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“Bending to Stretching” Transition in Disordered Networks
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From polymer gels to cytoskeletal structures, random networks of elastic material are commonly found
in both materials science and biology. We present a three-dimensional micromechanical model of these
networks and identify a ‘“‘bending-to-stretching’ transition. We characterize this transition in terms of
concentration scaling laws, the stored elastic energy, and affinity measurements. Understanding the
relationship between microscopic geometry and macroscopic mechanics will elucidate, for example, the
mechanical properties of polymer gel networks or the role of semiflexible network mechanics in cells.
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Common structural features link cellular materials [1,2],
polymer gels [3,4], and biological networks [5—7]: that of a
random lattice of interconnecting struts. These struts can
bear mechanical loads by either stretching or bending.
Interestingly, some materials appear to macroscopically
deform primarily through the local stretching of the struts,
while in other materials the elastic energy is stored via
local bending. Furthermore, a transition between these two
regimes has been reported. Wilhelm and Frey (2003) and
Head et al. (2003) simulated the two-dimensional elastic
deformation of a network of rods [8—10]. A transition from
a system where the macroscopic elasticity was dominated
by the bending stiffness of the struts, to where the stretch-
ing stiffness dominated, was observed with increasing rod
density. Head et al. (2003) characterized this transition as
being from a system with a nonuniform strain field (non-
affine) to a system with a uniform strain field (affine)
[9,10]. Onck et al. (2005) have also observed such a tran-
sition for systems under very large deformations, where the
struts align in the tensile direction [11]. Furthermore,
experimental studies have also observed this transition
and, in particular, Liu ef al. have directly imaged the strain
field in semiflexible polymer networks and observed less
affinely deformed networks in the bending regime [12].
Elucidating this transition is not only of interest to mate-
rials scientists but is also vital to our understanding of
various biological systems, from cellular structures, such
as wood and trabecular bone [1], to actin and cytoskeletal
networks [5]. The purpose of the Letter, therefore, is to
present our computational study of the elasticity of ran-
domly generated three-dimensional lattice structures and
to quantify the geometry dependence of the bending-to-
stretching transition. Whereas previous studies have inves-
tigated this transition in terms of the density of overlapping
rods in two-dimensional systems, here we characterize this
transition as a function of three-dimensional lattice con-
nectivity. In particular, we present the elastic moduli as a
function of the concentration of struts and describe the
affinity of these deformations, in order to facilitate com-
parisons with experimental studies.
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We use a bond-bending lattice spring model (LSM) to
capture the deformation of random networks of intercon-
nected struts. In particular, the LSM consists of lattice sites
connected by one-dimensional harmonic interactions. The
LSM is traditionally considered to consist of a regular
lattice and is adopted from condensed matter theory [13]
and molecular simulations [14]. The regular LSM has been
shown to capture linear elasticity theory [15,16] and simu-
late material heterogeneity [16—24]. Furthermore, Ladd
et al. [25,26] have used a regular LSM to capture the
deformation of trabecular bone. In contrast, in the present
work we assume that each strut can be captured using a
simple harmonic interaction and define the compressive or
stretching and bending force constants as ky = E;A/l and
k, = 12E,I/PP, respectively. The force constants depend
on E, the material Young’s modulus, A, the cross-sectional
area (7rr?), I, the area moment of inertia of the struts
(mr*/4), and I, the length of the strut. We take E; to be
unity and the radius of the rods, r, to be 0.1 in dimension-
less units. This allows us to capture the micromechanics of
large systems.

The elastic energy of a Born LSM can be written in
matrix form as [16] A; =13, u;; - M;; - u;;, where A; is
the elastic energy stored at node i, the summation is over
neighboring nodes, u;; is the difference in nodal displace-
ments (i.e., u; — u;), and M;; is a matrix of elastic con-
stants. For a strut in the [100] direction the force constants
can be chosen to mimic the tensile and bending rigidity of a
cylindrical strut, resulting in a matrix of the form

ki 0 0
M[lOO] = O kJ_ 0 . (1)
0 0 Kk,

We can use this matrix to obtain the matrix of force
constants for struts of any orientation through appropriate
rotational transformations [16]. By minimizing the energy
of this linear system of equations and balancing the forces
at nodal points, we can equilibrate an irregular lattice of
such struts and obtain macroscopic elastic constants.
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We construct our three-dimensional networks by first
randomly distributing LSM nodes throughout the system.
We then connect neighboring nodes by struts. In particular,
nodes within a given distance are connected and this
distance is chosen in order to maintain an average con-
nectivity in the lattice. Struts which would be connected in
the x direction, in the presence of periodic boundary con-
ditions, are redefined as boundary struts and used to con-
nect the LSM lattice with the system boundaries. Free
boundary conditions are applied in the y and z directions.
It should be noted that the system described here focuses
only on mechanical deformations while it has been re-
ported that thermal fluctuations can also play a role in
semiflexible polymer networks [27]. The effects of these
thermal fluctuations are believed to increase the effective
compliance of the struts as the applied deformation has to
first pull out thermal fluctuations before stretching the
polymer backbone.

A rigid percolation transition has been observed in dis-
ordered networks. For very low densities the struts have
been found to be isolated, or in small clusters, and macro-
scopically the network does not percolate [9]; a similar
rigidity percolation has been found by Hough et al. [28] in
carbon nanotube suspensions. In our simulations we find
that for systems with an average connectivity of three or
less the material does not resist small deformations. As we
increase the connectivity, however, the lattice forms a
percolating pathway of rigid material and the material is
macroscopically capable of bearing applied loads.

Figure 1 shows two lattices of different connectivity and
under different deformations. Figures 1(a) and 1(c) depict
systems with a low density of nodes, but high connectivity
(on average 15) and Figs. 1(b) and 1(d) depict systems with
a high density of nodes, but low connectivity (on average
5); the concentration of struts, however, is roughly 0.06 in
all systems. Despite the similarity in concentration, the
geometry of the systems are clearly different. Arrows
indicate the direction of applied deformation (either shear
or normal). The system boundaries (whose displacement
drives the deformation) are depicted as gray walls, and the
struts are colored from white (relatively undeformed) to
red (high stretching energy) or blue (high bending energy).
It can, therefore, be seen that the systems with higher and
lower connectivity deform primarily through the stretching
and bending of the lattice struts, respectively.

Bending dominated deformation throughout the system
has previously been associated with nonaffine strain fields
[9,10] and a lower density of struts [8,10]. The bending
regime occurs because the system can deform without the
struts having to change length. Rather, the distances be-
tween lattice nodes remain relatively unchanged and the
angles between struts varies. The bending rigidity of the
lattice struts is proportional to the area moment of inertia
(= R* where R is the radius of the struts), while the
concentration is proportional to the cross-sectional area
(*<R?). From scaling arguments, therefore, the macro-

A

FIG. 1 (color online). Deformed networks subject to shear (a),
(b) and normal (c), (d) deformations (arrows indicate direction of
applied deformation). Both high connectivity (a), (c) and low
connectivity (b), (d) systems are shown. Struts are colored white
if relatively undeformed, blue if the deformation energy of the
struts is predominantly bending, and red if the deformation
energy is predominantly stretching.

scopic rigidity (either Young’s or shear modulus) should
scale as concentration squared [1].

In contrast to the bending regime, the stretching occurs
because the system cannot deform without changing the
length of the struts. In particular, such rigidity is thought to
arise from clusters of triangles [29] or, more precisely, a
network composed of many triangular tessellations. In
such structures, a change in the position of a lattice node
necessarily causes changes to the lengths of the neighbor-
ing struts. As the stretching rigidity of the lattice struts is
proportional to the cross-sectional area, the macroscopic
rigidity should scale linearly with concentration (which is
also proportional to cross-sectional area). From the scaling
arguments of Gibson [1] a change in the exponent (in the
elastic modulus versus concentration plots) from 2 to 1
indicates a change from bending-to-stretching dominated
deformation.

Figure 2 shows both the relative shear modulus and
relative Young’s modulus as a function of concentration.
For each value of connectivity we consider five different
values for the number of lattice nodes (N = 500, 1000,
2000, 4000, 8000). Furthermore, we equilibrate three in-
dependent geometries for each connectivity and lattice
node specification. The mechanical properties of these
randomly generated geometries are displayed in Fig. 2.
Increasing the connectivity of the geometry increases the
number of struts and, therefore, the concentration, shear
modulus, and Young’s modulus all increase. Furthermore,
the gradients of the log-log plots of shear and Young’s
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FIG. 2 (color online). Graph to show (a) relative shear modu-
lus and (b) relative Young’s modulus as a function of concen-
trations. Systems with lattice connectivities of 4, 5, 7, 10, 15, and
20 are compared. Points represent simulation data and solid lines
are fitted curves.

modulus versus concentration appear to decrease with in-
creasing connectivity. Recall that this is expected from
scaling arguments as systems with high connectivity
should deform primarily through stretching.

We quantify this transition in Fig. 3. We characterize the
bending-to-stretching transition using the exponent ob-
tained from Fig. 2 and the ratio of stretching energy to
total energy. The exponent varies from ~2 at low connec-
tivity to ~1 at high connectivity, in agreement with pre-
dictions based entirely on scaling arguments. On the
second y axis of Fig. 3 we depict the ratio of elastic energy
due entirely to the stretching of the struts with the total
elastic energy. The ratio between stretching and total en-
ergy does not depend on the concentration, but on the
microscopic connectivity of the network. We, therefore,
average this quantity over all the struts, in all systems with
a given connectivity. This ratio is ~0 for low connectivity
which indicates that most of the elastic energy is stored
through bending deformations. For higher connectivities
the ratio approaches 1 indicating that the elastic energy in
the deformed system arises from the stretching of the
struts.

sented by circles and stars, respectively. While systems of
low and high connectivity show disorder, the system with
low connectivity exhibits collections of points which pos-
sess similar displacements for large ranges of initial posi-
tion [horizontal lines of star points in Fig. 4(a)]. This is due
to clusters which do not contribute to the percolating
structure (and do not, therefore, support stress) but exist
in a relatively undeformed state attached to the percolating
structure. Furthermore, the inset of Fig. 4(a) shows the
degree of nonaffinity, defined as R(Ary) = (((Ar;; —
Arf‘j)/ Ar‘,.“j)2>, where Ar;; is the distance between nodes i
and j, Ar‘,-“j is the affine distance, and Ar, is the unper-
turbed distance. Consistent with earlier work [10,12] the
degree of nonaffinity decreases with distance (the defor-
mations appear more uniform over larger distances). The
connectivity appears to affect the affinity of the deforma-
tion field equally, for all length scales.

To quantify the nonaffine nature of the deformations we
plot the root-mean-square (rms) deviation of simulated
positions from those of perfectly affine deformations.
Furthermore, we plot a standard correlation function be-
tween the displaced and initial positions (for a perfectly
affine deformation this equals 1). Figure 4(b) shows both
the decrease in this rms deviation (solid line) and the
increase in the correlation function (dashed line) for sys-
tems with increasing connectivity. Therefore, consistent
with previous studies, we find the bending-to-stretching
transition to be accompanied by a change towards more
uniform deformation fields.
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FIG. 4 (color online). (a) Relative displacement vs distance for
systems of high (C = 20) and low (C = 4) connectivity (degree
of nonaffinity depicted in inset). (b) rms deviation of displace-
ments from perfectly affine deformation, and correlation func-
tion between displacement and distance, as a function of
connectivity.

To summarize, the bending-to-stretching transition is
found to be a continuous geometry-dependent transition
in the three-dimensional lattice networks considered here.
In particular, the transition occurs as a function of the
average connectivity of the disordered elastic network.
We quantify this transition in terms of the concentration
scaling laws, the stored elastic energy, and affinity mea-
surements. Understanding this bending-to-stretching tran-
sition is important for predicting structure-property
relations in materials such as cellular structures and poly-
mer gels and elucidating the role of mechanics in biologi-
cal networks.
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