H
(

1

5
2x −

1

l2

)

φ̃. (135)

The rest of the scalar part of the action is

H
(

3

25
2x −

3

5l2
+

1

5
2y

)

H + π
(

2

225
2y −

2

15
2x +

64

15l2

)

π −

− 8

30
H2yπ − 8b̃

(

(−2
−1
y 2x − 1)b̃− 1

l
H +

8

3l
π
)

. (136)

Making the change of variables H = φ1 + φ2, φ̃ = φ1 − φ2, the total scalar action

(136)+(135) can be written

Sscalar = φ1

(

4

5
2yφ2 + 2ψ + 8b̃− 4

15
2yπ

)

+ φ2

(

12

25
2x −

12

5l2

)

φ2 −

− 1

l2
ψ2x2

−1
y ψ + π

(

2

225
2y −

2

15
2x +

64

15l2

)

π + 8b̃(2x2
−1
y )b̃+

+φ2

(

− 4

15
2yπ +

8

l
b̃− 2ψ

)

− 64

3l
b̃π. (137)

The integral over φ1 now imposes the condition
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4

5
2yφ2 + 2ψ + 8b̃− 4

15
2yπ = 0, (138)

which can be used to eliminate the field ψ.
Changing variables from (φ2, π, b̃) to

(X, Y, Z) =

(

5

2

(

φ2 −
1

3
π
)

/
√

5 + l22y, i
5√
2

(

5

3
π − 2φ2

)

, i

√

2y

8

(

b̃+
l2

5
2yφ2

))

, (139)

we find that the kinetic term is diagonal in (X, Y, Z). Diagonalising the mass matrix then
gives mass eigenvalues M2l2 = k(k − 4), (k + 4)(k + 8), and 5. All this assumed that

the eigenvalue of 2y was non-zero, so k = 2, 3, . . .. The modes on which 2y = 0 will be
considered shortly.

The part of the action involving Λµ can be written as

1

8
2yΛ

(

2x −
4

l2

)

Λ, (140)

and on spherical harmonics for which 2y 6= 0 the integration over Λ just cancels the
Jacobian for the change of variables (133). For the mode with 2y = 0 the Jacobian is

not cancelled. In either case, if we put together the actions for h(µν) Λµ and the scalar of
mass 5, we get the correct quadratic action for a five-dimensional massive (or massless)

graviton, as considered in Section 4.
Finally we consider the modes for which the eigenvalue of 2y vanishes. In this case,

after the decomposition (133), the scalar part of the action becomes

3

25
(H − 2xφ̃)

(

2x −
5

l2

)

(H − 2xφ̃) − 2

15
π
(

2x −
32

l2

)

π +
2

3
b̃ǫµνρστ∂µb̂νρστ , (141)

where b̂νρστ has been shifted to decouple π and H from b̃. As a result of this shift, the

action for b̃ corresponds to a scalar of mass M2l2 = 45, and is identified with the k = 1

mode in the second branch of mass eigenvalues.

6.6 Antisymmetric Tensor Spectrum

The action for a free massless complex ten-dimensional antisymmetric tensor can be writ-

ten as

S =
∫

d10x
√−g

(

−1

2
∇mĀnk(∇mAnk −∇nAmk −∇kAnm)

)

(142)

Writing this in terms of five-dimensional components and making use of the gauge con-
ditions ∇αAαβ = ∇αAαb = 0 gives

S =
∫

d10x
√−g

(

−1

2

(

∇µĀαβ∇µAαβ + ∇γĀαβ∇γAαβ + 6ĀαβA
αβ
)

−
(

∇µĀνα(∇µAνα −∇νAµα) + ∇βĀµα∇βAµα + 4ĀµαA
µα
)

− 1

2

(

∇µĀνρ(∇µAνρ −∇νAµρ −∇ρAνµ) + ∇αĀµν∇αAµν
)

)

. (143)
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The three lines of (143) correspond to scalar, vector, and antisymmetric tensor fields on
AdS5, as is clear when we perform the expansion in spherical harmonics:

Aµν =
∑

aµν(x)Y (y), Aµα =
∑

aµ(x)Yα(y),

Aαβ =
∑

a(x)Yαβ(y), B =
∑

B(x)Y (y). (144)

To reproduce the equations of motion in [13] we must add to (143) a topological mass

term

Smass = iǫαβγδǫĀαβϕγAδǫ + iǫµνρστ ĀµνϕρAστ . (145)

We can rewrite the antisymmetric tensor part of (143) as a first-order system by intro-

ducing auxiliary fields Bab and B̄ab:

SA =
∫

d10x
√−g

(

− i

2
ǫµνρστ B̄µνϕρAστ +

i

2
ǫµνρστBµνϕρĀστ

− 2B̄µνB
µν − 1

2
∇αĀµν∇αAµν + iǫµνρστ ĀµνϕρAστ

)

(146)

Changing the variables to

C =
1

2
2

1/2
y A+ 2

−1/2
y (B −A), C̄ =

1

2
2

1/2
y Ā− 2

−1/2
y (B̄ − Ā), (147)

gives standard mass terms with eigenvalues as in [13]. From the point of view of calculating

the anomaly, it is clear that a complex antisymmetric tensor in the first-order formalism
is equivalent to a real antisymmetric tensor in the second-order formalism, as considered

in section 5.

7 Fermion Spectrum

The action for the ten-dimensional spinor field is

S =
∫

d10x
√−g

(

¯̂
λΓmDmλ̂− i

2 · 5!
¯̂
λΓmnpqrFmnpqrλ̂

)

, (148)

We choose the following representation of the Γ-matrices

Γa = σ1 ⊗ I4 ⊗ γa, Γα = −σ2 ⊗ τα ⊗ I4

{ΓM ,ΓN} = 2ηMN , {γa, γb} = 2ηab, {τα, τβ} = 2δαβ

In this representation the matrix Γ11 is equal to

Γ11 = Γ0 · · ·Γ9 =

(

I16 0
0 −I16

)

(149)

The spinor is right handed, and the gravitino left-handed:

λ̂ =
1

2
(1 − Γ11)λ̂ =

(

0
λ

)

ψ̂µ =
1

2
(1 + Γ11)ψ̂µ =

(

0
ψµ

)

. (150)
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The action (148) becomes

S =
∫

d10x
√−g λ̄ (γaDa + iταDα + 1) l. (151)

Expanding λ in spherical harmonics

λ =
∑

k≥0

(

l+k (x)Ξ+
k (y) + l−k (x)Ξ−

k (y)
)

, ταDαΞ±
k = ∓i(k +

5

2
)Ξ±

k , (152)

we obtain the five-dimensional action

S =
∫

d5x
√−ga

∑

k≥0

(

λ̄+
k

(

γaDa + k +
7

2

)

l+k + λ̄−k

(

γaDa − k − 3

2

)

l−k

)

(153)

There is no need to add any boundary term to this action, as the boundary conditions

that we imposed in Section 2 ensure that the classical action does not vanish on shell.

The ten-dimensional action for the gravitino is

S =
∫

d10x
√−g

(

¯̂
ψmΓmnpDnψ̂p +

i

4 · 5!
¯̂
ψmΓmnpΓmnpqrFmnpqrΓnψ̂p

)

. (154)

Rewriting this in terms of five-dimensional fields gives

S =
∫

d10x
√−g

(

ψ̄µ (γµνρDνψρ − iγµνταDνψα + iγµνταDαψν + γµταβDαψβ − γµνψν

)

+ ψ̄α

(

−iταβγDβψγ − iγµνταDµψν + γµταβDβψµ − γµταβDµψβ + ταβψβ

))

(155)

As in [13] we fix the local supersymmetries by transforming away all modes of τ ·ψ except
the one proportional to the Killing spinor, on which the eigenvalue of iτ ·Dy is 5/2l. We

perform the decomposition

ψµ = ϕµ +
DT

µ

D ·DT
DT · ψ +

1

d
γµγ · ψ, (156)

where DT
µ = (δν

µ − γµγ
ν/5)Dν is γ-transverse so that

γ · φ = D · φ = 0. (157)

If we put ψ1 =
√
D ·DTDT ·ψ and ψ2 = γ ·ψ then the change of variables ψµ → (φµ, ψ1, ψ2)

has a trivial Jacobian. The expansion in spherical harmonics is given by

ψT
α =

∑

ψIT (x)ΞIT

(α)(y) + ψIL(x)DT
αΞ(y)

ψµ =
∑

ψµ(x)ΞIL(y)

τ ·DΞIT

(α) = mIT ΞIT

(α) = ∓i(k +
7

2
)ΞIT

(α), k ≥ 1

τ ·DΞIL = mILΞIL = ∓i(k +
5

2
)ΞIL, k ≥ 1 (158)

The action for φµ decouples
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Sφ =
∫

d10x
√−g φ̄µ(γ ·D + (mIL − 1)/l)φµ, (159)

but to remove the constraints (157) we must introduce Lagrange multiplier fields that

are equivalent to introducing a pair of ghosts with masses Ml =
√

(mIL − 1)2 + 4 [10].

Diagonalising the (ψ1, ψ2, ψ
IT , ψIL) system, we get two spinor fields that cancel the ghosts,

and two spinor fields of mass Ml = 3 +mIL , mIT − 1, in agreement with the spectrum of

[13]. Finally, in the case of the Killing spinor η, the shift

ψµ → ψµ +
5

3
iγµη (160)

gives the action for the massless gravitino and the mass −11/2l for η.

8 Conclusions

We have shown that the AdS/CFT conjecture for IIB String theory/ N=4 Super-Yang-

Mills theory passes the stringent test of requiring that the Weyl anomlies of the two
theories match at sub-leading order. This generalises the leading order test of Henningson

and Skenderis but avoids perturbation theory in the metric by working with an exact
solution to the Einstein equation in the bulk. At sub-leading order all the multiplets of

IIB Supergravity contribute to the boundary theory Weyl anomaly an amount given by a
universal formula that involves the four-dimensional heat-kernel for conformally covariant

operators. The regularised sum of these contributions involves only those operators that
appear in the boundary theory resulting in the matching of the anomalies. Our approach

generalises to other AdS/CFT correspondences.
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Table 1: Mass spectrum. The supermultiplets (irreps of U(2,2/4)) are labelled by the
integer p. Note that the doubleton (p = 1) does not appear in the spectrum. The (a, b, c)
representation of SU(4) has dimension (a+ 1)(b+ 1)(c+ 1)(a+ b+ 2)(b+ c+ 2)(a+ b+
c + 3)/12, and a subscript c indicates that the representation is complex. (Spinors are
four component Dirac spinors in AdS5).

Field SO(4) repn SU(4) repn ∆ − 2

φ(1) (0, 0) (0, p, 0) p− 2, p ≥ 2
ψ(1) (1

2
, 0) (0, p− 1, 1)c p− 3/2, p ≥ 2

A(1)
µν (1, 0) (0, p− 1, 0)c p− 1, p ≥ 2

φ(2) (0, 0) (0, p− 2, 2)c p− 1, p ≥ 2
φ(3) (0, 0) (0, p− 2, 0)c p, p ≥ 2
ψ(2) (1

2
, 0) (0, p− 2, 1)c p− 1/2, p ≥ 2

A(1)
µ (1

2
, 1

2
) (1, p− 2, 1) p− 1, p ≥ 2

ψ(1)
µ (1, 1

2
) (1, p− 2, 0)c p− 1/2, p ≥ 2

hµν (1, 1) (0, p− 2, 0) p, p ≥ 2

ψ(3) (1
2
, 0) (2, p− 3, 1)c p− 1/2, p ≥ 3

ψ(4) (1
2
, 0) (0, p− 3, 1)c p+ 1/2, p ≥ 3

A(2)
µ (1

2
, 1

2
) (1, p− 3, 1)c p, p ≥ 3

A(2)
µν (1, 0) (2, p− 3, 0)c p, p ≥ 3

A(3)
µν (1, 0) (0, p− 3, 0)c p+ 1, p ≥ 3

ψ(2)
µ (1, 1

2
) (1, p− 3, 0)c p+ 1/2, p ≥ 3

φ(4) (0, 0) (2, p− 4, 2) p, p ≥ 4
φ(5) (0, 0) (0, p− 4, 2)c p+ 1, p ≥ 4
φ(6) (0, 0) (0, p− 4, 0) p+ 2, p ≥ 4
ψ(5) (1

2
, 0) (2, p− 4, 1)c p+ 1/2, p ≥ 4

ψ(6) (1
2
, 0) (0, p− 4, 1)c p+ 3/2, p ≥ 4

A(3)
µ (1

2
, 1

2
) (1, p− 4, 1) p+ 1, p ≥ 4

Table 2: Anomaly coefficients of massive fields on AdS5. Note that the massive vector
coefficient is v0 +2s−2s0 where v0, s, s0 are respectively, the coefficients for the 4d gauge-
fixed Maxwell operator, a conformally coupled scalar, and a minimally coupled scalar.

Field Rij = 0: Constant R:
180a2/RijklR

ijkl 180a2/R
2

φ 1 -1/12
ψ 7/2 -11/12
Aµ -11 29/3
Aµν 33 19/4
ψµ -219/2 -61/4
hµν 189 747/4
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Table 3: Decomposition of gauge fields for the massless multiplet.

Original field Gauge fixed fields ∆ − 2 Rij = 0: Constant R:
180a2/RijklR

ijkl 180a2/R
2

Aµ Ai 1 -11 29/3
(15 of SU(4)) A0 2 1 -1/12

bFP , cFP 2 -1 1/12
ψµ ψirr

i 3/2 -219/2 -61/4
γiψi 5/2 7/2 -11/12

(4 of SU(4)) ψ0 5/2 7/2 -11/12
λFP , ρFP 5/2 -7/2 11/12
σGF 5/2 -7/2 11/12

hµν hirr
ij 2 189 727/4

(SU(4) singlet) h0i 3 -11 29/3

h00, h
µ
µ

√
12 1 -1/12

BFP
0 ,CFP

0

√
12 -1 1/12

BFP
i ,CFP

i 3 11 -29/3
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