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Abstract. We give criteria for ergodicity, transience and null-recurrence for the random walk in
random environment onZ+

= {0, 1, 2, . . .}, with reflection at the origin, where the random en-
vironment is subject to a vanishing perturbation. Our results complement existing criteria for ran-
dom walks in random environments and for Markov chains with asymptotically zero drift, and
are significantly different from the previously studied cases. Our method is based on a martingale
technique—the method of Lyapunov functions.

Keywords. Random walk in random environment, perturbation of Sinai’s regime, recurrence/tran-
sience criteria, Lyapunov functions

1. Introduction

In this paper we study a problem with a classical flavour that lies in the intersection of two
well-studied problems, those of random walks in one-dimensional random environments
and Markov chains with asymptotically small drifts. Separately, these two problems have
received considerable attention, but the problem considered in this paper has not been
analysed before. Further, our results show that the system studied here exhibits behaviour
that is significantly different from that of the previously studied systems.

The random walk in random environment (or RWRE for short) was first studied by
Kozlov [12] and Solomon [18], and has since received extensive attention; see for example
[16] or [19] for surveys. This paper analyses the behaviour of the RWRE for which the
random environment is perturbed by a vanishingly small amount.

The analysis of zero drift random walks in two or more dimensions by the method of
Lyapunov functions demonstrated the importance of the investigation of one-dimensional
stochastic processes with asymptotically small drifts (see, for example, [2], [13], or [15]).
For example, if(Zt ), with t = 0, 1, 2, 3 . . . time, is a random walk (with zero drift) in the
nonnegative quarter plane, analysis of the stochastic process‖Zt‖, where‖ · ‖ denotes
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the Euclidean norm, involves the study of stochastic processes on the half-line with mean
drift asymptotically zero.

Early work in this field was done by Lamperti [13, 14]. Criteria for recurrence and
transience are given in [15], where the behaviour in the critical regime that Lamperti did
not cover was also analysed. Passage-time moments are considered in [2]. In much of this
work, Lyapunov functions play a central role.

In this paper we demonstrate the essential difference between a nearest-neighbour
random walk in a deterministic environment, perturbed from its critical (null-recurrent)
regime, and a nearest-neighbour random walk in a random environment, also perturbed
from its critical regime (sometimes called Sinai’s regime—see below). Our results quan-
tify the fact that in some sense the random environment is more stable, in that a much
larger perturbation is required to disturb the null-recurrent situation. In particular, we
give criteria for ergodicity (i.e. positive recurrence), transience and null-recurrence for
our perturbed random walk in random environment. We will show that in our (random
environment) case the critical magnitude for the perturbation is of the order ofn−1/2 (see
Theorem 6), wheren is the distance from the origin (in fact, our more general results are
much more precise than this). This compares to a critical magnitude of the order ofn−1

in the nonrandom environment case (see [15], and Theorem 2 below).
Our method is based upon the theory of Lyapunov functions, a powerful tool in the

classification of countable Markov chains (see [6]). Such methods have proven effective
in the analysis of random walks in random environments (see e.g. [3]), in addition to
Markov chains in nonrandom environments.

Loosely speaking, motivation for our model comes from some one-dimensional phys-
ical systems, such as a particle performing a random walk in a homogeneous random one-
dimensional field, subject to some vanishing perturbation (such as the presence of another
particle). Under what conditions is the perturbation sufficient to alter the character of the
random walk?

We now introduce the probabilistic model that we consider. First, we need some no-
tation. We introduce a functionχ as follows, which determines our perturbation as de-
scribed below. Letχ : [0, ∞) → [0, ∞) be a function such that

lim
x→∞

χ(x) = 0. (1)

As we shall see below, the property (1) means that our perturbation is asymptotically
small.

Here, we are interested in the one-dimensional RWRE on the nonnegative integers
(we use the notationZ+ := {0, 1, 2, . . .}), with reflection at the origin. One can readily
obtain results for the one-dimensional RWRE on the whole ofZ in a similar manner.
Formally, we define our RWRE as follows.

We define sequences of random variablesξi , i = 1, 2, . . . , andYi , i = 1, 2, . . . , on
some probability space(�,F, P), with the following properties.

Fix ε such that 0< ε < 1/2. Let ξi , i = 1, 2, . . . , be a sequence of i.i.d. random
variables such that

P[ε ≤ ξ1 ≤ 1 − ε] = 1. (2)

The condition (2) is sometimes referred to asuniform ellipticity.
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Let Yi , i = 1, 2, . . . , be another sequence of i.i.d. random variables, taking values
in [−1, 1], on the same probability space as theξi . We allow Yi to depend onξi , but
any collections(Yi1, . . . , Yik ), (ξj1, . . . , ξjk′ ) are independent if{i1, . . . , ik}∩{j1, . . . , jk′}

= ∅.
For a particular realization of the sequences(ξi; i = 1, 2, . . .) and(Yi; i = 1, 2, . . .),

we define the quantitiespn andqn, n = 1, 2, 3, . . . , as follows:

pn :=

ξn + Ynχ(n) if ε/2 ≤ ξn + Ynχ(n) ≤ 1 − ε/2,

ε/2 if ξn + Ynχ(n) < ε/2,

1 − ε/2 if ξn + Ynχ(n) > 1 − ε/2,

qn := 1 − pn.

(3)

We call a particular realization of(pn, qn), n = 1, 2, . . . , ourenvironment, and we denote
it by ω. A givenω is then a realization of our random environment, and is given in terms
of theξi andYi as in (3).

For a given environmentω, that is, a realization of(pn, qn), n = 1, 2, . . . , we consider
the Markov chain(ηt (ω); t ∈ Z+) onZ+, starting at some point inZ+, defined as follows:
η0(ω) = r for somer ∈ Z+, and forn = 1, 2, . . . ,

P [ηt+1(ω) = n − 1 | ηt (ω) = n] = pn,

P [ηt+1(ω) = n + 1 | ηt (ω) = n] = qn, (4)

andP [ηt+1(ω) = 1 | ηt (ω) = 0] = 1/2, P [ηt+1(ω) = 0 | ηt (ω) = 0] = 1/2. (Here
P is the so-calledquenchedprobability measure, i.e. for a fixed environmentω.) The
given form for the reflection at the origin ensures that the Markov chain isaperiodic,
which eases some technical complications, but this choice is not special; it can be changed
without affecting our results.

Recall that, from (1),χ(n) → 0 asn → ∞. Thus, there existsn0 ∈ (0, ∞) such
that χ(n) < ε/2 for all n ≥ n0. Hence, under condition (2), forP-almost everyω we
haveε/2 < ξn + Ynχ(n) < 1 − ε/2 (since theYn are bounded). (For the remainder of
the paper we often use ‘a.e.ω’ as shorthand for ‘P-almost everyω’ when the context is
clear.) Thus, for alln ≥ n0, (3) implies that, for a.e.ω,

pn = ξn + Ynχ(n), qn = 1 − ξn − χ(n)Yn, n ≥ n0. (5)

Note that our conditions on the variables in (3) ensure thatε/2 ≤ pn ≤ 1 − ε/2 almost
surely for alln, so that for a.e.ω, pn andqn are true probabilities bounded strictly away
from 0 and from 1.

Forn = 1, 2, . . . , we set

ζn := log

(
ξn

1 − ξn

)
. (6)

Write E for expectation underP.
In our model, by (1),χ(n) → 0 asn → ∞. Thus, from (5), in the limitn → ∞, we

approach the well-known random walk in i.i.d. random environment as studied in [12],
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[18] and subsequently. In addition, whenE[ζ1] = 0, in the limit asn → ∞ we approach
the critical case often referred to asSinai’s regimeafter [17]. Our results show that despite
this, the behaviour of our model is, in general, very different from the behaviour of these
limiting cases, depending on the nature of the perturbationχ .

In work in preparation, we study the long-run limiting behaviour (ast → ∞) of our
random walkηt (ω) in terms of its distance from the origin. Of interest are both the almost
sure and ‘in probability’ (see, for example, [17, 4]) behaviour. In Sinai’s regime for the
RWRE onZ+, Comets, Menshikov and Popov ([3, Theorem 3.2]) show that, for a.e.ω

and anyε > 0,
ηt (ω)

(log t)2
< (log logt)2+ε a.s.

for all but finitely manyt (where a.s. stands forP -almost surely). This result (for the
RWRE onZ) dates back to Deheuvels and Revész [5]. An exact upper limit result is
given in [8]. In work in preparation, we study analogous almost sure results (in both null-
recurrent and transient cases) for our perturbed RWRE. For example, in theP-almost sure
transient case of the RWRE perturbed from Sinai’s regime (that is, withχ(n) = n−α for
some fixed 0< α < 1/2, we haveE[ζ1] = 0, Var[ζ1] > 0 andλ < 0, whereλ is defined
at (10)), we find that for a.e.ω and anyε > 0, ast → ∞,

(log log logt)−1/α−ε <
ηt (ω)

(log t)1/α
< (log logt)2/α+ε a.s.

for all but finitely manyt . Thus in this case, we see that the random walk, for almost
every environment, is contained in a window about(log t)1/α. This aspect of the problem
requires additional techniques, however, and we do not discuss this further in the present
paper.

In the next section we state our results. Theorems 1–3 are special cases of the model in
which some of the random variablesξi andYi are degenerate (that is, equal to a constant
almost surely). In particular, Theorems 1 and 2 include some known results, when our
model reduces to previously studied systems. In Theorem 4, the underlying environment
is not in the ‘critical regime’. Our main results, Theorems 6 and 7, deal with the main
case of interest, in which the underlying environment is truly random and is, in a sense to
be demonstrated, critical.

2. Main results

Most of our results will be formulated for almost all environmentsω (in some sense, for
all ‘typical’ environments), that is,P-almost surely over(�,F, P).

If Y1 = 0 P-a.s., then our model reduces to the standard reflected one-dimensional
random walk in an i.i.d. random environment. In this casepn = ξn andqn = 1 − ξn,
n = 1, 2, . . . , and so (with the definition at (6))ζn = log(pn/qn). Criteria for recurrence
of the RWREηt (ω) in this case were given by Solomon [18], for the case where(ξi; i =

1, 2, . . .) is an i.i.d. sequence, and generalised by Alili [1]. For the case in which larger
jumps are permitted, see, for example, [11].

The following well-known result dates back to Solomon [18].
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Theorem 1. Let (ηt (ω); t ∈ Z+) be a random walk in i.i.d. random environment, with
P[Y1 = 0] = 1. SupposeVar[ζ1] > 0.

(i) If E[ζ1] < 0, thenηt (ω) is transient for a.e.ω.
(ii) If E[ζ1] = 0, thenηt (ω) is null-recurrent for a.e.ω.

(iii) If E[ζ1] > 0, thenηt (ω) is ergodic for a.e.ω.

The critical (null-recurrent) regimeE[log(p1/q1)] = 0 is known asSinai’s regime, af-
ter [17]. This regime has been extensively studied; see, for example, [4, 8, 9, 10]. For
an outline proof of Theorem 1 using Lyapunov function methods, similar to those em-
ployed in this paper, see Theorem 3.1 of [3]. In this paper we extend the classification
criteria of Theorem 1 to encompass the case in which thepn are not i.i.d. and in which
E[log(pn/qn)] is asymptoticallyzero asn → ∞. Our results are, in some sense, a random
environment analogue of those for Markov processes with asymptotically zero mean drift
given in [15] (see below).

For the remainder of the paper we supposeP[Y1 = 0] < 1. This includes the interest-
ing case whereY1 = b P-a.s., for someb ∈ [−1, 1] \ {0}. Our techniques do, however,
enable us to allowY1 to be random.

Although not as famous as the RWRE, another system that has been well studied is the
rather classical problem of a Markov chain with asymptotically zero drift. This problem
was studied by Lamperti [13, 14]. General criteria for recurrence, transience and ergodic-
ity were given by Menshikov, Asymont, and Iasnogorodskii in [15]. Theorem 2 below is
a consequence of their main result, Theorem 3, applied to our problem when Var[ζ1] = 0
and Var[Y1] = 0; that is, the distributions ofξ1 andY1 are both degenerate (i.e. equal to
a constant almost surely). In particular, we have anonrandomenvironmentω. If, on the
other hand,ξ1 is degenerate butY1 is not, then we have a random (asymptotically small)
perturbation on an underlying nonrandom environment, and we have Theorem 3 below.

We use the notation log1 x := logx and logk x := log(logk−1 x) for k = 2, 3, . . . .

Theorem 2. SupposeP[Y1 = b] = 1 for someb ∈ [−1, 0) ∪ (0, 1]. SupposeP[ξ1 = c]
= 1 for somec ∈ (0, 1).

(i) If c < 1/2, thenηt (ω) is transient.
(ii) If c > 1/2, thenηt (ω) is ergodic.

(iii) Supposec = 1/2. Suppose there exists ∈ Z+ and K ∈ N such that, for alln ∈

[K, ∞) and someh > 1, the following inequality holds:

bχ(n) >
1

4n
+

1

4n logn
+ · · · +

h

4n
∏s

i=1 logi n
. (7)

Thenηt (ω) is ergodic.
(iv) Supposec = 1/2. Suppose there exists, t ∈ Z+ and K ∈ N such that, for all

n ∈ [K, ∞) and someh < 1, the following inequality holds:

−
1

4n
−

1

4n logn
− · · · −

h

4n
∏s

i=1 logi n
≤ bχ(n)

≤
1

4n
+

1

4n logn
+ · · · +

h

4n
∏t

i=1 logi n
. (8)

Thenηt (ω) is null-recurrent.



496 M. V. Menshikov, Andrew R. Wade

(v) Supposec = 1/2. Suppose there exists ∈ Z+ and K ∈ N such that, for alln ∈

[K, ∞) and someh > 1, the following inequality holds:

bχ(n) ≤ −
1

4n
−

1

4n logn
− · · · −

h

4n
∏s

i=1 logi n
. (9)

Thenηt (ω) is transient.

Theorem 2 follows directly by applying Theorem 3 of [15] to our case, withm(x) =

−2χ(x) andb(x) = 1.

Remark. In the casec = 1/2 the critical case in terms of the recurrence, transience and
ergodicity is when the perturbationχ(n) is, ignoring logarithmic terms, of ordern−1; we
say that the ‘critical exponent’ is−1. This contrasts with our results in the case where
Var[ξ1] > 0 (see Theorems 6 and 7), in which the critical exponent is−1/2.

The following result deals with the case in which the distribution ofξ1 is degenerate,
but that ofY1 is not; in this case we have a homogeneous nonrandom environment subject
to an asymptotically small random perturbation. In particular, parts (iii) and (iv) of the
theorem deal with the case when the underlying environment is that of the simple random

walk. Here,
D
= stands for equality in distribution.

Theorem 3. SupposeP[ξ1 = c] = 1 for somec ∈ (0, 1), andVar[Y1] > 0.

(i) If c < 1/2, thenηt (ω) is transient for a.e.ω.
(ii) If c > 1/2, thenηt (ω) is ergodic for a.e.ω.

(iii) If c = 1/2 andY1
D
= −Y1, thenηt (ω) is null-recurrent for a.e.ω.

(iv) Supposec = 1/2 andE[Y1] 6= 0. Supposeχ(n) = an−β for a > 0 andβ > 0.
(a) If 0 < β < 1 andE[Y1] > 0, thenηt (ω) is ergodic for a.e.ω.
(b) If β > 1, thenηt (ω) is null-recurrent for a.e.ω.
(c) If 0 < β < 1 andE[Y1] < 0, thenηt (ω) is transient for a.e.ω.

We prove Theorem 3 along with our main results in Section 3.

Remarks. Note that in part (iii),Y1
D
= −Y1 implies that all odd moments ofY1 are

zero. By modifications to the proof of Theorem 3 one can obtain a more refined result,
specifically that withp := min{j ∈ {1, 3, 5, . . .} : E[Y j

1 ] 6= 0}, for p > 1 we have a
statement analogous to part (iv) but withE[Y1] replaced byE[Yp

1 ] and with the critical
value ofβ being 1/(2(p − 1)) for p > 1, rather than 1. We do not go into further details
here.

Theorem 3(iv) demonstrates that in the case of a randomly perturbed simple random
walk, the critical exponent for the perturbation is−1, as in the case of the nonrandom
perturbation (Theorem 2). It may be possible to refine Theorem 3(iv) to obtain more
delicate results analogous to those of Theorem 2.

For the remainder of the paper, we ensure that the underlying environment israndom,
by supposing Var[ζ1] > 0. First we consider the caseE[ζ1] 6= 0. Here we have Theorem 4
below. In this situation, the perturbation introduced byχ(n)Yn does not affect the criteria
given in (i) and (iii) of Theorem 1.
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Theorem 4. SupposeVar[ζ1] > 0, E[ζ1] 6= 0, andP[Y1 = 0] < 1.

(i) If E[ζ1] < 0, thenηt (ω) is transient for a.e.ω.
(ii) If E[ζ1] > 0, thenηt (ω) is ergodic for a.e.ω.

The proof of the theorem uses the same methods as employed in the proof of Theorem
3.1 of [3] or later in this paper, but is essentially simpler than for our main results. We
can construct a ‘martingale’ (as at (40) below) which is easily shown (by the Law of the
Iterated Logarithm, Lemma 3 below) to be bounded or tend to infinity for a.e.ω. Similarly
for the stationary measure. The theorem then follows by our Lyapunov function criteria
(Lemmas 1 and 2 below). We follow this method in detail, in less straightforward cases,
later in the paper, and so do not repeat the argument here.

For the remainder of the paper we consider the more interesting case whereE[ζ1] = 0,
so that we have a random walk in a random environment that is asymptotic to Sinai’s
regime. We prove general results about this RWRE with asymptotically zero perturbation
that are analogous to Theorem 2, but significantly different.

If P[Y1 = 0] < 1 (and permitting the case thatP[Y1 = c] = 1 for somec with
0 < |c| ≤ 1) we define

λ := E
[

Y1

ξ1(1 − ξ1)

]
. (10)

Also, we use the notation

σ 2 := Var[ζ1]. (11)

Note that, under the condition (2), we haveσ 2 < ∞ and, sinceY1 is bounded,|λ| < ∞.
We also draw attention to the fact that, given (2),P-a.s.,

−
1

ε2
≤

Y1

ξ1(1 − ξ1)
≤

1

ε2
, (12)

a fact that we shall use later. For what follows, of separate interest are the two cases
λ = 0 andλ 6= 0. We concentrate on the latter case for most of the results that follow
(but see the remark after Theorem 7). However, our first result deals with the case in

whichY1/ξ1
D
= −Y1/(1 − ξ1). This impliesλ = 0 (see (10)), but is a rather special case;

Theorem 5 demonstrates that in this case the detailed behaviour ofχ is not important: as
long asχ(n) → 0 asn → ∞, ηt (ω) is null-recurrent for a.e.ω.

Theorem 5. With σ as defined at(11), suppose thatY1/ξ1
D
= −Y1/(1 − ξ1), P[Y1 = 0]

< 1, E[ζ1] = 0, andσ 2 > 0. Thenηt (ω) is null-recurrent for a.e.ω.

An example of(Y1, ξ1) for which Theorem 5 holds is whenY1 andξ1 are independent
uniform random variables on(−1, 1) and(ε, 1 − ε) respectively.
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Our remaining results deal with the caseλ 6= 0 (but see also the remark after The-
orem 7). In our next result (Theorem 6), we give some rather specific conditions on the
asymptotic behaviour of the functionχ . Theorem 6 is a special case of our general result,
Theorem 7.

Theorem 6. With λ and σ defined at(10) and (11) respectively, suppose thatλ 6= 0,
P[Y1 = 0] < 1, E[ζ1] = 0, andσ 2 > 0. Letccrit := σ2−1/2.

(i) If there are constantsc>ccrit and n0∈Z+ such thatλχ(n)≥cn−1/2(log logn)1/2

for all n≥n0, thenηt (ω) is ergodic for a.e.ω.
(ii) If there are constantsc≤ccrit and n0∈Z+ such that|λ|χ(n)≤cn−1/2(log logn)1/2

for all n≥n0, thenηt (ω) is null-recurrent for a.e.ω.
(iii) If there are constantsc>ccrit and n0∈Z+ such thatλχ(n)≤−cn−1/2(log logn)1/2

for all n≥n0, thenηt (ω) is transient for a.e.ω.

Remark. Theorem 6 shows that in our case the critical exponent for the perturbation is
−1/2. This contrasts with the deterministic environment case (as in Theorem 2, and see
[15, Theorem 3]), in which the critical exponent is−1. When the perturbation is smaller
than this critical size (as in part (ii)), it is insufficient to change the recurrence/transience
characteristics of the Markov chain from those of Sinai’s regime. If the perturbation is
greater than the critical size, it changes the behaviour of the Markov chain from that of
Sinai’s regime, making it either transient or ergodic depending on the sign of the pertur-
bation. This feature is present in our most general result, Theorem 7.

Theorem 6 will follow as a corollary to Theorem 7 below. Theorem 7 is more refined
than Theorem 6. In order to formulate our deeper result, we need more precise conditions
on the behaviour of the perturbation functionχ(n). To achieve this, we define the notions
of k-supercriticalandk-subcriticalbelow. First, we need some additional notation.

Recall the notation log1(x) := log(x), logk(x) := log(logk−1(x)) for k = 2, 3, . . . .

Let nk denote the smallest positive integer such that logk+1(nk) ≥ 0. Let ak := 2 for
k ∈ N \ {3} anda3 := 3. For eachk ∈ N we define the [0, ∞)-valued functionϕk as
follows (we use the given form for theϕk due to the appearance of the Law of the Iterated
Logarithm later on). Forx ∈ [e, ∞) andd ∈ R, let

ϕ1(x; d) := ((2 + d) log2 x)1/2,

and fork = 2, 3, . . . , with x ∈ [nk, ∞) andd ∈ R, let

ϕk(x; d) :=
(k−1∑

i=1

ai+1 logi+1 x + (ak+1 + d) logk+1 x
)1/2

. (13)

We shall see that the behaviour of the Markov chainηt (ω) is determined by the driving
functionχ . By applying the Law of the Iterated Logarithm, we shall see that the critical
form of χ is related to an iterated logarithm expression of the form ofϕk.

In order to formulate our main result we make the following definitions ofk-super-
critical andk-subcritical.
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Definition 1. Recall the definitions ofλ and σ at (10) and (11) respectively. Suppose
λ 6= 0. For k ∈ N, we sayχ is k-supercriticalif there exist constantsc ∈ (0, ∞) and
n0 ∈ Z+ such that, for alln ≥ n0,

χ(n) ≥
σ

2|λ|
n−1/2ϕk(n; c). (14)

For k ∈ N, we sayχ is k-subcriticalif there exist constantsc ∈ (0, ∞) andn0 ∈ Z+ such
that, for all n ≥ n0,

χ(n) ≤
σ

2|λ|
n−1/2ϕk(n; −c). (15)

Remarks. Implicit in χ beingk-subcritical ork-supercritical is the constantc, a fact that
we make repeated use of in the proofs in Section 3. Whenever we consider ak-subcritical
or k-supercritical function in what follows, we understand this to imply the existence of
such ac, and often refer to the constantc in this context.

Also, observe that if for somek ∈ N, χ is k-supercritical, with implicit constant
c ∈ (0, ∞), then for anyc′

∈ (0, c) the estimate (14) implies

χ(n) ≥
σ

2|λ|
n−1/2ϕk(n; c) ≥

σ

2|λ|
n−1/2ϕk(n; c′).

Similarly if for somek ∈ N, χ is k-subcritical, with implicit constantc ∈ (0, ∞), then
for anyc′

∈ (0, c) the estimate (15) implies

χ(n) ≤
σ

2|λ|
n−1/2ϕk(n; −c) ≤

σ

2|λ|
n−1/2ϕk(n; −c′).

Finally, we note that Definition 1 excludes functions that oscillate significantly about
the critical regionn−1/2.

Our most general result is as follows.

Theorem 7. With λ and σ defined at(10) and (11) respectively, suppose thatλ 6= 0,
P[Y1 = 0] < 1, E[ζ1] = 0 andσ 2 > 0.

(i) If, for somek ∈ N, χ is k-supercritical andλ > 0, thenηt (ω) is ergodic for a.e.ω.
(ii) If, for somek ∈ N, χ is k-subcritical, thenηt (ω) is null-recurrent for a.e.ω.

(iii) If, for somek ∈ N, χ is k-supercritical andλ < 0, thenηt (ω) is transient for a.e.ω.

Remark. In the general caseλ = 0, it turns out that higher moments contribute, and
we obtain a slightly more general form of Theorem 7. It is straightforward to modify the
proof of Theorem 7 to obtain such a result. Specifically, if forr ∈ N we set

λr :=
1

r
E

[
Y r

1

(
1

(1 − ξ1)r
+

(−1)r+1

ξ r
1

)]
,

andp := min{j ∈ N : λj 6= 0}, then forp > 1 a statement of the form of Theorem 7
holds but withλ replaced byλp and the conditions onχ being replaced by conditions
onχp. We do not pursue the details here.
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We will prove Theorem 7 in the next section. The idea behind the proof of the recur-
rence and transience conditions is to construct a functionf of the processηt (ω) such that
f (ηt (ω)) is a ‘martingale’ everywhere except in a finite region, and determine the cases in
which this function is finite or infinite. The proof of ergodicity relies on the construction
of a stationary measure and determining its properties.

3. Proofs of main results

Before embarking upon the proof of Theorem 7, we need some preliminary results. First
we present the criteria for classification of countable Markov chains which we will re-
quire.

Let (Wt ; t ∈ Z+) be a discrete, irreducible, aperiodic, time-homogeneous Markov
chain onZ+. We have the following classification criteria, which are consequences of
those given in Chapter 2 of [6]. The following result, which we state without proof, is a
consequence of Theorem 2.2.2 of [6], and is slightly more general than Proposition 2.1
of [3].

Lemma 1. Suppose there exist a functionf : Z+
→ [0, ∞) which is uniformly bounded

and nonconstant, and a setA ⊂ Z+ such that

E[f (Wt+1) − f (Wt ) | Wt = x] = 0 (16)

for all x ∈ Z+
\ A, and

f (x) > sup
y∈A

f (y) (17)

for at least onex ∈ Z+
\ A. Then the Markov chain(Wt ) is transient.

The following result is contained of Theorem 2.2.1 in [6].

Lemma 2. Suppose that there exist a functionf : Z+
→ [0, ∞) and a finite setA ⊂ Z+

such that

E[f (Wt+1) − f (Wt ) | Wt = x] ≤ 0 (18)

for all x ∈ Z+
\A, andf (x) → ∞ asx → ∞. Then the Markov chain(Wt ) is recurrent.

We will need Feller’s refined form for the Law of the Iterated Logarithm [7]. The follow-
ing result is a consequence of Theorem 7 of [7].

Lemma 3. Let Xi , i = 1, 2, . . . , be a sequence of independent random variables with
E[Xi ] = 0 for all i, and E[X2

i ] = σ 2
i < ∞ for i = 1, 2, . . . . Suppose theXi are

bounded, that is,P [|Xi | > C] = 0 for all i and some0 < C < ∞. Let

s2
n :=

n∑
i=1

σ 2
i . (19)
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Suppose thatsn → ∞ as n → ∞. Let Sn :=
∑n

i=1 Xi . For somek ∈ N and ε ∈

(−∞, ∞), defineϕk(n; ε) as at(13). Then

P [Sn > snϕk(s
2
n; ε) i.o.] =

{
1 if ε < 0,

0 if ε > 0.
(20)

In particular, if theXi are i.i.d. and bounded random variables withE[X2
1] = σ 2, we

have

P [Sn > σn1/2ϕk(n; ε) i.o.] =

{
1 if ε < 0,

0 if ε > 0.
(21)

We will also need the following result. Recall the definition ofϕk(i; d) at (13).

Lemma 4. For k ∈ N, let nk be the smallest positive integer such thatlogk+1 nk ≥ 0.
For anyd ∈ R, we have

n∑
i=nk

i−1/2ϕk(i; d) = 2n1/2ϕk(n; d) + αn, (22)

where|αn| < 6n1/2 for all n sufficiently large.

Proof. We have, fork ∈ N,

d

dx
(x1/2ϕk(x; d)) =

1

2
x−1/2ϕk(x; d) + x1/2ϕ′

k(x; d),

where

ϕ′

k(x; d) =
1

2
(ϕk(x; d))−1

·

(
2

x logx
+

3

x logx log logx
+ · · ·

)
<

1

x

for x sufficiently large. Thus, for anyk ∈ N,∫ n

nk

x−1/2ϕk(x; d) dx = 2[x1/2ϕk(x; d)]nnk
− 2

∫ n

nk

x1/2ϕ′

k(x; d) dx

= 2n1/2ϕk(n; d) + bn, (23)

where

|bn| ≤ 2
∫ n

nk

x1/2ϕ′

k(x; d) dx + 2n
1/2
k ϕk(nk; d) ≤ Ck + 2

∫ n

0
x−1/2 dx

for some 0< Ck < ∞ which depends onk (andd). Thus, for eachk, |bn| ≤ 5n1/2 for
all n sufficiently large. Sincex−1/2ϕk(x; d) is a decreasing function for allx sufficiently
large (depending onk but notd), there exist finite positive constantsC′

k andC′′

k such that

n∑
i=nk

i−1/2ϕk(i; d) + C′

k ≥

∫ n

nk

x−1/2ϕk(x; d) dx ≥

n∑
i=nk+1

i−1/2ϕk(i; d) − C′′

k .
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So we have

0 ≤

n∑
i=nk

i−1/2ϕk(i; d) −

∫ n

nk

x−1/2ϕk(x; d) dx ≤ n
−1/2
k ϕk(nk; d) + C (24)

for some 0< C < ∞ that does not depend onn. Then from (24) and (23) we obtain (22).
ut

For a given realizationω of our random environment, withpi and qi , i = 1, 2, . . . ,

defined by (3), let

D(ω) :=
∞∑
i=1

1

qi

i∏
j=1

qj

pj

=
1

p1
+

q1

p1p2
+

q1q2

p1p2p3
+ · · · . (25)

Lemma 5. If, for a given environmentω, the quantityD(ω) as defined at(25) is finite,
then the Markov chainηt (ω) is ergodic. On the other hand, ifD(ω) = ∞, then the
Markov chainηt (ω) for thisω is not ergodic.

Proof. For fixed environmentω, i.e., given a configuration of(pi; i = 1, 2, . . .), ηt (ω)

is a reversible Markov chain. For this Markov chain one has the stationary measureµ =

(µ0, µ1, . . .), where

µ0 = 2, µ1 =
1

p1
, and µn =

1

p1

n−1∏
i=1

qi

pi+1
, n ≥ 2.

Then, with the definition ofD(ω) at (25), we have

∞∑
i=0

µi = 2 + D(ω).

Thus, if, for thisω, D(ω) is finite, then the Markov chainηt (ω) is ergodic, since we can
obtain a stationary distribution. On the other hand, ifD(ω) = ∞ for this ω, the Markov
chainηt (ω) is not ergodic. ut

Our next result, Lemma 6, uses the Law of the Iterated Logarithm to analyse the behaviour
of sums of i.i.d. random variables weighted by the functionχ .

Lemma 6. Let Zi , i = 1, 2, . . . , be a sequence of i.i.d. random variables which are
bounded (so thatP [|Z1| > B] = 0 for some0 < B < ∞), such thatE[Z1] ≥ 0. Let
χ : [0, ∞) → [0, ∞) be such that(1) holds. Withλ defined at(10), supposeλ 6= 0.

(a) SupposeE[Z1] > 0. Suppose that, for somek ∈ N, χ is k-subcritical as defined
at (15). Then with probability one, for anyε > 0, for all but finitely manyn,

− nε
≤

n∑
i=1

Ziχ(i) ≤
σE[Z1]

|λ|
n1/2ϕk(n; −c/3). (26)
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(b) SupposeE[Z1] > 0. Suppose that, for somek ∈ N, χ is k-supercritical as defined
at (14). Then with probability one, for all but finitely manyn,

n∑
i=1

Ziχ(i) ≥
σE[Z1]

|λ|
n1/2ϕk(n; c/3). (27)

(c) SupposeE[Z1] = 0. Then for anyε > 0, with probability one, for all but finitely
manyn,

n∑
i=1

Ziχ(i) ≤ ε(n log logn)1/2. (28)

Remark. When we come to apply Lemma 6 later in the proofs of the theorems, the
configuration(Zi, i ≥ 1) that we will use will be specified by the realization of the
random environmentω, so that the qualifier ‘with probability one’ in the lemma translates
as ‘for a.e.ω’.

Proof of Lemma 6.Recall the definitions ofλ andσ at (10) and (11) respectively. Suppose
λ 6= 0. For the proofs of parts (a) and (b), suppose thatE[Z1] > 0. First we prove (a).
Suppose that for somek ∈ N, χ is k-subcritical. Write

Sn :=
n∑

i=1

(Zi − E[Zi ])χ(i). (29)

Then

Var[Sn] = Var[Z1]
n∑

i=1

(χ(i))2. (30)

Suppose that Var[Sn] → ∞ asn → ∞. Then, by Lemma 3, takingXi = Zi −E[Zi ], we
see that with probability one the configuration of(Zi, i ≥ 1) is such that

Sn > (Var[Sn])1/2(3 log log(Var[Sn]))1/2

for only finitely manyn. (The constant 3 appears for the sake of simplicity, any constant
strictly greater than 2 will suffice). That is, with probability one, for all but finitely manyn,

Sn ≤ (Var[Sn])1/2(3 log log(Var[Sn]))1/2
≤ (Var[Sn])1/2(3 log logn)1/2,

the second inequality following from (30) and (15). Thus, using (30) and (15) once more,
we deduce that with probability one, for anyε > 0 and all but finitely manyn, Sn ≤ nε.
Thus, with probability one, for all but finitely manyn, sinceE[Z1] > 0 andχ is a
nonnegative function,

− nε
≤

n∑
i=1

Ziχ(i) ≤ nε
+ E[Z1]

n∑
i=1

χ(i). (31)
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The lower bound in (31) establishes the lower bound in (26). We now need to prove the
upper bound. By (15), there existc ∈ (0, ∞) andk ∈ N such that for alln sufficiently
large,

n∑
i=1

χ(i) ≤
σ

2|λ|

n∑
i=1

i−1/2ϕk(i; −c/2). (32)

Then from (32) with (22) we obtain, for alln sufficiently large,

n∑
i=1

χ(i) ≤
σ

|λ|
n1/2ϕk(n; −c/2) +

3σ

|λ|
n1/2. (33)

Hence from (33) and the upper bound in (31), we infer that, with probability one, for all
but finitely manyn,

n∑
i=1

Ziχ(i) ≤
σE[Z1]

|λ|
n1/2ϕk(n; −c/2) +

3σE[Z1]

|λ|
n1/2

+ nε.

Then we can absorb the final two terms on the right hand side to give (26), given that
Var[Sn] → ∞ asn → ∞. On the other hand, suppose that Var[Sn] ≤ C for all n and
someC < ∞. Then, by (30),

∑n
i=1(χ(i))2 < C for some 0< C < ∞. So, by Jensen’s

inequality, and the boundedness of theZi , for all n,

n∑
i=1

Ziχ(i) ≤

√√√√n

n∑
i=1

Z2
i (χ(i))2 ≤ n1/2B

√√√√ n∑
i=1

(χ(i))2 ≤ Cn1/2 (34)

for some 0< C < ∞. Hence we obtain (26) in this case also. This proves part (a).
Now we prove (b). Suppose that for somek ∈ N, χ is k-supercritical. Again, we use

the notation of (29). By (14), Var[Sn] → ∞ asn → ∞. Then, by Lemma 3, taking
Xi = −(Zi − E[Zi ]), we see that, with probability one,

Sn < −(Var[Sn])1/2(3 log log(Var[Sn]))1/2

for only finitely manyn. But χ(n) → 0 asn → ∞, so with probability one there exists
a sequencec1, c2, . . . such thatcn → ∞ asn → ∞ and Var[Sn] < n/cn for all n. Thus,
with probability one,

Sn ≥ −n1/2c
−1/2
n (3 log logn)1/2 (35)

for all but finitely manyn. So, with probability one, for all but finitely manyn,

n∑
i=1

Ziχ(i) ≥ E[Z1]
n∑

i=1

χ(i) − n1/2c
−1/2
n (3 log logn)1/2. (36)
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By (14), there existc ∈ (0, ∞) andk ∈ N such that forn sufficiently large,

n∑
i=1

χ(i) ≥
σ

2|λ|

n∑
i=1

i−1/2ϕk(i; c/2). (37)

Then from (37) with (22) we obtain, for alln sufficiently large,

n∑
i=1

χ(i) ≥
σ

|λ|
n1/2ϕk(n; c/2) −

3σ

|λ|
n1/2. (38)

Hence, with probability one, from (36) and (38) we conclude that, for all but finitely
manyn,

n∑
i=1

Ziχ(i) ≥
σE[Z1]

|λ|
n1/2ϕk(n; c/2) −

3σE[Z1]

|λ|
n1/2

− n1/2c
−1/2
n (3 log logn)1/2,

which yields (27). Thus we have proved part (b).
Finally, we prove (c). Suppose now thatE[Z1] = 0. Again use the notation of (29).

First, suppose that Var[Sn] ≤ C for all n and some 0< C < ∞. Then (34) holds. On the
other hand, suppose that Var[Sn] → ∞ asn → ∞. But, sinceχ(n) → 0 asn → ∞, we
have Var[Sn] = o(n). Applying Lemma 3 withXi = Ziχ(i) then yields (28). Thus the
proof of the lemma is complete. ut

Proof of Theorem 7.First we examine the recurrence and transience criteria forηt (ω).
For the recurrent cases, we proceed in the second part of the proof to analyse the stationary
measure given in Lemma 5, in order to distinguish between null-recurrence and ergodicity
(positive recurrence). We work for a fixed environmentω, that is, a given realization of
pi andqi for i = 1, 2, . . . , as given by (3).

We aim to apply Lemmas 1 and 2, and so we construct a Lyapunov functionf , that
is, a functionf : Z+

→ R+ such thatf (ηt (ω)) behaves as a martingale (with respect to
the natural filtration) forηt (ω) 6= 0. To do this, we proceed as follows.

For a given environmentω, set11 := 1 and fori = 2, 3, . . . let

1i :=
i−1∏
j=1

(pj/qj ) = exp
i−1∑
j=1

log(pj/qj ), (39)

and then setf (0) := 0 and forn = 1, 2, 3, . . . let

f (n) :=
n∑

i=1

1i . (40)

Note thatf (n) ≥ 0. Then, for fixedω, for t ∈ Z+ andn = 1, 2, . . . ,

E[f (ηt+1(ω)) − f (ηt (ω)) | ηt (ω) = n] = pnf (n − 1) + qnf (n + 1) − f (n)

= qn1n+1 − pn1n = 0,

i.e.f (ηt (ω)) is a martingale over 1, 2, 3, . . . .
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We need to examine the behaviour off (n) asn → ∞, in order to apply Lemmas 1
and 2. Recall from (5) that there existsn0 ∈ N such that for anyj > n0 and almost every
realization of the random environmentω, pj = ξj + Yjχ(j) andqj = 1 − ξj − Yjχ(j).
Then, forj sufficiently large and a.e.ω,

logpj = log(ξj + Yjχ(j)) = log(ξj ) + ξ−1
j Yjχ(j) + O((χ(j))2)

and

logqj = log(1 − ξj − Yjχ(j)) = log(1 − ξj ) − (1 − ξj )
−1Yjχ(j) + O((χ(j))2),

so that forj sufficiently large and a.e.ω,

log(pj/qj ) = log

(
ξj

1 − ξj

)
+

Yj

ξj (1 − ξj )
χ(j) + O((χ(j))2). (41)

Note thatE[log(pn/qn)] = O(χ(n)) → 0 asn → ∞, so that in this sense we asymptot-
ically approach Sinai’s regime.

Recall from (6) thatζi = log(ξi/(1 − ξi)) for i = 1, 2, . . . . From (40), (39) and (41)
we have, forn sufficiently large and a.e.ω,

f (n) =

n∑
i=1

exp
i−1∑
j=1

[
ζj +

Yj

ξj (1 − ξj )
χ(j) + O((χ(j))2)

]
. (42)

Note that for what follows theO((χ(j))2) terms in (42) can be ignored, since whenλ 6= 0
(whereλ is given by (10)), the other two terms are dominant. Thus we need to examine
the behaviour of the two terms

∑n
i=1 ζi and

∑n
i=1

Yi

ξi (1−ξi )
χ(i). This behaviour depends

upon the sign ofλ, and the magnitude of the perturbationχ .
First suppose that for somek ∈ N, χ is k-subcritical (see (15)). In this case, we show

that in (42) the term involving theζj is essentially dominant. We can apply Lemma 6
with Zi = Yiξ

−1
i (1 − ξi)

−1 (if λ > 0) or Zi = −Yiξ
−1
i (1 − ξi)

−1 (if λ < 0), and the
boundedness property (12), so that (26) implies that, for anyε > 0, for all but finitely
manyn and a.e.ω,

− nε
≤ sign(λ)

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≤ σn1/2ϕk(n; −c/3), (43)

with c ∈ (0, ∞) as given in (15). Also, by the Law of the Iterated Logarithm (Lemma 3),
for a.e.ω, there are infinitely many values ofn for which

n∑
i=1

ζi ≥ σn1/2ϕk(n; −c/4). (44)

So by (43) and (44), for a.e.ω, there are infinitely many values ofn such that, ifλ > 0,

n∑
i=1

ζi +

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ σn1/2ϕk(n; −c/4) − nε,
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and ifλ < 0,

n∑
i=1

ζi +

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ σn1/2(ϕk(n; −c/4) − ϕk(n; −c/3)).

Thus, if we chooseε to be small, then for a.e.ω, there are infinitely many values ofn

such that

n∑
i=1

ζi +

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ Cn1/2 (45)

for someC with 0 < C < ∞. Thus from (45), (39), and (41), there are, for a.e.ω,
infinitely many values ofn for which 1n > 1, and hence asn → ∞, f (n) → ∞ for
a.e.ω. Thus, by Lemma 2,ηt (ω) is recurrent for a.e.ω.

Now suppose that for somek ∈ N, χ is k-supercritical (see (14)). In this case, we show
that the term in (42) involvingYj ξ

−1
j (1− ξj )

−1 is essentially dominant, and thus the sign

of λ determines the behaviour. This time, from Lemma 6 withZi = Yiξ
−1
i (1 − ξi)

−1 (if
λ > 0) orZi = −Yiξ

−1
i (1− ξi)

−1 (if λ < 0), and the boundedness property (12), we find
that (27) implies that, for a.e.ω and all but finitely manyn,

sign(λ)

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ σn1/2ϕk(n; c/3). (46)

Also, by the Law of the Iterated Logarithm (Lemma 3), for a.e.ω, there are only finitely
manyn such that

n∑
i=1

ζi ≥ σn1/2ϕk(n; c/4). (47)

If λ < 0, from (46) and (47) we see that, for a.e.ω, there are only finitely manyn such
that

n∑
i=1

ζi +

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ σn1/2 (ϕk(n; c/4) − ϕk(n; c/3)) . (48)

So if λ < 0, from (48), (39), and (41) we infer that for a.e.ω there are only finitely many
values ofn for which

1n ≥ exp(−C1n
1/2)

for someC1, not depending onω, with 0 < C1 < ∞. Thus for a.e.ω there exists a
constantC2 (depending onω) with 0 < C2 < ∞ such that

f (n) ≤ C2 +

∞∑
i=1

exp(−C1i
1/2),

which is bounded. So in this case, by Lemma 1,ηt (ω) is transient for a.e.ω.
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On the other hand, ifλ > 0 then Lemma 3 with (46) implies that for a.e.ω there are
infinitely many values ofn for which

n∑
i=1

ζi +

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ σn1/2(ϕk(n; c/3) − ϕk(n; c/4)) ≥ C1n

1/2 (49)

for someC1, not depending onω, with 0 < C1 < ∞. So if λ > 0, by (49), (39), and (41)
for a.e.ω there are infinitely many values ofn for which

1n ≥ exp(C1n
1/2).

Thusf (n) → ∞ P-a.s., and in this caseηt (ω) is recurrent for a.e.ω, by Lemma 2.
We now classify the recurrent cases further into ergodic (positive recurrent) and null-

recurrent. To determine ergodicity, we apply Lemma 5. Givenω, and withD(ω) as de-
fined at (25), we have

D(ω) =

∞∑
i=1

1

qi

exp

(
−

i∑
j=1

log(pi/qi)

)
=

∞∑
i=1

1

1i+1qi

,

where1i is as defined at (39). By a similar argument to (41), forn sufficiently large and
a.e.ω,

1

1n

= exp

(
−

n−1∑
i=1

ζi −

n−1∑
i=1

Yi

ξi(1 − ξi)
χ(i) + O

(n−1∑
i=1

(χ(i))2
))

.

We use similar arguments as in the proof of recurrence and transience to analyseD(ω).
First suppose that for somek ∈ N, χ is k-subcritical. Then, by a similar argument to (45),
for a.e.ω there are infinitely many values ofi for which

−

n∑
i=1

ζi −

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ Cn1/2

for 0 < C < ∞. Thus for a.e.ω there are infinitely many values ofn for which 1/1n+1
> 1 and 1/(1n+1qn) > 1. HenceD(ω) = ∞ for a.e.ω. So, for a.e.ω, by Lemma 5,
ηt (ω) is not ergodic.

Now suppose that for somek ∈ N, χ is k-supercritical. Ifλ > 0, using similar
arguments to those before, we deduce that for a.e.ω there are only finitely manyn for
which

−

n∑
i=1

ζi −

n∑
i=1

Yi

ξi(1 − ξi)
χ(i) ≥ σn1/2(ϕk(n; c/4) − ϕk(n; c/3)).

So for a.e.ω there are only finitely many values ofn for which

1/1n ≥ exp(−C1n
1/2)
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for some 0< C1 < ∞. Thus for a.e.ω there exists a constantC2 (depending onω) with
0 < C2 < ∞ such that

D(ω) ≤ C2 +

∞∑
i=1

exp(−C1i
1/2),

which is bounded. So in this case, for a.e.ω, by Lemma 5,ηt (ω) is ergodic.
This completes the proof of Theorem 7. ut

Proof of Theorem 6.First we prove parts (i) and (iii). Suppose that, for alln sufficiently
large,λχ(n) ≥ cn−1/2(log logn)1/2 for somec > ccrit whereccrit = σ2−1/2. Then we
see thatχ is k-supercritical fork = 2, 3, . . . , since, for example,

c

|λ|
n−1/2(log logn)1/2

=
c

ccrit

σ

2|λ|
n−1/2(2 log logn)1/2

≥
σ

2|λ|
n−1/2(2 log logn + 4 log log logn)1/2

for n sufficiently large andc > ccrit. Hence (i) follows from Theorem 7(i). Similarly, (iii)
follows from Theorem 7(iii).

For part (ii), suppose that|λ|χ(n) ≤ cn−1/2(log logn)1/2 for all n sufficiently large,
with c ≤ ccrit. Then we see thatχ is k-subcritical fork = 2, 3, . . . , since, for example,

c

|λ|
n−1/2(log logn)1/2

≤
σ

2|λ|
n−1/2(2 log logn)1/2

≤
σ

2|λ|
n−1/2(2 log logn + 2 log log logn)1/2

for n sufficiently large. Then Theorem 7(ii) gives Theorem 6(ii), and the proof of Theorem
6 is complete. ut

Proof of Theorem 5.By Lemma 3, for a.e.ω there are infinitely many values ofn for
which

n∑
i=1

ζi ≥ σn1/2(log logn)1/2. (50)

By a similar argument to (41), but keeping track of higher order terms in the Taylor series,
we now have

log(pi/qi) = ζi +

∞∑
r=1

1

r
Y r

i

(
1

(1 − ξi)r
+

(−1)r+1

ξ r
i

)
(χ(i))r . (51)

By the conditionY1/ξ1
D
= −Y1/(1 − ξ1), the expectation of the sum on the right of (51)

is zero. Hence we can apply Lemma 6(c) with

Zi =

∞∑
r=1

1

r
Y r

i

(
1

(1 − ξi)r
+

(−1)r+1

ξ r
i

)
(χ(i))r−1 (52)
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to deduce that for all but finitely manyn and a.e.ω,

n∑
i=1

∞∑
r=1

1

r
Y r

i

(
1

(1 − ξi)r
+

(−1)r+1

ξ r
i

)
(χ(i))r ≥ −εn1/2(log logn)1/2, (53)

and by choosingε sufficiently small we conclude from (51), (50) and (53) that for a.e.ω

there are infinitely many values ofn for which

n∑
i=1

log(pi/qi) ≥ Cn1/2(log logn)1/2

for some 0< C < ∞. Thus with1n defined at (39), for a.e.ω there are infinitely many
values ofn for which

1n ≥ exp(Cn1/2(log logn)1/2),

and hencef (n) → ∞ P-a.s., and so, by Lemma 2,ηt (ω) is recurrent for a.e.ω.
To prove null-recurrence, it remains to show that the Markov chain is not ergodic.

ConsiderD(ω) as defined at (25) again. By Lemma 3, for a.e.ω there are infinitely many
values ofn for which

−

n∑
i=1

ζi ≥ σn1/2(log logn)1/2.

From Lemma 6(c) withZi as at (52) we see that for all but finitely manyn and a.e.ω,

−

n∑
i=1

Ziχ(i) ≥ −εn1/2(log logn)1/2,

and by choosingε sufficiently small we conclude that for a.e.ω there are infinitely many
values ofn for which

1/1n ≥ exp(Cn1/2(log logn)1/2)

for some 0< C < ∞, and soD(ω) = ∞ P-a.s. Thus, by Lemma 5, the Markov chain is
P-a.s. not ergodic. Thus, for a.e.ω, ηt (ω) is null-recurrent. ut

Proof of Theorem 3.Parts (i) and (ii) follow easily with the methods used in the proof of
Theorem 7. We prove part (iii). By a similar argument to (41), we now have

log(pi/qi) =

∞∑
r=1

4r

2r − 1
Y 2r−1

i (χ(i))2r−1
= 4Yiχ(i) + O((χ(i))3). (54)

SinceY1
D
= −Y1, all odd powers ofY1 have zero expectation, so that the expectation of

the right hand side of (54) is zero. Thus it is clear that for a.e.ω there are infinitely many
values ofn for which

∑n
i=1 log(pi/qi) ≥ 0, and hence1n ≥ 1, and sof (n) → ∞ for

a.e.ω, and we haveP-a.s. recurrence, by Lemma 2.
To prove null-recurrence, it remains to show that the Markov chain is not ergodic.

Once more, considerD(ω) as defined at (25). By a similar argument to the above, for
a.e.ω there are infinitely many values ofn for which

∑n
i=1 log(pi/qi) ≤ 0 and hence
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1/1n ≥ 1, and soD(ω) = ∞ for a.e.ω. Thus, by Lemma 5, the Markov chain isP-
a.s. not ergodic. This completes the proof of part (iii).

We now prove (iv). Once again we analyse the properties of the expression (54).
Suppose thatχ(n) = an−β for somea, β > 0. Now suppose that 0< β < 1 and that
E[Y1] < 0. Then from (54), there exist 0< C1, C2 < ∞ such that

−C1n
1−β

≤ E
n∑

i=1

log(pi/qi) ≤ −C2n
1−β .

If β > 1/2, then, by the boundedness ofY1, we have

sup
n

E
∣∣∣ n∑
i=1

log(pi/qi) − E
n∑

i=1

log(pi/qi)

∣∣∣k < ∞

for all k ∈ N, so thatP-a.s.,∣∣∣ n∑
i=1

log(pi/qi) − E
n∑

i=1

log(pi/qi)

∣∣∣ < nε

for all but finitely manyn, and anyε > 0. So, for all but finitely manyn and a.e.ω,

1n ≤ exp(−Cn1−β
+ nε)

for someC with 0 < C < ∞, so that, forε small enough,f (n) =
∑n

i=1 1i is bounded
for a.e.ω, which implies thatηt (ω) is P-a.s. transient, by Lemma 1.

Also, if β = 1/2 we infer from (54) that there exist 0< C1, C2 < ∞ such that

C1 logn ≥ Var
n∑

i=1

log(pi/qi) ≥ C2 logn → ∞

asn → ∞, and then we can apply Lemma 3 to obtain, for a.e.ω,

n∑
i=1

log(pi/qi) ≤ −C1n
1/2

+ C2(logn)1/2(log logn)1/2

for some constants 0< C1, C2 < ∞ (depending onω) and all but finitely manyn. Thus
f (n) is P-a.s. bounded, and so we haveP-a.s. transience by Lemma 1.

Finally, if 0 < β < 1/2, by (54), there exist 0< C1, C2 < ∞ such that

C1n
1−2β

≥ Var
n∑

i=1

log(pi/qi) ≥ C2n
1−2β

→ ∞

asn → ∞, and then by Lemma 3 we obtain, for a.e.ω,

n∑
i=1

log(pi/qi) ≤ −C1n
1−β

+ C2n
1/2−β(log logn)1/2
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for some constants 0< C1, C2 < ∞ (depending onω) and all but finitely manyn.
So once againf (n) is P-a.s. bounded, and we haveP-a.s. transience by Lemma 1. This
proves part (c).

To prove (a), we apply Lemma 5. Suppose thatE[Y1] > 0. By similar arguments to
those above, this time for a.e.ω we have

n∑
i=1

log(pi/qi) ≥ Cn1−β

for some 0< C < ∞ and all but finitely manyn. Thus, for a.e.ω and all but finitely
manyn,

1

1n

= exp
(
−

n−1∑
i=1

log(pi/qi)
)

≤ exp(−Cn1−β),

and so, forD(ω) as defined at (25),D(ω) < ∞ P-a.s.; hence, by Lemma 5, the Markov
chain isP-a.s. ergodic, proving part (a).

Finally, we prove (b). Suppose thatβ > 1. Now, since−1 ≤ Yi ≤ 1 andχ(n) =

an−β , we see from (54) that there exists a constantC1 (not depending onω) with 0 <

C1 < ∞ such that, for a.e.ω,∣∣∣ n∑
i=1

log(pi/qi)

∣∣∣ ≤ C1

n∑
i=1

i−β
≤ C2

for some finite positiveC2, not depending onω or n, this last inequality following since
β > 1. Thus for a.e.ω and eachn,

0 < exp(−C2) ≤ exp
( n∑

i=1

log(pi/qi)
)

≤ exp(C2) < ∞,

so that for eachn, 1n and 1/1n are each bounded strictly away from 0 and from∞, so
thatP-a.s.f (n) → ∞ asn → ∞, andD(ω) = ∞ P-a.s. Thus by Lemma 1 the Markov
chain isP-a.s. recurrent, and by Lemma 5, it isP-a.s. not ergodic. Thus, for a.e.ω, ηt (ω)

is null-recurrent. This completes the proof of Theorem 3. ut
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