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Abstract. We give criteria for ergodicity, transience and null-recurrence for the random walk in
random environment ot = {0, 1, 2, ...}, with reflection at the origin, where the random en-
vironment is subject to a vanishing perturbation. Our results complement existing criteria for ran-
dom walks in random environments and for Markov chains with asymptotically zero drift, and
are significantly different from the previously studied cases. Our method is based on a martingale
technigue—the method of Lyapunov functions.

Keywords. Random walk in random environment, perturbation of Sinai’s regime, recurrence/tran-
sience criteria, Lyapunov functions

1. Introduction

In this paper we study a problem with a classical flavour that lies in the intersection of two
well-studied problems, those of random walks in one-dimensional random environments
and Markov chains with asymptotically small drifts. Separately, these two problems have
received considerable attention, but the problem considered in this paper has not been
analysed before. Further, our results show that the system studied here exhibits behaviour
that is significantly different from that of the previously studied systems.

The random walk in random environment (or RWRE for short) was first studied by
Kozlov [12] and Solomori[18], and has since received extensive attention; see for example
[16] or [19] for surveys. This paper analyses the behaviour of the RWRE for which the
random environment is perturbed by a vanishingly small amount.

The analysis of zero drift random walks in two or more dimensions by the method of
Lyapunov functions demonstrated the importance of the investigation of one-dimensional
stochastic processes with asymptotically small drifts (see, for example, [2], [18],/ or [15]).
For example, if Z;), witht = 0, 1, 2, 3. .. time, is a random walk (with zero drift) in the
nonnegative quarter plane, analysis of the stochastic prdicgdgs where| - || denotes
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the Euclidean norm, involves the study of stochastic processes on the half-line with mean
drift asymptotically zero.

Early work in this field was done by Lamperiti [13,]14]. Criteria for recurrence and
transience are given ia [15], where the behaviour in the critical regime that Lamperti did
not cover was also analysed. Passage-time moments are considéered in [2]. In much of this
work, Lyapunov functions play a central role.

In this paper we demonstrate the essential difference between a nearest-neighbour
random walk in a deterministic environment, perturbed from its critical (null-recurrent)
regime, and a nearest-neighbour random walk in a random environment, also perturbed
from its critical regime (sometimes called Sinai's regime—see below). Our results quan-
tify the fact that in some sense the random environment is more stable, in that a much
larger perturbation is required to disturb the null-recurrent situation. In particular, we
give criteria for ergodicity (i.e. positive recurrence), transience and null-recurrence for
our perturbed random walk in random environment. We will show that in our (random
environment) case the critical magnitude for the perturbation is of the order't? (see
Theorenj ), where is the distance from the origin (in fact, our more general results are
much more precise than this). This compares to a critical magnitude of the oraet of
in the nonrandom environment case (see [15], and Thelofem 2 below).

Our method is based upon the theory of Lyapunov functions, a powerful tool in the
classification of countable Markov chains (see [6]). Such methods have proven effective
in the analysis of random walks in random environments (seel€.g. [3]), in addition to
Markov chains in nonrandom environments.

Loosely speaking, motivation for our model comes from some one-dimensional phys-
ical systems, such as a particle performing a random walk in a homogeneous random one-
dimensional field, subject to some vanishing perturbation (such as the presence of another
particle). Under what conditions is the perturbation sufficient to alter the character of the
random walk?

We now introduce the probabilistic model that we consider. First, we need some no-
tation. We introduce a functiop as follows, which determines our perturbation as de-
scribed below. Lej : [0, c0) — [0, o0) be a function such that

JNim x(x) =0. 1)

As we shall see below, the properfy (1) means that our perturbation is asymptotically
small.

Here, we are interested in the one-dimensional RWRE on the nonnegative integers
(we use the notatiod™* := {0, 1, 2, .. .}), with reflection at the origin. One can readily
obtain results for the one-dimensional RWRE on the whol& af a similar manner.
Formally, we define our RWRE as follows.

We define sequences of random varialfies = 1,2,..., andY;,i = 1,2,..., 0n
some probability spacg2, F, P), with the following properties.
Fix ¢ such that O< ¢ < 1/2. Let§;, i = 1,2, ..., be a sequence of i.i.d. random

variables such that
Ple <& <1-¢]l=1 )

The condition|[(R) is sometimes referred toumsform ellipticity.
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LetY;,i = 1,2,..., be another sequence of i.i.d. random variables, taking values
in [—1, 1], on the same probability space as #eWe allow Y; to depend org;, but
any collectiongY;,, ..., Y;,), (§j, ..., &;,) are independent {1, ..., ik} N {j1, . .., jr}
=40.

For a particular realization of the sequen¢gsi = 1,2,...)and(Y;;i = 1,2,...),

we define the quantities, andg,,n = 1,2, 3, ..., as follows:
En+Yux(n) ife/2<& +Y,x(n) <1-¢/2,
pni=1¢/2 if & + Yux(n) < e/2,
1—¢/2 if £, + Yux(n) > 1— /2, ®3)
qn '=1— py.
We call a particular realization @¢p,,, g,),n = 1, 2, ..., ourenvironmentand we denote

it by w. A givenw is then a realization of our random environment, and is given in terms
of theg; andY; as in 3).

For a given environment, that is, a realization dfp,,, ¢,),n = 1, 2, . .., we consider
the Markov chain(n; (w); t € Z*) onZ*, starting at some point AT, defined as follows:
no(w) =r forsomer € Z*, andforn = 1,2, ...,

Pnis1(w) =n — 1| n(w) =n] = py,
Plnip1(w) =n+ 1| n(w) = n] = qy, 4)

and P[n+1(w) = 1|n(w) = 0] = 1/2, P[ni+1(w) = O|m(w) = 0] = 1/2. (Here

P is the so-calledquenchedprobability measure, i.e. for a fixed environmen) The

given form for the reflection at the origin ensures that the Markov chaapésiodic

which eases some technical complications, but this choice is not special; it can be changed
without affecting our results.

Recall that, from[(L)x (n) — 0 asn — oo. Thus, there existsg € (0, co) such
that x (n) < /2 for all n > ng. Hence, under conditiofi|(2), fd-almost everyw we
havee/2 < &, + Y, x(n) < 1 — ¢/2 (since theY,, are bounded). (For the remainder of
the paper we often use ‘a®! as shorthand forP-almost every’ when the context is
clear.) Thus, for alh > no, (3) implies that, for a.ev,

Pn=b+Yux(), q,=1-& — x(n)Y,, n>no. (5)

Note that our conditions on the variables[if (3) ensure ¢pat< p, < 1 — ¢/2 almost
surely for alln, so that for a.ew, p, andg, are true probabilities bounded strictly away
from 0 and from 1.

Forn=1,2,..., we set

on = |09(1§n§n>' (6)

Write E for expectation undep.
In our model, by[(IL)x (n) — 0 asn — oo. Thus, from[(), in the limiz — oo, we
approach the well-known random walk in i.i.d. random environment as studiédlin [12],
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[18] and subsequently. In addition, whBf¢1] = 0, in the limit asn — oo we approach
the critical case often referred to &mai’s regimeafter [17]. Our results show that despite
this, the behaviour of our model is, in general, very different from the behaviour of these
limiting cases, depending on the nature of the perturbation
In work in preparation, we study the long-run limiting behaviour#as oo) of our
random walky, (@) in terms of its distance from the origin. Of interest are both the almost
sure and ‘in probability’ (see, for examplé, [17, 4]) behaviour. In Sinai’s regime for the
RWRE onZ*, Comets, Menshikov and PopoY([3, Theorem 3.2]) show that, fora.e.
and anye > 0,
1z (w)
(log?)?
for all but finitely manys (where a.s. stands faP-almost surely). This result (for the
RWRE onZ) dates back to Deheuvels and Rex [5]. An exact upper limit result is
given in [8]. In work in preparation, we study analogous almost sure results (in both null-
recurrent and transient cases) for our perturbed RWRE. For example retheost sure
transient case of the RWRE perturbed from Sinai's regime (that is, y\ith = n~* for
some fixed O< o < 1/2, we haveE[z1] = 0, Var[z1] > 0 andx < 0, wherex is defined
at (10)), we find that for a.e» and anys > 0, ast — oo,

< (loglogr)?*®  as.

Ya—e _ Nt ()

(logn)t/«
for all but finitely manyz. Thus in this case, we see that the random walk, for almost
every environment, is contained in a window abgdag 1)1/%. This aspect of the problem
requires additional techniques, however, and we do not discuss this further in the present
paper.

In the next section we state our results. Theolfeips 1-3 are special cases of the model in
which some of the random variablgsandY; are degenerate (that is, equal to a constant
almost surely). In particular, Theoreins 1 4rjd 2 include some known results, when our
model reduces to previously studied systems. In Thepiem 4, the underlying environment
is not in the ‘critical regime’. Our main results, Theorems 6 phd 7, deal with the main
case of interest, in which the underlying environment is truly random and is, in a sense to
be demonstrated, critical.

(log log logr)~ < (loglogr)?**¢  as.

2. Main results

Most of our results will be formulated for almost all environmesatéin some sense, for
all ‘typical’ environments), that igP-almost surely ove(2, F, P).

If Y1 = 0 P-a.s., then our model reduces to the standard reflected one-dimensional
random walk in an i.i.d. random environment. In this cage= &, andg, = 1 — &,,
n=12, ..., and so (with the definition af(6}), = log(p,/q¢,). Criteria for recurrence
of the RWREy, (w) in this case were given by Solomadn [18], for the case wligre =
1,2,...) is ani.i.d. sequence, and generalised by Alili [1]. For the case in which larger
jumps are permitted, see, for example,|[11].

The following well-known result dates back to Solombnl[18].
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Theorem 1. Let (n;(w); t € ZT) be a random walk in i.i.d. random environment, with
P[Y1 = 0] = 1. Supposé&/ar[¢1] > O.
() If E[¢1] < O, thenn, (w) is transient for a.ew.
(i) If E[¢1] = O, thenn, (w) is null-recurrent for a.ew.
(i) If E[¢1] > O, thenn, (w) is ergodic for a.ew.

The critical (null-recurrent) regimg[log(p1/91)] = 0 is known asSinai’s regime af-

ter [14]. This regime has been extensively studied; see, for exarhple,[[4] 8, 9, 10]. For
an outline proof of Theorein| 1 using Lyapunov function methods, similar to those em-
ployed in this paper, see Theorem 3.1[df [3]. In this paper we extend the classification
criteria of Theoreni]1 to encompass the case in whictpthare not i.i.d. and in which
E[log(p./q,)] is asymptoticallyzero as: — oo. Our results are, in some sense, a random
environment analogue of those for Markov processes with asymptotically zero mean drift
given in [15] (see below).

For the remainder of the paper we suppBEE; = 0] < 1. This includes the interest-
ing case wher&, = b P-a.s., for somé € [—1, 1] \ {0}. Our techniques do, however,
enable us to allow; to be random.

Although not as famous as the RWRE, another system that has been well studied is the
rather classical problem of a Markov chain with asymptotically zero drift. This problem
was studied by Lamperti[1B, 14]. General criteria for recurrence, transience and ergodic-
ity were given by Menshikov, Asymont, and lasnogorodskilin [15]. Theqrem 2 below is
a consequence of their main result, Theorem 3, applied to our problem whem]\ar)
and Varlr1] = 0; that is, the distributions df; andY; are both degenerate (i.e. equal to
a constant almost surely). In particular, we hav@arandomenvironmentw. If, on the
other handg; is degenerate buf; is not, then we have a random (asymptotically small)
perturbation on an underlying nonrandom environment, and we have Thgprem 3 below.

We use the notation Iqg := logx and log x := log(log,_; x) fork =2,3,....

Theorem 2. Supposé’[Y1 = b] = 1 for someb € [—1, 0) U (0, 1]. Supposé[&é1 = ]
= 1for somec € (0, 1).
(i) If c < 1/2, thenn,(w) is transient.
(i) If ¢ > 1/2, thenn,(w) is ergodic.
(i) Suppose = 1/2. Suppose there existe Z™ and K € N such that, for alln ¢
[K, 00) and somé: > 1, the following inequality holds:

1 h
b —_t 7
x(n) > 4n + 4nlogn toet 4n[1;_4log; n 0
Thenn, (w) is ergodic.
(iv) Suppose = 1/2. Suppose there existt € Z* and K € N such that, for all

n € [K, o0) and somé: < 1, the following inequality holds:

1 1 h < byn)
4n  4dnlogn 4n[]i_1log;n ~ X
1 1 h

< (8
~ 4n  4dnlogn 4n[1i_;log; n (8)

Thenn, (w) is null-recurrent.
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(v) Suppose = 1/2. Suppose there existe Z* and K € N such that, for alln €
[K, 00) and somé: > 1, the following inequality holds:

1 1 h
bx(n) < —— —

4 dnlogn ™ [Ti_ilog;n’ ©

Thenn, (w) is transient.

Theoren{ 2 follows directly by applying Theorem 3 6f [15] to our case, witly) =
—2x(x) andb(x) = 1.

Remark. In the case: = 1/2 the critical case in terms of the recurrence, transience and
ergodicity is when the perturbation(n) is, ignoring logarithmic terms, of order!; we

say that the ‘critical exponent’ is-1. This contrasts with our results in the case where
Var[é1] > 0 (see Theorenjd 6 ahfl 7), in which the critical exponentlig2.

The following result deals with the case in which the distributiogiof degenerate,
but that ofY7 is not; in this case we have a homogeneous nonrandom environment subject
to an asymptotically small random perturbation. In particular, parts (iii) and (iv) of the
theorem deal with the case when the underlying environment is that of the simple random

walk. Here,g stands for equality in distribution.

Theorem 3. Supposé@[&1 = ¢] = 1 for somer € (0, 1), andVar[Y1] > 0.

() If ¢ < 1/2, theny,(w) is transient for a.ew.
(i) If ¢ > 1/2, thenn,(w) is ergodic for a.ew.

(i) fc=1/2andY; 2 —Y1, thenn, (w) is null-recurrent for a.ew.

(iv) Suppose = 1/2 andE[Y1] # 0. Suppose (n) = an? fora > 0andg > 0.
(d) If 0 < B < 1andE[Y1] > O, thenn,(w) is ergodic for a.ew.
(b) If B > 1, thenn,(w) is null-recurrent for a.ew.
(c) If 0 < B < landE[Y1] < 0O, thenn,(w) is transient for a.ew.

We prove Theorerjn|3 along with our main results in Sedtjon 3.

Remarks. Note that in part (iii),Y1 L —Y; implies that all odd moments df; are

zero. By modifications to the proof of Theoré¢i 3 one can obtain a more refined result,
specifically that withp := min{j € {1, 3,5,...} : E[Ylj] # 0}, for p > 1 we have a
statement analogous to part (iv) but wifiy1] replaced b)AE[Yl” ] and with the critical
value of8 being 1/(2(p — 1)) for p > 1, rather than 1. We do not go into further details
here.

Theoreni B(iv) demonstrates that in the case of a randomly perturbed simple random
walk, the critical exponent for the perturbation-d, as in the case of the nonrandom
perturbation (Theorerp] 2). It may be possible to refine Thedrem 3(iv) to obtain more
delicate results analogous to those of Thedrgm 2.

For the remainder of the paper, we ensure that the underlying environnmanticam
by supposing Vatfy] > 0. First we consider the ca&§¢1] # 0. Here we have Theorgm 4
below. In this situation, the perturbation introduced)ay)Y,, does not affect the criteria
given in (i) and (iii) of Theorer]|1.
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Theorem 4. Suppos&/ar[¢1] > 0, E[¢1] # 0, andP[Y; = 0] < 1.

(i) If E[z1] < O, thenn, (w) is transient for a.ew.
(i) If E[z1] > 0O, thenn, (w) is ergodic for a.ew.

The proof of the theorem uses the same methods as employed in the proof of Theorem
3.1 of [3] or later in this paper, but is essentially simpler than for our main results. We
can construct a ‘martingale’ (as at [40) below) which is easily shown (by the Law of the
Iterated Logarithm, Lemnjg 3 below) to be bounded or tend to infinity for.a 8imilarly
for the stationary measure. The theorem then follows by our Lyapunov function criteria
(Lemmag 1 anfl]2 below). We follow this method in detail, in less straightforward cases,
later in the paper, and so do not repeat the argument here.

For the remainder of the paper we consider the more interesting caselijhgre- 0,
so that we have a random walk in a random environment that is asymptotic to Sinai’s
regime. We prove general results about this RWRE with asymptotically zero perturbation
that are analogous to Theor@in 2, but significantly different.

If P[Y1 = 0] < 1 (and permitting the case th&fY; = ¢] = 1 for somec with
0 < |c|] < 1) we define

n
=E| ———|. 10
g [51(1— El):| 5

Also, we use the notation
o2 1= Var[z1]. (11)

Note that, under the conditioE](Z), we havé < oo and, since?; is bounded|i| < co.
We also draw attention to the fact that, giveh @)a.s.,

1 Y 1
S ot < o (12)

e s1(1-8&1) " ¢
a fact that we shall use later. For what follows, of separate interest are the two cases
A = 0 andi # 0. We concentrate on the latter case for most of the results that follow
(but see the remark after Theor@in 7). However, our first result deals with the case in
whichYy/&; D —Y1/(1 — &1). This impliesi = 0 (see )), but is a rather special case;
Theorenj b demonstrates that in this case the detailed behavigusafot important: as
long asy (n) — 0 asn — oo, n;(w) is null-recurrent for a.aw.

Theorem 5. Witho as defined a), suppose thaty/&1 2 —Y1/(1 — &1), P[Y1 = O]
< 1, E[¢1] =0, ando? > 0. Thenn, (w) is null-recurrent for a.ew.

An example of(Y1, £&1) for which Theorenj b holds is whery andé; are independent
uniform random variables of+-1, 1) and(e, 1 — ¢) respectively.
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Our remaining results deal with the case# 0 (but see also the remark after The-
orem[7). In our next result (Theorgm 6), we give some rather specific conditions on the
asymptotic behaviour of the functign Theoren b is a special case of our general result,
Theoreniy.

Theorem 6. With 2 and o defined at(10) and (11) respect|vely, suppose that #£ 0,
P[Y1 = 0] < 1, E[¢1] =0, ando? > 0. Letcgit := 0271

(i) If there are constants>cqit and ngeZ® such thath(n)zc-n—l/z(log logn)/2
for all n>ng, thenn, (w) is ergodic for a.ew.
(i) If there are constants<ccit and ngeZ* such that|x|x (n) <cn~1/2(log logn)/?
for all n>ng, thenn, (w) is null-recurrent for a.ew.
(iii) If there are constants>ccit and ngeZt such thati x (n) <—cn~=?(log logn)/2
for all n>ng, thenn, (w) is transient for a.ew.

Remark. Theorenf p shows that in our case the critical exponent for the perturbation is
—1/2. This contrasts with the deterministic environment case (as in Thédrem 2, and see
[15, Theorem 3]), in which the critical exponent4sl. When the perturbation is smaller
than this critical size (as in part (ii)), it is insufficient to change the recurrence/transience
characteristics of the Markov chain from those of Sinai’'s regime. If the perturbation is
greater than the critical size, it changes the behaviour of the Markov chain from that of
Sinai’s regime, making it either transient or ergodic depending on the sign of the pertur-
bation. This feature is present in our most general result, Thedrem 7.

Theorenj B will follow as a corollary to Theorgm 7 below. Theofém 7 is more refined
than Theorer|6. In order to formulate our deeper result, we need more precise conditions
on the behaviour of the perturbation functigtr). To achieve this, we define the notions
of k-supercriticalandk-subcritical below. First, we need some additional notation.

Recall the notation logx) := log(x), log, (x) := log(log,_;(x)) fork = 2,3, ....

Let n; denote the smallest positive integer such thaf Jogi) > 0. Letay := 2 for

k € N\ {3} andas := 3. For eachk € N we define the [Doo)-valued functiony; as
follows (we use the given form for thg, due to the appearance of the Law of the Iterated
Logarithm later on). Fox € [e, o0) andd € R, let

@1(x; d) := ((2+ d) log, x)Y/?,

and fork = 2,3, ..., with x € [ng, 00) andd € R, let

k-1 12
o (s d) = (Z 411100, 1 x + (a1 + d) log, +1x> . (13)
i=1

We shall see that the behaviour of the Markov chaifw) is determined by the driving
function x. By applying the Law of the Iterated Logarithm, we shall see that the critical
form of x is related to an iterated logarithm expression of the form,of

In order to formulate our main result we make the following definitiong-sfiper-
critical andk-subcritical
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Definition 1. Recall the definitions of and o at (I0) and (17)) respectively. Suppose
A # 0. For k € N, we sayy is k-supercriticalif there exist constants € (0, co) and
no € Z* such that, for alli > nq,

x(n) > %”_1/29%(”2 o). (14)
For k € N, we sayy is k-subcriticalif there exist constants € (0, oo) andng € Z* such
that, for alln > ng,

o _1/2
< — i —C). 15
x(n) < " @k (n; —c) (15)
Remarks. Implicit in x beingk-subcritical ork-supercritical is the constant a fact that
we make repeated use of in the proofs in Sedtjon 3. Whenever we consideibaritical
or k-supercritical function in what follows, we understand this to imply the existence of
such ac, and often refer to the constanin this context.
Also, observe that if for somé € N, x is k-supercritical, with implicit constant
¢ € (0, 00), then for anye’ € (0, ¢) the estimate (14) implies
o _1/2 o _172 /
> — : > — . .
x(n) = 2|k|n @r(n;c) = 2|A|n @k (n; ¢)

Similarly if for somek € N, x is k-subcritical, with implicit constant € (0, co), then
foranyc’ € (0, ¢) the estimate (15) implies

o _1,2 . o 12 .
< — —c) < — —-c).
x(n) < 2|/\|n @r(n; —c) < an @k (n; —c’)
Finally, we note that Definition|1 excludes functions that oscillate significantly about
the critical regiom /2.
Our most general result is as follows.
Theorem 7. With 1 and o defined at{I0) and (11)) respectively, suppose that # 0,
P[Y; = 0] < 1, E[¢1] = 0ando? > 0.

(i) If, for somek € N, y is k-supercritical andr > 0, thenn, (w) is ergodic for a.ew.
(ii) If, for somek € N, y is k-subcritical, theny, (w) is null-recurrent for a.ew.
(i) If, for somek € N, y is k-supercritical andh < 0, thenn, (w) is transient for a.ew.

Remark. In the general case = 0, it turns out that higher moments contribute, and
we obtain a slightly more general form of Theorg 7. It is straightforward to modify the
proof of Theoren |7 to obtain such a result. Specifically, iffa N we set

A'—}E[Y’( ! +(_1)r+l>}
T R N Y £ ’

andp = min{j € N : X; # 0}, then forp > 1 a statement of the form of Theor{rh 7
holds but withi replaced byA, and the conditions o being replaced by conditions
on x”. We do not pursue the details here.
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We will prove Theorer[7 in the next section. The idea behind the proof of the recur-
rence and transience conditions is to construct a fungtiofithe processg; (w) such that
f(n:(w)) is a‘martingale’ everywhere except in a finite region, and determine the cases in
which this function is finite or infinite. The proof of ergodicity relies on the construction
of a stationary measure and determining its properties.

3. Proofs of main results

Before embarking upon the proof of Theorgn 7, we need some preliminary results. First
we present the criteria for classification of countable Markov chains which we will re-
quire.

Let (W;;t € Z™T) be a discrete, irreducible, aperiodic, time-homogeneous Markov
chain onZ*. We have the following classification criteria, which are consequences of
those given in Chapter 2 dfl[6]. The following result, which we state without proof, is a
consequence of Theorem 2.2.2 [of [6], and is slightly more general than Proposition 2.1
of [3].

Lemma 1. Suppose there exist a functign: Z+ — [0, oo) which is uniformly bounded
and nonconstant, and a satC Z* such that

E[f(Wiy1) — f(W) | W, =x] =0 (16)
forall x € Z* \ A, and
f&x) > sulff ) 17)
ye

for at least onex € Z* \ A. Then the Markov chaioW,) is transient.
The following result is contained of Theorem 2.2.1[ih [6].

Lemma 2. Suppose that there exist a functign Z*+ — [0, co) and a finite se#A C Z*
such that

E[f(Wit1) — f(W) | W, =x] <0 (18)
forall x € ZT\ A, andf (x) — oo asx — oo. Then the Markov chaitW,) is recurrent.

We will need Feller’s refined form for the Law of the Iterated Logarithm [7]. The follow-
ing result is a consequence of Theorem 7_0f [7].

Lemma3. LetX;,i = 1,2,..., be a sequence of independent random variables with
E[X;] = Ofor all i, and E[X?] = 0? < oo fori = 1,2,.... Suppose theX; are
bounded, that isP[| X;| > C] = Ofor all i and somé < C < oo. Let

n
s,f = Z oiz. (29)
i=1
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Suppose that, — oo asn — oo. LetS, = > ! ;X;. For somek € Nande €
(—00, 00), defineyy (n; ¢) as at(d3). Then

P[S, > snwk(s,f; g)i.o] =

{1 if ¢ <O, (20)

0 ife>0.

In particular, if the X; are i.i.d. and bounded random variables WiE[Xf] = o2, we
have

1 ife<O,

0 ife>0. (21)

P[S, > on*?pr(n; ¢)i.0] = {

We will also need the following result. Recall the definitionggfi; ) at (I3).

Lemma4. For k € N, letn; be the smallest positive integer such thad; 1 n, > O.
For anyd € R, we have

> i Pz d) = 20 Pr(n; d) + o, (22)

i=ng
where|a,| < 6rnY/2 for all n sufficiently large.
Proof. We have, fok € N,
d 1
62 d) = Sx V205 d) + 520 ),

where

L d) = S (s d)) 2, 3 + !
x: — x: . < —
Ot 2 P xlogx ' xlogxloglogx x

for x sufficiently large. Thus, for any € N,

n n
f ¥ Vo d)dx = 22 d)];, — 2 / 22 (x1 d) dx
ni

Nk

= 2020 (n; d) + by, (23)

where

n n
|ba| < 2/ M2 (xi d) dx + 2 P o d) < Ce+ 2/ X Y2qx
ny 0
for some O< C; < oo which depends ok (andd). Thus, for eactt, |b,| < 5nt/? for
all n sufficiently large. Since ~1/2¢; (x; d) is a decreasing function for afl sufficiently
large (depending ok but notd), there exist finite positive constanty andC;’ such that

n n n
Y i)+ Gz [P ddx = Y i i) - ¢,

i=ng s i=nip+1
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So we have

n n
0< Zi—l/zgok(i;d)—/ g dydx < n P d) +C (24)

i=ng nk

for some 0< C < oo that does not depend an Then from [(2#) and (23) we obtain (22).

O
For a given realizationv of our random environment, witlp; andg;, i = 1,2,...,
defined by[(B), let
SN R |
D(a))::Z— qi:_+£+ﬂ+...' (25)

iz149i j—1Pj PL P1p2 p1p2p3

Lemma 5. If, for a given environmenb, the quantityD () as defined af25) is finite,
then the Markov chaimy, (w) is ergodic. On the other hand, D(w) = oo, then the
Markov chainn, (w) for this w is not ergodic.

Proof. For fixed environmend, i.e., given a configuration dfp;; i = 1,2, ...), n:(w)
is a reversible Markov chain. For this Markov chain one has the stationary meastre
(0, 1, - -.), Where

1 11t g
wo=2 u1=—, and ;L,,:—H—, n>2.
p1 D1 7 Pi+1

Then, with the definition oD (w) at {23), we have

o0
> i =2+ D().
i=0

Thus, if, for thisw, D(w) is finite, then the Markov chain, (w) is ergodic, since we can
obtain a stationary distribution. On the other hand)tv) = oo for this w, the Markov
chainn, (w) is not ergodic. O

Our nextresult, Lemn{id 6, uses the Law of the Iterated Logarithm to analyse the behaviour
of sums of i.i.d. random variables weighted by the function

Lemma6. LetZ;, i = 1,2,..., be a sequence of i.i.d. random variables which are
bounded (so thaP[|Z1] > B] = 0 for some0 < B < o0), such thatE[Z;] > 0. Let
x : [0, 00) — [0, 00) be such thafT)) holds. Withi defined a(10), suppose. # 0.

(a) SupposeE[Z1] > 0. Suppose that, for somie € N, x is k-subcritical as defined
at (15). Then with probability one, for any > 0, for all but finitely manyz,

—n <Y Zix(i) < %n”zwm; —c/3). (26)
i=1
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(b) SupposeE[Z1] > 0. Suppose that, for somee N, x is k-supercritical as defined
at (I4). Then with probability one, for all but finitely many

> Zix() = %nuaﬂk(fﬁ c/3). (27)
i=1

(c) SupposeE[Z1] = 0. Then for anye > 0, with probability one, for all but finitely
manyn,

Z Zix (i) < e(nloglogn)Y/?. (28)
i=1

Remark. When we come to apply Lemnjd 6 later in the proofs of the theorems, the
configuration(Z;,i > 1) that we will use will be specified by the realization of the

random environmend, so that the qualifier ‘with probability one’ in the lemma translates
as ‘for a.ew’.

Proof of Lemm@6.Recall the definitions of ando at (10) and[(I]1) respectively. Suppose
A # 0. For the proofs of parts (a) and (b), suppose #jgt1] > 0. First we prove (a).
Suppose that for soniee N, y is k-subcritical. Write

Sui=Y (Zi — E[Z])x (). (29)
i=1
Then
Vars,] = Var{Z1] > (x (). (30)
i=1

Suppose that Vas,] — oo asn — oo. Then, by Lemm@]|3, taking; = Z; — E[Z;], we
see that with probability one the configuration(@f, i > 1) is such that

S, > (Var[S,])Y2(3log log(Var[S,])) 2

for only finitely manyn. (The constant 3 appears for the sake of simplicity, any constant
strictly greater than 2 will suffice). That is, with probability one, for all but finitely many

Sy < (Var[S,])?(3log logVar[s,1) 2 < (Var[s,])¥2(3log logn)*/2,

the second inequality following frori (BO) arjd [15). Thus, using (30) [and (15) once more,
we deduce that with probability one, for any> 0 and all but finitely many:, S,, < n®.
Thus, with probability one, for all but finitely many, since E[Z1] > 0 andy is a
nonnegative function,

—n® < ;zixm <nf +E[Zl];x(i). (31)
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The lower bound in[(31) establishes the lower bound in (26). We now need to prove the
upper bound. By[(15), there existe (0, 0o) andk € N such that for alk sufficiently
large,

Y x(@) < %M Y i 2 —c/2). (32)
i=1 i=1

Then from [32) with[(Z2R) we obtain, for ail sufficiently large,

3o
Zx@) < S e e/ 4 St (33)

Hence from[(3B) and the upper bound|in](31), we infer that, with probability one, for all
but finitely manyn,

Zsz(l) =< |£|le Y2 (n; —c/2) + 3‘”|ET[|21],11/2 +n°

Then we can absorb the final two terms on the right hand side to[giye (26), given that
Var[S,,] — oo asn — oo. On the other hand, suppose that \&it[ < C for all » and
someC < oo. Then, by),Zj?:l(X(i))2 < C for some 0< C < oo. So, by Jensen’s
inequality, and the boundedness of g for all n,

D Zix() < |n) ZEx)? <nt?B | Y (x(@)? < Cn'l? (34)
i=1 i=1 i=1

for some O< C < oo. Hence we obtairj (26) in this case also. This proves part (a).

Now we prove (b). Suppose that for soie& N, x is k-supercritical. Again, we use
the notation of[(Z9). By[(1l4), Vas},] — oo asn — oo. Then, by Lemm4]3, taking
X; = —(Z; — E[Z;]), we see that, with probability one,

S, < —(Var[S,])Y?(3log logVar[S,]))Y/?
for only finitely manyn. But x (n) — 0 asn — oo, so with probability one there exists
a sequencey, ¢, ... such that, — oo asn — oo and Var[S,] < n/c, for all n. Thus,
with probability one,
S, > —n*2c;Y?(3log logn) /2 (35)

for all but finitely manyn. So, with probability one, for all but finitely many,

3" Zix() = E[Za] Y x(i) — n*?c, /%3 loglogn)/2. (36)
i=1 i=1
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By (I4), there exist € (0, oo) andk € N such that for sufficiently large,

n n
Y xi) = o= 3 i Vi c/2). (37)
i1 2 =
Then from [37) with[(ZR) we obtain, for all sufficiently large,
n 3
> 5 = —nYg (i e/2) — a2 (38)
P 2] |A]

Hence, with probability one, fronjf (B6) and {38) we conclude that, for all but finitely
manyn,

n E[Z 30 E[Z _
> Zix) = ges |£| l]nl/zwk(n; c/2) — —Ik[l 172 _ n%/2¢; 2 (3log logn)*/2,
i=1

which yields [2). Thus we have proved part (b).

Finally, we prove (c). Suppose now th&fZ1] = 0. Again use the notation df (R9).
First, suppose that Vasf] < C for all n and some O< C < oco. Then [[34) holds. On the
other hand, suppose that V8] — oo asrn — oo. But, sincey (n) — 0 asn — oo, we
have Varf,] = o(n). Applying Lemmd B withX; = Z; x (i) then yields[(ZB). Thus the
proof of the lemma is complete. O

Proof of Theorer]7 First we examine the recurrence and transience criteria,for).
For the recurrent cases, we proceed in the second part of the proof to analyse the stationary
measure given in Lemna 5, in order to distinguish between null-recurrence and ergodicity
(positive recurrence). We work for a fixed environmentthat is, a given realization of
piandg; fori =1,2,..., as given by[(B).

We aim to apply Lemmdg 1 afdl 2, and so we construct a Lyapunov fungfitmat
is, a functionf : Z*+ — RT such thatf (n,(w)) behaves as a martingale (with respect to
the natural filtration) for; (w) # 0. To do this, we proceed as follows.

For a given environmenb, setA; ;= 1andfori =2, 3, ... let

i—1 i—1
A= [](pi/a) = exp)_log(p;/q)). (39)
j=1 j=1
and thensef(0) :=0andforn =1,2,3,...let
f) =" A (40)
i=1

Note thatf (n) > 0. Then, for fixedw, fort ¢ Zt andn =1, 2, ...,

E[f(i+1(0)) — fe(@) [ni(w) =n] = paf(n = 1) + g f(n + 1) — f(n)
= gnAnt+1— PnlAp = 0,

i.e. f(n;(w)) is a martingale over,2, 3, ....
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We need to examine the behaviour o) asn — oo, in order to apply Lemmdg 1
and 2. Recall fron (5) that there existg € N such that for anyi > no and almost every
realization of the random environment p; = &; + Y; x(j) andg; =1 - & — Y; x (j).
Then, forj sufficiently large and a.e,

log p; = log(&; + ¥; x (/) = l0g(&) + &Y, x () + O((x ()?)
and
logg; =log(1— & — ¥;x(j) = log(l — &) — (L — &)Y x (j) + O((x (),
so that for;j sufficiently large and a.e»,
& )
+
1-¢§ §j (1 £j)

Note thatE[log(p,/qx)] = O(x(n)) — 0 asn — oo, so that in this sense we asymptot-
ically approach Sinai's regime.

Recall from [§) that; = log(é; /(1 —&;)) fori = 1,2, .... From [40), [(39) and (41)
we have, fom sufficiently large and a.e,

log(p;/gj) = Iog( x () + O (M. (41)

fn) = Zepo[c, v é)x(j)+0((x(j))2)}. (42)
J

Note that for what follows th@ ((x (j))?) terms in ) can be ignored, since whegt 0
(wherea is given by [(10)), the other two terms are dominant. Thus we need to examine
the behaviour of the two terms /_; ¢; and )"}, g,-(lY—ig,-)X(i)- This behaviour depends
upon the sign of, and the magnitude of the perturbatign

First suppose that for sontec N, x is k-subcritical (se€ (15)). In this case, we show
that in [42) the term involving the; is essentially dominant. We can apply Lemhja 6
with Z; = Y& 1A — &)71 (if o > 0) or Z; = —Yi& 21— &)~ (if » < 0), and the
boundedness property {12), so tHaf|(26) implies that, forsany 0, for all but finitely
manyn and a.ew,

—n® < sign(h) Z & (1 ; )X(i) < onPpi(n; —c/3), (43)

with ¢ € (0, o0) as given in[(Ip). Also, by the Law of the Iterated Logarithm (Lemiina 3),
for a.e.w, there are infinitely many values offor which

D G = onPor(n; —c/4). (44)

i=1

So by [43) and (44), for a.e, there are infinitely many values ofsuch that, if» > 0,

Zng (1 5 x() = on'2g(n; —c/4) — n®,
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andifA <0,
Zgl + Z <5 (1 &) X(i) > onY?(pe(n; —c/8) — g (n; —c/3)).

Thus, if we choose to be small, then for a.ev, there are infinitely many values af
such that

Zmzw 5 x(i)zCnl/Z (45)

for someC with 0 < C < oo. Thus from [(45),[(39), and (41), there are, for ae.
infinitely many values of: for which A,, > 1, and hence a8 — oo, f(n) — oo for
a.e.w. Thus, by Lemm@]2y, () is recurrent for a.ew.

Now suppose that for sontec N x isk-supercritical (se¢ (14)). In this case, we show
that the term |n2) mvolvmg’]s ta- &)~ 1 is essentially dominant, and thus the sign
of A determines the behaviour. This time, from Lenﬁ]a 6 vidth= Y,sl._l(l — &)L (if
A>0)orz; = —Y,»glfl(l—s,-)—l (if A < 0), and the boundedness prope (12), we find
that [27) implies that, for a.e» and all but finitely many:,

suyn(MZ 5(1 5 X(i)ZUn1/2<Pk(n§C/3)- (46)

Also, by the Law of the Iterated Logarithm (Lemifa 3), for aethere are only finitely
manyn such that

Y G = on'Pe(n; c/4). (47)
i=1

If A < 0, from (48) and[(4]7) we see that, for aug.there are only finitely many such
that

Z G+ Z 5 i 00 = ot /) — /). (@8)

Soif A < 0, from (48), [39), and (41) we infer that for acethere are only finitely many
values ofn for which
A, > exp(—C1nt/?)

for someC1, not depending om, with 0 < C1 < oo. Thus for a.ew there exists a
constaniC, (depending om) with 0 < C2 < oo such that

f) < Cat Y exp(—Cai'’?),
i=1

which is bounded. So in this case, by Lenma 1) is transient for a.ew.
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On the other hand, if > 0 then Lemma@|3 witi{ (46) implies that for a® there are
infinitely many values of: for which

Zz, + Z & (1 oz on'?(p(n: ¢/3) — gr(n: c/4) = C1n/?  (49)
for someCy, not depending om, with 0 < C1 < co. Soifa > 0, by (49), [(39), and (41)
for a.e.w there are infinitely many values affor which
A, > exp(C1n'’?).

Thus f (n) — oo P-a.s., and in this casg (w) is recurrent for a.ev, by Lemmg 2.

We now classify the recurrent cases further into ergodic (positive recurrent) and null-
recurrent. To determine ergodicity, we apply Lenjma 5. Giveand with D(w) as de-
fined at[[25), we have

D(w) = Z 1 exp(— ZIOQ(Pi/Qi)> = Z _1

i=1 qi j=1 i=1 Al-i—lqi

whereA; is as defined af (39). By a similar argument{to| (41) /aufficiently large and
a.e.w,

1
_exp< Z;‘l Zgl(ly P x()+0(2(x(l)) ))

i=1 i=1 i=1

We use similar arguments as in the proof of recurrence and transience to ab&yse
First suppose that for sontec N, x is k-subcritical. Then, by a similar argumentfo(45),
for a.e.w there are infinitely many values ofor which

_ L 1/2
Zg’ Z,s;(l g =

i=1 i=1

for 0 < C < oo. Thus for a.ew there are infinitely many values offor which 1/ A, 11
> 1 and ¥(A,+194) > 1. HenceD(w) = oo for a.e.w. So, for a.ew, by Lemmdb,
¢ (w) is not ergodic.

Now suppose that for some € N, x is k-supercritical. IfA > 0, using similar
arguments to those before, we deduce that for@aere are only finitely many for
which

—Za Z; cas g[)x<z>>cml/2<<ok<n ¢/4) — pi(n: c/3)).

So for a.ew there are only finitely many values effor which

1/A, > exp(—C1n*'?)
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for some O< C1 < oo. Thus for a.ew there exists a constafb (depending o) with
0 < C2 < oo such that

o0
D(@) = C2+ ) exp—C1i™?),
i=1

which is bounded. So in this case, for asgby Lemmd by, (w) is ergodic.
This completes the proof of Theorér 7. O

Proof of Theorer|6.First we prove parts (i) and (iii). Suppose that, foraufficiently
large,Ax (n) > cn~Y?(loglogn)Y/? for somec > crit Whereceit = 02-1/2. Then we

see thaty is k-supercritical fork = 2, 3, .. ., since, for example,
C _1/2 1/2 _ o _1/2 1/2
—n (loglogn)”“ = — —n (2log logn)
A 9708 Cott 2171 9708

> %n‘”z(Z log logn + 4 log log logn)*/?
for n sufficiently large an@ > ccyit. Hence (i) follows from Theorefn 7(i). Similarly, (jii)
follows from Theorem [7(iii).
For part (i), suppose thak|x (n) < cn~Y2(loglogn)¥/? for all n sufficiently large,
with ¢ < cgiit. Then we see that is k-subcritical fork = 2, 3, ..., since, for example,

C _1/2 1/2 o _1/2 1/2
—n (loglogn)*“ < —n (2log logn)
A 2|

< ﬁn—l/z(z log logn + 2 log log logn)*/?

for n sufficiently large. Then Theoregm 7(ii) gives Theorgm 6(ii), and the proof of Theorem
is complete. o

Proof of Theoreni|5By Lemma[B, for a.ew there are infinitely many values af for
which

> & = on*'*(loglogn)Y/. (50)
i=1

By a similar argument t¢ (41), but keeping track of higher order terms in the Taylor series,
we now have

( 1 (_1)r+1

=1
log(pi/qi) =¢i+ ) =Y/ -+ —
; (1-&) &

r 1

)u W), (51)

By the conditionYy/&; 2 —Y1/(1 — &1), the expectation of the sum on the right (51)
is zero. Hence we can apply Lemfrja 6(c) with

el 1 (G i VIR
Z,—;;Y,-<(l_&_),+ & )(x(l)) (52)
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to deduce that for all but finitely manyand a.ew,

no>X 1 - 1 (_1)r+1 . 12 »
;§;Yi<(1_gi)r+ &7 )(X(l)) > —en'/?(loglogn)?/?, (53)

and by choosing sufficiently small we conclude frori (51}, (50) afd(53) that for a.e.
there are infinitely many values offor which

> " log(pi/qi) = Cn*/*(log logn)"/?
i=1
for some O< C < oo. Thus withA,, defined at[(39), for a.ev there are infinitely many
values ofn for which
A, > exp(CnY?(log logn)Y/?),

and hencef (n) — oo P-a.s., and so, by Lemnia 2,(w) is recurrent for a.ew.

To prove null-recurrence, it remains to show that the Markov chain is not ergodic.
ConsiderD(w) as defined af (25) again. By Leminia 3, for aehere are infinitely many
values ofn for which

- Z ;i = on*?(loglogn)*/2.
i=1

From Lemma4 B(c) wittZ; as at[(5R) we see that for all but finitely mamynd a.ew,

Zix (i) = —en*?(loglogn)/?,

n
i=1

and by choosing sufficiently small we conclude that for a® there are infinitely many
values ofn for which
1/A, > exp(Cn*?(log logn)/?)

for some O< C < oo, and soD(w) = oo P-a.s. Thus, by Lemn{d 5, the Markov chain is
P-a.s. not ergodic. Thus, for a®, n; () is null-recurrent. O

Proof of Theorerp|3Parts (i) and (ii) follow easily with the methods used in the proof of
Theorenj J. We prove part (iii). By a similar argument[to] (41), we now have

o0 4r
log(pi /i) = Y 5V )T T = AYix (i) + O((x(0)Y). (54)
r=1

SinceY; D —Y1, all odd powers of’; have zero expectation, so that the expectation of
the right hand side of (54) is zero. Thus it is clear that for @.there are infinitely many
values ofn for which }"7_; log(p;/¢i) > 0, and hence\, > 1, and sof (n) — oo for
a.e.w, and we havé@®-a.s. recurrence, by Lemrph 2.

To prove null-recurrence, it remains to show that the Markov chain is not ergodic.
Once more, consideb(w) as defined af (25). By a similar argument to the above, for
a.e.w there are infinitely many values affor which }""_; log(p;/¢;) < 0 and hence
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1/A, > 1, and soD(w) = oo for a.e.w. Thus, by Lemma@]5, the Markov chainfs
a.s. not ergodic. This completes the proof of part (iii).

We now prove (iv). Once again we analyse the properties of the expregsion (54).
Suppose thay (n) = an~? for somea, B > 0. Now suppose that & 8 < 1 and that
E[Y1] < 0. Then from[(5}4), there existQ C1, C2 < oo such that

n
—Ccmnt P < EZ|09(Pi/qz') < —Can' P,
i—1

If 8 > 1/2, then, by the boundednessiaf we have
n n k
SUPE‘Z log(pi/qi) —E IOg(Pi/Qi)) <00
n i=1 i=1

for all k € N, so thafP-a.s.,

> log(pi/g) —E IOQ(pi/Qi)‘ <n*
i=1 i=1

for all but finitely manyn, and anye > 0. So, for all but finitely many: and a.ew,
A, < exp(—Cn* P +n®)

for someC with 0 < C < oo, so that, fore small enoughf(n) = Y"/_; A; is bounded
for a.e.w, which implies that), () is P-a.s. transient, by Lemnja 1.
Also, if 8 = 1/2 we infer from [54) that there exist@ C1, C2 < oo such that

n
Cilogn > Var) "log(pi/q;) = C2logn — oo
i-1

asn — oo, and then we can apply Lemrpp 3 to obtain, for a.e.

> "log(pi/qi) < —Cin"? + Ca(logn)*/*(log logn)*/
i=1
for some constants & C1, C2 < oo (depending o) and all but finitely many:. Thus
f(n) isP-a.s. bounded, and so we ha¥@.s. transience by Lemrpa 1.
Finally, if 0 < B < 1/2, by {54), there exist & C1, C2 < oo such that

n
Cin'™? = Var) "log(pi/qi) = Con' % — oo
i=1

asn — oo, and then by Lemmig 3 we obtain, for ag.

n
Z log(pi /qi) < —C1n*~P + Con'/?7F(loglogn)*/?
i=1
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for some constants & Cji, C2 < oo (depending onw) and all but finitely manys.
So once agairy (n) is P-a.s. bounded, and we halea.s. transience by Lemrpa 1. This
proves part (c).

To prove (a), we apply Lemnjg 5. Suppose tBf¥;] > 0. By similar arguments to
those above, this time for a.@.we have

n

> log(pi/qi) = Cn*~F

i=1
for some O< C < oo and all but finitely many:. Thus, for a.ew and all but finitely
manyn,

n=1
Ai = exp(— )_log(pi/a))) < exp—Cn' ),
n i=1

and so, forD(w) as defined af (25)D(w) < oo P-a.s.; hence, by Lemnji3 5, the Markov
chain isP-a.s. ergodic, proving part (a).

Finally, we prove (b). Suppose thAt> 1. Now, since—-1 < Y; < landy(n) =
an~#, we see from4) that there exists a const@n{not depending om) with 0 <
C1 < oo such that, for a.ev,

n n
‘Zl()g(pi/%’) <Gy if<c
i=1 i=1
for some finite positiveC2, not depending om or n, this last inequality following since
B > 1. Thus for a.ew and each,

n

0 < exp(—C2) = exp()_log(pi/i)) = eXPCa) < ov,
i=1

so that for eaclr, A, and /A, are each bounded strictly away from 0 and from so

thatP-a.s. f(n) — oo asn — oo, andD(w) = oo P-a.s. Thus by Lemng 1 the Markov

chain isP-a.s. recurrent, and by Lemrp 5, itftsa.s. not ergodic. Thus, for a®, 7, (w)

is null-recurrent. This completes the proof of Theofgm 3. O
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